
Learning the Pareto Set Under Incomplete Preferences: Pure
Exploration in Vector Bandits

Efe Mert Karagözlü
Bilkent University, Ankara, Turkey

Yaşar Cahit Yıldırım
Bilkent University, Ankara, Turkey

Çağın Ararat
Bilkent University, Ankara, Turkey

Cem Tekin
Bilkent University, Ankara, Turkey

Abstract

We study pure exploration in bandit prob-
lems with vector-valued rewards, where the
goal is to (approximately) identify the Pareto
set of arms given incomplete preferences in-
duced by a polyhedral convex cone. We ad-
dress the open problem of designing sample-
efficient learning algorithms for such prob-
lems. We propose Pareto Vector Bandits
(PaVeBa), an adaptive elimination algorithm
that nearly matches the gap-dependent and
worst-case lower bounds on the sample com-
plexity of (ϵ, δ)-PAC Pareto set identification.
Finally, we provide an in-depth numerical in-
vestigation of PaVeBa and its heuristic vari-
ants by comparing them with the state-of-
the-art multi-objective and vector optimiza-
tion algorithms on several real-world datasets
with conflicting objectives.

1 INTRODUCTION

Pure exploration seeks to identify the optimal arms
through sequential interaction. Usually, the error up-
per bound for identification is given and one seeks
to minimize the sampling budget. This approach
is termed the fixed confidence setting (Karnin et al.,
2013). Notable algorithms for this include Exponential
Gap Elimination (Karnin et al., 2013) and Track-and-
Stop strategy (Garivier and Kaufmann, 2016). A simi-
lar concept is the (ϵ, δ)-probably approximately correct
(PAC) best arm identification introduced by Even-Dar

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

et al. (2006), where the aim is to find an ϵ-optimal arm
with 1 − δ confidence. At ϵ = 0, it coincides with the
fixed confidence setting.

Although traditional pure exploration approaches pri-
marily focus on scalar rewards, many real-world ex-
ploration challenges present multiple competing ob-
jectives. For instance, a communication channel with
a low error rate, high bit rate, and a narrow band-
width tends to consume more power; and a more com-
plex neural network tends to require more time, com-
putation, and data to be trained. Therefore, single-
objective approaches fall short for real problems with
D > 1 objectives that cannot be simplified to scalar
optimization. Such problems gained attention from
bandit literature in applications like digital hardware
design (Zuluaga et al., 2016) and treatment optimiza-
tion (Lizotte and Laber, 2016). To handle these, one
needs a vector-valued multi-armed bandit framework
that extends scalar rewards. Although vector rewards
can be scalarized by a weighted sum of individual ob-
jectives, this approach can be difficult for the practi-
tioner since it requires choosing a weight vector. Fur-
thermore, using weighted linear combinations is not
the only way to scalarize the reward vectors, and
each real-life problem may require its own wise choice
of (possibly highly nonlinear) scalarization function;
hence, scalarization becomes even harder, and it mo-
tivates the study of exploration among vector-valued
bandits on its own.

To that end, some work on bandit literature focused on
the identification of the Pareto set of arms, i.e., arms
that are not dominated by any other arm in all objec-
tives. Noteworthy contributions include algorithms for
(ϵ, δ)-PAC Pareto set identification (Auer et al., 2016)
defined similarly to the single-objective case, explo-
ration using Gaussian processes in large datasets (Zu-
luaga et al., 2016; Shah and Ghahramani, 2016), feasi-
ble arm identification (Katz-Samuels and Scott, 2018),

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

log OPC

-S
A

S Propanidid Diazepam

Thiamylal

Figure 1: Three anesthetics ordered by a large polyhe-
dral cone. The only Pareto optimal drug is Diazepam.
(Data gathered from Wishart et al. (2018) and Huang
et al. (2022).)

and algorithms using information-theoretic heuristics
(Hernandez-Lobato et al., 2016; Belakaria et al., 2019;
Tu et al., 2022). Additionally, regret minimization
in multi-objective bandits is explored by Drugan and
Nowe (2013) and Turgay et al. (2018), while multi-
objective reinforcement learning has been delved into
by Moffaert and Nowé (2014) and Hayes et al. (2022).

While multi-objective methods address vector-valued
rewards, they use a specific domination concept, which
we will call the standard componentwise order here-
after. The field of vector optimization (Jahn, 2011;
Löhne, 2011) generalizes this by offering a more flexi-
ble dominance notion, a partial order ⪯C induced by a
cone C defined as µ ⪯C ν if and only if (iff) ν−µ ∈ C.
Choosing C as the positive orthant gives the standard
approach, but the flexibility of the framework under
different cones found diverse real-world applications
since the choice of C allows users to reflect their in-
complete (nontotal) preferences. For instance, octanol-
water partition coefficient (OPC) and synthetic ac-
cessibility score (SAS) are both significant metrics
in anesthetic design; the former has been shown to
correlate well with anesthetic efficacy (Meyer, 1899;
Overton, 1901), while the latter predicts the difficulty
of synthesizing a molecule (Ertl and Schuffenhauer,
2009). To illustrate the problem with the standard
componentwise order, Figure 1 shows the negative of
SAS (ease of synthesis) and logOPC of three differ-
ent anesthetics, all of which are Pareto optimal in the
standard sense. However, Propanidid is at an abso-
lute disadvantage in practice compared to Diazepam.
This is because ease of synthesis has no value unless
the drug is potent, and Diazepam is only marginally
more difficult to synthesize but invaluably more effec-
tive in inducing anesthesia. By using a larger cone, as
shown, the optimal molecule among the three can be
reduced to Diazepam, eliminating the molecules that
favor extreme trade-offs between accessibility and effi-
cacy. On the other hand, in some scenarios in molecule

design, where chemical properties are objectives, uti-
lizing a smaller cone can be a better option. Ini-
tially, smaller cones aid cheap experiments to elimi-
nate sub-optimal molecules (Jayatunga et al., 2022).
Subsequently, detailed and costlier experiments focus
on fewer molecules that are likely to be optimal in the
standard sense.

Recently, Ararat and Tekin (2023) delved into vec-
tor optimization in the bandit context with sequential
noisy samplings. While they identified key results and
lower bounds on the sample complexity for (ϵ, δ)-PAC
exploration, a matching sample-efficient algorithm re-
mained elusive. In this paper, we explore the vector-
valued bandit setting using a cone-induced order, fol-
lowing the vector optimization approach adopted by
Jahn (2011) and Löhne (2011). We introduce Pareto
Vector Bandits (PaVeBa) to bridge the gap in the lit-
erature, nearly matching the lower bounds identified
by Ararat and Tekin (2023).

We also contribute to the bandit-based vector opti-
mization theory developed by Ararat and Tekin (2023)
by proving important properties about their funda-
mental gap functions m(·, ·) and M(·, ·), and order-
ing complexity β. In particular, we demonstrate that
these gap functions are Lipschitz with constant β, em-
phasizing the role of β in dictating the complexity
of the specific ordering. Additionally, we introduce a
stricter success condition for (ϵ, δ)-PAC Pareto identi-
fication and present convex optimization formulations
to perform Pareto identification tasks using ellipsoids
from multi-objective Gaussian processes with corre-
lated outputs.

Finally, we benchmark PaVeBa against state-of-the-
art multi-objective algorithms and the Näıve Elimina-
tion algorithm by Ararat and Tekin (2023) for vector
optimization. PaVeBa surpasses Näıve Elimination;
its heuristic variants yield results akin to ϵ-PAL (Zulu-
aga et al., 2016), MESMO (Belakaria et al., 2019), and
JES (Tu et al., 2022) in the standard multi-objective
problem.

2 PROBLEM DEFINITION

Let X represent a finite set of arms. Each arm x ∈ X
has a corresponding mean reward vector f(x) ∈ RD,
where D ∈ N := {1, 2, . . .}. We denote by ∥·∥2 the
Euclidean norm on RD and by B(µ, r) the closed ball
in RD with respect to ∥·∥2 whose center is µ ∈ RD

and radius is r ≥ 0. Given µ ∈ RD and a nonempty
set A ⊆ RD, we define d(µ, A) := infν∈A∥µ−ν∥2. Let
t ∈ N be an arbitrary index for rounds of sequential
evaluations. If some agent decides to sample x ∈ X
in round t (possibly along with other arms), they ob-
serve the random vector yt(x) = f(x) + ηt(x), where

Efe Mert Karagözlü, Yaşar Cahit Yıldırım, Çağın Ararat, Cem Tekin

ηt(x) is the random noise vector at round t for arm x.
We assume that the family (ηt(x))x∈X ,t∈N consists of
independent norm-subgaussian random vectors with a
common parameter σ > 0. In particular,

P{∥ηt(x)∥2≥ u} ≤ 2e−
u2

2σ2

for each u ≥ 0 (Jin et al., 2019, Definition 3). For each
x ∈ X , let Nt(x) denote the set of rounds by round t
at which arm x is sampled, and let nt(x) = |Nt(x)|.

We focus on pure exploration, where the goal is to find
the set of “optimal” arms. Since rewards are multi-
dimensional, one needs to define a notion of ranking
between the reward vectors. Following Ararat and
Tekin (2023), we use a convex polyhedral ordering cone
C to partially order the reward vectors. We define
C := {µ ∈ RD | Wµ ≥ 0}, where W is an N ×D real
matrix for some N ∈ N with rows wT

1 , . . . ,w
T
N . We

assume that W has full row rank and ∥wn∥2= 1 for
each n ∈ [N] := {1, . . . , N}. Hence, the interior of C
is int(C) = {µ ∈ RD | Wµ > 0} and the boundary
of C is bd(C) = {µ ∈ C | ∃n ∈ [N]:wT

nµ = 0}.
For each n ∈ [N], we also introduce the constant
αn := supu∈B(0,1)∩C wT

nu ∈ (0, 1]. Using C, we define
a partial order ⪯C via µ ⪯C ν iff ν − µ ∈ C for each
µ,ν ∈ RD. In this case, we say that µ is weakly dom-
inated by ν. Similarly, we say that µ is strongly dom-
inated by ν, denoted by µ ≺C ν, iff µ− ν ∈ int(C).

Previously, Ararat and Tekin (2023) identified two pa-
rameters associated with the difficulty of identifying if
an arm is dominated by another arm, given as

β1 := sup
µ/∈C

d(µ, C ∩ (µ+ C))

d(µ, C)
, (1)

β2 := sup
µ∈int(C)

d(µ, (int(C))c ∩ (µ− C))

d(µ, (int(C))c)
. (2)

Theorem 2.4 of their work states that both of these
constants are finite, and they call β := max{β1, β2} the
ordering complexity of cone C, which they associate
with the difficulty of the vector optimization problem.

Having the basics established, we define our main goal
next. Pure exploration in the vector bandits prob-
lem seeks to maximize the latent function f over X
with respect to the partial order ⪯C with the mini-
mum sampling budget. In other words, the objective
is to find the set P ∗ of all arms yielding the maximal
elements of {f(x) | x ∈ X} with respect to ⪯C , i.e.,

P ∗ = {x ∈ X | ∄y ∈ X \ {x}:f(x) ⪯C f(y)},

which is also referred to as the Pareto set.

To identify the Pareto set P ∗, we employ two functions
defined by Ararat and Tekin (2023) as generalizations

of their multi-objective counterparts in the work of
Auer et al. (2016). Different from the approach of
Ararat and Tekin (2023), where these functions are
defined on the set of arms, we generalize the use of
these functions by defining them on arbitrary vectors
µ,ν ∈ RD. First, we define M(µ,ν) as the minimum
improvement along an arbitrary direction in C needed
for ν to dominate µ. Formally,

M(µ,ν) := inf{s ≥ 0 | ∃u ∈ B(0, 1) ∩ C:

ν + su ∈ µ+ C}. (3)

Second, we define m(µ,ν) as the minimum improve-
ment along an arbitrary direction in C needed for µ
not to be dominated by ν. Formally,

m(µ,ν) := inf{s ≥ 0 | ∃u ∈ B(0, 1) ∩ C:

µ+ su /∈ ν − int(C)}. (4)

Some useful properties of these two functions that we
have used for the sample complexity analysis of our
algorithm were proven by Ararat and Tekin (2023) in
their Propositions 4.2, 4.3; Corollary 4.5. In particu-
lar, it is sufficient to keep track of these two functions
to identify the Pareto set because their signs reveal the
dominance status of any two arms.

As mentioned in the introduction, many different ob-
jectives, such as fixed confidence and (ϵ, δ)-PAC iden-
tification, have been used in pure exploration. For the
vector case, we use Definition 1.

Definition 1. Let ϵ ≥ 0, δ ∈ (0, 1). A random set P ⊆
X is called an (ϵ, δ)-PAC Pareto set if the following
success conditions hold at least with probability 1 − δ:
(i) P ∗ ⊆ P ; (ii) for every x ∈ P\P ∗, it holds ∆∗(x) ≤
ϵ, where ∆∗(x) := maxy∈P∗ m(f(x),f(y)).

Our success conditions are modified versions of the
ones in Ararat and Tekin (2023). Specifically, we
changed their first condition to a stricter one. Hence,
every (ϵ, δ)-PAC Pareto set according to Definition 1
is also a one according to their Definition 4.6.

The sample complexity of any algorithm for (ϵ, δ)-PAC
Pareto set identification will depend on how close the
reward vectors are. To quantify the “closeness” of the
arms to the Pareto set, we use the following defini-
tions in Ararat and Tekin (2023), Auer et al. (2016):
∆+(x) = miny∈P∗\{x} M(f(x),f(y)) for x ∈ P ∗ and
∆+(x) = maxy∈P∗ m(f(x),f(y)) for x ∈ X \ P ∗. So

∆+(x) = max

{
min

y∈P∗\{x}
M(f(x),f(y)),

max
y∈P∗\{x}

m(f(x),f(y))

}
since the product of the two gap functions is always
zero by Corollary 4.5 of Ararat and Tekin (2023).

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

Inspired by the multi-objective framework of Auer
et al. (2016), we further introduce an improved gap
definition for Pareto arms. We need this new defini-
tion because of the design of our algorithm. In some
cases, our algorithm continues to sample the arms even
if it is almost sure that they are Pareto optimal. This
is due to the fact that getting more sure about a Pareto
arm can be useful in deciding on another arm’s opti-
mality. To quantify the contribution of such samplings
to our sample complexity, for each x ∈ P ∗, we define

∆(x) := min

{
min

y∈P∗\{x}
{M(f(x),f(y)),M(f(y),

f(x))}, min
y/∈P∗

(
M(f(y),f(x)) + 2∆+(y)

)}
. (5)

Finally, let ∆̃+
ϵ (x) := max{∆+(x), ϵ}, ∆̃ϵ(x) :=

max{∆(x), ϵ}. The use of these ϵ-dependent gaps is
for a tighter analysis of our sample complexity in case
the algorithm terminates not because of its confidence
‘beating’ the natural gaps between the rewards of the
arms but ϵ being so large that, even with low con-
fidence on the reward vectors, our algorithm can be
sure about the (ϵ, δ)-Pareto status of the arms.

3 PARETO VECTOR BANDITS

We present Pareto Vector Bandits (PaVeBa), an algo-
rithm that solves the Pareto identification problem on
the vector bandits (pseudocode in Algorithm 1).

At each round t ∈ N, the algorithm keeps track of a set
of undecided (or ‘secret’) arms St, a set of Pareto arms
Pt, and a set of useful Pareto arms Ut. It samples each
‘active’ arm in At := St ∪Ut for judgment to get more
confident as long as there are some undecided arms,
i.e., St ̸= ∅. Then, it detects the set of arms that are
unlikely to satisfy condition (i) in Definition 1 as

Dt={x ∈ St |∃y ∈ At\{x}: sup
µ∈Et(x),
ν∈Et(y)

M(µ,ν)=0}, (6)

where Et(x) is a high-probability confidence region for
arm x at round t. After this, it removes Dt from St and
At to find the intermediate sets St andAt. Similarly, it
detects the set of arms that appear to satisfy condition
(ii) in Definition 1 as

Pt={x ∈ St |∀y ∈ At \ {x}: sup
µ∈Et(x),
ν∈Et(y)

m(µ,ν)<ϵ}, (7)

appends it to Pt to obtain Pt+1, and removes it from
St to obtain St+1. It also finds a set of useful Pareto
arms for the next round as

Ut+1={y∈Pt+1 |∃x ∈ St+1: sup
µ∈Et(x),
ν∈Et(y)

m(µ,ν)≥ϵ}, (8)

which consists of the arms in Pt+1 that may help in
determining the Pareto optimality of an arm in St+1.

PaVeBa needs a confidence region for the reward of
each arm to make decisions about its status. To that
end, we define Bt(x) := B(µt(x), rt(x)), where

rt(x) :=

√
8tσ2

nt(x)2
log

(
π2(D + 1)|X |t2

6δ

)
(9)

and µt(x) is the sample mean of arm x at round t,
i.e., µt(x) =

1
nt(x)

∑
τ∈Nt(x)

yτ (x). Further, we define

Et(x) := Et−1(x) ∩ Bt(x) with E1(x) := B1(x) as the
confidence region of x at round t.

Algorithm 1 Pareto Vector Bandits (PaVeBa)

1: Input: X , C, ϵ, δ
2: Initialize: S1 = X , P1 = ∅, U1 = ∅, t = 1;
3: while St ̸= ∅ do
4: At = St ∪ Ut;
5: for x ∈ At do
6: Observe yt(x), calculate Et(x) using (9);
7: end for
8: Compute Dt using (6);
9: St = St \ Dt, At = At \ Dt;

10: Compute Pt using (7);
11: Pt+1 = Pt ∪ Pt, St+1 = St \ Pt;
12: Compute Ut+1 using (8);
13: t = t+ 1;
14: end while
15: return P̂ = Pt

PaVeBa can be seen as a generalization of Algorithm 1
of Auer et al. (2016) for arbitrary ordering cones.
However, it has some distinct features even when the
ordering cone is the standard componentwise order.
First, we assume norm-subgaussian noise, which re-
sults in spherical confidence regions, whereas Auer
et al. (2016) assume subgaussian noise in each di-
mension, thus yielding hyperrectangular confidence re-
gions. This assumption and the fact that they only
consider the standard componentwise order reduce
their discarding and Pareto identification operations
to simple comparisons between the empirical means.
In PaVeBa, we compare all vectors in the spherical
confidence regions using the ordering cone by solving
convex optimization problems. Second, some redun-
dant comparisons in their work do not exist in ours.
For instance, for the discarding operation, they search
for arms to discard within At (the set A in their nota-
tion), whereas we only consider the arms in St for dis-
carding as the other arms in At are likely to be Pareto
optimal. Third, in their work, Pareto arms accumu-
late (in the set P in their notation) not when they are
identified as Pareto optimal arms but when they be-
come ‘useless’ in identifying the status of other arms.

Efe Mert Karagözlü, Yaşar Cahit Yıldırım, Çağın Ararat, Cem Tekin

This might not seem like a significant difference, but
using the knowledge of Pareto arms, we can remove re-
dundant comparisons in the algorithm, as exemplified
by not seeking arms to discard among Pareto arms.

4 TECHNICAL ANALYSIS

Efficient Implementation of PaVeBa via Convex
Programming. Computing the sets Dt, Pt, Ut+1 re-
quires checking the validity of certain conditions for all
possible choices of vectors in the confidence regions.
To make our analysis compatible with the heuristic
and future use of Gaussian processes, we assume that
the confidence region of an arm x ∈ X at round t ∈ N is
an intersection of the form Et(x) =

⋂t
τ=1 Bτ (x), where

Bτ (x) = {ν ∈ RD | (ν−µτ (x))
TΣ−1

τ (x)(ν−µτ (x)) ≤
ατ (x)} is a generic ellipsoid with parameters Στ (x),
a symmetric positive definite matrix, and ατ (x) > 0
for each τ ∈ [t]. (By choosing Στ (x) as the iden-
tity matrix and ατ (x) = rτ (x), we recover Bτ (x) =
B(µτ (x), rτ (x)) as in (9).) In the general case, Propo-
sitions 1 and 2, whose proofs are in the supplementary
§1, provide methods for computing the sets of interest.

Proposition 1. Let x, y ∈ X and t ∈ N. For each
n ∈ [N], consider the convex optimization problem

minimize wT
n(ν − µ) subject to: µ,ν ∈ RD,

(µ− µτ (x))
TΣ−1

τ (x)(µ− µτ (x)) ≤ ατ (x), ∀τ ∈ [t],

(ν − µτ (y))
TΣ−1

t (y)(ν − µτ (y)) ≤ ατ (y), ∀τ ∈ [t].

Then, the optimal value of this problem is
strictly negative for at least one n ∈ [N] iff
supµ∈Et(x),ν∈Et(y) M(µ,ν) > 0.

In view of Proposition 1, we can compute Dt by iter-
ating first over x ∈ St and then over y ∈ At \ {x},
and solving the convex optimization problem for each
n ∈ [N]. If we cannot detect at least one y and n for
which the optimal value is strictly negative, then we
add x to Dt.

Proposition 2. Let x, y ∈ X , t ∈ N, and ϵ > 0.
Consider the convex feasibility problem

minimize 0 subject to: µ,ν ∈ RD,

wT
n(ν − µ) ≥ ϵαn, ∀n ∈ [N]

(µ− µτ (x))
TΣ−1

τ (x)(µ− µτ (x)) ≤ ατ (x), ∀τ ∈ [t],

(ν − µτ (y))
TΣ−1

τ (y)(ν − µτ (y)) ≤ ατ (y), ∀τ ∈ [t].

Then, this problem has at least one feasible solution iff
supµ∈Et(x),ν∈Et(y) m(µ,ν) ≥ ϵ.

In view of Proposition 2, to calculate Pt, we iterate
first over x ∈ St and then over y ∈ At \ {x}, and solve
the convex feasibility problem. If the problem turns
out to be infeasible for all y, then we add x to Pt.

In a similar way, we also calculate Ut+1. In this case,
we iterate first over y ∈ Pt+1 and then over x ∈ St+1,
and solve the convex feasibility problem. If the prob-
lem has at least one feasible solution for at least one
x, then we add y to Ut+1 thanks to Proposition 2.

Note that in the convex programs of Propositions 1
and 2, the number of constraints grows linearly with
time t. This is because we need to intersect the confi-
dence regions Bτ to ensure no new vector is introduced
to a confidence region as time passes. This is to en-
sure the proofs are working, specifically Lemma 8. (see
supplementary §2.4)

Remark 1. When ϵ = 0, Proposition 2 does not work.
In this case, we suggest a slightly different algorithm
with minor modifications in the definitions of Pt, Ut+1.
We provide another convex optimization formulation
to calculate these sets and prove similar sample com-
plexity bounds for that version in the supplementary
§3.

Sample Complexity of PaVeBa. In this part, we
provide upper bounds for the sample complexity of
the algorithm. The theoretical analysis follows from a
series of lemmas, all of whose statements and proofs
are provided in the supplementary §2.

We start by presenting the main results, namely,
Proposition 3 and Proposition 4, which provide in-
valuable insights for understanding how the cone-
dependent ordering complexity β plays a role in the
vector bandits problem.

Proposition 3. For every µ,ν, ϵ ∈ RD, we have
|M(µ+ ϵ,ν)−M(µ,ν)|≤ β1∥ϵ∥2.

Proposition 3 follows from the definition of β1 and a
triangle inequality for M(·, ·) that extends Auer et al.
(2016, Lemma 3) to the vector optimization setting.

Proposition 4. For every µ,ν, ϵ ∈ RD, we have
|m(µ+ ϵ,ν)−m(µ,ν)|≤ β2∥ϵ∥2.

The proof of Proposition 4 is more involved and con-
sists of some novel geometric arguments. Together
with Proposition 3, it establishes the Lipschitz conti-
nuity of our fundamental gap functions. Surprisingly,
β1 and β2 turn out to be the corresponding Lipschitz
constants. The importance of this can be seen by con-
sidering the vector ϵ in the statements as an error be-
tween what an algorithm thinks the reward vector of
an arm is and its actual value. Then, our two funda-
mental gap functions for Pareto identification are at
most as erroneous as β1 and β2 times the norm of ϵ.
Hence, it is natural to expect that the cone-dependence
of an (ϵ, δ)-PAC Pareto set identifying algorithm mak-
ing use of m(·, ·) and M(·, ·) is expressed in terms of
β1 and β2. This is indeed the case for PaVeBa, as

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

shown in Theorems 1 and 2, our final sample complex-
ity bounds. Let log+(·) := max{log(·), 0}.
Theorem 1. When PaVeBa is run on a finite set of
arms X , the maximum number of samples required for
it to output an (ϵ, δ)-PAC Pareto set P̂ is

|X |512β2
2σ

2

ϵ2
log+

(
256β2

2σ
2

ϵ2

√
π2(D + 1)|X |

6δ

)
+ |X | .

Our sample complexity bound in Theorem 1 does not
depend on gaps between arms, and it nearly matches
the worst-case lower bound Ω((|X |β2

2/ϵ
2) log(1/δ))

provided in Ararat and Tekin (2023, Theorem 5.3).
The additional dependence on ϵ, β2, |X | in the log-
arithmic term makes our sample complexity bound
nearly-matching. Next, we present an improved result
based on the individual gaps of arms.

Theorem 2. When PaVeBa is run on a finite set of
arms X , the maximum number of samples required for
it to output an (ϵ, δ)-PAC Pareto set P̂ is

|X |+
∑
x∈P∗

4608β2σ2

∆̃3ϵ(x)2
log+

(
2304β2σ2

∆̃3ϵ(x)2

√
π2(D + 1)|X |

6δ

)

+
∑

x∈X\P∗

512β2σ2

∆̃+
ϵ (x)2

log+

(
256β2σ2

∆̃+
ϵ (x)2

√
π2(D + 1)|X |

6δ

)
.

Here, our sample complexity bound nearly matches the
gap-dependent lower bound Ω(

∑
x∈X (1/∆̃ϵ

x) log(1/δ))
provided in Ararat and Tekin (2023, Theorem 5.1),

where ∆̃ϵ
x corresponds to ∆̃+

ϵ (x) for suboptimal arms

exactly and to ∆̃ϵ(x) for Pareto arms except a little
discrepancy explained in Remark 2. The additional de-
pendence on the gaps in the logarithmic terms makes
our sample complexity bound nearly-matching. To the
best of our knowledge, PaVeBa is the first algorithm
to nearly match the theoretical lower bounds on the
sample complexity of the pure exploration problem for
vector bandits. It is also worth noting that since our
success condition is stricter than that of Ararat and
Tekin (2023), the bounds we match are for an even
easier problem.

Notice here that our worst-case sample complexity
bound depends on β2 (but not on β1) while the gap-
dependent one depends on β. This is because, in the
worst-case gap configuration, PaVeBa eliminates arms
not because it is sure about their actual Pareto status
due to their confidence regions shrinking sufficiently
to exploit the gaps but because arms are added to the
Pareto set due to the ϵ-looseness in (7). Therefore,
individual gaps of the arms do not matter. In addi-
tion, m(·, ·) becomes the main determining function in
the algorithm since the discarding step requires com-
parisons between M(·, ·) and 0, that can be translated

into comparisons using m(·, ·) due to Ararat and Tekin
(2023, Corollary 4.5). These two causes make β2 the
only cone-dependent term appearing in the final re-
sult. However, in the gap-dependent analysis, M(·, ·)
also plays a significant role since our gap definitions
involve it, thus resulting in a β1-dependence as well in
the theorem.

We note that the exact dependence of the gap-
dependent lower bound on β remains unresolved at
this stage. Indeed, the gap-dependent lower bound in
Ararat and Tekin (2023, Corollary 4.5) has a cone-
dependent scalar k appearing in the proof. We think
that β is highly related to the problem’s difficulty since
an adversarial placement of the mean vectors results in
a β appearance in the sample complexity lower bound,
and we match this in our worst-case bound. Further,
we regress the average sample complexity under dif-
ferent cones on β2 using the least squares approach
in the experiments section (see Figure 4) and observe
that β2 precisely explains the variation in the sample
complexity.

Remark 2. For x ∈ X \ P ∗, the gap term ∆̃+
ϵ (x)

in Theorem 2 matches with the one in the gap-
dependent lower bound (Theorem 5.1) of Ararat and

Tekin (2023). For x ∈ P ∗, the gap term ∆̃3ϵ(x) in
Theorem 2 may be different from the ones that appear
on Theorem 5.1 of Ararat and Tekin (2023). One such

case is when ∆̃3ϵ(x) = M(f(y),f(x)) + 2∆+(y) for
some y /∈ P ∗. In this case, as in Auer et al. (2016),
one can replace the gap term of x appearing in our up-
per bound with the gap term of y in the lower bound,
still having a valid upper bound. Another case is when
∆̃3ϵ(x) = M(f(y),f(x)) for some y ∈ P ∗ \ {x}. This
case can be handled by mapping x to some y′ through
a finite number of replacement iterations and replac-
ing the gap term of x in our upper bound with the gap
term of y′ in the lower bound. When the number of
arms x ∈ P ∗ for which these cases happen is O(1),
the new upper bound matches with the lower bound in
Ararat and Tekin (2023) in terms of the gaps up to
logarithmic factors. The details of this argument can
be found in the supplementary §2.7.

When proving Theorems 1, 2, we begin by showing
that, for all arms and rounds, the true reward vectors
lie inside PaVeBa’s confidence regions (Et(x)) around
the empirical means at least with probability 1 − δ.
Then, we bound the variation between the latent val-
ues of functions m(·, ·), M(·, ·) and their estimates
based on the empirical means, given that the actual
values and estimates are close. To that end, we prove
Propositions 3, 4 after a series of intermediate results
about the nature of the vector bandits problem. Using
these and the fact that confidence regions shrink arbi-
trarily, we show that each arm x gets eliminated from

Efe Mert Karagözlü, Yaşar Cahit Yıldırım, Çağın Ararat, Cem Tekin

the set St after sufficiently many samplings dictated
by its “gap” ∆̃+

ϵ (x). Similarly, we show that arms get
eliminated from Ut after a sampling number dictated
by either ∆̃+

ϵ (x) or ∆̃3ϵ(x). In doing so, we follow a
different approach from Auer et al. (2016) since our
discarding and Pareto identification operations con-
sider all vectors inside the confidence regions (not only
empirical means) to work under arbitrary cones and
intersections of ellipsoidal confidence regions. These
results yield the sample complexity. As for the suc-
cessful Pareto identification, given that confidence re-
gions contain actual reward vectors, we show that true
Pareto arms never get discarded, and the sets Pt never
contain highly suboptimal arms that break the (ϵ, δ)-
PAC-ness of the final set. Hence, as the rounds pass,
a set P̂ satisfying Definition 1 is accumulated.

Remark 3. Different from our work, Katz-Samuels
and Scott (2018) assume multi-dimensional sub-
gaussian noise distribution. A σ-subgaussian
D-dimensional distribution is 2

√
2σ

√
D-norm-

subgaussian, see Jin et al. (2019, Lemma 1). Auer
et al. (2016) assume that the noise dimensions
are marginally σ-subgaussian. Then, under the
special case where noise dimensions are indepen-
dent σ-subgaussian, it is known that the noise
vector is σ-subgaussian, which is again 2

√
2σ

√
D-

norm-subgaussian. Hence, when the noise vector
is σ-subgaussian, our sample complexity bounds in
Theorems 1 and 2 will involve 8σ2D instead of σ2.

5 EXPERIMENTS

In this section, we assess the performance of PaVeBa
and compare it with the state of the art. We in-
troduce heuristic variants of PaVeBa that are tai-
lored to achieve low sample complexity in problems
with correlated arms. We keep this section concise
due to space considerations. Further details can be
found in the supplementary §5. Our implementation
for PaVeBa can be found at https://github.com/

Bilkent-CYBORG/PaVeBa.

Heuristic Variants. To improve PaVeBa’s empirical
performance in large, correlated experimental design
problems, we introduce heuristic variants using Gaus-
sian Processes (GPs). Consistent with common prac-
tice, each reward dimension is modeled by a distinct
GP. We also employ correlated GP outputs, leading to
ellipsoidal confidence regions. A derivation connecting
this region’s significance level to the confidence term
δ is in the supplementary §4. PaVeBa variants utiliz-
ing independent and correlated GP outputs are termed
PaVeBa-IH and PaVeBa-DE, with “IH” denoting “In-
dependent and Hyperrectangular” and “DE” denoting
“Dependent and Ellipsoidal” with the latter incorpo-

rating a Linear Model of Coregionalization.

5.1 Real-World Problems

SNW (D = 2, |X | = 206): This dataset is derived
from the domain of computational hardware design,
specifically concerning the optimization of sorting net-
work configurations (Zuluaga et al., 2012).

DB (Disc Brake, D = 2, |X | = 128): This dataset
addresses efficiency and safety in automotive engineer-
ing, presenting an optimization problem in disc brake
manufacturing (Tanabe and Ishibuchi, 2020).

PK2 (D = 2, |X | = 500): In the context of organic
chemistry, this dataset aims at the optimization of
the Paal-Knorr synthesis, a fundamental reaction for
the synthesis of pyrroles and pyrrolidines (Moore and
Jensen, 2012).

VC (Vehicle Crashworthiness, D = 3, |X | = 2000):
From the field of automotive safety, this dataset fo-
cuses on the optimization of vehicle structures to en-
hance crashworthiness (Tanabe and Ishibuchi, 2020;
Liao et al., 2008). VC1: A smaller version of this
dataset with |X | = 100 that is used in compute-heavy
settings.

MAR (Marine, D = 4, |X | = 500): Within mar-
itime engineering, this dataset is concerned with the
optimization of bulk carrier designs to improve cargo
transfer efficiency and maritime safety (Parsons and
Scott, 2004; Tanabe and Ishibuchi, 2020).

5.2 Experimental Setup and Results

Before running our experiments, we min-max scale the
inputs to unit intervals and standardize the outputs
per usual. For all experiments, we employ a Gaussian
noise as N (0, σ2

nID) where σn = 0.1, we set ϵ = 0.1
and δ = 0.05, unless stated otherwise. Note that
when D = 2 this is both σn-subgaussian and σn-norm-
subgaussian. To reduce the number of constraints in
convex programs for PaVeBa from O(t) to O(1), we
use Bt(·) instead of Et(·) inside PaVeBa. For GP-based
models, we use the RBF kernel, featuring automatic
relevance determination. We assume we know the ker-
nel parameters and choose the parameters according
to maximum likelihood estimation from the dataset
prior to optimization. We report ϵ-F1 scores as our
accuracy metric (the higher, the better), on which fur-
ther details are provided in the supplementary §5. All
reported results are averaged over 50 runs.

Experiment 1. We assess the performance of
PaVeBa in multi-objective optimization, a special case
of vector optimization where the ordering cone is the
positive orthant. PaVeBa is compared with Algorithm

https://github.com/Bilkent-CYBORG/PaVeBa
https://github.com/Bilkent-CYBORG/PaVeBa

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

22 23 24 25 26 27 28 29 210

0.94

0.96

0.98

1.00

ε-
F

1
S

co
re

22 23 24 25 26 27 28 29 210

6

7

8

lo
g
(S

am
pl

e
co

m
pl

ex
it

y)

PaVeBa

PIBF

NE

Contraction factor

(a)

22 23 24 25 26 27 28 29 210

0.90

0.95

1.00

ε-
F

1
S

co
re

22 23 24 25 26 27 28 29 210

5

6

7

8

lo
g
(S

am
pl

e
co

m
pl

ex
it

y)

PaVeBa

PIBF

NE

Contraction factor

(b)

Figure 2: Comparison with NE and PIBF on SNW (a)
and DB (b) with σn = ϵ = 0.01. The left figures show
ϵ-F1 scores with different contraction factors, and the
right figures show the sample complexities.

1 in Auer et al. (2016), denoted here as PIBF, and
Näıve Elimination (NE) proposed in Ararat and Tekin
(2023). PaVeBa and PIBF need wide confidence re-
gions, and NE needs a high per-arm sampling budget
(called L) for high-probability correct results. How-
ever, standard confidence parameters, being overly
conservative, can hamper performance. To address
this, we scale down the confidence regions given by
PaVeBa and PIBF, i.e., rt(x), and the per-arm sam-
pling budget calculated by NE, i.e., L. We term this
scaling factor contraction factor, chosen as powers of
2 in [22, 210]. We set σn = ϵ = 0.01 for this exper-
iment due to high sample complexities. The results
(Figure 2) reveal PaVeBa to be notably robust even
with unmet confidence assumptions, maintaining sim-
ilar sample complexities with PIBF at higher contrac-
tion factors while PaVeBa and PIBF outperform NE.

Experiment 2. We evaluate the sample complexity
of PaVeBa under three different polyhedral ordering
cones C and inspect the relation between the sample
and ordering complexities. We take C = Cθ := {x ∈
R2 | π/4 − θ/2 ≤ θx ≤ π/4 + θ/2}, where θx denotes
the angle in the polar coordinates of a point x ∈ R2

and θ ∈ {π/4, π/2, 3π/4}. We also compare PaVeBa
with NE, which is the only other algorithm that does
vector optimization using ordering cones to the best of
our knowledge. NE uses a per-arm sampling budget
L, and for fairness, it is given the next multiple of |X |
samples greater than what PaVeBa used. We use a
contraction factor of 16 for PaVeBa. The results in
Tables 1 and 2 show that PaVeBa works better under
similar sample complexity.

Experiment 3. We compare the heuristic variants of
PaVeBa against ϵ-PAL (Zuluaga et al., 2016), MESMO

ϵ-F1 Score w.r.t. θ

ϵ π/4 π/2 3π/4

NE 10−1 0.99 0.97 0.97
10−2 0.93 0.87 0.78

PaVeBa 10−1 0.99 0.98 0.99
10−2 0.94 0.91 0.88

(a)

NE 10−1 0.98 0.94 0.97
10−2 0.93 0.84 0.78

PaVeBa 10−1 0.98 0.95 0.97
10−2 0.94 0.92 0.91

(b)

Table 1: Results of NE and PaVeBa for different values
of ϵ and θ on SNW (a) and DB (b) datasets.

Sample Complexity w.r.t. θ

ϵ π/4 π/2 3π/4

SNW 10−1 654.50 378.68 272.44
10−2 10100.92 2594.00 789.96

DB 10−1 304.86 167.58 141.78
10−2 2045.26 308.84 196.70

Table 2: Sample complexities of PaVeBa with different
values of ϵ and θ on SNW and DB datasets.

(Belakaria et al., 2019) and JES (Tu et al., 2022). Since
these algorithms sample only one arm at each round,
to ensure fairness, we modify PaVeBa-IH and PaVeBa-
DE to have a batch size parameter K. The batch
selection is done in a loop by choosing the arm with
the maximum posterior covariance matrix trace and
updating the posterior variances of arms until K arms
have been chosen. While PaVeBa and ϵ-PAL work in
the fixed confidence setting, others work with a fixed
sampling budget, so in each run of the experiment, we
run MESMO and JES algorithms with a budget that is
equal to the number of samples taken by PaVeBa. We
scale down ατ (x) by 64 for PaVeBa and βt by 9 for ϵ-
PAL, as in Zuluaga et al. (2016). To reduce the sample
complexity of PaVeBa while maintaining ϵ correctness,
we amend (6) to also include ϵ looseness in discarding.
Further details are discussed in the supplementary §5.

First, we set K = 1. In the first simulation (Table 3),
we compare the algorithms under the multi-objective
cone. In the second simulation (Table 4), we focus on
D = 3 and compare the algorithms under two other
cones. For this purpose, we define two cones with
matrices W = [[1,−2, 4], [4, 1,−2], [−2, 4, 1]]/

√
21

Efe Mert Karagözlü, Yaşar Cahit Yıldırım, Çağın Ararat, Cem Tekin

Dataset Algorithm S.C. ϵ-F1 Score

PK2 ϵ-PAL 178.42 1.00
JES 57.62 0.86
MESMO 57.62 0.86

PaVeBa-IH 57.62 0.95

VC ϵ-PAL 584.00 1.00
JES 123.94 0.87
MESMO 123.94 0.97

PaVeBa-IH 123.94 0.97

MAR ϵ-PAL 639.04 0.98
JES 224.38 0.97
MESMO 224.38 0.95

PaVeBa-IH 224.38 0.97

Table 3: Comparison of PaVeBa with ϵ-PAL, MESMO,
and JES under the multi-objective cone.

Cone Algorithm S.C. ϵ-F1 Score

Acute ϵ-PAL 88.08 0.98
JES 91.94 0.81
MESMO 91.94 0.97

PaVeBa-DE 91.94 0.99

Obtuse ϵ-PAL 88.08 1.00
JES 27.58 0.86
MESMO 27.58 0.85

PaVeBa-DE 27.58 1.00

Table 4: Comparison of PaVeBa with ϵ-PAL, MESMO,
and JES on VC1 dataset under acute and obtuse cones.

and W = [[1, 0.4, 1.6], [1.6, 1, 0.4], [0.4, 1.6, 1]]/
√
3.72,

called acute and obtuse cones, respectively. For al-
gorithms other than PaVeBa, we calculate the cone-
ordered Pareto set directly from the final posterior
means of arms. The results show PaVeBa keeps up
with state of the art on several datasets with different
reward dimensions under all considered cones. While
ϵ-PAL offers good ϵ-F1 scores, its sample complexity is
generally higher. In the third simulation, we compare
PaVeBa-IH with PaVeBa-DE under differentK values.
From Figure 3(Left), we observe (1) novel modeling of
correlations between objectives can yield superior sam-
ple efficiency and (2) the negative effect of batch size
on the sample complexity. From Figure 3(Right), we
observe that the ϵ-F1 scores of two different variants of
PaVeBa do not vary meaningfully, indicating that the
key benefit of utilizing ellipsoidal confidence regions
may lie in reducing sample complexities.

Experiment 4. To relate the empirical sample com-
plexity with the ordering complexity, we do a regres-

500 256 128 64 32 16 8 4
0

200

400

600

S
am

pl
e

co
m

pl
ex

it
y

500 256 128 64 32 16 8 4
0.00

0.25

0.50

0.75

1.00

ε-
F

1
S

co
re

PaVeBa-DE

PaVeBa-IH

Batch size

Figure 3: The sample complexities (Left) and ϵ-F1
scores (Right) of PaVeBa-IH and PaVeBa-DE on PK2.

10 30 50 70 90 110 130 150 170

Cone angles (◦)

0

500

1000

1500

2000

2500

3000

3500

S
am

p
le

co
m

p
le

xi
ty

S.C. regression on β2

PaVeBa avg. sample complexities(S.C.)

Figure 4: Least squares fit of the average sample com-
plexity for different cone angles. Angles are sampled
with step size 5◦ from the range [10◦, 170◦].

sion analysis on DB dataset. We use the same cone
definition as in Experiment 2. We regress the average
sample complexity on β2 using the least squares ap-
proach. In Figure 4, it can be seen that β2 matches
well with the empirical observations.

6 CONCLUSION

We studied the vector bandits problem and proposed
PaVeBa, the first algorithm to our knowledge that
nearly matches the lower bounds on the sample com-
plexity of the problem. It is based on a simple round-
based heuristic and performs very well in the experi-
ments. We also reinforce the existing theory by prov-
ing further results that establish the link between the
ordering complexity and two fundamental gap func-
tions, M(·, ·) and m(·, ·). Designing algorithms based
on different heuristics, such as entropy search, study-
ing regret minimization in vector bandits with arbi-
trary cones, or studying partial observations where
only a subset of reward dimensions are available can
be valuable future research direction.

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

Acknowledgements

This work was supported by the Scientific and Tech-
nological Research Council of Turkey (TÜBİTAK) un-
der Grant 121E159. Yaşar Cahit Yıldırım was sup-
ported by Turk Telekom as part of 5G and Beyond
Joint Graduate Support Program coordinated by In-
formation and Communication Technologies Author-
ity. Cem Tekin acknowledges the support by the Turk-
ish Academy of Sciences Distinguished Young Scientist
Award Program (TÜBA-GEBİP-2023).

References

Ararat, Ç. and Tekin, C. (2023). Vector optimization
with stochastic bandit feedback. In Proc. 26th In-
ternational Conference on Artificial Intelligence and
Statistics, pages 2165–2190.

Auer, P., Chiang, C.-K., Ortner, R., and Drugan, M.
(2016). Pareto front identification from stochastic
bandit feedback. In Proc. 19th International Confer-
ence on Artificial Intelligence and Statistics, pages
939–947.

Belakaria, S., Deshwal, A., and Doppa, J. R.
(2019). Max-value entropy search for multi-
objective Bayesian optimization. In Advances in
Neural Information Processing Systems, volume 32.

Drugan, M. M. and Nowe, A. (2013). Designing multi-
objective multi-armed bandits algorithms: A study.
In The International Joint Conference on Neural
Networks (IJCNN), pages 1–8.

Ertl, P. and Schuffenhauer, A. (2009). Estimation of
synthetic accessibility score of drug-like molecules
based on molecular complexity and fragment con-
tributions. Journal of Cheminformatics, 1(8):1–11.

Even-Dar, E., Mannor, S., and Mansour, Y. (2006).
Action elimination and stopping conditions for
the multi-armed bandit and reinforcement learning
problems. Journal of Machine Learning Research,
7(39):1079–1105.

Garivier, A. and Kaufmann, E. (2016). Optimal best
arm identification with fixed confidence. In Proc.
Conference on Learning Theory, pages 998–1027.

Hayes, C. F., Rădulescu, R., Bargiacchi, E., Källström,
J., Macfarlane, M., Reymond, M., Verstraeten, T.,
Zintgraf, L. M., Dazeley, R., Heintz, F., Howley,
E., Irissappane, A. A., Mannion, P., Nowé, A.,
Ramos, G., Restelli, M., Vamplew, P., and Roijers,
D. M. (2022). A practical guide to multi-objective
reinforcement learning and planning. Autonomous
Agents and Multi-Agent Systems, 36(26):1–59.

Hernandez-Lobato, D., Hernandez-Lobato, J., Shah,
A., and Adams, R. (2016). Predictive entropy
search for multi-objective bayesian optimization. In

Proc. International Conference on Machine Learn-
ing, pages 1492–1501.

Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y.,
Leskovec, J., Coley, C. W., Xiao, C., Sun, J., and
Zitnik, M. (2022). Artificial intelligence foundation
for therapeutic science. Nature Chemical Biology,
18(10):1033–1036.

Jahn, J. (2011). Vector Optimization Theory: Appli-
cations, and Extensions. Springer, 2nd edition.

Jayatunga, M. K., Xie, W., Ruder, L., Schulze, U.,
and Meier, C. (2022). AI in small-molecule drug
discovery: A coming wave? Nature Reviews Drug
Discovery, 21(3):175–176.

Jin, C., Netrapalli, P., Ge, R., Kakade, S. M., and
Jordan, M. I. (2019). A short note on concentra-
tion inequalities for random vectors with subgaus-
sian norm. arXiv preprint arXiv:1902.03736.

Karnin, Z., Koren, T., and Somekh, O. (2013). Al-
most optimal exploration in multi-armed bandits. In
Proc. International Conference on Machine Learn-
ing, pages 1238–1246.

Katz-Samuels, J. and Scott, C. (2018). Feasible arm
identification. In Proc. International Conference on
Machine Learning, pages 2535–2543.

Liao, X., Li, Q., Yang, X., Zhang, W., and Li,
W. (2008). Multiobjective optimization for crash
safety design of vehicles using stepwise regression
model. Structural and Multidisciplinary Optimiza-
tion, 35:561–569.

Lizotte, D. J. and Laber, E. B. (2016). Multi-objective
markov decision processes for data-driven decision
support. Journal of Machine Learning Research,
17(210):1–28.

Löhne, A. (2011). Vector optimization with infimum
and Supremum. Springer.

Meyer, H. (1899). Zur theorie der alkoholnarkose: Er-
ste mittheilung. welche eigenschaft der anästhetica
bedingt ihre narkotische wirkung? Archiv für ex-
perimentelle Pathologie und Pharmakologie, 42:109–
118.

Moffaert, K. V. and Nowé, A. (2014). Multi-objective
reinforcement learning using sets of pareto dominat-
ing policies. Journal of Machine Learning Research,
15(107):3663–3692.

Moore, J. S. and Jensen, K. F. (2012). Automated
multitrajectory method for reaction optimization in
a microfluidic system using online IR analysis. Or-
ganic Process Research & Development, 16(8):1409–
1415.

Overton, C. E. (1901). Studien über die Narkose: zu-
gleich ein Beitrag zur allgemeinen Pharmakologie.
G. Fischer.

Efe Mert Karagözlü, Yaşar Cahit Yıldırım, Çağın Ararat, Cem Tekin

Parsons, M. G. and Scott, R. L. (2004). Formulation of
multicriterion design optimization problems for so-
lution with scalar numerical optimization methods.
Journal of Ship Research, 48(01):61–76.

Shah, A. and Ghahramani, Z. (2016). Pareto fron-
tier learning with expensive correlated objectives. In
Proc. International Conference on Machine Learn-
ing, pages 1919–1927.

Tanabe, R. and Ishibuchi, H. (2020). An easy-to-
use real-world multi-objective optimization problem
suite. Applied Soft Computing, 89:106078.

Tu, B., Gandy, A., Kantas, N., and Shafei, B. (2022).
Joint entropy search for multi-objective Bayesian
optimization. In Advances in Neural Information
Processing Systems, volume 35, pages 9922–9938.

Turgay, E., Oner, D., and Tekin, C. (2018). Multi-
objective contextual bandit problem with similar-
ity information. In Proc. International Conference
on Artificial Intelligence and Statistics, pages 1673–
1681.

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J.,
Marcu, A., Grant, J. R., Sajed, T., Johnson, D.,
Li, C., Sayeeda, Z., et al. (2018). Drugbank 5.0: a
major update to the drugbank database for 2018.
Nucleic Acids Research, 46(D1):D1074–D1082.

Zuluaga, M., Krause, A., and Püschel, M. (2016).
ε-PAL: An active learning approach to the multi-
objective optimization problem. Journal of Machine
Learning Research, 17(104):1–32.

Zuluaga, M., Milder, P., and Püschel, M. (2012). Com-
puter generation of streaming sorting networks. In
DAC Design Automation Conference, pages 1241–
1249.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes

(b) Complete proofs of all theoretical results. Yes

(c) Clear explanations of any assumptions. Yes

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). No

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator if your work uses ex-
isting assets. Yes

(b) The license information of the assets, if ap-
plicable. Not Applicable

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not Applica-
ble

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not applica-
ble

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable

Learning the Pareto Set Under Incomplete Preferences: Pure
Exploration in Vector Bandits: Supplementary Materials

1 PROOFS FOR THE CONVEX PROGRAMMING FORMULATIONS

In this section, we provide the proofs of Propositions 1 and 2.

1.1 Proof of Proposition 1

Note that Et(x), Et(y) are compact sets and M(·, ·) is a continuous function. Hence, the supremum under
consideration is indeed a maximum. Then, supµ∈Et(x),ν∈Et(y) M(µ,ν) > 0 iff there exist µ ∈ Et(x), ν ∈ Et(y)
such that ν −µ ∈ Cc by Ararat and Tekin (2023, Corollary 4.5). By the definition of cone C, this is possible iff
wT

n(ν − µ) < 0 for some n ∈ [N], µ ∈ Et(x), and ν ∈ Et(y). In other words, for at least one n ∈ [N], we have
minµ∈Et(x),ν∈Et(y) w

T
n(ν − µ) < 0, which corresponds precisely to the problem defined in Proposition 1.

1.2 Proof of Proposition 2

Note that Et(x), Et(y) are compact sets and m(·, ·) is a continuous function. Hence, the supremum under
consideration is indeed a maximum. Then, supµ∈Et(x),ν∈Et(y) m(µ,ν) ≥ ϵ iff there exist µ ∈ Et(x), ν ∈ Et(y)
such that m(µ,ν) ≥ ϵ. By Ararat and Tekin (2023, Proposition 4.2(iv)), we have

m(µ,ν) = min
n∈[N]

(wT
n(ν − µ))+

αn
.

Then,
m(µ,ν) ≥ ϵ ⇔ ∀n ∈ [N]: (wT

n(ν − µ))+ ≥ ϵαn.

Since ϵαn > 0 for each n ∈ [N], we can drop the positive part function and obtain

m(µ,ν) ≥ ϵ ⇔ ∀n ∈ [N]:wT
n(ν − µ) ≥ ϵαn.

Therefore, supµ∈Et(x),ν∈Et(y) m(µ,ν) ≥ ϵ iff there exist µ ∈ Et(x), ν ∈ Et(y) such that wT
n(ν − µ) ≥ ϵαn holds

for each n ∈ [N]. These conditions are precisely the constraints of the feasibility problem in the proposition.
Hence, the result follows.

2 PROOFS FOR THE SAMPLE COMPLEXITY BOUNDS

In this section, we provide the proofs of the results concerning the sample complexity of PaVeBa.

2.1 Preliminary Results on Gap Functions

We start with a remark that is useful in proving Propositions 3 and 4.

Remark 4. The gap functions m(·, ·) and M(·, ·) depend on their arguments only through the difference between
the two arguments. Hence, by a slight abuse of notation, we could alternatively define them via

m(ξ) = d(ξ, (int(C))c ∩ (ξ − C)), M(ξ) = d(ξ, C ∩ (ξ + C))

for each ξ ∈ RD.

Next, we present several lemmata that will lead to Theorems 1 and 2. The first one states the triangle inequality
for M(·, ·).

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

Lemma 1. For each µ,ν, ξ ∈ RD, we have M(µ,ν) ≤ M(µ, ξ) +M(ξ,ν).

Proof. Let ε > 0. Then, by (3) and the definition of infimum, there exist s1 ≤ M(µ, ξ) + ε
2 , s2 ≤ M(ξ,ν) + ε

2
and u1,u2 ∈ B(0, 1) ∩ C such that µ ⪯C ξ + s1u1 and ξ ⪯C ν + s2u2. By adding these two inequalities, we
get µ+ ξ ⪯C ξ + ν + s1u1 + s2u2 and by canceling out terms, we get

µ ⪯C ν + su,

where s := ∥s1u1 + s2u2∥2; u := 1
s (s1u1 + s2u2) if s > 0 and u := 0 if s = 0 (for definiteness). Moreover,

triangle inequality yields
s = ∥s1u1 + s2u2∥2 ≤ ∥s1u1∥2 + ∥s2u2∥2 ≤ s1 + s2, (S.1)

where the last step is due to u1,u2 ∈ B(0, 1). Also, note that s1u1 + s2u2 ∈ C so that u ∈ C. Then, by the
definition of M(µ,ν) and (S.1), we have M(µ,ν) ≤ s1 + s2. In particular,

M(µ,ν) ≤ M(µ, ξ) +M(ξ,ν) + ε.

Since ε > 0 is arbitrary, we obtain the desired triangle inequality.

The next three results are concerned with the Lipschitz-continuity of the gap functions. We show that M(·, ·) is
β1-Lipschitz and m(·, ·) is β2-Lipschitz when seen as functions of the difference vectors, see Remark 4.

Lemma 2. For every µ,ν ∈ RD, we have M(µ,ν) ≤ β1∥µ− ν∥2 and m(µ,ν) ≤ β2∥µ− ν∥2.

Proof. We consider the following three cases for ν − µ.

Case 1: Suppose that ν − µ ∈ int(C). By Ararat and Tekin (2023, Corollary 4.5(i)), we have M(µ,ν) = 0 so
that the inequality for M(µ,ν) becomes trivial. Furthermore, by (2), we have

d(ν − µ, (int(C))c ∩ (ν − µ− C))

d(ν − µ, (int(C))c)
≤ β2.

By Ararat and Tekin (2023, Proposition 4.2(ii)), this directly implies that

m(µ,ν) ≤ β2d(ν − µ, (int(C))c) ≤ β2∥µ− ν∥2,

where the last step follows since 0 ∈ (int(C))c.

Case 2: Suppose that ν − µ ∈ bd(C). By Ararat and Tekin (2023, Corollary 4.5(ii)), we have m(µ,ν) =
M(µ,ν) = 0. Hence, both inequalities become trivial.

Case 3: Suppose that ν −µ ∈ Cc. By Ararat and Tekin (2023, Corollary 4.5(iii)), we have m(µ,ν) = 0. Hence,
the inequality for m(µ,ν) becomes trivial. Furthermore, by (1), we have

d(ν − µ, (C ∩ (ν − µ+ C)))

d(ν − µ, C)
≤ β1.

By Ararat and Tekin (2023, Proposition 4.3(ii)), this directly implies that

M(µ,ν) ≤ β1d(ν − µ, C) ≤ β1∥µ− ν∥2,

where the last step follows since 0 ∈ C.

Hence, we have the desired inequalities for all cases.

2.2 Proof of Proposition 3

By Lemma 1, we have M(µ,ν) ≤ M(µ,µ+ ϵ) +M(µ+ ϵ,ν). Hence, Lemma 2 yields

M(µ,ν)−M(µ+ ϵ,ν) ≤ M(µ,µ+ ϵ) ≤ β1∥ϵ∥2.

Similarly,
M(µ+ ϵ,ν)−M(µ,ν) ≤ M(µ+ ϵ,µ) ≤ β1∥ϵ∥2.

Therefore, the desired inequality follows.

2.3 Proof of Proposition 4

We first prove the statement under the assumption that m(µ,ν) ≥ m(µ+ϵ,ν). We consider the following cases.

If m(µ,ν) = m(µ+ ϵ,ν), then the desired inequality follows trivially.

For the rest of the proof, let us suppose that m(µ,ν) > m(µ+ ϵ,ν). Let

ε ∈
(
0,

1

2
(m(µ,ν)−m(µ+ ϵ,ν))

)
(S.2)

be arbitrarily chosen. Then, by (4) and the definition of infimum, there exist s ≤ m(µ + ϵ,ν) + ε and u ∈
B(0, 1)∩C such that µ+ ϵ+ su /∈ ν − int(C), i.e., ν −µ− ϵ− su ∈ (int(C))c. In particular, (S.2) ensures that

s < m(µ,ν). (S.3)

Let h := d(ν − µ− su, (int(C))c). Then, we immediately have

h ≤ ∥(ν − µ− su)− (ν − µ− ϵ− su)∥2 = ∥ϵ∥2.

We claim that ν−µ−su ∈ int(C). Suppose that this is not the case, i.e., µ+su /∈ ν− int(C). By the definition
of m(µ,ν), this implies that m(µ,ν) ≤ s, which is a contradiction to (S.3). Hence, the claim holds, and we have
h > 0. As an immediate consequence, by the definition of β2 and Ararat and Tekin (2023, Proposition 4.2(ii)),
we also get

β2 = sup
x∈int(C)

d(x, (int(C))c ∩ (x− C))

d(x, (int(C))c)

≥ d(ν − µ− su, (int(C))c ∩ (ν − µ− su− C))

d(ν − µ− su, (int(C))c)
=

m(µ+ su,ν)

h
.

Next, we claim that m(µ + su,ν) + s ≥ m(µ,ν). Indeed, let r ≥ 0 be such that µ + su + rv /∈ ν − int(C) for
some v ∈ B(0, 1)∩C. Then, su+ rv ∈ C since C is a convex cone. Hence, m(µ,ν) ≤ ||su+ rv||2≤ s+ r. Then,
taking infimum over all choices of r yields m(µ,ν) ≤ s+m(µ+ su,ν). Therefore,

β2∥ϵ∥2 ≥ m(µ+ su,ν) ≥ m(µ,ν)− s.

In particular, by taking s = m(µ+ ϵ,ν) + ε, we get

β2∥ϵ∥2 ≥ m(µ,ν)−m(µ+ ϵ,ν)− ε.

Finally, since ε can be chosen arbitrarily small, we conclude that

β2∥ϵ∥2 ≥ m(µ,ν)−m(µ+ ϵ,ν) = |m(µ+ ϵ,ν)−m(µ,ν)|,

which completes the proof when m(µ,ν) ≥ m(µ+ ϵ,ν) holds.

Next, suppose that m(µ,ν) < m(µ+ ϵ,ν). In this case, let us define µ̃ := µ+ ϵ and ϵ̃ := −ϵ. Then, we have

m(µ̃+ ϵ̃,ν) = m(µ,ν) < m(µ+ ϵ,ν) = m(µ̃,ν).

Hence, by the result of the previous step, we have

|m(µ+ ϵ,ν)−m(µ,ν)|= |m(µ,ν)−m(µ+ ϵ,ν)|= |m(µ̃+ ϵ̃,ν)−m(µ̃,ν)|≤ β2∥ϵ̃∥2 = β2∥ϵ∥2,

which completes the proof.

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

2.4 Norm-Subgaussian Concentration

The aim of this subsection is to prove a concentration inequality for a random sum of norm-subgaussian random
vectors to be used in the proof of Lemma 5 below. As a preparation, we first provide a moment inequality for
a single norm-subgaussian random vector. The inequality is also given in Jin et al. (2019, Lemma 2) without
specifying the constant multiplied by the bounding term σ

√
p. Since we need the exact value of this constant

for our purposes, we re-derive the inequality.

Lemma 3. Let y be D-dimensional norm-subgaussian random vector with parameter σ.

(i) For each p ∈ N,

E[∥y∥2p2] ≤ 2p! (2σ2)p.

(ii) Define a (D + 1)× (D + 1)-dimensional random matrix by

ỹ :=

(
0 yT

y 0

)
.

Then, for each θ ∈ R,

E[eθỹ] ⪯ e2θ
2σ2

I,

where eA denotes the matrix exponential of a square matrix A, I denotes the (D + 1) × (D + 1)-dimensional
identity matrix, and ⪯ denotes the positive semidefinite (Loewner) order on the space of symmetric matrices.

Proof. (i) Let p ≥ 1. Since ∥y∥2p2 is a nonnegative random variable, we have

E[∥y∥2p2] =

∫ ∞

0

P{∥y∥2p2 > u}du =

∫ ∞

0

P{∥y∥2 > u
1
2p }du = 2p

∫ ∞

0

P{∥y∥2 > t}t2p−1dt,

where the last equality is a result of the substitution u
1
2p = t. Since y is a norm-subgaussian random vector with

parameter σ, we have

E[∥y∥2p2] ≤ 4p

∫ ∞

0

e−
t2

2σ2 t2p−1dt = 4p

∫ ∞

0

e−
t2

2σ2 (t2)p−1tdt

= 4p

∫ ∞

0

e−v(2σ2v)p−1σ2dv

= 4p2p−1(σ2)p(p− 1)!

∫ ∞

0

e−vvp−1

(p− 1)!
dv

= 2p! (2σ2)p,

where the last integral equals 1 as the integral of the probability density function of the gamma distribution with
shape index p and scale parameter 1.

(ii) The proof mainly follows the arguments as in the proof of Jin et al. (2019, Lemma 4), but has some additional
tweaks that lead to a tighter upper bound. Note that ỹ is a symmetric matrix of rank 2 whose eigenvalues are
∥y∥2 and −∥y∥2. Let ∥ỹ∥ denote the matrix (operator) norm of ỹ. Then, we have ∥ỹ∥ = ∥y∥2. Using this, we

obtain

E[eθỹ] = E

[∞∑
p=0

(θỹ)p

p!

]
=

E[ỹ0]

0!
+

∑
p∈{1,3,...}

θpE[ỹp]

p!
+

∑
p∈{2,4,...}

θpE[ỹp]

p!

= I +
∑

p∈{2,4,...}

θpE[ỹp]

p!

= I +

∞∑
p=1

θ2pE[ỹ2p]

(2p)!

⪯

(
1 +

∞∑
p=1

θ2pE[∥ỹ∥2p]
(2p)!

)
I

=

(
1 +

∞∑
p=1

θ2pE[∥y∥2p2]

(2p)!

)
I

⪯

(
1 +

∞∑
p=1

θ2p2p! (2σ2)p)

(2p)!

)
I due to (i)

=

(
1 +

∞∑
p=1

(2θ2σ2)p2p!

(2p)!

)
I

⪯

(
1 +

∞∑
p=1

(2θ2σ2)p

p!

)
I due to

2p!

(2p)!
≤ 1

p!
for p ∈ N

= I +

∞∑
p=1

(2θ2σ2I)p

p!
=

∞∑
p=0

(2θ2σ2I)p

p!
= e2θ

2σ2I .

Here, the inequality 2p!
(2p)! ≤

1
p! for p ≥ 1 can be proven by induction.

The next lemma is a ‘random sum’ version of Jin et al. (2019, Lemma 6) within our setting.

Lemma 4. Let x ∈ X and t ∈ N. Let δt ∈ (0, 1). Then, for each θ > 0, it holds

P

∥∥∥∥∥∥
∑

τ∈Nt(x)

ητ (x)

∥∥∥∥∥∥
2

> 2θnt(x)σ
2 +

1

θ
log

(
D + 1

δt

) ≤ δt .

In particular,

P

∥∥∥∥∥∥
∑

τ∈Nt(x)

ητ (x)

∥∥∥∥∥∥
2

>

√
8tσ2 log

(
D + 1

δt

) ≤ δt . (S.4)

Proof. For each t ∈ N, let Ft denote the σ-algebra corresponding to the information accumulated by round t.
Let F0 be the trivial σ-algebra. As in Lemma 3, we denote by η̃t(x) the random matrix corresponding to ηt(x)
for each t ∈ N. Let us fix t ∈ N. Let θ > 0. Note that

E

tr exp
−2θ2nt(x)σ

2I + θ
∑

τ∈Nt(x)

η̃τ (x)

= E

E
tr exp

−2θ2nt(x)σ
2I + θ

∑
τ∈Nt(x)

η̃τ (x)

 (1{t∈Nt(x)} + 1{t/∈Nt(x)}) | Ft−1

 ,

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

where trA denotes the trace of a square matrix A and 1E denotes the indicator random variable of an event
E. By the design of PaVeBa, Nt(x) is an Ft−1-measurable random set. In particular, nt(x) is Ft−1-measurable.

Moreover, η̃t(x) is independent of Ft−1 and we have E[eθη̃t(x)] ⪯ e2θ
2σ2

I by Lemma 3(ii).

Under the event {t ∈ Nt(x)}, note that we have Nt(x) \ {t} = Nt−1(x) and nt(x)− 1 = nt−1(x). Hence,

E

tr exp
−2θ2nt(x)σ

2I + θ
∑

τ∈Nt(x)

η̃τ (x)

 1{t∈Nt(x)} | Ft−1

≤ tr exp

−2θ2nt(x)σ
2I + θ

∑
τ∈Nt(x)\{t}

η̃τ (x) + logE[eθη̃t(x)]

 1{t∈Nt(x)}

≤ tr exp

−2θ2nt(x)σ
2I + θ

∑
τ∈Nt(x)\{t}

η̃τ (x) + 4θ2σ2I

 1{t∈Nt(x)}

= tr exp

−2θ2(nt(x)− 1)σ2I + θ
∑

τ∈Nt(x)\{t}

η̃τ (x)

 1{t∈Nt(x)}

= tr exp

−2θ2nt−1(x)σ
2I + θ

∑
τ∈Nt−1(x)

η̃τ (x)

 1{t∈Nt(x)},

where logA denotes the matrix logarithm of a square matrix A.

On the other hand, under the event {t /∈ Nt(x)}, we have Nt(x) = Nt−1(x) and nt(x) = nt−1(x). Hence,

E

tr exp
−2θ2nt(x)σ

2I + θ
∑

τ∈Nt(x)

η̃τ (x)

 1{t/∈Nt(x)} | Ft−1

= E

tr exp
−2θ2nt−1(x)σ

2I + θ
∑

τ∈Nt−1(x)

η̃τ (x)

 1{t/∈Nt(x)} | Ft−1

= tr exp

−2θ2nt−1(x)σ
2I + θ

∑
τ∈Nt−1(x)

η̃τ (x)

 1{t/∈Nt(x)}.

Combining these gives

E

tr exp
−2θ2nt(x)σ

2I + θ
∑

τ∈Nt(x)

η̃τ (x)

 ≤ E

tr exp
−2θ2nt−1(x)σ

2I + θ
∑

τ∈Nt−1(x)

η̃τ (x)

 .

Iterating this inductively yields

E

tr exp
−2θ2nt(x)σ

2I + θ
∑

τ∈Nt(x)

η̃τ (x)

 ≤ tr exp(0I) = D + 1.

Finally, for each ct > 0, arguing as in the proof of Jin et al. (2019, Lemma 6) via Markov’s inequality, we get

P

∥∥∥∥∥∥
∑

τ∈Nt(x)

ητ (x)

∥∥∥∥∥∥
2

> 2θnt(x)σ
2 +

ct
θ

= P

∥∥∥∥∥∥
∑

τ∈Nt(x)

η̃τ (x)

∥∥∥∥∥∥ > 2θnt(x)σ
2 +

ct
θ

= P

λmax

 ∑
τ∈Nt(x)

η̃τ (x)

 > 2θnt(x)σ
2 +

ct
θ

= P

{
λmax

(
eθ

∑
τ∈Nt(x) η̃τ (x)

)
> e2θ

2nt(x)σ
2+ct

}
= P

{
tr
(
eθ

∑
τ∈Nt(x) η̃τ (x)

)
> e2θ

2nt(x)σ
2+ct

}
≤ e−ctE

tr exp
−2θ2nt(x)σ

2I + θ
∑

τ∈Nt(x)

η̃τ (x)

 ≤ e−ct(D + 1),

where λmax(A) denotes the maximum eigenvalue of a square matrix A. Here, since
∑

τ∈Nt(x)
η̃τ is a symmetric

matrix of rank 2 with eigenvalues ∥
∑

τ∈Nt(x)
ητ∥2 and −∥

∑
τ∈Nt(x)

ητ∥2, the second equality follows. Hence,

setting ct := log(D+1
δt

) yields e−ct(D + 1) = δt, which completes the proof of the main inequality.

Since nt(x) ≤ t due to the construction of PaVeBa, we get

P

∥∥∥∥∥∥
∑

τ∈Nt(x)

ητ (x)

∥∥∥∥∥∥
2

> 2θtσ2 +
1

θ
log

(
D + 1

δt

) ≤ δt

by a monotonicity bound. In particular, choosing θ > 0 optimally as θ =
√

1
2tσ2 log(

D+1
δt

) yields

2θtσ2 +
1

θ
log

(
D + 1

δt

)
=

√
8tσ2 log

(
D + 1

δt

)
so that (S.4) follows.

2.5 Lemmata for the Proof of Theorem 1

The next lemma is the main result on concentration. It provides a “good event” that holds with high probability.
The results to follow will make some statements that hold under this event. For each x ∈ X and t ∈ N, recall that
Nt(x) denotes the set of rounds by round t (including round t) at which arm x is sampled and nt(x) = |Nt(x)|.

Take

rt(x) :=

√
8tσ2

nt(x)2
log

(
π2(D + 1)|X |t2

6δ

)
.

Lemma 5. We have P{∀x ∈ X ,∀t ∈ N:f(x) ∈ Et(x)} ≥ 1− δ.

Proof. Since Et(x) =
t⋂

τ=1
Bτ (x) for each x ∈ X and t ∈ N, we have

{∀x ∈ X ,∀t ∈ N:f(x) ∈ Et(x)} = {∀x ∈ X ,∀t ∈ N:f(x) ∈ Bt(x)}.

Fix x ∈ X and t ∈ N. Then,

∥µt(x)− f(x)∥2 =

∥∥∥∥∥∥
∑

τ∈Nt(x)

yτ (x)− f(x)

nt(x)

∥∥∥∥∥∥
2

=
1

nt(x)

∥∥∥∥∥∥
∑

τ∈Nt(x)

ητ (x)

∥∥∥∥∥∥
2

.

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

Given δt ∈ (0, 1), by (S.4) in Lemma 4, we have

P

{
∥µt(x)− f(x)∥2 ≥

√
8tσ2

nt(x)2
log

(
D + 1

δt

)}

= P

∥∥∥∥∥∥
∑

τ∈Nt(x)

ητ (x)

∥∥∥∥∥∥
2

≥

√
8tσ2 log

(
D + 1

δt

) ≤ δt.

Let us set δt :=
6δ

π2t2|X | . Then, a union bound gives

P{∀x ∈ X ,∀t ∈ N:f(x) ∈ Bt(x)} ≥ 1−
∑
x∈X

∑
t∈N

6δ

π2t2|X |
= 1−

∑
x∈X

δ

|X |
≥ 1− δ

since, for each x ∈ X and t ∈ N, we have√
8tσ2

nt(x)2
log

(
D + 1

δt

)
=

√
8tσ2

nt(x)2
log

(
π2(D + 1)|X |t2

6δ

)
= rt(x),

which completes the proof.

The next result ensures a low uncertainty radius when an arm is sampled sufficiently many times.

The following lemma combines the Lipschitz-continuity results with the concentration lemma.

Lemma 6. Under the event in Lemma 5, the following statements hold for every x, y ∈ X and t ∈ N:

1. ∥(µt(x)− µt(y))− (f(x)− f(y))∥2 ≤ rt(x) + rt(y).

2. |m(µt(x),µt(y))−m(f(x),f(y))| ≤ β2 (rt(x) + rt(y)).

3. |M(µt(x),µt(y))−M(f(x),f(y))| ≤ β1 (rt(x) + rt(y)).

Proof. Under the event in Lemma 5, we have ∥µt(x)− f(x)∥2 ≤ rt(x) for every x ∈ X and t ∈ [T].

1. We have

∥(µt(x)− µt(y))− (f(x)− f(y))∥2 = ∥(µt(x)− f(x)) + (f(y)− µt(y))∥2
≤ ∥µt(x)− f(x)∥2 + ∥f(y)− µt(y)∥2
≤ rt(x) + rt(y).

2. Note that m(f(x),f(y)) = m(f(x)− f(y),0) and m(µt(x),µt(y)) = m(µt(x)− µt(y),0). Hence,

|m(µt(x),µt(y))−m(f(x),f(y))| = |m(f(x)− f(y),0)−m(µt(x)− µt(y),0)|
≤ β2∥(µt(y)− f(y))− (µt(x)− f(x))∥2
≤ β2 (∥µt(y)− f(y)∥2 + ∥µt(x)− f(x)∥2)
≤ β2(rt(x) + rt(y)),

where the passage to the second line is due to Proposition 4.

3. By Lemma 1, Proposition 3, and Lemma 2, we have

M(µt(x),µt(y))−M(f(x),f(y))

≤ M(µt(x),f(y)) +M(f(y),µt(y))−M(f(x),f(y))

≤ |M(µt(x),f(y))−M(f(x),f(y))|+M(f(y),µt(y))

≤ β1∥µt(x)− f(x)∥2+β1∥f(y)− µt(y)∥2
≤ β1(rt(x) + rt(y)).

By symmetry, M(f(x),f(y))−M(µt(x),µt(y)) ≤ β1(rt(x) + rt(y)) holds as well.

Lemma 7. Under the event in Lemma 5, we have P ∗ ⊆ Pt ∪ St for every t ∈ N.

Proof. Clearly, at t = 1, P ∗ ⊆ Pt ∪ St holds. Note that, as t increases, arms get removed from Pt ∪ St only in
the discarding step (line 9 of PaVeBa). Let x ∈ X be an arm that is discarded at some round t ≥ 1. Hence,
x ∈ Dt, i.e., there exists y ∈ At \ {x} such that

sup
µ∈Et(x),ν∈Et(y)

M(µ,ν) = 0.

This implies that M(µ,ν) = 0 for every µ ∈ Et(x),ν ∈ Et(y). Moreover, by Lemma 5, with probability at least
1 − δ, we have f(x) ∈ Et(x) and f(y) ∈ Et(y); in particular, we have M(f(x),f(y)) = 0, which implies that
x ⪯C y by Ararat and Tekin (2023, Proposition 4.3(iii)). Hence, x /∈ P ∗ under this event, which completes the
proof.

Lemma 8. Under the event in Lemma 5, for every t ∈ N, the set Pt is an ‘ϵ-accurate’ Pareto set, that is, for
every x ∈ Pt \ P ∗, we have

∆∗(x) = max
y∈P∗

m(f(x),f(y)) ≤ ϵ.

Proof. Obviously, the result holds for t = 1. Note that, as t increases, arms get added to Pt only at the Pareto
selection step (line 11 of PaVeBa). Let x ∈ St be an arm that is added at the Pareto selection step at some
round t ≥ 1. Hence, x ∈ Pt, i.e., for every y ∈ At \ {x}, we have

sup
µ∈Et(x),ν∈Et(y)

m(µ,ν) < ϵ. (S.5)

By Lemma 5, we have f(x) ∈ Et(x) and f(y) ∈ Et(y) with probability at least 1− δ. Hence,

m(f(x),f(y)) < ϵ (S.6)

for every y ∈ At = At \ Dt under this event.

Moreover, we claim that

m(f(x),f(y)) < ϵ (S.7)

for every y ∈ Pt \ Ut. To see this, assume otherwise that there exists y ∈ Pt \ Ut such that

m(f(x),f(y)) ≥ ϵ. (S.8)

Hence,

sup
µ∈Et−1(x),ν∈Et−1(y)

m(µ,ν) ≥ ϵ, (S.9)

which implies that y ∈ Ut and we reach a contradiction.

Therefore, we have

max
y∈Pt∪(St\Dt)

m(f(x),f(y)) = max
y∈At∪(Pt\Ut)

m(f(x),f(y)) < ϵ. (S.10)

Finally, by Lemma 7, under the event in Lemma 5, we have P ∗ ⊆ Pt+1 ∪ St+1 = (Pt ∪ St) \ Dt. This implies

∆∗(x) = max
y∈P∗

m(f(x),f(y)) ≤ max
y∈Pt+1∪St+1

m(f(x),f(y)) ≤ ϵ,

which completes the proof.

Lemma 9. For every t ∈ N and x ∈ At, we have nt(x) = t.

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

Proof. Let t ∈ N. We claim that At+1 ⊆ At. To get a contradiction, suppose that there exists x ∈ At+1 such
that x /∈ At. Hence, x ∈ St+1 or x ∈ Ut+1. The former is not possible since x /∈ At implies x /∈ St and St+1 ⊆ St.
Therefore, x ∈ Ut+1. We consider the following two cases.

Case 1: Suppose that x /∈ Pt. Since x ∈ Ut+1, we have x ∈ Pt+1. Together with x /∈ Pt, this implies that x ∈ Pt;
hence, x ∈ St. But we showed that this is a contradiction.

Case 2: Suppose that x ∈ Pt. Note that x /∈ At implies x /∈ Ut. Hence, for every y ∈ St, we have

sup
µ∈Et−1(y),ν∈Et−1(x)

m(µ,ν) < ϵ. (S.11)

However, since x ∈ Ut+1, there exists ȳ ∈ St+1 such that

sup
µ∈Et(ȳ),ν∈Et(x)

m(µ,ν) ≥ ϵ. (S.12)

This is a contradiction since St+1 ⊆ St and we have Et(ȳ) ⊆ Et−1(ȳ), Et(x) ⊆ Et−1(x). This completes the proof
of the claim.

By an inductive argument, it follows that At ⊆ . . . ⊆ A1. Since all the arms in Aτ get sampled once at round τ
for each τ ∈ {1, . . . , t}, we have nt(x) = t for every x ∈ At.

Lemma 10. Let t ∈ N and define Rt := maxx∈At
rt(x). Under the event in Lemma 5, if Rt < ϵ

4β2
, then the

algorithm terminates at round t.

Proof. Let x ∈ St. First, suppose that there exists y ∈ At \ {x} such that m(µt(x),µt(y)) >
ϵ
2 . Let µ ∈ Et(x),

ν ∈ Et(y). Since ||µ− µt(x)||2≤ rt(x) and ||ν − µt(y)||2≤ rt(y), by Proposition 4, we have

ϵ

2
−m(µ,ν) < |m(µt(x),µt(y))−m(µ,ν)|

= |m(µt(x)− µt(y),0)−m(µ− ν,0)|
≤ β2∥(µt(x)− µt(y))− (µ− ν)∥2

≤ β2(rt(x) + rt(y)) ≤ 2β2Rt <
ϵ

2
.

It follows that m(µ,ν) > 0. Hence, arm x gets discarded at round t.

Second, suppose that x /∈ Dt and for every y ∈ At \ {x} we have m(µt(x),µt(y)) ≤ ϵ
2 . Let µ ∈ Et(x), ν ∈ Et(y).

Since ||µ− µt(x)||2≤ rt(x) and ||ν − µt(y)||2≤ rt(y), by Proposition 4, we have

m(µ,ν)− ϵ

2
≤ |m(µt(x),µt(y))−m(µ,ν)|≤ β2(rt(x) + rt(y)) ≤ 2β2Rt <

ϵ

2
.

It follows that m(µ,ν) < ϵ. Hence, arm x is added to the returned Pareto set at round t. Therefore, each arm
gets eliminated from St, hence the algorithm stops.

2.5.1 Proof of Theorem 1

Let t be the round after which PaVeBa stops. Assume that t > 1; otherwise the result is trivial. We have St ̸= ∅
and St+1 = ∅. Then, for all x ∈ At, we must have rt−1(x) ≥ ϵ

4β2
; otherwise, by Lemma 10, the algorithm will

terminate in round t− 1 since we will have rt−1(y) <
ϵ

4β2
for all y ∈ At−1. To see this, note that by Lemma 9,

At ⊆ At−1, and by the sampling rule of PaVeBa (line 6), all arms in At−1 are equally sampled. Let τ = t − 1.

We have for all x ∈ At,

r2t−1(x) ≥
ϵ2

16β2
2

⇔ 8σ2(t− 1)

nt−1(x)2
log

(
π2(D + 1)|X |(t− 1)2

6δ

)
≥ ϵ2

16β2
2

⇔ 8σ2

τ
log

(
π2(D + 1)|X |τ2

6δ

)
≥ ϵ2

16β2
2

⇔ log

(
π2(D + 1)|X |τ2

6δ

)
≥ ϵ2

128β2
2σ

2
τ

⇔ log

(
π2(D + 1)|X |

6δ

)
+ 2 log(τ) ≥ ϵ2

128β2
2σ

2
τ

⇔ log(τ) ≥ ϵ2

256β2
2σ

2
τ − 1

2
log

(
π2(D + 1)|X |

6δ

)
,

where Lemma 9 is used for the second line. By Antos et al. (2010, Lemma 8), the above display implies that

τ <
512β2

2σ
2

ϵ2

(
log

(
256β2

2σ
2

ϵ2

)
+ log

(√
π2(D + 1)|X |

6δ

))+

=
512β2

2σ
2

ϵ2

(
log

(
256β2

2σ
2

ϵ2

√
π2(D + 1)|X |

6δ

))+

,

where (·)+ := max{·, 0}. Therefore, an arm in At is sampled no more than

512β2
2σ

2

ϵ2

(
log

(
256β2

2σ
2

ϵ2

√
π2(D + 1)|X |

6δ

))+

+ 1 .

times by PaVeBa. Multiplying this number by the cardinality of X yields the sample complexity upper bound.

2.6 Lemmata for the Proof of Theorem 2

Lemma 11. Let t ∈ N and x ∈ St. Under the event in Lemma 5, if x /∈ P ∗ and Rt = maxy∈At rt(y) <
1
4β ∆̃

+
ϵ (x),

or if x ∈ P ∗ and Rt = maxy∈At
rt(y) <

1
12β ∆̃3ϵ(x), then x will be removed from the undecided set, i.e., x /∈ St+1.

Proof. Assume that the given condition holds for x. We consider the following three cases.

Case 1: Suppose that x /∈ P ∗ and ∆+(x) = maxy∈P∗\{x} m(f(x),f(y)) > ϵ. Hence, the condition in the lemma
statement implies

Rt <
1

4β
max

y∈P∗\{x}
m(f(x),f(y)).

Let y∗ ∈ P ∗ \ {x} be such that

m(f(x),f(y∗)) = max
y∈P∗\{x}

m(f(x),f(y)).

Note that, by Lemma 7, y∗ ∈ Pt ∪ St under the event in Lemma 5. We claim that y∗ ∈ At = St ∪ Ut. Indeed,
assume otherwise. Then, we must have y∗ ∈ Pt \ Ut. In particular, for every z ∈ St, we have

sup
µ∈Et−1(z),ν∈Et−1(y∗)

m(µ,ν) < ϵ. (S.13)

This is a contradiction, since, for (z,µ,ν) = (x,f(x),f(y∗)), we have m(µ,ν) = m(f(x),f(y∗)) = ∆+(x) > ϵ.
Hence, y∗ ∈ At.

Next, notice that

2βRt < m(f(x),f(y∗))− 2βRt ≤ m(µt(x),µt(y
∗)) ,

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

where the last step is by Lemma 6 under the event in Lemma 5. Let µ ∈ Et(x) and ν ∈ Et(y∗). Since
||µ− µt(x)||2≤ rt(x) and ||ν − µt(y

∗)||2≤ rt(y
∗), by Proposition 4, we have

|m(µt(x),µt(y
∗))−m(µ,ν)|≤ β(rt(x) + rt(y

∗)) ≤ 2βRt < m(µt(x),µt(y
∗)),

which implies that m(µ,ν) > 0. Hence, M(µ,ν) = 0 by Ararat and Tekin (2023, Corollary 4.5). Since
supµ∈Et(x),ν∈Et(y∗) M(µ,ν) = 0, arm x gets discarded at round t.

Case 2: Suppose that x ∈ P ∗ and ∆(x) > 3ϵ. In particular, we have miny/∈P∗ (M(f(y),f(x)) + 2∆+(y)) > 3ϵ
and miny∈P∗\{x} M(f(x),f(y)) > 3ϵ > ϵ. Hence, the condition in the lemma statement implies

Rt <
1

12β
min

y∈P∗\{x}
M(f(x),f(y)) <

1

4β
min

y∈P∗\{x}
M(f(x),f(y)).

We claim that

min
y∈P∗\{x}

M(f(x),f(y)) ≤ min
y∈At\{x}

M(f(x),f(y)). (S.14)

To see this, note that we have

∀y ∈ At \ P ∗ ∃y∗ ∈ P ∗:M(f(x),f(y∗)) ≤ M(f(x),f(y)).

Indeed, each dominated arm y ∈ X \ P ∗ has a nonempty set of dominating arms, which has a maximal point
y∗ ∈ P ∗ as a finite partially ordered set. Then, by Lemma 1, we have

M(f(x),f(y∗)) ≤ M(f(x),f(y)) +M(f(y),f(y∗)) = M(f(x),f(y)),

where the last step is due to Ararat and Tekin (2023, Corollary 4.5).

Finally, to prove our claim, we need y∗ ̸= x. Assume otherwise; then, we have (M(f(y),f(x)) + 2∆+(y)) =
2∆+(y) > 3ϵ. Also, note that by the condition of the lemma statement, we have 12βRt < max{∆(x), 3ϵ} ≤
max{2∆+(y), 3ϵ}. This means we have 6βRt < ∆+(y) or 4βRt < ϵ. If the latter is true, the algorithm stops by
Lemma 10. The former cannot be true since ∆+(y) > 6βRt > 4βRt implies that y will be discarded in round t
by case 1 and y ∈ At cannot be true.

Hence, the claim follows, and we get

Rt <
1

4β
min

y∈At\{x}
M(f(x),f(y)).

Next, we have for all y ∈ At \ {x}

2βRt < min
y′∈At\{x}

M(f(x),f(y′))− 2βRt ≤ M(µt(x),µt(y)),

where the last step is by Lemma 6 and taking minimum over the set At \ {x}. Let µ ∈ Et(x) and ν ∈ Et(y).
Since ||µ− µt(x)||2≤ rt(x) and ||ν − µt(y)||2≤ rt(y), for every y ∈ At \ {x}, we have

|M(µt(x),µt(y))−M(µ,ν)|≤ β(rt(x) + rt(y)) ≤ 2βRt < M(µt(x),µt(y)),

which implies that M(µ,ν) > 0. For each y ∈ At, since infµ∈Et(x),ν∈Et(y) M(µ,ν) > 0, we have

sup
µ∈Et(x),ν∈Et(y)

m(µ,ν) = 0 < ϵ (S.15)

by Ararat and Tekin (2023, Corollary 4.5). Hence, arm x is added to the returned Pareto set at round t.

Case 3: Suppose that x /∈ P ∗ and ∆+(x) ≤ ϵ. Hence, the condition in the lemma statement implies

Rt <
ϵ

4β
.

Then, by Lemma 10, the algorithm terminates at round t. In particular, x is eliminated either by being discarded
or by being added to the returned Pareto set.

Case 4: Suppose that x ∈ P ∗ and ∆(x) ≤ 3ϵ. Hence, the condition in the lemma statement implies

Rt <
3ϵ

12β
=

ϵ

4β
.

Then, by Lemma 10, the algorithm terminates at round t. In particular, x is being added to the returned Pareto
set due to Lemma 7.

Lemma 12. Under the event in Lemma 5, let y ∈ P ∗ be such that Rt = maxx∈At
rt(x) <

1
12β ∆̃3ϵ(y). Then, we

have y /∈ Ut+1.

Proof. Case 1: Suppose that Rt <
ϵ
4β . Then, the algorithm terminates by Lemma 10 so that St+1 = ∅. This

implies that y /∈ Ut+1.

Case 2: Suppose that Rt ≥ ϵ
4β . Since Rt <

1
12β ∆̃3ϵ(y), we must have 3ϵ < ∆(y) and Rt <

∆(y)
12β .

To get a contradiction, suppose that y ∈ Ut+1. Hence, there exist x ∈ St+1 ⊆ St, µ ∈ Et(x), and ν ∈ Et(y) such
that

m(µ,ν) ≥ ϵ > 0, (S.16)

which implies that M(µ,ν) = 0 by Ararat and Tekin (2023, Corollary 4.5). Then, by Lemma 6,

M(f(x),f(y)) ≤ |M(f(x),f(y))−M(µt(x),µt(y))|+|M(µt(x),µt(y))−M(µ,ν)|
≤ 2βRt + 2βRt ≤ 4βRt.

We continue by splitting Case 2 into two sub-cases and analyzing them separately.

Case 2.1: Suppose that x ∈ P ∗. Then, we have ∆(y) ≤ M(f(x),f(y)) ≤ 4βRt < 12βRt, which contradicts with

Rt <
∆(y)
12β . Hence, y /∈ Ut+1.

Case 2.2: Suppose that x /∈ P ∗. As a first case, if ∆+(x) ≤ ϵ, then we have ∆+(x) ≤ ϵ ≤ 4βRt by supposition.
As a second case, assume that ∆+(x) > ϵ. Since x /∈ P ∗, there exists x∗ ∈ P ∗ such that ∆+(x) = m(f(x),f(x∗));
see Section 2. Then, by Lemma 7, we have x∗ ∈ St ∪ Pt. Indeed, we claim that x∗ ∈ At. Otherwise, we would
have x∗ ∈ Pt \ Ut so that for every x̄ ∈ St, µ ∈ Et−1(x̄), and ν ∈ Et−1(x

∗), we would have

m(µ,ν) < ϵ. (S.17)

But choosing (x̄,µ,ν) = (x,f(x),f(x∗)) contradicts this. Hence, x∗ ∈ At follows. But since x is not discarded
by x∗ yet, we have x /∈ Dt so that M(µ,ν) > 0 for some µ ∈ Et(x) and ν ∈ Et(x∗). Then, by Ararat and Tekin
(2023, Corollary 4.5), we have

m(µ,ν) = 0.

Therefore, ∆+(x) = m(f(x),f(x∗)) ≤ 4βRt by Lemma 6. In either case, we have ∆+(x) ≤ 4βRt.

Finally, we have
∆(y) ≤ M(f(x),f(y)) + 2∆+(x) ≤ 4βRt + 8βRt = 12βRt,

which contradicts with Rt <
∆(y)
12β . Hence, y /∈ Ut+1.

Lemma 13. Let t ∈ N. Let x /∈ P ∗ be such that x ∈ Ut. Under the event in Lemma 5, if Rt = maxy∈At rt(y) <
1
4β ∆̃

+
ϵ (x), then x /∈ Ut+1.

Proof. Suppose that Rt <
1
4β ∆̃

+
ϵ (x). As x /∈ P ∗, we have ∆+(x) = maxy∈P∗\{x} m(f(x),f(y)); see Section 2.

We claim that ∆+(x) ≤ ϵ. Assume otherwise. Since x ∈ Ut ⊆ Pt, there exists some round τ ∈ {1, . . . , t} such
that x ∈ Pτ . Let y

∗ ∈ P ∗ \ {x} be such that

∆+(x) = max
y∈P∗\{x}

m(f(x),f(y)) = m(f(x),f(y∗)).

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

Note that, by Lemma 7, under the event in Lemma 5, we have y∗ ∈ Sτ∪Pτ . Indeed, we have y
∗ ∈ Aτ . Otherwise,

we would have y∗ ∈ Pτ \ Uτ so that, for every z ∈ Sτ , we would have

sup
µ∈Eτ−1(z),ν∈Eτ−1(y∗)

m(µ,ν) < ϵ; (S.18)

then, choosing (z,µ,ν) = (x,f(x),f(y∗)) would contradict this.

Going back, since x ∈ Pτ , we have

sup
µ∈Eτ (x),ν∈Eτ (y)

m(µ,ν) < ϵ (S.19)

for every y ∈ Aτ \ {x}. Then, choosing (y,µ,ν) = (y∗,f(x),f(y∗)) gives m(µ,ν) = ∆+(x) > ϵ, which is a
contradiction.

Since ∆+(x) ≤ ϵ, we have ∆̃+
ϵ (x) = ϵ. Hence, we have Rt < ϵ

4β . By Lemma 10, the algorithm terminates at

round t. Therefore, x /∈ Ut+1.

2.6.1 Proof of Theorem 2

First, we upper bound the number of times each arm in X gets sampled by PaVeBa under the event in Lemma 5.

Case 1: Fix an arm x ∈ X \ P ∗. Let tx be the round in which x is sampled for the last time by PaVeBa; hence
x ∈ Atx and x /∈ Atx+1. Assume that tx > 1; otherwise the result is trivial. Then, for all y ∈ At, we must have

rtx−1(y) ≥ ∆̃+
ϵ (x)
4β ; otherwise, by Lemmata 11 and 13, x will be eliminated in round tx − 1 since we will have

rtx−1(y) <
∆̃+

ϵ (x)
4β for all y ∈ Atx−1. To see this, note that by Lemma 9, At ⊆ At−1, and by the sampling rule of

PaVeBa (line 6), all arms in At−1 are equally sampled. Let τ = tx − 1. We have for all y ∈ At,

r2tx−1(x) ≥
∆̃+

ϵ (x)
2

16β2
⇔ 8σ2(tx − 1)

ntx−1(x)2
log

(
π2(D + 1)|X |(tx − 1)2

6δ

)
≥ ∆̃+

ϵ (x)
2

16β2

⇔ 8σ2

τ
log

(
π2(D + 1)|X |τ2

6δ

)
≥ ∆̃+

ϵ (x)
2

16β2

⇔ log

(
π2(D + 1)|X |τ2

6δ

)
≥ ∆̃+

ϵ (x)
2

128β2σ2
τ

⇔ log

(
π2(D + 1)|X |

6δ

)
+ 2 log(τ) ≥ ∆̃+

ϵ (x)
2

128β2σ2
τ

⇔ log(τ) ≥ ∆̃+
ϵ (x)

2

256β2σ2
τ − 1

2
log

(
π2(D + 1)|X |

6δ

)
,

where Lemma 9 is used for the second line. By Antos et al. (2010, Lemma 8), the above display implies that

τ <
512β2σ2

∆̃+
ϵ (x)2

(
log

(
256β2σ2

∆̃+
ϵ (x)2

)
+ log

(√
π2(D + 1)|X |

6δ

))+

=
512β2σ2

∆̃+
ϵ (x)2

(
log

(
256β2σ2

∆̃+
ϵ (x)2

√
π2(D + 1)|X |

6δ

))+

,

where (·)+ := max{·, 0}. Therefore, arm x is sampled no more than

512β2σ2

∆̃+
ϵ (x)2

(
log

(
256β2σ2

∆̃+
ϵ (x)2

√
π2(D + 1)|X |

6δ

))+

+ 1 (S.20)

times by PaVeBa. Summing (S.20) over x ∈ X \ P ∗ yields the second term in the sample complexity upper
bound.

Case 2: Fix an arm x ∈ P ∗. Let tx be the round in which x is sampled for the last time by PaVeBa; hence
x ∈ Atx and x /∈ Atx+1. Assume that tx > 1; otherwise the result is trivial. Then, similar to Case 1, for all

y ∈ At, we must have rtx−1(y) ≥ ∆̃3ϵ(x)
12β ; otherwise, by Lemmata 11 and 12, x will be eliminated in round tx − 1

since we will have rtx−1(y) <
∆̃3ϵ(x)
12β for all y ∈ Atx−1. Let τ = tx − 1. We have for all y ∈ At,

r2tx−1(x) ≥
∆̃3ϵ(x)

2

144β2
⇔ 8σ2(tx − 1)

ntx−1(x)2
log

(
π2(D + 1)|X |(tx − 1)2

6δ

)
≥ ∆̃3ϵ(x)

2

144β2

⇔ 8σ2

τ
log

(
π2(D + 1)|X |τ2

6δ

)
≥ ∆̃3ϵ(x)

2

144β2

⇔ log

(
π2(D + 1)|X |τ2

6δ

)
≥ ∆̃3ϵ(x)

2

1152β2σ2
τ

⇔ log

(
π2(D + 1)|X |

6δ

)
+ 2 log(τ) ≥ ∆̃3ϵ(x)

2

1152β2σ2
τ

⇔ log(τ) ≥ ∆̃3ϵ(x)
2

2304β2σ2
τ − 1

2
log

(
π2(D + 1)|X |

6δ

)
,

where Lemma 9 is used for the second line. By Antos et al. (2010, Lemma 8), the above display implies that

τ <
4608β2σ2

∆̃3ϵ(x)2

(
log

(
2304β2σ2

∆̃3ϵ(x)2

)
+ log

(√
π2(D + 1)|X |

6δ

))+

=
4608β2σ2

∆̃3ϵ(x)2

(
log

(
2304β2σ2

∆̃3ϵ(x)2

√
π2(D + 1)|X |

6δ

))+

.

Therefore, arm x is sampled no more than

4608β2σ2

∆̃3ϵ(x)2

(
log

(
2304β2σ2

∆̃3ϵ(y)2

√
π2(D + 1)|X |

6δ

))+

+ 1 (S.21)

times by PaVeBa. Summing (S.21) over x ∈ P ∗ yields the first term in the sample complexity upper bound.

As the final step, we show that the set returned by PaVeBa, i.e., P̂ , is an (ϵ, δ)-PAC Pareto set according to
Definition 1. Due to Lemma 7, P ∗ ⊆ P̂ , hence the first condition for being an (ϵ, δ)-PAC Pareto set in Definition 1
holds. The second condition in Definition 1 holds by Lemma 8. Hence, when PaVeBa stops, P̂ is an (ϵ, δ)-PAC
Pareto set.

2.7 Proof of Remark 2

We compare the gaps appearing at the sample complexity upper bound of PaVeBa with the gaps appearing at the
gap-dependent sample complexity lower bound established in Ararat and Tekin (2023) on an arm-by-arm basis.
We show that, for many cases, the gaps for an arm x ∈ X match either exactly or up to a problem-independent
constant. For such cases, we say that arm x maps to itself. We also show that for some x ∈ P ∗, the gaps may
not match. Then, we define a procedure that maps x to another arm y ∈ X such that the gap of arm x (∆̃3ϵ(x))
in PaVeBa’s sample complexity upper bound in Theorem 2 is lower bounded by the gap of arm y (given in

Ararat and Tekin (2023, Theorem 5.1), denoted here by ∆̃ϵ,AT(y)) in the sample complexity lower bound. Let
c(y) represent the number of arms x ∈ X that are mapped to arm y (including arm y if it maps to itself). This
mapping allows us to obtain the following upper bound on the sample complexity of PaVeBa, ignoring constant
and logarithmic factors.

(Theorem 2) Õ

∑
x∈P∗

1

(∆̃3ϵ(x))2
+

∑
x∈X\P∗

1

(∆̃+
ϵ (x))2

 ≤ Õ

(∑
x∈X

c(x)

(∆̃ϵ,AT(x))2

)

≤ Õ

(
(max
x∈X

c(x))

(∑
x∈X

1

(∆̃ϵ,AT(x))2

))
,

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

where Õ
(

1

(∆̃ϵ,AT(x))2

)
represents the sample complexity lower bound. Without further restriction on the bandit

environment class, there exist instances for which maxc∈X c(x) = O(|X |).

Let c∗ ≥ 0 be an integer. We define the norm subgaussian bandit environment class E(c∗) as the set of all norm
subgaussian bandits defined over arm set X for which maxx∈X c(x) ≤ c∗. Clearly, this environment class is a
subset of norm subgaussian bandits studied here in our work and in Ararat and Tekin (2023); therefore, the sample
complexity lower bound of Ararat and Tekin (2023) is still valid even though there might exist a smaller lower
bound due to the restriction put on the environment class. For E(c∗), we can treat maxx∈X c(x) ≤ c∗ = O(1),
matching the sample complexity lower bound up to constant factors.

Next, we describe how to map each x ∈ X . First, suppose that x ∈ X \ P ∗. For x, the lower bound in Ararat
and Tekin (2023, Theorem 5.1) involves

1

(max{maxy∈P∗ m(f(x),f(y)), ϵ})2
.

This term matches with our upper bound, which involves

1

(∆̃+
ϵ (x))2

=
1

(max{∆+(x), ϵ})2
=

1

(max{maxy∈P∗ m(f(x),f(y)), ϵ})2
.

Hence, x maps to itself in this case.

Next, suppose that x ∈ P ∗. We define the following terms:

∆+,AT(x) := min
y∈P∗\{x}

M(f(x),f(y)),

∆+,NEW(x) := min
y∈P∗\{x}

M(f(y),f(x)),

∆−(x) = min
y/∈P∗

M(f(y),f(x)) + 2∆+(y).

Case 1 : ∆̃3ϵ(x) = 3ϵ.

In this case, we have min{∆+,AT(x),∆+,NEW(x),∆−(x)} ≤ 3ϵ and the upper bound in PaVeBa involves

1

∆̃3ϵ(x)2
=

1

9ϵ2
.

We have at least one of the three subcases true:

Case 1.1: (∆̃3ϵ(x) = 3ϵ) ∧ (∆+,AT(x) ≤ 3ϵ).

In this subcase, the lower bound in Ararat and Tekin (2023) involves 1

(max{∆+,AT(x),ϵ})2
. Moreover, we have

ϵ ≤ max{∆+,AT(x), ϵ} ≤ 3ϵ. Therefore,

1

9ϵ2
≤ 1

(max{∆+,AT(x), ϵ})2
≤ 1

ϵ2
.

Again, we match the lower bound up to a constant. Hence, x maps to itself in this subcase.

Case 1.2: (∆̃3ϵ(x) = 3ϵ) ∧ (∆+,AT(x) > 3ϵ) ∧ (∆+,NEW(x) ≤ 3ϵ).

In this subcase, let y∗ ∈ P ∗ \ {x} be such that ∆+,NEW(x) = M(f(y∗),f(x)). Then, we have ∆+,AT(y∗) ≤
M(f(y∗),f(x)) = ∆+,NEW(x) ≤ 3ϵ. Moreover, the lower bound for y∗ in Ararat and Tekin (2023) involves

1

(max{∆+,AT(y∗),ϵ})2
. Note that we have ϵ ≤ max{∆+,AT(y∗), ϵ} ≤ 3ϵ. Then,

1

9ϵ2
≤ 1

(max{∆+,AT(y∗), ϵ})2
≤ 1

ϵ2
.

Therefore, our upper bound for x matches with the lower bound for y∗ ∈ P ∗ up to a constant. Hence, x maps
to y∗ in this subcase.

Case 1.3: (∆̃3ϵ(x) = 3ϵ) ∧ (∆+,AT(x) > 3ϵ) ∧ (∆+,NEW(x) > 3ϵ) ∧ (∆−(x) ≤ 3ϵ).

In this subcase, let y∗ /∈ P ∗ be such that ∆−(x) = M(f(y∗),f(x)) + 2∆+(y∗). Then, we have ∆+(y∗) ≤ 3ϵ
2 .

Moreover, the lower bound for y∗ in Ararat and Tekin (2023) involves

1

(max{maxy∈P∗ m(f(y∗),f(y)), ϵ})2
=

1

(max{∆+(y∗), ϵ})2
.

Note that we have ϵ ≤ max{∆+(y∗), ϵ} ≤ 3ϵ
2 . Then,

4

9ϵ2
≤ 1

(max{∆+(y∗), ϵ})2
=

1

(∆+(y∗))2
≤ 1

ϵ2
.

Therefore, our upper bound for x matches with the lower bound for y∗ /∈ P ∗ up to a constant. Hence, x maps
to y∗ in this subcase.

Case 2: (∆̃3ϵ(x) > 3ϵ) ∧ (∆̃3ϵ(x) = ∆+,AT(x)).

In this case, we have ∆+,AT(x) > ϵ. Moreover, the upper bound in PaVeBa involves

1

∆̃3ϵ(x)2
=

1

(∆+,AT(x))2

while the lower bound in Ararat and Tekin (2023) involves

1

(max{∆+,AT(x), ϵ})2
=

1

(∆+,AT(x))2
.

Therefore, we match the lower bound. Hence, x maps to itself in this case.

Case 3: (∆̃3ϵ(x) > 3ϵ) ∧ (∆̃3ϵ(x) < ∆+,AT(x)) ∧ (∆̃3ϵ(x) = ∆−(x)).

In this case, we have ∆̃3ϵ(x) = M(f(y),f(x)) + 2∆+(y) ≥ ∆+(y) for some y /∈ P ∗. Thus, the upper bound in
PaVeBa includes 1

(∆−(x))2 while the term for y in the lower bound includes

1

(∆−(x))2
≤ 1

(∆+(y))2
.

Hence, we match the term for y in the lower bound if max{∆+(y), ϵ} ≠ ϵ. If not, then we still have ∆−(x) > 3ϵ
so that

1

(∆−(x))2
<

1

9ϵ2
=

1

9max{∆+(y), ϵ}2
.

Hence, x maps to y in this case.

Case 4: (∆̃3ϵ(x) > 3ϵ) ∧ (∆̃3ϵ(x) < ∆+,AT(x)) ∧ (∆̃3ϵ(x) < ∆−(x)).

In this case, ∆̃3ϵ(x) = ∆+,NEW(x). Let x∗
1 be such thatM(f(x∗

1),f(x)) = min
y∈P∗\{x}

M(f(y),f(x)) = ∆+,NEW(x).

Then, we have

∆(x∗
1) ≤ ∆+,AT(x∗

1) ≤ M(f(x∗
1),f(x)) = ∆+,NEW(x). (S.22)

If (∆̃3ϵ(x
∗
1) ≤ 3ϵ)∨ (∆̃3ϵ(x

∗
1) ≥ ∆+,AT(x∗

1))∨ (∆̃3ϵ(x
∗
1) ≥ ∆−(x∗

1)), then by one of the three cases above, x∗
1 maps

to an arm x∗
2 such that

1

(∆̃3ϵ(x))2
=

1

(∆+,NEW(x))2
≤ 1

(∆(x∗
1))

2
= O

(
1

(∆̃ϵ,AT(x∗
2))

2

)
.

Hence, x maps to x∗
2 in this case.

On the other hand, if (∆̃3ϵ(x
∗
1) > 3ϵ)∧ (∆̃3ϵ(x

∗
1) < ∆+,AT(x∗

1))∧ (∆̃3ϵ(x
∗
1) < ∆−(x∗

1)), then we are in Case 4 for
x∗
1. In this case, (S.22) implies the existence of x∗

2 ∈ P \ {x∗
1} such that ∆(x∗

2) ≤ ∆+,NEW(x∗
1). The arguments

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

above will be repeated for x∗
2 until an arm x∗

n for which one of the first three cases holds is found. If such an
arm is found, then,

1

(∆̃3ϵ(x))2
=

1

(∆+,NEW(x))2
≤ 1

(∆(x∗
1))

2
≤ 1

(∆(x∗
2))

2
≤ · · · ≤ 1

(∆(x∗
n−1))

2
= O

(
1

(∆̃ϵ,AT(x∗
n))

2

)
.

We will conclude by proving that this procedure terminates at some x∗
n by showing that the same arm will not

be visited more than once. In this case, x maps to x∗
n. Let x∗

0 = x and x∗
i be the ith arm found in the ith

iteration of the procedure above.

Case 4.1: Assume that the procedure has not terminated at the end of iteration n, yielding the sequence of arms
x∗
0, . . . , x

∗
n such that x∗

i ̸= x∗
j for all i, j ∈ {0, . . . , n}, i ̸= j. If n ≥ |X |, we get a contradiction. This means that

the procedure should terminate after less than |X | iterations yielding an arm x∗ such that

1

(∆̃3ϵ(x))2
≤ O

(
1

(∆̃ϵ,AT(x∗))2

)
.

Case 4.2: Contrary to Case 4.1, assume that the procedure has not terminated at the end of iteration n, yielding
the sequence of arms x∗

0, . . . , x
∗
n such that there exist indices a < b, a, b ∈ {0, . . . , n} for which x∗

a = x∗
b . Then,

for all x∗
i , 0 ≤ i ≤ n, the statement at the beginning of Case 4 holds implying that ∆+,NEW(x∗

i) < ∆+,AT(x∗
i).

Now, for all j such that a+ 1 ≤ j ≤ b, we have

M(f(x∗
j),f(x

∗
j−1)) = ∆+,NEW(x∗

j−1) < ∆+,AT(x∗
j−1) = min

xj∈P∗\{x∗
j−1}

M(f(x∗
j−1),f(xj)).

Using these inequalities constructively, beginning with j = b− 1 and using the fact that x∗
b = x∗

a, we have

M(f(x∗
b),f(x

∗
b−1)) = M(f(x∗

a),f(x
∗
b−1))

< min
xa∈P∗\{x∗

b−1}
M(f(x∗

b−1),f(xa))

≤ M(f(x∗
b−1),f(x

∗
b−2))

< min
xb−1∈P∗\{x∗

b−2}
M(f(x∗

b−2),f(xb−1))

< . . . < min
xa+1∈P∗\{x∗

a}
M(f(x∗

a),f(xa+1)) ≤ M(f(x∗
a),f(x

∗
b−1)),

which is a contradiction. Hence, such a loop cannot exist. Therefore, we must have x∗
i ̸= x∗

j for all i, j ∈
{0, . . . , n}, i ̸= j, which by Case 4.1 implies that the procedure should terminate after less than |X | iterations
yielding an arm x∗ such that

1

(∆̃3ϵ(x))2
≤ O

(
1

(∆̃ϵ,AT(x∗))2

)
.

3 IMPLEMENTATION AND SAMPLE COMPLEXITY OF PaVeBa WHEN
ϵ = 0

The problem with PaVeBa when we have ϵ = 0 is twofold: (i) As pointed out in Remark 1, Proposition 2 does not
work when ϵ = 0 due to the positive part for the computation of m(·, ·) in Ararat and Tekin (2023, Proposition
4.2) making all m(·, ·) nonnegative, and (ii) from the definitions in (7) and (8), we would have

Pt={x ∈ St |∀y ∈ At \ {x}: sup
µ∈Et(x),ν∈Et(y)

m(µ,ν) < 0} = ∅

=⇒ Pt+1 = Pt, St+1 = St = St \ Dt (PaVeBa lines 11 and 9).

Since P1 = ∅, the above iteration will result in Pt = ∅ for all t. Therefore,

Ut+1={y∈Pt+1 |∃x ∈ St+1: sup
µ∈Et(x),
ν∈Et(y)

m(µ,ν) ≥ 0} = ∅,∀t .

Then, by line 4 of PaveBa, At = St for all t.

To conclude, PaVeBa samples all undecided arms in all rounds. PaVeBa can only discard arms, but it will never
declare an arm as Pareto optimal. Since there are Pareto optimal arms in the undecided set at the beginning, it
will never terminate.

To circumvent these, we offer a slight change in the definitions of Pt and Ut+1 as follows:

Pt={x ∈ St |∀y ∈ At \ {x}: sup
µ∈Et(x),
ν∈Et(y)

m(µ,ν)≤0}, (S.23)

Ut+1={y∈Pt+1 |∃x ∈ St+1: sup
µ∈Et(x),
ν∈Et(y)

m(µ,ν)>0}. (S.24)

Let the new variant of PaVeBa using the sets defined in (S.23) and (S.24) be PaVeBa-0. Note that all the
algorithm steps remain the same with PaVeBa except these two slight changes in the definitions of Pt and Ut+1.
We now present the sample complexity analysis for PaVeBa-0.

3.1 Sample Complexity of PaVeBa-0

Throughout this subsection, we assume that there exists no pair of distinct arms x, y ∈ X , x ̸= y such that
f(x) − f(y) ∈ bd(C). Consider P in Definition 1. When ϵ = 0, condition (ii) becomes ∆∗(x) = 0 for every
x ∈ P \ P ∗. Under the assumption above, by Ararat and Tekin (2023, Corollary 4.5) ∆∗(x) = 0 implies that
M(f(x),f(y)) > 0 for all y ∈ P ∗, and hence, x ⪯̸C y for all y ∈ P ∗. Then, by definition of P ∗, such an x cannot
be in X \P ∗, resulting in P \P ∗ = ∅. Due to this, the success conditions in Definition 1 reduces to the following
when ϵ = 0.

Definition 2. Let δ ∈ (0, 1). A random set P ⊆ X is called a δ-Probably Correct (PC) Pareto set if P = P ∗

with probability at least 1− δ.

Theorem 3. Assume that there exists no pair of distinct arms x, y ∈ X , x ̸= y such that f(x)− f(y) ∈ bd(C).
When PaVeBa-0 is run, the maximum number of samples required for it to output a δ-PC Pareto set P̂ is

∑
x∈P∗

4608β2σ2

∆(x)2
log+

(
2304β2σ2

∆(x)2

√
π2(D + 1)|X |

6δ

)

+
∑

x∈X\P∗

512β2σ2

∆+(x)2
log+

(
256β2σ2

∆+(x)2

√
π2(D + 1)|X |

6δ

)
+ |X |.

Proof. Proofs presented in the supplemental Section 2 are still valid for PaVeBa-0 except for some minor changes
in the inclusion cases of inequalities.

In particular, the statement of Lemma 7 remains unchanged. The statement of Lemma 8 becomes “Under the
event in Lemma 5, for every t ∈ N if x ∈ X \ P ∗, then x /∈ Pt”. The statement of Lemma 9 remains unchanged.
The statement of Lemma 11 becomes “Let t ∈ N and x ∈ St. Under the event in Lemma 5, if x /∈ P ∗ and
Rt = maxy∈At

rt(y) <
1
4β∆

+(x), or if x ∈ P ∗ and Rt = maxy∈At
rt(y) <

1
12β∆(x), then x will be removed from

the undecided set, i.e., x /∈ St+1”. The statement of Lemma 12 becomes “Under the event in Lemma 5, let
y ∈ P ∗ be such that Rt = maxx∈At

rt(x) <
1

12β∆(y). Then, we have y /∈ Ut+1”. The case in Lemma 13 never
happens under the event in Lemma 5 thanks to the revised version of Lemma 8.

The sample complexity upper bound is found by following the same reasoning as in the proof of Theorem 2.

Due to Lemma 7, P ∗ ⊆ P̂ . Due to revised Lemma 8, if x ∈ X \P ∗ then x /∈ P̂ . Therefore, P̂ = P ∗ Hence, when
PaVeBa-0 stops, P̂ is a δ-PC Pareto set.

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

3.2 Efficient Implementation of PaVeBa-0 via Convex Programming

We now need to find another convex programming method to compute the updated sets in (S.23) and (S.24).

Proposition 5. Given a pair of arms x, y and associated confidence regions Et(x), Et(y);
supµ∈Et(x),ν∈Et(y) m(µ,ν) ≤ 0 if and only if the optimal value of the following feasibility problem is +∞,
i.e., it yields infeasibility:

minimize 0

subject to wT
n(µy − µ) ≥ 0, wT

n(µ− µx) ≥ 0,∀n ∈ [N],

(µx − µτ (x))
TΣ−1

τ (x)(µx − µτ (x)) ≤ αt,∀τ ∈ [t],

(µy − µτ (y))
TΣ−1

τ (y)(µy − µτ (y)) ≤ αt,∀τ ∈ [t],

µ,µx,µy ∈ RD.

Proof. Given two vectors µx,µy ∈ RD, observe that

µy − µx /∈ C ⇔ µy /∈ µx + C ⇔ (µy − C) ∩ (µx + C) = ∅.

Then, we may write

{∀µx ∈ Et(x), ∀µy ∈ Et(y):µy − µx /∈ C}
= {∀µx ∈ Et(x), ∀µy ∈ Et(y): (µy − C) ∩ (µx + C) = ∅}

=

 ⋃
µx∈Et(x)

(µy − C)

 ∩

 ⋃
µy∈Et(y)

(µx + C)

 = ∅

= {(Et(y)− C) ∩ (Et(x) + C) = ∅} .

Let x, y ∈ X with x ̸= y. In order to check if (Et(y)−C)∩(Et(x)+C) = ∅, let us consider the following feasibility
problem expressed in the form of a mathematical program:

minimize 0

subject to µ ∈ Et(y)− C, µ ∈ Et(x) + C, µ ∈ RD.

This problem can be rewritten more explicitly as

minimize 0

subject to µy − µ ∈ C, µ− µx ∈ C,

µx ∈ Et(x), µy ∈ Et(y),
µ,µx,µy ∈ RD,

which is equivalent to

minimize 0

subject to wT
n(µy − µ) ≥ 0, wT

n(µ− µx) ≥ 0, ∀n ∈ [N],

(µx − µt(x))
TΣ−1

t (x)(µx − µt(x)) ≤ αt,∀τ ∈ [t],

(µy − µt(y))
TΣ−1

t (y)(µy − µt(y)) ≤ αt,∀τ ∈ [t],

µ,µx,µy ∈ RD.

This is a convex optimization (feasibility) problem with affine and quadratic constraints. We have (Et(y) −
C) ∩ (Et(x) + C) = ∅ if and only if the problem yields +∞ as its optimal value, i.e., the problem is infeasible.
Otherwise, the optimal value of the problem is zero, and the empty intersection property does not hold for x, y.

4 DERIVATION OF CONFIDENCE REGIONS FOR GAUSSIAN PROCESSES

We include this analysis to make our algorithm compatible with the use of GPs for improved regression in the
experiments. We assume a multi-output GP with possibly correlated objectives. Then, we take our single-round
confidence regions to be

Bt(x) = {ν : (ν − µt(x))
TΣ−1

t (x)(ν − µt(x)) ≤ αt}, (S.25)

where αt = 8D log(12) + 4 log(π
2t2|X |
6δ), µt(x) is the posterior mean of the GP of arm x at round t, and Σt(x) is

the posterior covariance matrix of the GP for arm x at round t. Further, we define

Et(x) := Et−1(x) ∩ Bt(x) (S.26)

with E1(x) := B1(x) as the confidence region of x at round t. (Note that the intersection of confidence regions
is a technical detail for the proofs to work in the sample complexity analysis. However, it happens rarely in
practice for Bt+1(x) not to be a subset of Bt(x); hence, we dropped intersecting regions Bτ (x) for τ ≤ t in the
experiments where heuristic variants are used.)

We start with a covering lemma that is a refinement of Lattimore and Szepesvári (2020, Lemma 20.1).

Lemma 14. For every ε ∈ (0, 2), there exists a set Cε ⊆ SD−1 such that |Cε|≤ (6ε)
D and

∀w ∈ SD−1 ∃w̃ ∈ Cε: ∥w − w̃∥2 ≤ ε.

Proof. By Lattimore and Szepesvári (2020, Lemma 20.1), for every ε > 0, there exists a set C̃ε ⊆ RD such that
|C̃ε|≤ (3ε)

D and

∀w ∈ SD−1 ∃w̃ ∈ C̃ε: ∥w − w̃∥2 ≤ ε.

Moreover, without loss of generality, we assume that

∀w̃ ∈ C̃ε ∃w ∈ SD−1: ∥w − w̃∥ ≤ ε.

as otherwise one can remove from C̃ε the elements w̃ for which there is no w ∈ SD−1 with ∥w − w̃∥2 ≤ ε and

the new set still satisfies the two conditions that C̃ε satisfies.

We claim that C̃ε ⊆ B(0, 1+ ε) \ intB(0, 1− ε) whenever ε ∈ (0, 1). Let w̃ ∈ C̃ε. By the assumption above, there
exists w ∈ SD−1 such that ∥w − w̃∥2 ≤ ε. Then, by triangle inequality, we have

∥w̃∥2 ≤ ∥w̃ −w∥2 + ∥w∥2 ≤ ε+ 1.

Hence, w̃ ∈ B(0, 1 + ε). Moreover, by reverse triangle inequality, we have

∥w̃∥2 = ∥(w̃ −w)− (−w)∥2 ≥ |∥w̃ −w∥2 − ∥−w∥2| = |∥w̃ −w∥2 − 1| ≥ 1− ∥w̃ −w∥2 ≥ 1− ε.

Hence, w̃ /∈ intB(0, 1− ε), which completes the proof of the claim.

Let us fix ε ∈ (0, 2) and define

Cε :=
{

w̃

∥w̃∥2
: w̃ ∈ C̃ ε

2

}
⊆ SD−1.

Note that |Cε|≤ |C̃ ε
2
|≤ (6ε)

D. Let w ∈ SD−1. Then, there exists w̃ ∈ C̃ ε
2
such that

∥w − w̃∥2 ≤ ε

2
.

Then, we have ∥∥∥∥w − w̃

∥w̃∥2

∥∥∥∥
2

≤ ∥w − w̃∥2 +
∥∥∥∥w̃ − w̃

∥w̃∥2

∥∥∥∥
2

≤ ε

2
+ |1− ∥w̃∥2|.

Moreover, since w̃ ∈ B(0, 1 + ε
2) \ intB(0, 1− ε

2), we have

−ε

2
≤ 1− ∥w̃∥2 ≤ ε

2
,

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

that is, |1− ∥w̃∥2| ≤
ε
2 . It follows that ∥∥∥∥w − w̃

∥w̃∥2

∥∥∥∥
2

≤ ε

2
+

ε

2
= ε.

This completes the proof since w̃
∥w̃∥

2

∈ Cε.

Now, we present a lemma showing our choice of confidence regions indeed gives at least 1− δ confidence.

Lemma 15. Using the definitions in (S.25) and (S.26), we have P{∀x ∈ X ,∀t ∈ N:f(x) ∈ Et(x)} ≥ 1− δ.

Proof. Since Et(x) =
t⋂

τ=1
Bτ (x) for each t ∈ [T], we have

{∀x ∈ X ,∀t ∈ N:f(x) ∈ Et(x)} = {∀x ∈ X ,∀t ∈ N:f(x) ∈ Bt(x)}.

So, instead, we prove P{∀x ∈ X ,∀t ∈ N:f(x) ∈ Bt(x)} ≥ 1− δ.

Let Ft be the information at round t. The conditional distribution of f(x) given Ft is the Gaussian distribution
with mean vector µt(x) and covariance matrix Σt(x). Thus, for each w ∈ RD \ {0}, the conditional distribution
of wTf(x) is the Gaussian distribution with mean wTµt(x) and variance wTΣt(x)w. In particular, applying
Gaussian concentration gives for α̃ > 0

P
{
wTf(x) > wTµt(x) +

√
α̃wTΣt(x)w

}
= P

{
wT(f(x)− µt(x))√

wTΣt(x)w
>

√
α̃

}
≤ e−

α̃
2 . (S.27)

Moreover, the ellipsoid Bt(x) is a closed convex set. Hence, an application of separation theorem in convex
analysis yields

P{f(x) /∈ Bt(x)} = P

{
∃w ∈ SD−1:wTf(x) > sup

µx∈Bt(x)

wTµx

}
.

Here, note that

Bt(x) = {µx ∈ RD | (µx − µt(x))
T(αtΣt(x))

−1(µx − µt(x)) ≤ 1}

= µt(x) +
√
αtΣ

1/2
t (x)B(0, 1) .

Hence,

sup
µx∈Bt(x)

wTµx = wTµt(x) +
√
αtwTΣt(x)w . (S.28)

Using (S.28) we get

P{f(x) /∈ Bt(x)} = P
{
∃w ∈ SD−1:wTf(x) > wTµt(x) +

√
αtwTΣt(x)w

}
. (S.29)

Let ε ∈ (0, 2) and α̃ > 0. By Lemma 14, there exists a set Cε ⊆ SD−1 such that |Cε|≤ (6ε)
D and

∀w ∈ SD−1 ∃w̃ ∈ Cε: ∥w − w̃∥2 ≤ ε. (S.30)

For each w̃ ∈ Cε, we may take w = Σ
−1/2
t (x)w̃ in (S.27), which gives

P
{
w̃TΣ

−1/2
t (x)(f(x)− µt(x)) >

√
α̃
}
≤ e−

α̃
2

since ∥w̃∥2 = 1. After applying a union bound, we obtain

P{∃w̃ ∈ Cε: w̃TΣ
−1/2
t (x)(f(x)− µt(x)) >

√
α̃} ≤

(
6

ε

)D

e−
α̃
2 . (S.31)

It remains to make the connection between (S.31) and (S.29). To that end, let us introduce the notation

∥µ∥Σ =
√
µTΣµ for a D×D symmetric positive definite matrix Σ and µ ∈ RD. Note that ∥µ∥Σ = ∥Σ1/2µ∥2.

Also recall that the ℓ2 norm has the variational characterization ∥µ∥2 = maxw∈SD−1 wTµ. Then, under the
complement of the event in (S.31), we have

∥f(x)− µt(x)∥Σ−1
t (x) =

∥∥∥Σ−1/2
t (x)(f(x)− µt(x))

∥∥∥
2

= max
w∈SD−1

wTΣ
−1/2
t (x)(f(x)− µt(x))

= max
w∈SD−1

min
w̃∈Cε

[
(w − w̃)TΣ

−1/2
t (x)(f(x)− µt(x)) + w̃TΣ

−1/2
t (x)(f(x)− µt(x))

]
≤ sup

w∈SD−1

min
w̃∈Cε

[
∥w − w̃∥2 ∥Σ

−1/2
t (x)(f(x)− µt(x))∥2+

√
α̃
]

= sup
w∈SD−1

min
w̃∈Cε

[
∥w − w̃∥2 ∥f(x)− µt(x)∥Σ−1

t (x)+
√
α̃
]

≤ ε∥f(x)− µt(x)∥Σ−1
t (x)+

√
α̃,

where the first inequality follows from Cauchy-Schwarz-Bunyakovski inequality and the definition of the event,
the second inequality follows from the covering property in (S.30). Rearranging the terms gives

∥f(x)− µt(x)∥Σ−1
t (x) ≤

√
α̃

1− ε
.

Note that

f(x) ∈ Bt(x) ⇔ ∥f(x)− µt(x)∥
2
Σ−1

t (x) ≤ αt.

Hence, for a given probability level δ′t ∈ (0, 1), in order to ensure that P{f /∈ Bt(x)} ≤ δ′t, it suffices to choose
ε, α̃ such that (

6

ε

)D

e−
α̃
2 = δ′t,

√
α̃

1− ε
≤

√
αt.

Hence, we take

α̃ = 2 log

((
6
ε

)D
δ′t

)
= 2D log

(
6

ϵ

)
+ 2 log

(
1

δ′t

)
.

Then, choosing ε = 1
2 imposes the following condition on αt:

√
α̃

1− ε
= 2
√

2(D log(12) + log(1/δ′t)) ≤
√
αt ⇔ 8D log(12) + 4 log(1/δ′t) ≤ αt.

for every δ′t ∈ (0, 1). Let us set δ′t :=
6δ

π2t2|X | . Then, a union bound gives

P{∀x ∈ X ,∀t ∈ N:f(x) ∈ Bt(x)} ≥ 1−
∑
x∈X

∑
t∈N

6δ

π2t2|X |
= 1−

∑
x∈X

δ

|X |
≥ 1− δ,

where Bt(x) = {ν : (ν − µt(x))
TΣ−1

t (x)(ν − µt(x)) ≤ αt} where αt = 8D log(12) + 4 log(π
2t2|X |
6δ).

This finishes the proof.

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

5 FURTHER DETAILS OF EXPERIMENTS

5.1 Libraries

We use CVXPY (Diamond and Boyd, 2016; Agrawal et al., 2018) for solving convex optimization problems. For
Gaussian Process modeling, we use GPyTorch (Gardner et al., 2018).

5.2 Heuristic Variants

PaVeBa-IH: We use the batch-independent multi-output GP formulation from GPyTorch to implement
PaVeBa-IH. This approach involves having an independent GP for each reward dimension with a likelihood
that allows for a correlated noise structure, though we only use the global noise and assume i.i.d. noise for each
reward dimension. We then employ hyperrectangles that encompass the confidence ball in (S.25), with αt scaled
down by a contraction factor of 64.

PaVeBa-DE: We use the multitask GP formulation from GPyTorch for modeling reward dimensions with cross-
correlations. It utilizes a formulation equivalent to the Linear Model of Coregionalization. We apply it with
full-rank inter-task covariance. Given the cross-task covariance, we directly employ the hyperellipsoidal region
that the GP posterior provides in (S.25), with αt scaled down by a contraction factor of 64.

For batch selection in both variants, we do the following: we select the arm with maximum posterior covariance
trace, we update all posterior covariances of active arms as if we played the selected arm (fantasy update), and
loop until K arms are selected. We can do fantasy updates since variance update in GP formulation does not
depend on observed reward (Contal et al., 2013).

5.3 Real-World Problems

Since we work in a finite arm setting, all datasets are generated with Sobol samples taken from the domain of
the problem (except for SNW, which is already finite). We used the implementations available in the library
Botorch (Balandat et al., 2020) for DB and VC. We used implementations provided with Tu et al. (2022) for
PK2 and MAR.

SNW (D = 2, |X | = 206): This dataset is derived from the domain of computational hardware design, specif-
ically concerning the optimization of sorting network configurations. The reward vector reflects the trade-off
between the network’s throughput (speed of sorting) and the physical area required by the synthesized hard-
ware, crucial factors in efficient hardware design (Zuluaga et al., 2012).

DB (Disc Brake, D = 2, |X | = 128): This dataset addresses efficiency and safety in automotive engineering,
presenting an optimization problem in disc brake manufacturing. The reward vector accounts for the brake’s
mass (affecting vehicle efficiency and brake performance) and the vehicle’s stopping time (critical for safety).
The original problem formulated in Tanabe and Ishibuchi (2020) also includes constraints that can be integrated
as a third objective, but we work with two objectives instead.

PK2 (D = 2, |X | = 500): In the context of organic chemistry, this dataset aims at the optimization of the
Paal-Knorr synthesis, a fundamental reaction for the synthesis of pyrroles and pyrrolidines. The reward vector
considers the yield of the pyrrolidine ring and the space-time yield, representing the efficiency of this organic
synthesis process (Moore and Jensen, 2012). The implementation follows https://github.com/adamc1994/

MultiChem.

VC (Vehicle Crashworthiness, D = 3, |X | = 2000): From the field of automotive safety, this dataset focuses
on the optimization of vehicle structures to enhance crashworthiness. The reward vector integrates factors
like weight (impacting vehicle performance and fuel efficiency), acceleration characteristics (indicating potential
safety performance), and toe-board intrusion levels (measuring the deformation of the vehicle structure in crashes)
(Tanabe and Ishibuchi, 2020; Liao et al., 2008).

VC1 (Vehicle Crashworthiness, D = 3, |X | = 100): Smaller version of VC dataset.

MAR (Marine, D = 4, |X | = 500): Within maritime engineering, this dataset is concerned with the optimization
of bulk carrier designs to improve cargo transfer efficiency and maritime safety. The reward vector assesses a
range of factors, including transportation cost (vital for economic efficiency), weight (related to fuel consumption

https://github.com/adamc1994/MultiChem
https://github.com/adamc1994/MultiChem

and vessel stability), annual cargo capacity (determining operational efficiency), and compliance with design
constraints (ensuring safety and regulatory adherence) (Parsons and Scott, 2004; Tanabe and Ishibuchi, 2020).

5.4 Implementations of Other Methods

NE: We use the implementation of näıve elimination provided in Ararat and Tekin (2023).

PIBF: Since there are no implementations available that we could find, we implemented the algorithm with
great care to Auer et al. (2016). Since we use PaVeBa’s theoretical confidence regions to compare with PIBF,
we also implement the theoretical confidence regions for PIBF. We then employ contraction factors that scales
down PaVeBa’s rt(x) and PIBF’s βi’s.

ϵ-PAL: We implement ϵ-PAL (Zuluaga et al., 2016) in Python since the published code for it is in MATLAB.
We use the paper and the original MATLAB code for guidance while implementing. We scale down βt by 9 for
ϵ-PAL, as in Zuluaga et al. (2016).

MESMO and JES: Since both MESMO (Belakaria et al., 2019) and JES (Tu et al., 2022) operate in the
continuous domain, they are at a disadvantage in finding the ϵ-Pareto set in finite arm setting. So, to ensure
fairness, we modify them by calculating their acquisition functions only for the available arms and calculating
the Pareto fronts from their final posterior means of arms. Moreover, we tweak the original code of MESMO to
accommodate a noise parameter.

Cone ordering for other methods: To accommodate cones C that are different than the multi-objective cone
C = RD

+ in the experiments that include other GP-based algorithms, i.e., ϵ-PAL, MESMO and JES, we run the
algorithms, then calculate the Pareto front using the cone ordering from the final posterior means of arms.

5.5 Performance Metrics

ϵ-F1 Score: Given an input space X and parameter ϵ, define the positive arms set Πϵ such that

Πϵ = {x ∈ X : ∆∗(x) ≤ ϵ},

where ∆∗(x) is defined in Definition 1. Let an algorithm for (ϵ, δ)-PAC Pareto set identification return P̂ as the
predicted Pareto set. Then, the ϵ-F1 Score for that algorithm is defined as

ϵ-F1 =
2|Πϵ ∩ P̂ |

2|Πϵ ∩ P̂ |+|Πϵ\P̂ |+|P̂ \Πϵ|
,

where Πϵ\P̂ is the set of Pareto optimal arms that is not covered by P̂ where covering is defined in the part (i)

of Definition 4.6 of Ararat and Tekin (2023).

ϵ-F1 Score is a loose F1-Score designed for ϵ approximate identification, where the Pareto identification problem
is seen as a classification problem with a positive class of ϵ-accurate Pareto optimal arms. We note that

• P ∗ ⊆ Πϵ.

• If an algorithm satisfies success condition (i) in Definition 1 (P ∗ ⊆ P̂), then we have Πϵ\P̂ = ∅. If an

algorithm does not satisfy success condition (i) in Definition 1 but still if all Pareto optimal arms are
ϵ-covered (success condition (i) in Definition 4.6 of Ararat and Tekin (2023)), then we have Πϵ\P̂ = ∅.

• If an algorithm satisfies success condition (ii) in Definition 1, then we have P̂ \Πϵ = ∅.

• ϵ-F1 = 1 iff an algorithm satisfies Definition 4.6 of Ararat and Tekin (2023).

We chose this as our main accuracy metric to follow the literature on classification tasks. We always compute
the ϵ-F1 score of the algorithms with the same ϵ fed into the algorithm for (ϵ, δ)-PAC Pareto identification.

Sample Complexity: Given a Pareto front identification algorithm, this is simply the number of evaluations
the algorithm performs.

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

5.6 Further Results

Here, we provide error bars and some new results for the experiments in the main paper. Tables 5, 6, 7, 8
correspond to Tables 1, 2, 3, 4 respectively.

Experiment 2: We add two new cone angles θ = π/3 and 2π/3 and the standard deviations to Tables 1 and 2
in the main paper, resulting in Tables 5 and 6.

Experiment 3: We add standard deviations to Tables 3 and 4 to get Tables 7 and 8, respectively.

ϵ-F1Came Score w.r.t. θ

ϵ π/4 π/3 π/2 2π/3 3π/4

NE 10−1 0.99 ± .01 0.99 ± .01 0.97 ± .03 0.96 ± .04 0.97 ± .04
10−2 0.93 ± .02 0.91 ± .03 0.87 ± .04 0.82 ± .07 0.78 ± .10

PaVeBa 10−1 0.99 ± .01 1.00 ± .00 0.98 ± .01 0.99 ± .02 0.98 ± .02
10−2 0.94 ± .02 0.93 ± .03 0.91 ± .04 0.88 ± .05 0.88 ± .08

(a)

NE 10−1 0.98 ± .02 0.96 ± .04 0.94 ± .06 0.95 ± .06 0.97 ± .06
10−2 0.93 ± .04 0.89 ± .05 0.84 ± .09 0.93 ± .07 0.78 ± .17

PaVeBa 10−1 0.98 ± .02 0.97 ± .03 0.95 ± .05 0.95 ± .07 0.97 ± .06
10−2 0.94 ± .03 0.94 ± .04 0.92 ± .07 0.94 ± .08 0.91 ± .14

(b)

Table 5: Results of NE and PaVeBa for different values of ϵ and θ on SNW (a) and DB (b) datasets. The best
results are in bold.

Sample Complexity w.r.t. θ

ϵ π/4 π/3 π/2 2π/3 3π/4

SNW 10−1 654.50 ± 50.93 499.12 ± 42.35 378.68 ± 28.15 306.88 ± 21.73 272.44 ± 17.22
10−2 10100.92 ± 3315.00 6053.92 ± 1479.97 2594.00 ± 982.45 1162.86 ± 683.95 789.96 ± 442.67

DB 10−1 304.86 ± 38.71 218.76 ± 21.11 167.58 ± 10.44 145.00 ± 9.69 141.78 ± 7.31
10−2 2045.26 ± 1915.25 780.00 ± 561.32 308.84 ± 163.49 473.82 ± 603.64 196.70 ± 67.16

Table 6: Sample complexities of PaVeBa with different values of ϵ and θ on SNW and DB datasets.

Dataset |X | Algorithm Sample Complexity ϵ-F1 Score

PK2 500 ϵ-PAL 178.4 ± 55.9 1.00 ± .01
JES 57.62 ± 8.12 0.86 ± .06
MESMO 57.62 ± 8.12 0.86 ± .05

PaVeBa-IH 57.62 ± 8.12 0.95 ± .08

VC 2000 ϵ-PAL 584.0 ± 61.0 1.00 ± .00
JES 123.94 ± 14.80 0.87 ± .04
MESMO 123.94 ± 14.80 0.97 ± .02

PaVeBa-IH 123.94 ± 14.80 0.97 ± .03

MAR 500 ϵ-PAL 639.04 ± 152.63 0.98 ± .01
JES 224.38 ± 11.76 0.97 ± .01
MESMO 224.38 ± 11.76 0.95 ± .03

PaVeBa-IH 224.38 ± 11.76 0.97 ± .01

Table 7: Comparison of PaVeBa with ϵ-PAL, MESMO, and JES under the multi-objective cone.

Cone Algorithm Sample Complexity ϵ-F1 Score

Acute ϵ-PAL 88.08 ± 28.06 0.98 ± .02
JES 91.94 ± 15.33 0.81 ± .04
MESMO 91.94 ± 15.33 0.97 ± .02

PaVeBa-DE 91.94 ± 15.33 0.99 ± .02

Obtuse ϵ-PAL 88.08 ± 28.06 1.00 ± .00
JES 27.58 ± 5.68 0.86 ± .07
MESMO 27.58 ± 5.68 0.85 ± .11

PaVeBa-DE 27.58 ± 5.68 1.00 ± .03

Table 8: Comparison of PaVeBa with ϵ-PAL, MESMO, and JES on VC1 dataset under acute and obtuse cones.

References

Agrawal, A., Verschueren, R., Diamond, S., and Boyd, S. (2018). A rewriting system for convex optimization
problems. Journal of Control and Decision, 5(1):42–60.

Antos, A., Grover, V., and Szepesvári, C. (2010). Active learning in heteroscedastic noise. Theoretical Computer
Science, 411(29-30):2712–2728.

Ararat, Ç. and Tekin, C. (2023). Vector optimization with stochastic bandit feedback. In Proc. 26th International
Conference on Artificial Intelligence and Statistics, pages 2165–2190.

Auer, P., Chiang, C.-K., Ortner, R., and Drugan, M. (2016). Pareto front identification from stochastic bandit
feedback. In Proc. 19th International Conference on Artificial Intelligence and Statistics, pages 939–947.

Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E. (2020). Botorch:
A framework for efficient Monte-Carlo Bayesian optimization. In Advances in Neural Information Processing
Systems, volume 33, pages 21524–21538.

Belakaria, S., Deshwal, A., and Doppa, J. R. (2019). Max-value entropy search for multi-objective Bayesian
optimization. In Advances in Neural Information Processing Systems, volume 32.

Contal, E., Buffoni, D., Robicquet, A., and Vayatis, N. (2013). Parallel Gaussian process optimization with upper
confidence bound and pure exploration. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 225–240.

Diamond, S. and Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex optimization.
Journal of Machine Learning Research, 17(83):1–5.

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and Wilson, A. G. (2018). GPyTorch: Blackbox matrix-
matrix Gaussian process inference with GPU acceleration. In Advances in Neural Information Processing
Systems, volume 31.

Jin, C., Netrapalli, P., Ge, R., Kakade, S. M., and Jordan, M. I. (2019). A short note on concentration inequalities
for random vectors with subgaussian norm. arXiv preprint arXiv:1902.03736.

Lattimore, T. and Szepesvári, C. (2020). Bandit Algorithms. Cambridge University Press.

Liao, X., Li, Q., Yang, X., Zhang, W., and Li, W. (2008). Multiobjective optimization for crash safety design of
vehicles using stepwise regression model. Structural and Multidisciplinary Optimization, 35:561–569.

Moore, J. S. and Jensen, K. F. (2012). Automated multitrajectory method for reaction optimization in a
microfluidic system using online IR analysis. Organic Process Research & Development, 16(8):1409–1415.

Parsons, M. G. and Scott, R. L. (2004). Formulation of multicriterion design optimization problems for solution
with scalar numerical optimization methods. Journal of Ship Research, 48(01):61–76.

Tanabe, R. and Ishibuchi, H. (2020). An easy-to-use real-world multi-objective optimization problem suite.
Applied Soft Computing, 89:106078.

Tu, B., Gandy, A., Kantas, N., and Shafei, B. (2022). Joint entropy search for multi-objective Bayesian opti-
mization. In Advances in Neural Information Processing Systems, volume 35, pages 9922–9938.

Zuluaga, M., Krause, A., and Püschel, M. (2016). ε-PAL: An active learning approach to the multi-objective
optimization problem. Journal of Machine Learning Research, 17(104):1–32.

Zuluaga, M., Milder, P., and Püschel, M. (2012). Computer generation of streaming sorting networks. In DAC
Design Automation Conference, pages 1241–1249.

	INTRODUCTION
	PROBLEM DEFINITION
	PARETO VECTOR BANDITS
	TECHNICAL ANALYSIS
	EXPERIMENTS
	Real-World Problems
	Experimental Setup and Results

	CONCLUSION

