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Abstract

Current causal inference approaches for esti-
mating conditional average treatment effects
(CATEs) often prioritize accuracy. However,
in resource constrained settings, decision mak-
ers may only need a ranking of individuals
based on their estimated CATE. In these sce-
narios, exact CATE estimation may be an
unnecessarily challenging task, particularly
when the underlying function is difficult to
learn. In this work, we study the relation-
ship between CATE estimation and optimiz-
ing for CATE ranking, demonstrating that
optimizing for ranking may be more appro-
priate than optimizing for accuracy in cer-
tain settings. Guided by our analysis, we
propose an approach to directly optimize for
rankings of individuals to inform treatment
assignment that aims to maximize benefit.
Our tree-based approach maximizes the ex-
pected benefit of the treatment assignment
using a novel splitting criteria. In an empirical
case-study across synthetic datasets, our ap-
proach leads to better treatment assignments
compared to CATE estimation methods as
measured by expected total benefit. By pro-
viding a practical and efficient approach to
learning a CATE ranking, this work offers an
important step towards bridging the gap be-
tween CATE estimation techniques and their
downstream applications.

1 INTRODUCTION

The problem of resource allocation or prioritizing inter-
ventions is common across various fields (Brown, 1984;
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Korhonen and Syrjänen, 2004; National Academies of
Sciences et al., 2020; Cookson et al., 2008). In health-
care, for instance, clinicians must triage patients for
different levels of care (Robertson-Steel, 2006). In
marketing, companies must prioritize customers for
marketing campaigns and retention programs (Ascarza,
2018; Radcliffe, 2007). Similarly, in education, targeted
interventions can lower dropout rates or improve aca-
demic performance (Bakosh et al., 2016; Olaya et al.,
2020). While numerous other examples exist, in this
work, we use the healthcare setting as a motivating
example.

In many healthcare settings, the optimal situation may
be to treat all at-risk patients. However, due to resource
constraints such as time, workforce, and availability
of treatments, healthcare workers often have to make
important and difficult decisions on how to allocate
resources (Kluge, 2007; Guindo et al., 2012). For exam-
ple, clinicians may prioritize monitoring and additional
care for a subset of individuals at risk of deteriorating
due to sepsis (Filbin et al., 2018). This problem setting
is especially relevant during a global pandemic (Jöbges
et al., 2020), but even prior to the pandemic healthcare
systems around the world were already strained with
long wait times and burnt out clinicians (Dzau et al.,
2018). Accordingly, in some settings, clinicians may be
forced to triage patients. These triaging decisions may
be based, at least in part, on a ranking of who is likely
to benefit most from a particular intervention (i.e., the
treatment effect) (Kluge, 2007; Schwappach, 2002; Yad-
lowsky et al., 2021; Inoue et al., 2023). Tools that could
help clinicians in estimating benefit from observational
data could help in assisting clinicians in defining this
ranking. However, estimating treatment effects from
observational data is rarely straightforward.

Conditional average treatment effects (CATEs) quan-
tify the effect of a treatment on an outcome given an
individual’s covariates. However, estimating CATEs
using observational data is challenging due to potential
confounding (Foster et al., 2011; Hernan and Robins,
2020). Accordingly, past research has worked to im-
prove accuracy and sample efficiency in CATE estima-
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tion through novel machine learning techniques (Glass
et al., 2013; Alaa and van der Schaar, 2017; Shalit et al.,
2017; Wager and Athey, 2018; Hernan and Robins, 2020;
Hassanpour and Greiner, 2020; Zhang et al., 2020;
Kennedy, 2020). However, these methods are often
optimized for and evaluated based on their ability to
accurately estimate CATEs.

More recently, there has been interest in how causal
inference techniques translate to downstream decision
making. Specifically, researchers have studied when ex-
act causal effect estimation may be unnecessary when
the goal is to identify whom to treat, framing a new
problem of causal classification for identifying treat-
ment responders (Kallus, 2019; Athey and Wager, 2021;
Fernández-Loría and Provost, 2022). In these settings,
the goal is to learn whether an individual will benefit
from treatment, as defined by some threshold on the
estimated CATE, and prioritize treatment for these
individuals. Past work has both studied the disconnect
between this problem and CATE estimation and has
studied methods for directly optimizing for this use-
case. In this work, we build upon this recent paradigm
shift and extend this idea beyond a binary classification
problem. Specifically, we study study the problem of
optimal ranking policies without the need for an a pri-
ori threshold to treat, similar to triage. As thresholds
for determining whom to treat may vary depending on
the application, and may change even within the same
application, we need approaches that are agnostic to a
particular threshold and provide an overall ranking.

There are strong parallels between these causal infer-
ence tasks and the field of reinforcement learning. Our
problem setting of interest could be framed as a ban-
dit problem in which a model estimates a ranking to
maximize overall benefit, rather than the standard ap-
proaches of measuring the value of different treatment
policies (akin to causal effect estimation) or learning
treatment assignments for each example (similar to
causal classification). We study the potential for a
model-based approach that directly optimizes for max-
imizing overall benefit in comparison to these standard
approaches.

Recent research in the field of uplift modelling
has begun to study this problem (Rzepakowski and
Jaroszewicz, 2012; Betlei et al., 2021; Zhao et al., 2017;
Zhou et al., 2023). For example, Zhou et al. (2023)
propose a new objective function that does not focus on
the accuracy of the CATE estimates to obtain unbiased
CATE estimates that may be used to rank individu-
als for resource allocation. While related, past work
assumes access to data from a randomized controlled
trial or with binary outcomes. These differences in
the problem setting change the problem substantially,
such that their proposed estimators and the theory

underlying their estimators, no longer apply, as the
outcomes and treatments are not independent in our
observational setting.

We study the disconnect between the problem of opti-
mizing for optimal treatment allocation and unbiased
CATE estimation, which is often an objective of past
work (Zhou et al., 2023). Building on recent work,
we focus on a theoretical and empirical exploration of
the disconnect between these two problem setups. We
focus on a setting in which the treatment may be ben-
eficial to many people, but due to resource constraints,
it must be allocated to those who benefit most from
the treatment. We take inspiration from the field of
learning to rank to tackle this problem and consider
how to adapt these methods to our setting (Cao et al.,
2007).

In the context of resource allocation, accurate CATE
estimates will produce an accurate ordering of who is
most likely to benefit from the resources. While suffi-
cient, accuracy in CATE estimation is not necessary.
Inaccurate or biased estimates can still lead to the op-
timal ranking, i.e., one that maximizes benefit across
all treatment thresholds. In this paper, we study the
disconnect between accurate CATE estimation and the
ultimate goal of prioritization for resource allocation.
We theoretically analyze the mismatch between opti-
mizing for CATE estimation accuracy and optimizing
for a ranking that maximizes overall benefit. Based on
our findings, we develop a novel tree-based approach
that produces a ranking of individuals that maximizes
expected benefit across all treatment thresholds. We
show that our approach, in low sample settings, is
more sample-efficient and outperforms CATE estima-
tion techniques that focus on accuracy. Overall, our
contributions are as follows:

• We analyze the problem of learning accurate rank-
ing models for maximum benefit compared to learn-
ing accurate CATE estimation models.

• We propose a novel tree-based method to directly
maximize expected benefit as measured by CATEs
across all treatment thresholds.

• Empirically, we explore the potential for directly
maximizing expected benefit compared to opti-
mizing for CATE accuracy. Across a range of
settings with limited data, our approach is more
sample-efficient and outperforms methods that fo-
cus primarily on accurate CATE estimation in
low-data regimes.
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2 PROBLEM SET-UP AND
BACKGROUND

Setup. We study a setting where the decision maker
aims to identify the top u% of individuals who will
benefit most from some intervention, for all u. We
assume access to an observational dataset containing n
individuals with tuples S = (xi, ti, yi)

n
i=1, where each

individual i has covariates xi ∈ X ⊂ Rd, assigned
treatment ti ∈ {0, 1}, and experiences the observed
outcome under the assigned treatment yi ∈ R (for
continuous outcomes) or yi ∈ {0, 1} (for binary out-
comes). We follow the potential outcomes framework
(Rubin, 1974; Splawa-Neyman et al., 1990). Specifi-
cally, for an individual i, we define potential outcomes
as the outcomes under different treatment choices (i.e.,
treated and not treated), and use Yi(0), Yi(1) to de-
note the potential outcomes under non-treatment and
treatment respectively. Under the rules of do-calculus,
E[y|xi, do(t = 1)] corresponds to the potential out-
come Yi(1) (Pearl, 2009). We define the CATE as:
τi = CATE(xi) = E[y|xi, do(t = 1)] − E[y|xi, do(t =
0)] = Yi(1)− Yi(0).

Goal. To identify the top u% of individuals who will
benefit (i.e., have the greatest CATE) for all u, we
seek a function f such that ∀i, j ∈ S where τi > τj ,
f(xi) > f(xj). Given this function, we may then apply
a threshold u at inference time to identify the top u%
of individuals for treatment, for any u. Given an order-
ing of individuals, we evaluate the potential value of it
across all thresholds u. Traditional discriminative rank-
ing metrics used to measure ranking in classification,
such as the AUROC or concordance index, calculate the
proportion of individuals misranked, based on the exis-
tence of a pairwise truth function (Rudin and Schapire,
2009; Steck et al., 2007). In our setting, in addition to
the pairwise truth function, we also have ground-truth
continuous treatment effects. Classification metrics do
not take these effects into account and as a result, do
not capture the full impact of a misranking on the
expected benefit. In our setting, we utilize a metric
that incorporates the ground-truth treatment effects,
to better understand the expected benefit of a given
ranking.

Measuring Expected Benefit. Given a ranking,
we aim to measure the overall benefit from treatment
across all possible thresholds. To measure the expected
benefit of treating the top u% of patients in sample S,
as identified by model f , we assume that the CATE
τi is observed and may be used for evaluation. For-
mally, we define Du

S(f) as the top u% of individu-
als ranked by the model, i.e., Du

S(f) = {i|f(xi) ≥
ψ({f(xi)i∈S}, u)}, where ψ(a, u) is the uth percentile
of the empirical distribution of a. The average bene-

fit from treatment for these individuals is defined as
ATEu

S(f) = 1
|Du

S(f)|
∑

i∈Du
S(f) τi. A larger ATEu

S(f)

value corresponds to a function f that better identifies
who benefits most from treatment at threshold u%.
As in past work, we normalize this value to measure
improvement over a random ranking by defining the
targeting operator characteristic (TOC) at u as the dif-
ference between the ATE of the top u% of patients as
ordered by f , and the ATE of treating all individuals,
i.e., TOCu

S(f) = ATEu
S(f)− 1

|S|
∑|S|

k=1 τk (Yadlowsky
et al., 2021). A value of 0 represents no improvement
over random. Finally, to measure this across all treat-
ment thresholds u, we use the Area Under the TOC
(AUTOC). For an arbitrary function f and a sample
S,

AUTOCS(f) =
1

|S|

|S|∑
i=1

TOC
100∗ i

|S|
S (f)

(Yadlowsky et al., 2021). The AUTOC measures the
average benefit from treatment of those identified in
the top u% by f , averaged across all thresholds u,
relative to the ATE (i.e., the average treatment benefit
of a random sample) (Yadlowsky et al., 2021). Hence,
calculating the AUTOC aligns directly with the goal
of measuring the overall benefit from treatment if a
model is used to triage examples across every possible
threshold. Larger values of AUTOC represent more
accurate identification of the top u% of individuals,
while an AUTOC of 0 represents a random ranking.
The AUTOC may be negative if worse than random.
While there exist similar metrics, such as the Qini curve,
that reweight the objective at different thresholds u, we
use the AUTOC due to its strong theoretical properties
and unbiasedness when estimated using doubly robust
proxies (Yadlowsky et al., 2021).

Causal Identifiability Assumptions. As measuring
the AUTOC relies on the true values of τ , it is not
identifiable from observational data without additional
assumptions. In line with the majority of work in causal
inference, we assume no hidden confounding, overlap,
and consistency. These assumptions are sufficient for
the identification of causal effects, and hence, are also
sufficient for the ranking of causal effects (Shalit et al.,
2017; Hernan and Robins, 2020; Imbens and Rubin,
2015). We discuss the implications of these assumptions
in the conclusion.

3 THEORETICAL ANALYSIS

In this section, we study the relationship between ac-
curate CATE estimation and optimal ranking for max-
imizing overall benefit defined based on the treatment
effect (Figure 1). We begin by exploring what it
means to maximize benefit across all treatment thresh-
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olds as measured by AUTOC. From here, we compare
the problem of obtaining accurate CATE estimators to
the problem of directly optimizing for AUTOC.

Model 𝐴:	
Optimizing	for	
Accuracy	

Model 𝐵:	
Optimizing	for	

Ranking	

(a) (b)

𝐴 𝑥! = 7.5
𝑀𝑆𝐸 𝐴 = 4.5
𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝐴 :

B 𝑥! = 3.6
𝑀𝑆𝐸 𝐵 = 8.5
𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝐵 :

Optimal	
Ranking:

Figure 1: A motivating example. Consider four indi-
viduals, and a model that has estimated CATEs for
individuals x2, x3, and x4. To achieve better mean-
squared-error (MSE), the model should predict a value
close to the true CATE (7.5). However, the model can
achieve an optimal ranking by estimating the CATE of
the remaining example (x1) anywhere in a large inter-
val between the estimates of x2 and x4. This illustrates
important takeaways from Propositions 1 and 2: 1) we
may achieve optimal AUTOC even when the CATE
function is not estimated accurately, and 2) a model
with better MSE may not result in better AUTOC.

We begin by understanding what it means to maxi-
mize AUTOC, where the optimal model is defined as
f∗(xi) = τi for all xi.

Claim 1 Given a function f : X → R and a dataset
S, (∀i, j|τi > τj , f(xi) > f(xj)) ↔ AUTOCS(f) =
AUTOCS(f

∗)

Claim 1 states that if a function f correctly orders pairs
of examples in terms of their CATE then it will achieve
optimal AUTOC performance. Hence, it suffices to find
models that are optimal in the ordering of examples to
maximize AUTOC. Given this intuition, we study the
relationship between estimating CATEs and AUTOC
performance and identify if accurate AUTOC may be
easier than accurate CATE estimation.

To do so, we first define LM
S (f) = 1

n

∑n
i=1(f(xi)− τi)

2

as the mean-squared-error for CATE estimation for a
function f over a sample S. LM

S can help measure the
performance of a CATE estimation technique as a larger
value means worse CATE estimation performance.
Next, we introduce the notion of margins. We define
the margin for point i as γi = minj:j ̸=i(f

∗(xi)−f∗(xj)).
The margin measures the extent to which a model can
misestimate the CATE without violating an optimal
ordering. Given these definitions, we formally study
the relationship between CATE estimation accuracy
and optimal AUTOC. First, we study the case where a
model achieves perfect CATE estimation performance.

Claim 2. Given a model f : X → R and a sample S,
LM
S (f) = 0 → AUTOCS(f) = AUTOCS(f

∗)

If ∀i ∈ S, f(xi) = τi, f is optimal by definition. Hence,
a perfect CATE estimator is a sufficient condition for
optimal AUTOC. This means that the solution set for
optimal AUTOC is at least as large as the solution set
for perfect CATE estimation. However, the converse is
not true.

Proposition 1. For a sample S, there exists a function
f ∈ F such that AUTOCS(f) = AUTOCS(f

∗), yet
LM
S (f) > 0.

The proof can be found in Appendix B. Proposition
1 states that a model that achieves perfect AUTOC may
obtain arbitrarily poor CATE estimation performance.
Hence, accurate CATE estimation is not a necessary
condition for optimal AUTOC. Our proof technique
consisted of creating a function f which is biased in a
way that preserves optimal AUTOC but results in an
LM (f) greater than 0. More generally, any function
f ∈ F that biases each example i by less than half its
margin γi is guaranteed to result in optimal AUTOC
and non-zero LM . Hence, the set of solutions that lead
to optimal AUTOC may be larger than the optimal
solutions for CATE, especially when the ground-truth
minimum margin γ between examples is sufficiently
large. In these settings, solutions for AUTOC, that
simply require a correct ordering of examples, could be
easier to learn than the optimal CATE function f∗.

Up to now, we have shown that the set of solutions
that optimizes AUTOC will be just as large, if not
larger, than the set of solutions that optimizes CATE
accuracy. Maximizing AUTOC can guide learning
towards any of these solutions, potentially resulting in
an easier optimization problem. However, our analysis
has focused on the sufficiency and necessity of perfect
CATEs. We next study the finite sample setting where
CATEs may not be estimated perfectly. We show that
optimizing for better CATE in these settings does not
necessarily lead to better AUTOC performance.

Proposition 2. For any model f : X → R and sample
S such that LM

S (f) > 0, there exists a model g such that
LM
S (f) < LM

S (g) and AUTOCS(g) > AUTOCS(f).

The proof is found in Appendix B. Importantly,
Proposition 2 says that a better CATE estimator
may not result in a greater AUTOC. Hence, opti-
mizing for CATE accuracy does not necessarily
translate to better AUTOC in settings where
the CATE function cannot be estimated well.

Given that the solution set for optimal AUTOC is
larger than the solution set for perfect CATE estima-
tion, and better CATE accuracy does not necessarily
translate to better AUTOC, we hypothesize that op-
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Figure 2: The importance of global splits. We define a
subtree with data S, in which we aim to split at decision
node M , resulting in either tree A or B. A ‘local’ split
based on only data in SM results in tree A, as the sum
of ATEu at the first two thresholds (7.6 + 7.6+2.5

2 ) is
greater than that of tree B (6.3+ 6.3), with the ATEu

at all other thresholds being equal. Globally, tree B is
optimal as the sum of ATEu for the second and third
threshold ( 10+6.3

2 + 10+5+7.6
3 ) is greater than that of

tree A ( 10+7.6
2 + 10+7.6+2.5

3 ). Many small differences
can result in drastically different performance, so it
is important to consider the entire decision tree when
selecting splits.

timizing directly for AUTOC, at the cost of CATE
estimation performance, could lead to better perfor-
mance as measured by ranking for maximal benefit.
We expect this will hold in low and finite sample set-
tings and especially when the margin γ is large and
easy to learn, where estimating the CATE function
exactly might be challenging, but optimizing AUTOC
could be easier. We test this hypothesis empirically
and seek approaches that optimize for AUTOC directly
in Section 4.

Though we focus on the AUTOC, our major theoret-
ical results apply to other ranking-related evaluation
metrics, which can be viewed as modifications to the
AUTOC (e.g., Qini curve and AUPEC) (Yadlowsky
et al., 2021; Imai and Li, 2023). For all of these metrics,
our main propositions hold, such that accurate CATEs
are not required for accurate ranking, and better CATE
performance does not guarantee better ranking. How-
ever, we continue with the AUTOC, and leave empirical
explorations of other ranking metrics for future work.

4 METHODS

Up to now, we have shown that the solution set for op-
timal AUTOC is at least as large as the solution set for
accurate CATEs and may be larger. Moreover, in finite
settings, a perfect CATE estimator may not directly
translate to a better AUTOC. We hypothesize that in
some settings, such as low sample settings, optimizing
directly for AUTOC may result in better treatment

allocation. To test this hypothesis, we next develop a
technique for explicitly optimizing for AUTOC within
a sample S.

Optimizing For and Calculating AUTOC. Maxi-
mizing AUTOC for a sample S is difficult due to the
non-differentiability of the AUTOC. Thus, we propose
a tree-based approach. Tree-based techniques can be
used to tackle arbitrary optimization problems through
the use of novel splitting rules. A splitting rule for
creating new nodes in a decision tree is not required to
be differentiable. We utilize decision trees to directly
optimize for AUTOC over a sample S. Moreover, we
extend splitting rules to use training examples beyond
those seen in the current node in the tree, inspired by
past work in learning to rank (Ibrahim and Carman,
2016).

To begin, for any decision tree T , the AUTOC for a
sample S can be calculated as follows:

1. Assign a score T (xi) to each individual i in S
based on the average outcome of the leaf node in
which xi falls.

2. Calculate AUTOCS(T ) using the scores T (xi). To
handle ties where multiple examples have the same
predicted score, average across all possible order-
ings to simulate breaking ties at random (Yad-
lowsky et al., 2021).

Learning Decision Trees to Maximize AUTOC.
We propose an approach for building a tree T to op-
timize for AUTOC. To aid in our explanation, first
assume we have access to τi for all individuals in our
sample S, later relaxing this assumption. At any deci-
sion node M in a tree, we denote the current samples
at that node as SM and the current tree as TM . De-
note TM

k,v as the tree when the current decision node
M is split into two leaf nodes based on the feature k
and value v. Standard regression trees choose k and
v that splits the data into SMk,v

1
and SMk,v

2
by min-

imizing the weighted variance of the outcomes over
resulting nodes. We propose finding k, v by maximiz-
ing the AUTOC for the full sample S. More formally,
at each split, we solve the following optimization prob-
lem: k∗, v∗ = argmaxk,v AUTOCS(T

M
k,v). We use the

current estimates at the leaf nodes throughout the deci-
sion tree (i.e., the average τi value of the leaf node that
each example is currently placed at) to calculate the
AUTOC. In utilizing these ‘global’ splits, we overcome
potential limitations of local splits (Figure 2). While
all data are considered at each split, the tree is still
grown greedily, thus computation time increases only
slightly (i.e., this is not a globally optimal decision
tree). The order in which the ‘global split’ tree is built
is important, as the values of all nodes are used at each
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split. We build decision trees in a breadth-first manner
to ensure every portion of the tree is growing equally,
and splits at each node are made using nodes at similar
depths (Ibrahim and Carman, 2016). Given this train-
ing procedure, we bootstrap our data multiple times
and build many decision trees to overcome overfitting
and improve performance, as in standard random forest
(Breiman, 2001). At inference time, each test sample is
evaluated by each tree, and the outputs are averaged.
These estimates are used to rank test data.

Using Doubly Robust Proxies for Training. Re-
laxing the assumption of oracle access to the ground
truth CATE τi in our training sample, we use a doubly
robust proxy of the treatment effect τ̃i for each indi-
vidual i. The doubly robust estimate is defined as
τ̃i = m̂(xi, 0)− m̂(xi, 1) +

ti−ê(xi)
ê(xi)(1−ê(xi))

(yi − m̂(xi, ti)),
where ê(xi) is an estimate of the propensity score con-
ditioned on observed covariates, and m̂(xi, ti) is an
estimate of the expected outcome given an individual’s
covariates and treatment assignment (Chernozhukov
et al., 2018; Kennedy, 2020). The nuisance parame-
ters m̂ and ê represent nonparametric estimates of the
ground-truth propensity score and potential outcome
functions. Under our assumptions, E[τ̃i|xi] → τi as
n→ ∞. To calculate the AUTOC, we first calculate the
ATE at each threshold using these proxies in place of
the true CATEs, i.e., ÃTE

u

S(T ) =
1

|Du
S(T )|

∑
i∈Du

S(T ) τ̃i.
From here, we calculate the TOC and the AUTOC
respectively as T̃OC

u

S(T ) = ÃTE
u

S(T ) −
∑S

k=1 τ̃k

and ˜AUTOCS(T ) =
1
|S|

∑|S|
i=1 T̃OC

100∗ i
|S|

S (T ). Impor-

tantly, ˜AUTOCS(T ) calculated using τ̃i in place of
the true τi is an asymptotically unbiased and normal
estimate of the true AUTOCS(T ) under mild condi-
tions (Yadlowsky et al., 2021). These doubly robust
proxies can be built using cross-fitting. Then, when
making a split at decision node M , we find the k, v pair
that maximizes ˜AUTOCS(T

M
k,v). A model that directly

maximizes the AUTOC using the doubly robust proxy
will also, in expectation, maximize the true AUTOC.

5 EXPERIMENTS & RESULTS

Empirically, we test our hypothesis that directly op-
timizing for AUTOC can outperform models focused
on CATE estimation in low-sample sample settings
with large margins between examples. First, we de-
scribe our experimental setup and baseline methods.
From here, we present the datasets used in our experi-
ments, as well as the evaluation metrics used to measure
performance. We then present results comparing the
techniques across both datasets.

5.1 Experimental Set-Up

Baseline. As a baseline, we compare to a strong
CATE estimation baseline from past work known as
the DR-Learner (Kennedy, 2020). The doubly robust
proxy τ̃i for each example can only be built for in-
dividuals for whom treatments and outcomes are ob-
served. Hence, at inference time, on a new set of
examples for whom the treatment and outcome is not
observed, these proxies are not available. To over-
come this, the DR-Learner learns a mapping from
an example’s covariates to an estimate of the CATE
by regressing τ̃i on an individual’s covariates. For-
mally, the DR-Learner is a two-stage approach similar
to our proposed technique. However, in the second
stage, the model is trained to accurately estimate the
doubly robust proxy using standard metrics such as
mean-squared-error. To build the DR-Learner, we train
a random forest algorithm similarly to our proposed
method. However, at each decision node M , k, v are
selected to minimize the balanced variance of outcomes
τ̃i; the split at decision node M with data-points SM

can be defined as argmink,v
|S

M
k,v
1

|

|SM | V ar({τ̃i}i∈S
M

k,v
1

) +

|S
M

k,v
2

|

|SM | V ar({τ̃i}i∈S
M

k,v
2

). At inference, outputs in each
tree are aggregated by taking the average doubly ro-
bust outcome. Although numerous other CATE esti-
mation models have been proposed recently, we opt
for a strong baseline approach that is similar to our
proposed method to test our primary hypothesis. We
use the same doubly robust proxies for training for both
methods such that any observed differences between
the two approaches can be attributed to differences
in the splitting criteria. To give all methods the best
opportunity to learn, we use cross-fitting with decision
trees to estimate the potential outcomes and accurate
propensity scores to build the doubly robust proxy.
For the second step, we train all methods using the
same underlying random forest architecture, while only
varying the split procedure. We tune the same hyper-
parameters for both methods using the same search
space. We tune number of trees, the proportion of
data in each tree, the maximum depth of each tree, the
threshold for improvement, the minimum number of
samples needed for a split, and the minimum number of
samples at a leaf as hyperparameters for both models
(see Appendix D for more details and set-up) 1.

Datasets. While CATE estimation arises frequently
in practice, validating these techniques in real data
requires close collaboration with domain experts since
there is no well-accepted approach to evaluate without

1Code can be found at https://github.com/
MLD3/Learning-to-Rank-for-Optimal-Treatment-
Allocation-Under-Resource-Constraints

https://github.com/MLD3/Learning-to-Rank-for-Optimal-Treatment-Allocation-Under-Resource-Constraints
https://github.com/MLD3/Learning-to-Rank-for-Optimal-Treatment-Allocation-Under-Resource-Constraints
https://github.com/MLD3/Learning-to-Rank-for-Optimal-Treatment-Allocation-Under-Resource-Constraints
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ground truth. Hence, as a first step, in this work we fo-
cus on existing synthetic datasets in which the counter-
factual is available. We test our proposed approach us-
ing synthetic data generating procedures adapted from
past work (Athey and Wager, 2021; Caron et al., 2021).
Specifically, we generate two datasets. In Dataset
1, the ground truth τi function is built to create dif-
ferent groups of individuals with different treatment
effects, resulting in large margins on average between
individuals.

Dataset 1
xi ∼ N (0, I10x10),

ti|xi ∼ Bern(
1

1 + e−xi,3
),

ϵi|xi, ti ∼ N (0, 1),

τi|xi=((xi,1)+ + (xi,2)+ − 1)/2,

yi|xi, τi, ϵi, ti=max(0, xi,3 + xi,4) + tiτi + ϵi

This is a setting in which we expect our proposed
approach to perform well.

Using Dataset 2, we test our approach in a more
complex setting in which the underlying CATE and
outcome functions involve more non-linear terms.

Dataset 2
xi ∼ N (0, I10x10),

ti|xi ∼ Bern(
1

1 + e−xi,3
),

ϵi|xi, ti ∼ N (0, 1),

τ(xi) = 1 + 2|xi,4|+ x2
i,10,

yi|xi, τi, ϵi, ti = 5(2 + 0.5 sin(πxi,1)

− 0.5xi,2 + 0.75xi,3xi,9) + tiτi + ϵi

Though semi-synthetic causal inference datasets have
been studied in the past, we use fully synthetic datasets
to control every portion of the data generating process
as a first step for validating the proposed method. This
decision is supported by recent work calling into ques-
tion the use of common benchmark datasets, such as
the IHDP and ACIC 2016 dataset, for comparing treat-
ment effect models (Curth and van der Schaar, 2021).
For example, the IHDP dataset violates the overlap
assumption necessary for causal effect estimation and
inherently favors some techniques over others. More-
over, other semi-synthetic datasets, such as the TCGA
dataset are not immediately applicable to our setting
with binary treatments. Hence, we use synthetic data
to provide a better understanding of the potential of
the proposed methodology.

Evaluation Metrics. We assess the performance
of our proposed approach and the baseline on both
datasets, each with 30 unique replications for train-
ing and testing. To understand how the proposed
method performs with varying amounts of training
data, we sweep the amount of training data N through
{100, 250, 500, 1000}, while keeping the test set size
fixed at 5000. We focus on a low-sample regime as
in many domains, obtaining interventional trial data
is challenging. For example, in healthcare, many dis-
eases are rare and many patient populations have less
representation in the data. Due to this, many prob-
lems in the field of healthcare are plagued with issues
due to a limited number of examples (Desautels et al.,
2017; Chen et al., 2021). Efficiently learning accurate
rankings in these regimes remains imperative. We eval-
uate the performance of the methods on held-out test
sets in terms of the AUTOC, reporting the median
and interquartile range (IQR) across all 30 replications.
Additionally, since each dataset may have different opti-
mal AUTOC values, we report the number of times the
proposed method outperforms the baseline across the
30 random seeds. We also evaluate the ATEu, which
helps in understanding the difference in realized benefit
at specific thresholds. We test u ∈ {10, 20, 30, 40, 50},
to evaluate realistic settings in which the treatment can
only be administered in a fraction of individuals. Rela-
tive to the baseline, we report the median improvement
in ATEs at each threshold across 30 replications. For
completeness, we report both the % of replications the
proposed method outperforms the baseline across the
30 random seeds for each u and TOCu performance
across all thresholds in Appendix E.

5.2 Results

AUTOC Performance: At low-sample settings, our
proposed approach outperforms the baseline CATE
estimation technique on a large majority of replications
(N = 100: 24 and 23 /30 replications, N = 250: 22 and
23/30 replications, respectively) (Figure 3). As the
sample size increases, both approaches perform simi-
larly. In data-rich settings (N = 1000), the baseline may
be preferable due to its simplicity. Notably, this trend
holds even when using local splits (i.e., only maximiz-
ing AUTOC using data in the current splitting node)
(Appendix E). Empirically, local splitting results in
similar splits early on in the tree-building process, but
diverges at greater depths. More recently, researchers
have proposed an honest framework for training deci-
sion trees for CATE estimation (Athey and Imbens,
2016). In the honest framework, when training, only
half of the data is used to create the splits, and the
other half is used to impute outcomes at each leaf node
during inference. To show that our approach is robust
to the honest framework, we repeat our analysis and
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Figure 3: Median and IQR AUTOC, and how many
times the proposed method outperforms the baseline
across 30 replications. Asterisks show where the pro-
posed method significantly outperforms the baseline
technique as measured with the Wilcoxon signed rank
test (α = 0.05). The maximum AUTOC achievable is
indicated by the red dashed line. At low sample sizes,
the proposed method outperforms the baseline.

show that our model still outperforms the baseline tech-
nique in a low-sample setting (Appendix E). Finally,
for completeness, we also compare our approach to that
of Zhou et al. (2023) in Appendix E and show that
our proposed approach significantly outperforms this
baseline.

ATEu Performance: Evaluating the value of a
learned ranking at specific treatment thresholds (i.e.,
ATEu), our proposed technique outperforms the base-
line in low-data settings when treating between 10%
and 50% of individuals (Figure 4). Across training
set sizes of N = 100 to N = 500, the proposed train-
ing scheme consistently outperforms the baseline in
Dataset 1, with improvements in ATEs of up to 0.06.
Our model continues to perform well across thresholds
in Dataset 2, outperforming the baseline at almost
all thresholds in low-data settings, with median ATE
improvements of up to 0.25. With more training data
(N = 1000), the baseline slightly outperforms the pro-
posed technique at lower treatment thresholds, but
the proposed approach demonstrates efficacy at higher
treatment thresholds. In larger sample sizes, the worse
performance at lower treatment thresholds balances
out with the better performance at higher thresholds,
resulting in similar overall AUTOCs. In addition, our
proposed method outperforms the baseline technique
in terms of ATEu in up to 80% of replications and con-
sistently outperforms the baseline at thresholds beyond
u = 50 (Appendix E).

Contextualizing Results: To understand the po-
tential impact of our direct optimization of ranking,
we introduce an evaluation that emulates a setting
where treatment improves the probability of survival.
We shift and normalize CATEs and outcomes in both
datasets such that such that the maximum values are
1 and 0. An outcome of 1 represents a 100% chance of
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Figure 4: The median and IQR of improvement of the
proposed approach over the baseline in ATEu across
thresholds u. Our model excels across treatment thresh-
olds at low-data settings, despite not being trained for
a particular treatment threshold. With more training
data (N = 1000), our approach is more efficacious
when treating a larger fraction of individuals.

survival and an outcome of 0 represents a 0% chance of
survival, and a τi of 1 means that treatment completely
reduces the likelihood of death, whereas a τi of 0 means
that treatment does not affect survival. The expected
lives saved at any threshold u can then be calculated
as the ATE for individuals allocated the treatment, as
this is exactly the expected improvement in mortality
in those treated. We then normalize these values by
the maximum possible lives saved at u given a perfect
ranking, which we denote as % lives saved at u. We
perform this analysis across all training data settings
and thresholds u ∈ {10, 20, 30, 40, 50}.

In both datasets, the proposed method outperforms
the baseline in terms of % lives saved (Figure 5).
At u = 30, the proposed method outperforms the
baseline (Dataset 1: N = 100: 69.5% vs. 65.6%
and N = 250: 79.1% vs 75.2%, Dataset 2: N =
100: 70.0% vs. 68.6% and N = 250: 79.8% vs 74.6%).
This trend is consistent across all thresholds, with
the proposed method constantly outperforming the
baseline technique, with up to a 6.4% increase. In a
setting where 2,000 lives could be saved by allocating
treatments, an improvement of 6.4% means saving 128
additional lives over the baseline. In data-rich settings,
the proposed method matches the performance of the
baseline or performs slightly worse (Appendix E).
Overall, this evaluation demonstrates the potential for
direct maximization of expected benefit in resource-
constrained settings.

6 DISCUSSION AND CONCLUSION

In this work, we study the problem of intervention allo-
cation. Past work often considers solving this problem
by accurately estimating CATEs from observational
data to help triage individuals. However, in situations
where all one needs is a ranking of who is more likely
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Figure 5: Median and IQR of the percentage of poten-
tial lives saved compared to the oracle across different
thresholds in low data settings for Dataset 1 (top) and
Dataset 2 (bottom). Asterisks represent scenarios in
which the proposed method significantly outperforms
the baseline technique as measured using a Wilcoxon
signed rank test (α = .05). The proposed method con-
sistently outperforms the baseline technique in terms
of lives saved, with up to a 6.4% increase.

to benefit, there exists an objective mismatch between
what one is optimizing for and what one needs. Our
work builds on past research focused on the discon-
nect between exact causal effect estimation and the
ultimate goal of augmenting downstream decision mak-
ing (Fernández-Loría and Provost, 2022; Athey and
Wager, 2021; Kallus, 2019). We show that optimizing
for CATE accuracy, while sufficient, is not necessary
for optimal expected benefit, and that the set of so-
lutions for accurate ranking is just as large, if not
larger, than the set of solutions for accurate CATE
estimation. We also show that models achieving bet-
ter CATE performance may not always translate to
better ranking. Based on this analysis, we hypothesize
that optimizing directly for ranking can outperform
methods focused on minimizing mean squared error.
To test this hypothesis empirically, we propose an ap-
proach for optimizing ranking in this context and test
our hypothesis empirically. With respect to triaging
individuals to maximize benefit, our proposed approach
achieves strong empirical performance and better sam-
ple efficiency compared to a baseline CATE estimation
method across two synthetic datasets.

Our study is not without limitations. First, due to the
inability to observe ground-truth CATEs in real obser-
vational data, we could not explore performance on real
data. While results on different synthetic datasets help
demonstrate the initial efficacy of the proposed method
and problem setting, future work should consider how
to effectively validate these models in real settings. In
particular, it remains important to carefully validate

these algorithms in close collaboration with domain
experts before they are used to inform decision-making.
Second, as our work focuses on the problem of resource
allocation under constraints, we consider a utilitarian
solution to the problem of resource allocation, such that
we maximize the expected benefit across all treatment
thresholds. However, decisions on resource allocation
are often multi-faceted and require considerations be-
yond simply maximizing the expected benefit for the
full population (Torda, 2006; Pinkerton et al., 2002).
For example, there exist many ethical constraints which
may be considered when allocating interventions, as
shown during the COVID-19 pandemic (Yip, 2021).
We emphasize that a ranking based on benefit alone is
not intended to automate clinical decisions, but merely
inform decisions. Our work is intended to study one
tool that may be used to augment this decision-making,
which may also be combined with other societal con-
siderations. Similarly, we emphasize that we do not
advocate for ignoring accuracy and precision of treat-
ment effects in all clinical settings. Accurate treatment
effects are especially important in precision health (e.g.,
cancer treatment), where patient-specific treatment ef-
fect estimates are essential to guide decision-making
(Kent et al., 2018). In this work, we study a situation
in which patient-specific estimates are not necessary,
and study alternatives to these approaches in such
settings. In addition, like most in causal effect estima-
tion, we make three common assumptions to ensure the
identifiability of CATEs: 1) unconfoundedness, 2) con-
sistency, and 3) overlap. These assumptions ensured
that our doubly robust proxy was identifiable and could
be used for training. However, as the problem of opti-
mal ranking does not require the ground-truth CATEs
to be estimated perfectly, there exists a potential to
relax these assumptions and learn how to optimize for
optimal rankings (Fernández-Loría and Loría, 2022).
Finally, our proposed approach relies on a proxy for
learning. Future work could consider how to directly
optimize for AUTOC that overcomes the need for a
proxy on the training set. However, our approach still
shows the empirical benefits for directly optimizing
for AUTOC in the downstream estimator, as both our
proposed approach and the baseline rely on the same
proxy during training.

Despite the obvious relationship to triage, to the best of
our knowledge, we are the first to consider the efficacy of
directly optimizing for maximum benefit in treatment
allocation under variable resource constraints using
observational data. Overall, our work represents an
important step for bridging theory and practice of
resource allocation techniques.
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1. For all models and algorithms presented, check if
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(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
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(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
No

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes

(b) Complete proofs of all theoretical results. Yes
(c) Clear explanations of any assumptions. Yes

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
Yes

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes
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(b) The license information of the assets, if appli-
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(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. Not Applicable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable
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Appendix

A RELATED WORK

CATE Estimation. In recent years, there has been in-
creased interest in estimating the heterogeneous effects
of treatments from confounded observational data (Yao
et al., 2020). A majority of past works have proposed
solutions for overcoming the issue of confounding. Past
work has considered learning balanced representations
(Shalit et al., 2017; Johansson et al., 2018, 2020; Hassan-
pour and Greiner, 2020), reweighting using propensity
scores (Hassanpour and Greiner, 2019, 2020; Assaad
et al., 2021; Li et al., 2018), and using doubly robust
proxies (Kennedy, 2020) across a wide variety of ma-
chine learning architectures, namely neural networks
(Shalit et al., 2017) and random forests (Wager and
Athey, 2018). However, these works tend to optimize
for and evaluate the performance of techniques for their
ability to accurately estimate CATEs. However, in fi-
nite samples when these models are not perfect, how
performance, as measured by accuracy, translates to
maximizing benefit has not been well-explored. Finally,
past work has considered evaluating treatment effects
under different resource constraints (Sarvet et al., 2020).
However, this work has focused on estimating the ATE
under different potential treatment strategies, while we
focus on the goal of understanding who to treat across
different potential treatment thresholds.

Causal Decision Making. There has been recent in-
terest in how causal inference techniques may translate
to downstream decision making. Recent work has stud-
ied when causal effect estimation may be insufficient
when the goal is to identify whom to treat and framed
a new problem of causal classification for identifying
treatment responders (Fernández-Loría and Provost,
2022; Athey and Wager, 2021; Kallus, 2019). This path
represents a step towards bridging the gap between the-
ory and practice for causal inference. In this work, we
extend this idea even further beyond a binary classifica-
tion problem and study the problem of optimal ranking
policies without the need for an a priori threshold to
label individuals as responders or non-responders (Yad-
lowsky et al., 2021). As these thresholds for defining
responders vs. non-responders may vary depending on
the application, and may change many times for the
same application, it remains essential to build mod-
els agnostic to a particular threshold. Recent work
has studied how confounded data may affect the task
of ranking causal effects (Fernández-Loría and Loría,
2022). In this work, we continued with the no hid-
den confounders assumption and focus on building a
technique for optimal ranking for maximizing benefit.

Uplift Modeling. Uplift modeling is the field of work

closely related to our setting. Uplift modeling focuses
on directly targeting interventions and measuring in-
cremental gain as individuals become intervened upon
(Rzepakowski and Jaroszewicz, 2012; Betlei et al., 2021).
Uplift modeling is a common method used particularly
in business and marketing problems (Rzepakowski and
Jaroszewicz, 2012; Yadlowsky et al., 2021). One ap-
proach towards uplift modeling is to estimate pointwise
effects of interventions on an individual basis, similar to
CATE estimation (Gutierrez and Gérardy, 2017; Nandy
et al., 2022). A secondary approach is to optimize for
cumulative gain across intervention thresholds, similar
to our goal (Zhao et al., 2017; Devriendt et al., 2020).
However, uplift modeling uses data obtained from a
randomized controlled trial, and hence, methods for
optimizing for cumulative gain are not built to handle
confounded data. For example, contextual treatment
selection is built under the assumption of randomness,
and build approximations to optimize for under this
assumption (Zhao et al., 2017). In this work, we ex-
tend ideas from uplift modeling to directly optimize for
optimal rankings for maximum benefit when learning
from observational data. Moreover, we study optimiz-
ing for optimal rankings for maximum benefit across
all potential treatment thresholds as defined by the
AUTOC in the context of resource constraints where
treatment may benefit everyone, a problem not studied
in past work. Perhaps most similar to our work is
recent work by Zhou et al (Zhou et al., 2023). Though
they also consider the problem of ranking, their work
differs in several ways. First, Zhou et al. focus on a set-
ting in which randomized controlled trials are available.
However, we focus on expanding the idea of ranking
for optimal treatment allocation to settings with only
observational data (e.g., much of healthcare). Though
techniques like inverse weighting using the propensity
score can be used in observational data settings, it is
not immediately obvious how one should adapt the
approach proposed by Zhou et al. to the observational
setting. Second, we demonstrate the benefit of directly
optimizing for optimal treatment allocation as defined
by maximizing expected benefit compared to accurate
CATE estimates. We focus on a theoretical and empir-
ical exploration of the disconnect between these two
problem set-ups. Meanwhile, the loss function in Zhou
et al. relies on converging to an unbiased CATE esti-
mate to correctly order individuals, and hence, does not
directly optimize for treatment allocation. We present
a case study to show how and when direct optimization
may be of most benefit through our empirical results.

Learning to Rank (LtR). LtR methods focus on
learning optimal rankings, particularly for search rele-
vancy problems (Cao et al., 2007). Pointwise methods,
which estimate the exact relevancy of a document for
a query, remain analogous to a majority of past work
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in CATE estimation. However, past literature in the
field of LtR has also focused on pairwise techniques,
which focus on learning optimal ordering for pairs of
inputs, and listwise techniques, which aim to directly
optimize a list of inputs towards a measure of down-
stream measure of performance, either through direct
optimization of using proxy loss functions (Ibrahim and
Carman, 2016; Cao et al., 2007; Xia et al., 2008; Shi
et al., 2010). A common measure of performance stud-
ied thoroughly is the normalized discounted cumulative
gain (NDCG), focused on recommending the most rel-
evant items to a query first (Järvelin and Kekäläinen,
2002; Wang et al., 2013). The NDCG is a commonly
accepted metric in the LtR field but does not have a
meaningful interpretation for our setting in measuring
the expected benefit from treatment across all thresh-
olds u. Meanwhile, AUTOC measures both the ranking
of examples as well as the cumulative treatment effect
across any policy. Listwise learning to rank techniques
have recently been studied for the related field of uplift
modeling. However, these methods often assume binary
outcomes from randomized controlled trials, two limita-
tions unsuitable for our general application (Devriendt
et al., 2020; Betlei et al., 2021). In this work, we take
inspiration from the field of listwise techniques built
for optimizing NDCG and study how to extend these
methods towards the problem of maximizing benefit
for resource allocation, as measured by AUTOC, when
learning from observational data (Ibrahim and Carman,
2016).

B ADDITIONAL PROOFS

(Restated) Proposition 1. For a sample S, there
exists a function f ∈ F such that AUTOCS(f) =
AUTOCS(f

∗), yet LM
S (f) > 0.

Proof. Define f(xi) = f∗(xi) +
γi

3 . Note that for this
f , we have that AUTOCS(f) = AUTOCS(f

∗), yet:

LM
S (f) =

1

n

∑
i

(f(xi)− τi)
2

=
1

n

∑
i

(f∗(xi)−
γi
3

− τi)
2

=
1

n

∑
i

(
γi
3
)2 > 0

(Restated) Proposition 2. For any model f : X → R
and sample S such that LM

S (f) > 0, there exists a
model g such that LM

S (f) < LM
S (g) and AUTOCS(g) >

AUTOCS(f).

Proof. We may build a model g that achieves perfect
ranking, but arbitrarily poor LM

S (g) = C as follows: 1)
Define α such that

∑n
i=1 α

2 = C, and 2) ∀xi, g(xi) =
f∗(xi)+α. Note that AUTOC(g) = AUTOC(g∗), yet:

LM
S (g) =

1

n

∑
i

(f(xi)− τi)
2

=
1

n

∑
i

(f∗(xi)− α− τi)
2

=
1

n

∑
i

(α)2 = C

Setting C to be larger than LM
S (f) leads to the desired

result.

C METHODS

In Algorithm 1, we describe the proposed splitting
procedure at any decision node M . We choose features
and corresponding values to split on that result in
trees that maximize the proxy of the AUTOC when
considering all samples in the data.

Algorithm 1 Calculating Split Value to Maximize
AUTOC

Input: S: Complete dataset; SM , T
M : Current

dataset and tree at decision node M
Output: Feature k and value v to split data for
maximizing AUTOC

Calculate best value as ˜AUTOCS(T
M ) by travers-

ing sample S through current tree TM

for k,v in SM that result in valid partitions do
Build TM

k,v by splitting current node M by feature
k and value v

Calculate proposed value as ˜AUTOCS(T
M
k,v)

by traversing sample S through TM
k,v

if proposed value improves over best value
then

Update best value to proposed value
Update best k,v to be proposed k,v

end if
end for
return best k and v if they exist

D EXPERIMENTAL SET-UP

Model Training. Our proposed and baseline method-
ologies consist of two steps: 1) Build doubly robust
proxies for training, and 2) Train a random forest algo-
rithm using a certain split procedure using the doubly
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Table 1: Hyperparameters and their corresponding search ranges.

Hyperparameter Hyperparameter Search Range

Number of Trees 100, 200, 500, 1000
Data Subsample Proportion 0.1, 0.2, 0.45, 1

Maximum Depth 3, 5, 10, 20, ∞
Minimum Examples in Node to Split 2, 5, 10, 20, 40

Minimum Examples in Leaf 1, 2, 5, 10, 20
Improvement Threshold 0, None

N = 100 N = 250 N = 500 N = 1000

Proposed Performance 0.183 (0.100, 0.221) 0.253 (0.197, 0.289) 0.292 (0.260, 0.316) 0.326 (0.304, 0.338)
Local Split Performance 0.195 (0.116, 0.221) 0.236 (0.178, 0.280) 0.291 (0.240, 0.329) 0.329 (0.301, 0.344)
Baseline Performance 0.154 (0.075, 0.199) 0.223 (0.192, 0.242) 0.266 (0.221, 0.318) 0.323 (0.298, 0.347)

Table 2: AUTOC performance on Dataset 1, comparing the proposed global splitting procedure, the local
splitting procedure, and the baseline model. Splitting by maximizing AUTOC consistently outperforms the
baseline model focused on accurate CATE estimation. Splitting based on local examples and global examples,
however, result in similar performance.

robust proxies as imputed CATEs. When building
each decision tree within the random forest pipeline,
we consider each feature and split value when creating
splits at each decision node. We consider tuning the
hyperparameters in Table 1 within their correspond-
ing search ranges. We consider the same search grid
for both methods, as well as the same budget of hy-
perparameters. All experiments were performed on a
virtual machine with 256 CPUs.

Model Selection. When training models for treat-
ment effect estimation, we cannot observe the ground-
truth performance on some held-out validation set to fa-
cilitate model selection. Thus, past work has considered
approximate model selection techniques (Shalit et al.,
2017; Schwab et al., 2018; Hassanpour and Greiner,
2019). Such techniques choose hyperparameters by
calculating a proxy metric on the validation dataset
that may correlate with CATE estimation performance.
However, the approximate nature of such techniques
means that reported differences between approaches
may be due more so to model selection than to the
CATE estimation approach. Throughout our experi-
ments, we assume access to the ground-truth CATEs
for choosing hyperparameters based on the maximum
AUTOC in a held-out set. This setup controls for po-
tential differences due to hyperparameter selection and
allows for accurate comparisons of the proposed and
baseline methods. As ground-truth performance esti-
mates are not available in real applications, it remains
imperative to improve the model selection challenge
faced by all CATE estimation methods going forward.
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Figure 6: The percentage of replications in which the
proposed method outperforms the baseline in terms
of ATEu across different treatment thresholds u and
training data size. The proposed method outperforms
the baseline in up to 80−90% of replications at different
thresholds at low training data size, but the efficacy
is only shown at higher treatment thresholds when
enough training data is incorporated into the model.

E ADDITIONAL RESULTS

Local AUTOC Maximization Splits: We compare
our proposed method and baseline approach to building
a decision tree that at any decision node M , maximizes
the AUTOC in the sample SM , rather than the full
sample S. Note that this approach is not theoretically
grounded towards the ultimate goal of maximizing AU-
TOC across the whole sample S, as a larger AUTOC
for the subset SM does not guarantee a larger AUTOC
for the full sample S. However, this procedure pro-
vides a slightly faster proxy that may be considered
for training. Results on Dataset 1 can be found in
Table 2. Both techniques which split towards maxi-
mizing AUTOC result in better performance than the
baseline method focused on accurate CATE estimation.
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However, the local and global splits tend to perform
similarly. We hypothesize that this is due to the sim-
plicity of our synthetic dataset. Empirically, local splits
diverge from global splits at deeper levels of the deci-
sion trees, resulting in different estimators that achieve
similar performance. As maximizing AUTOC in a local
decision node does not guarantee the maximization of
AUTOC across a whole sample, our proposed global
splitting technique still provides a guarantee of max-
imizing our end goal. However, local splits may be
used as a proxy for quicker training, despite the lack
of theoretical guarantees.

Honest Decision Trees: We next show that our ap-
proach is amenable to the honest framework. We adapt
both methods to the honest setting by using half of the
training examples to create splits, and the other half to
impute values. Decision trees with empty leaves for in-
ference are ignored when aggregating results across the
forest. We first report results on Dataset 1 when using
N = 250 training samples to train each method and
evaluating on a held-out test set. The proposed method
still outperforms the baseline method, achieving a me-
dian AUTOC of 0.259 (IQR: 0.206, 0.289) compared to
0.228 (IQR: 0.171, 0.256), and outperforming the base-
line model on 28/30 replications. On Dataset 2, the
proposed method continues to outperform the baseline
technique at N = 250 training examples, achieving a
median AUTOC of 0.735 (IQR: 0.511, 0.776) compared
to a median AUTOC of 0.587 (0.397, 0.711) for the
baseline method. The proposed method outperforms
the baseline on a majority (29/30) of replications as
well. Overall, these results show the ability of our
method to be adapted to the honest setting, which may
be preferred in settings where over-fitting is of great
concern.

Comparison to Zhou et al. For completeness, we
compare our proposed method with the loss function
proposed by Zhou et al. implemented using a neural net-
work (Zhou et al., 2023). We consider a small-sample
regime with n = 250 training samples. To optimize the
Zhou et al. loss function, we sweep over relevant hy-
perparameters such as the learning rate, the size of the
neural network, and regularization strength. We find
that in both synthetic datasets, our proposed method
significantly outperforms this baseline technique as
measured by the median AUTOC [IQR] on the test set
(dataset 1: 0.088 [0.053-0.107] vs. 0.255 [0.185-0.279],
dataset 2: 0.293 [0.216-0.378] vs. 0.750 [0.505-0.879].
Reweighting the loss function from past work using
ground-truth propensity scores resulted in no improve-
ment. We hypothesize that the poor performance is
for two reasons. First, the loss function does not imme-
diately transfer to the observational data setting due
to confounding between the treatment assignment and
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Dataset 1: TOC Curves

Figure 7: TOC Curves for Dataset 1. In low-data
settings, our method consistently results in a larger
improvement in the ATE of the top percentage of in-
dividuals. As more data is included in our model, the
improvements of our model are reduced, but our model
still results in a larger TOC value across a majority
of replications. When all individuals are treated, our
method and the proposed method result in no improve-
ment over random.

the outcomes. Second, our method directly optimizes
for the value of the treatment policy at every threshold
as measured by the AUTOC. Meanwhile, the method
proposed by Zhou et al. relies on obtaining an unbi-
ased estimate of the CATE to accurately rank scores.
When CATEs cannot be estimated accurately, such
as in low-data settings, methods to obtain unbiased
CATEs may not lead to better AUTOC, as shown in
Proposition 2.

Results at Specific Treatment Thresholds: To
complement the ATEu results in the main paper, we
first report the percentage of replications in which the
proposed method outperforms the baseline in terms of
ATEu for different thresholds u (Figure 6. At low
training data sizes, the proposed method outperforms
the baseline in over 80−90% of replications across many
thresholds, showing the efficacy of the proposed method.
However, as more training data is incorporated, the
baseline has the potential to slightly outperform the
proposed method at low treatment thresholds, but the
proposed method still performs well across a majority
of settings. Next, we report the TOCu values for all
u ∈ [0, 1]. These results can be found in Figure 7
for Dataset 1, and Figure 8 for Dataset 2. For
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Figure 8: TOC Curves for Dataset 2. In low data set-
tings, our method results in a larger improvement in the
ATE of the top percentage of individuals, particularly
when the treatment threshold is above 10%. When
N = 1000 data points are used to train the model, the
baseline begins to slightly outperform the proposed
method, especially at earlier treatment thresholds.

both datasets, the efficacy of our proposed approach
is better highlighted at lower data regimes. Across a
majority of thresholds, our model consistently improves
over random more than the baseline model does, as
measured by TOCu. At higher training data regimes,
the efficacy of our model is more shown at treatment
thresholds between u = 30 and u = 50. Moreover,
our proposed method remains competitive with the
baseline technique at higher data regimes, with only
small drops in performance.

A Realistic Interpretation for Larger Data
Regimes: We report the percentage of potential lives
saved in our realistic set-up for higher training data
regimes (N = 500, N = 1000) in Figure 9. With
N = 500 training data, the proposed method is still
able to consistently improve upon the baseline tech-
nique. However, with N = 1000 examples used for
training, our model begins to perform similarly, with
only slight gains or losses compared to the baseline.
This helps support our hypothesis that optimizing for
AUTOC may better improve upon the baseline in low
training data regimes.
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Figure 9: Percentage of potential lives saved compared
to the oracle across different treatment settings for high
data settings for Dataset 1 (top) and Dataset 2 (bot-
tom). Comparisons with asterisks represent scenarios
in which the proposed method significantly outperforms
the baseline technique as measured using a Wilcoxon
signed rank test with a significance level of 0.05. At N
= 500, the proposed method continues to perform well.
However, as we add more training data, the models
begin to perform similarly, with our model only per-
forming slightly worse in some scenarios.
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