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Abstract

We propose Functional Flow Matching (FFM),
a function space generative model that gen-
eralizes the recently introduced Flow Match-
ing model to operate in infinite-dimensional
spaces. Our approach works by first defining
a path of probability measures that interpo-
lates between a fixed Gaussian measure and
the data distribution, followed by learning a
vector field on the underlying space of func-
tions that generates this path of measures.
Our method does not rely on likelihoods or
simulations, making it well-suited to the func-
tion space setting. We provide both a the-
oretical framework for building such models
and an empirical evaluation of our techniques.
We demonstrate through experiments on sev-
eral real-world benchmarks that our proposed
FFM method outperforms several recently
proposed function space generative models.

1 Introduction

Generative models have seen a meteoric rise in capabil-
ities on various domains, such as images [Dhariwal and
Nichol, 2021, Kang et al., 2023], video [Saharia et al.,
2022, Ho et al., 2022], and audio [Kong et al., 2021,
Goel et al., 2022]. Despite these successes, many meth-
ods implicitly assume that the distribution of interest
is supported on a finite-dimensional space. However,
there are multiple important applications that involve
data that is inherently infinite-dimensional. For in-
stance, draws from a time series, solutions to partial
differential equations, and audio signals are naturally
represented as functions.
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For functional data, typical generative models oper-
ate directly on a discretization of the data [Tashiro
et al., 2021, Rasul et al., 2021a, Yan et al., 2021]. How-
ever, these approaches are often tied to a chosen dis-
cretization and are ill-posed in the functional limit. To
overcome these limitations, recent methods have pro-
posed building generative models directly in function
spaces. For instance, Kerrigan et al. [2023] and Lim
et al. [2023a] propose function space diffusion models,
and Rahman et al. [2022] propose a functional GAN.

We add to this growing literature on function space gen-
erative models. In particular, we propose Functional
Flow Matching (FFM), a continuous-time normalizing
flow model for functional data. Given that Euclidean
normalizing flow methods [Papamakarios et al., 2021,
Kobyzev et al., 2020] are posed in terms of densities,
which generally do not exist in infinite-dimensional
spaces, a key challenge of performing this generaliza-
tion is to pose a purely measure-theoretic model. In
particular, our model is a generalization of the recently
proposed Flow Matching model of Lipman et al. [2023].

Our proposed FFM model first constructs a path of
conditional Gaussian measures, approximately interpo-
lating between a fixed reference Gaussian measure and
a given function. A path of measures interpolating be-
tween said reference measure and the data distribution
is then obtained by marginalizing these conditional
paths over the data distribution. We learn a vector
field on our space of functions which approximately
generates this path of measures, allowing us to gener-
ate samples from our data distribution by solving a
differential equation. Figure 1 illustrates our approach.

Our approach allows for simulation-free training, in
the sense that no samples are drawn from the model.
Moreover, our training objective is regression based,
allowing us to avoid pathologies with regards to max-
imum likelihood training in a functional setting. We
empirically verify our framework on several time series
datasets and a fluid dynamics dataset, demonstrating
that the FFM model outperforms several competitive
function space models across a variety of domains.
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Figure 1: An illustration of our FFM method. The vector field vt(f) ∈ F (in black) transforms a noise sample
g ∼ µ0 = N (0, C0) drawn from a Gaussian process with a Matérn kernel (at t = 0) to the function f(x) = sin(x)
(at t = 1) via solving a function space ODE. By sampling many such g ∼ µ0, we define a conditional path
of measures µf

t approximately interpolating between N (0, C0) and the function f , which we marginalize over
samples f ∼ ν from the data distribution in order to obtain a path of measures approximately interpolating
between µ0 and ν.

2 Related Work

Flow Matching and Normalizing Flows We gen-
eralize the Flow Matching model of Lipman et al. [2023],
which is a novel approach to simulation-free continuous-
time normalizing flows [Chen et al., 2018, Papamakarios
et al., 2021, Kobyzev et al., 2020]. This approach has
demonstrated impressive capabilities on several image
generation tasks. However, Flow Matching and other
recently proposed simulation-free continuous normal-
izing flows have only been explored for data distri-
butions supported on finite-dimensional spaces, such
as Euclidean spaces [Lipman et al., 2023, Albergo and
Vanden-Eijnden, 2023, Liu et al., 2022, Neklyudov et al.,
2022] and Riemannian manifolds [Chen and Lipman,
2023, Ben-Hamu et al., 2022]. In contrast, we propose
Functional Flow Matching, a continuous-time normal-
izing flow for infinite-dimensional data. To the best of
our knowledge, this is the first normalizing flow model
posed in infinite-dimensional spaces.

Function Space Generative Models Recently, a
number of authors have proposed function space gener-
alizations of various deep generative models. Close in
spirit to our work are those generalizing diffusion mod-
els [Ho et al., 2020, Song et al., 2021, Song and Ermon,
2019] to the infinite-dimensional setting. In particular,
Kerrigan et al. [2023] and Lim et al. [2023a] propose
function space generalizations of discrete-time diffusion
models, whereas Pidstrigach et al. [2023], Franzese et al.
[2023] and Hagemann et al. [2023] propose function
space generalizations of continuous-time diffusion mod-
els. Beyond diffusion models, function space GANs
[Rahman et al., 2022] and energy-based models [Lim
et al., 2023b] have also been proposed. Our work adds
to this growing literature on function space generative
models by proposing the first function space normaliz-
ing flow model.

Discrete Functional Generative Models While
there has been growing interest in developing generative
models directly in infinite-dimensional spaces, there
has also been work proposing generative models for
functional data that operate directly on a discretization
of the underlying space, for example, diffusion models
for time series [Tashiro et al., 2021, Rasul et al., 2021a,
Yan et al., 2021] (see Lin et al. [2023] for a recent
survey on these methods). Other models, such as
normalizing flows [Rasul et al., 2021b], latent variable
models [Zhou et al., 2022, Rubanova et al., 2019, Yildiz
et al., 2019], and GANs [Yoon et al., 2019, Kidger et al.,
2021] have also been explored. However, these methods
all operate directly on the discrete observations of a
given time series. This has several drawbacks: for
instance, it is difficult to transfer a model trained on one
discretization to another, and often these models are ill-
posed in the functional limit (i.e. as the discretization
size goes to zero). In contrast, our work begins from a
function space point of view, where we only discretize
in order to perform computations.

3 Notation and Background

We begin by introducing some notation and background
which we will later use to construct our model. Section
3.1 introduces notions related to flows on function
spaces, and Section 3.2 introduces the weak continuity
PDE [Stepanov and Trevisan, 2017] which plays a key
role in our constructions.

3.1 Preliminaries

Let X ⊂ Rd and consider a real separable Hilbert
space F of functions f : X → R equipped with the
Borel σ-algebra B(F). We consider the setting where
there is a probability measure ν on F from which we
have samples, i.e. random functions drawn from the
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data distribution ν. Our goal is to build a generative
model which allows us to sample from ν. Importantly,
any such generative model should be discretization-
invariant, in the sense that the model should be able
to generate functions which may be observed on any
finite but arbitrary discretization of X .

In this work, we consider paths of probability measures
(µt)t∈[0,1], where µt ∈ P(F) is a probability measure
on F at every time t ∈ [0, 1]. In particular, we will
construct a path of measures which approximately in-
terpolates between a fixed reference measure µ0 at
time t = 0 and the data distribution at time t = 1,
so that µ1 ≈ ν. This interpolation is approximate in
the sense that µ1 will be a smoothed version of the
data distribution, obtained from ν via convolution with
a Gaussian measure having small variance [Bogachev,
1998, Appendix A].

We consider paths of probability measures which are
generated locally, in the sense that there is some un-
derlying time-dependent vector field on F such that
the path of measures (µt)t∈[0,1] is obtained by flowing
samples g ∼ µ0 along said vector field. More formally,
a (time-dependent) vector field on F is a mapping
v : [0, 1]×F → F .

The flow associated to a vector field (vt)t∈[0,1] is the
mapping ϕ : [0, 1] × F → F specified by the initial
value problem

∂tϕt(g) = vt(ϕt(g)) ϕ0(g) = g. (1)

As written, Equation (1) represents an ordinary differ-
ential equation (ODE) on the abstract and potentially
infinite-dimensional space F . Such ODEs are often
dubbed abstract differential equations [O’Regan, 1997,
Zaidman, 1999]. We assume that all vector fields in
this work are sufficiently regular such that a solution
to Equation (1) is guaranteed to exist for all t ∈ [0, 1]
and ν-a.e. initial condition g.

Given any initial probability measure µ0 ∈ P(F), we
may consider the path of probability measures gener-
ated by the flow ϕ. That is, for any t ∈ [0, 1] we define
the measure µt via the pushforward of µ0 along ϕt,
i.e. µt = [ϕt]#µ0, so that µt(A) = µ0

(
ϕ−1
t (A)

)
for

any measurable A ⊂ F . Here, ϕt is assumed to be
measurable for all t ∈ [0, 1].

3.2 Weak Continuity PDE

Previously, we noted how one may obtain a path of
probability measures from an initial probability mea-
sure µ0 ∈ P(F) by considering the pushforward of µ0

along the flow of a given vector field (vt)t∈[0,1].

Conversely, we say that the vector field (vt)t∈[0,1] gen-
erates the path of measures (µt)t∈[0,1] if the path

(µt)t∈[0,1] is obtained via the pushforward of µ0 along
the flow associated with (vt)t∈[0,1]. Directly verifying
whether a vector field generates a given path of mea-
sures (by verifying the pushforward relationship) is
typically infeasible. Instead, we can check if the two
satisfy the continuity equation

∂tµt + div(vtµt) = 0 on F × [0, 1]. (2)

We interpret this partial differential equation (PDE) in
the weak sense [Ambrosio et al., 2005, Ch. 8], by which
we mean that the pair (vt)t∈[0,1] and (µt)t∈[0,1] satisfy
Equation (2) if∫ 1

0

∫
F
(∂tφ(g, t) + ⟨vt(g),∇gφ(g, t)⟩) dµt(g) dt = 0

(3)

for all φ : F × [0, 1] → R in an appropriate space of
test functions. Typically, φ is assumed to be cylin-
drical, i.e. of the form φ(f, t) = ψ(π(f), t) where
π : g 7→ (⟨g, e1⟩, . . . , ⟨g, ed⟩) is a d-dimensional projec-
tion of g via an orthonormal system (ei)

d
i=1, and

ψ ∈ C∞
c (Rd × [0, 1]) is smooth and compactly sup-

ported.

We refer to Stepanov and Trevisan [2017, Theorem 3.4]
for a rigorous discussion of this result in general metric
spaces. Such results are often referred to as superposi-
tion principles. In the Euclidean setting, if one assumes
that all measures admit a density with respect to some
common dominating measure, it suffices to check the
continuity equation directly, in which µt is replaced by
a density pt [Ambrosio et al., 2005, Villani, 2009].

Throughout this work, we assume all paths of mea-
sures and vector fields are sufficiently regular such that
the superposition principle applies, i.e. it suffices to
check the continuity equation to conclude whether a
given path of measures is generated by a given vec-
tor field. In Theorem 1, we use the weak form of the
continuity equation in order to construct a marginal
vector field from conditional vector fields, such that
this marginal vector field is guaranteed to generate our
desired interpolating path of measures.

4 Function Space Flow Matching

Building on the notions in Section 3, we now intro-
duce our Functional Flow Matching model (FFM). The
Flow Matching model is a recently proposed continuous-
time normalizing flow method developed for finite-
dimensional spaces [Lipman et al., 2023, Chen and
Lipman, 2023]. Our FFM approach builds on this
earlier line of work to develop an extension of these
methods to infinite-dimensional spaces. Proofs for all
of our theorems are available in Appendix A.1.



Functional Flow Matching

The main technical challenge of generalizing the ex-
isting techniques to infinite-dimensional spaces is that
existing methods rely heavily on the notion of a prob-
ability density function, either with respect to the
Lebesgue measure in the case of a Euclidean space
or with respect to the canonical volume measure on
a Riemannian manifold. In infinite-dimensional (Ba-
nach) spaces, there does not exist an analogue of the
Lebesgue measure – that is, any nonzero translation
invariant Borel measure must assign infinite measure
to any open set [Eldredge, 2016].

As such, our FFM model is necessarily posed in
measure-theoretic terms. Our derivations shed light
on strict requirements needed to obtain a well-posed
model. For instance, we require an absolute continuity
assumption between the conditional and marginal mea-
sures defined in Section 4.1. In Euclidean spaces, such
assumptions are easy to satisfy, but are non-trivial in
infinite-dimensional spaces, even for the simple setting
of Gaussian measures (see Section 4.3). Moreover, our
derivations demonstrate that naively applying a white-
noise Gaussian measure (as is done in the Euclidean
setting) leads to an ill-posed model in function space.

4.1 Constructing a Path of Measures

Suppose we associate to every f ∈ F a path of measures
(µf

t )t∈[0,1] such that µf
0 = µ0 is some fixed reference

measure and µf
1 is concentrated around f . For instance,

µf
1 could be a Gaussian measure with mean f and

a covariance having small operator norm. We then
marginalize over all such measures, where we mix over
the data distribution ν. That is, we define a new
probability measure µt ∈ P(F) for t ∈ [0, 1] via

µt(A) =

∫
µf
t (A) dν(f) ∀A ∈ B(F). (4)

Due to our conditions on µf
t , we then have that µ0 = µ0

and µ1 ≈ ν is approximately the data distribution.
Suppose further that each conditional path of measures
µf
t is generated by some known vector field vft . In the

following theorem, we claim that we may construct a
vector field vt which generates the marginal path of
measures µt from the conditional vector fields vft .

Theorem 1.
Assume that

∫ 1

0

∫
F×F ||vft (g)||dµ

f
t (g) dν(f) dt < ∞.

If µf
t ≪ µt for ν-almost every f and almost every

t ∈ [0, 1], then the vector field

vt(g) =

∫
F
vft (g)

dµf
t

dµt
(g) dν(f) (5)

generates the marginal path of measures (µt)t∈[0,1] spec-
ified by Equation (4). That is, (vt)t∈[0,1] and (µt)t∈[0,1]

solve the continuity equation (2). Here, dµf
t / dµt is the

Radon-Nikodym derivative of the conditional measure
with respect to the marginal.

If this vector field vt were known, we could generate
samples by solving the corresponding flow ODE (Equa-
tion (1)) with initial condition f ∼ µ0 drawn from
our fixed reference measure. However, the vector field
specified by Equation (5) is intractable. Thus, we will
learn a model to approximate this unknown vector field.
Note that our model will necessarily be a mapping be-
tween infinite dimensional spaces. We discuss how to
parametrize such a model in Section 5.

The main technical assumption in Theorem 1 is that
the conditional distributions µf

t are ν-almost surely
absolutely continuous with respect to the marginal dis-
tribution µt. Although this assumption is not generally
true even in the Euclidean setting, we prove in Theo-
rem (2) that this assumption holds under an additional
equivalency condition on the conditional measures. In
Section 4.3, we discuss how this equivalency assumption
may be satisfied under a Gaussian parametrization.

Theorem 2.
Consider a probability measure ν on F and a collection
of measures µf

t parametrized by f ∈ F . Suppose that the
collection of parametrized measures are ν-a.e. mutually
absolutely continuous. Define the marginal measure µt

via Equation (4). Then, µf
t ≪ µt for ν-a.e. f .

4.2 Special Case: Gaussian Measures

In this section, we specialize to the setting where the
reference measure µ0 and conditional measures µf

t are
chosen to be Gaussian measures [Bogachev, 1998]. We
make this ansatz for several reasons. Foremost, our
marginal vector field (Equation (5)) requires an ab-
solute continuity assumption. In infinite-dimensional
(separable) Banach spaces, the absolute continuity of
Gaussian measures is well-understood, e.g. via the
Cameron-Martin theorem and the Feldman-Hájek the-
orem [Da Prato and Zabczyk, 2014, Bogachev, 1998].
Moreover, we are able to parametrize our Gaussian mea-
sures via Gaussian processes [Rasmussen and Williams,
2006, Wild et al., 2022] for which a number of flexible
choices of kernels have been explored in the machine
learning literature.

More formally, for any f ∈ F we define a conditional
path of probability measures (µt)t∈[0,1] to be a Gaus-
sian measure µf

t = N (mf
t , C

f
t ) with mean mf

t ∈ F and



Gavin Kerrigan, Giosue Migliorini, Padhraic Smyth

(a) MSEs between the density and spec-
tra of the real and generated samples.

Density Spectrum

FFM-OT (Ours) 3.7e-5 9.3e1
DDPM 9.9e-5 5.0e2
DDO 2.9e-2 1.6e5
GANO 2.5e-3 3.2e4

Figure 2: Samples from the Navier-Stokes dataset (“ground truth”) and samples from the various models considered in
this work. Our FFM-OT model and DDPM qualitatively match the ground truth samples, whereas DDO and GANO
suffer from mode collapse. Table 2a compares the density and spectra between 1000 real and generated samples, showing
that our proposed method outperforms the others by a large margin on pointwise metrics. Note that we do not study the
FFM-VP parametrization on this dataset due to computational costs.

covariance operator Cf
t : F → F . Note that the Cf

t

are necessarily symmetric, non-negative and trace-class
[Da Prato and Zabczyk, 2014, Ch. 2]. In particular, this
rules out multiples of the identity operator (correspond-
ing to white noise) as a valid choice for Cf

t , as these
operators are not compact and hence not trace-class.

In practice, we parametrize t 7→ mf
t by a Fréchet dif-

ferentiable mapping and specify Cf
t by a covariance

operator C0 and variance schedule t 7→ σf
t ∈ R>0 such

that Cf
t = (σf

t )
2C0. At time t = 0, we choose to

parametrize µf
0 = µ0 = N (0, C0) as a centered Gaus-

sian measure independent of the function f ∈ F . The
measure µ0 will serve as the reference measure in our
generative model. In order to satisfy the desiderata
of Section 4.1, at time t = 1 we will choose mf

1 = f

and Cf
t to have small operator norm so that µf

1 is a
Gaussian measure concentrated around f .

In this case, we note that the conditional flow
ϕf : [0, 1]×F → F defined via ϕft (g) = σf

t g +mf
t will

push g ∼ N (0, C0) to the desired conditional measure
µf
t , i.e. µf

t = [ϕft ]#N (0, C0). Using the flow ODE
(Equation (1)), we see that a vector field generating
this conditional path of measures is

vft (g) =
(σf

t )
′

σf
t

(g −mf
t ) +

d

dt
mf

t (6)

where (σf
t )

′ is the ordinary time derivative of the vari-
ance schedule and d/ dt(mf

t ) is the Fréchet derivative

of the mapping t 7→ mf
t . The proof of this fact is a

straightforward generalization of Lipman et al. [2023,
Theorem 3], which demonstrates the analogous rela-
tionship in finite-dimensional Euclidean spaces.

In this work, we consider two concrete parameteriza-
tions. In the first parametrization (“OT”), the mean
and variance are given as affine functions of t and f :

mf
t = tf σf

t = 1− (1− σmin)t. (7)

The “OT” path is named as such as it corresponds to
an optimal transport map between Gaussians in the
Euclidean setting [Lipman et al., 2023, McCann, 1997].

In the second parametrization (“VP”), we set

mf
t = α1−tf σf

t =
√

1− α2
1−t. (8)

This path is inspired inspired by probability paths de-
fined via variance preserving diffusion models [Lipman
et al., 2023, Song et al., 2021]. We additionally experi-
mented with the “variance exploding” parametrization
[Lipman et al., 2023, Song et al., 2021], but found
empirically that this was not suitable for our setting.
See Appendix A.2 for details. Here, σmin ∈ R>0 and
αt ∈ R>0 are hyperparameters of the model controlling
the variance of the conditional measures.
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4.3 Absolute Continuity for Gaussians

In general, the absolute continuity assumption of The-
orem 1 is difficult to satisfy in function spaces. In
the Gaussian setting, we may reduce this assumption
to assumptions regarding the parametrization of our
Gaussian measures. By the Feldman-Hájek theorem
[Da Prato and Zabczyk, 2014, Theorem 2.25], our con-
ditional Gaussian measures µf

t will be mutually abso-
lutely continuous if the difference in means lies in the
Cameron-Martin space of Ct, i.e. mf

t −mg
t ∈ C

1/2
t (F).

Thus, under suitable assumptions on the data distri-
bution ν and an appropriate parametrization of the
conditional means, our marginal vector fields (Equa-
tion (5)) will be well-defined as a consequence of
Theorem 2. Suppose Ct = σ2

tC0 is a scaled version
of some fixed covariance operator C0 with the assump-
tion that 0 < σ2

t ≤M is positive and bounded above.
By Lemma 6.15 of Stuart [2010], this choice guarantees
us that the Cameron-Martin space is constant in time,
i.e. C1/2

0 (F) = C
1/2
t (F) for all t ∈ [0, 1].

Assume further that the data distribution is sup-
ported on the Cameron-Martin space of C0, i.e.
ν(C

1/2
0 (F)) = 1. In this case, given our covariance

parametrization, our Gaussian measures will be mu-
tually absolutely continuous if e.g. mf

t is an affine
function of f . We note that the parametrizations sug-
gested in Section 4.2 are all affine, and so under the
assumption that the data is supported on the Cameron-
Martin space C1/2

0 (F) our setup is well-defined.

In practice, verifying whether the data distribution is
supported on C1/2

0 (F) is difficult. One option to guar-
antee this assumption is satisfied is to pre-process the
data via some mapping T : F → C

1/2
0 (F) ⊆ F whose

image is contained in C1/2
0 (F). We refer to Appendix C

of Lim et al. [2023a] for a further discussion of such map-
pings and related results. We note that in practice, we
do not find it necessary to perform this pre-processing.

4.4 Training the FFM Model

Ideally, we would like to perform functional regres-
sion on the marginal vector field defined via Equation
(5), where we approximate vt(g) by a model ut(g | θ)
with parameters θ ∈ Rp. This could be achieved, for
instance, by minimizing the loss

L(θ) = Et∼U [0,1],g∼µt

[
∥vt(g)− ut(g | θ)∥2

]
(9)

where U [0, 1] denotes a uniform distribution over the
interval [0, 1]. Note here that our model is a map-
ping u : Rp × [0, 1] × F → F , i.e. our model is a
parametrized, time-dependent operator on the func-

Figure 3: Unconditional generation of 500 samples on
the AEMET dataset. Samples from our FFM model
and DDPM appear visually to better match the charac-
teristics of the real data relative to DDO and GANO.

tion space F . However, such a loss is intractable to
compute – in fact, if we had access to (vt)t∈[0,1], there
would be no need to learn a model. Consider instead
the conditional loss, defined via

J (θ) = Et∼U [0,1],f∼ν,g∼µf
t

[∥∥∥vft (g)− ut(f | θ)
∥∥∥2]

(10)

where, rather than regressing on the intractable vt, we
regress on the known conditional vector fields vft . In
the following theorem, we claim that minimizing J (θ)
is equivalent to minimizing L(θ).

Theorem 3.
Assume that the true and model vector fields are
square-integrable, i.e.

∫ 1

0

∫
F ∥vt(g)∥2 dµt(g) dt < ∞

and
∫ 1

0

∫
F ∥ut(g | θ)∥2 dµt(g) dt < ∞. Then, L(θ) =

J (θ) + C where C ∈ R is a constant independent of θ.
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5 Experiments

We now investigate the empirical performance of FFM
on several real-world datasets. In all settings, we as-
sume we are working in the space F = L2([0, 1]) and
we parametrize ut(− | θ) via a Fourier Neural Operator
(FNO) [Li et al., 2021]. Sampling is achieved by draw-
ing a sample from the reference measure g ∼ µ0 and
numerically solving the flow ODE (Equation (1)) with
initial condition g. In our implementation, we use the
DOPRI solver [Dormand and Prince, 1980]. Details
can be found in Appendix A.2.1

Datasets Our experiments in 1D include five datasets
selected for their diverse correlation structures, exhibit-
ing distinctive patterns that enable visual evaluation of
generated samples. Plots of original and generated sam-
ples, as well as a detailed description of each dataset,
can be found in Appendix A.2.2. The first dataset
(AEMET) consists of a set of 73 curves describing the
mean daily temperature at various locations [Febrero-
Bande and de la Fuente, 2012]. The second is a gene
expression time series dataset [Orlando et al., 2008],
and the remaining three consist of global economic time
series on population, GDP per capita, and labor force
size [Bolt and Van Zanden, 2020, Inklaar et al., 2018,
International Financial Statistics, 2022], We also exper-
iment with a dataset of solutions to the Navier-Stokes
equation on a 2D torus [Li et al., 2022].

Baselines We compare against several functional
generative models: the Denoising Diffusion Opera-
tor (DDO) [Lim et al., 2023a] with NCSN noise scale,
GANO [Rahman et al., 2022], and functional DDPM
[Kerrigan et al., 2023]. We do not compare to non-
functional methods, as we are primarily interested in
developing discretization-invariant generative models.

All noise was specified via a Gaussian process with
a Matérn kernel where the lenthscale and variance is
tuned for each dataset and method. Generally, tuning
the parameters of the kernel is key to obtaining high-
quality results across all models considered.

For the sake of a fair comparison, we used the same
neural architecture for all models, with the exception
of GANO which requires a generator and discrimina-
tor pair. We used the code provided by the authors
of DDPM and GANO but re-implemented the DDO
model. For all models, we performed extensive hyperpa-
rameter tuning and report the best results. Generally,
we find the FFM methods are less sensitive to hyper-
parameter choices than the baseline methods.

1Code for all of our experiments is available at
github.com/GavinKerrigan/functional_flow_matching

Figure 4: Samples from the Labor dataset and samples
from the various models at 5x super-resolution.

Results Figure 2 shows samples from the Navier-
Stokes dataset and samples generated from the various
models we consider. Qualitatively, our FFM model and
the DDPM model match the ground-truth samples,
whereas DDO and GANO suffer from mode collapse.

Figure 3 shows samples from the AEMET dataset and
generated samples from the models we consider. Our
FFM model is able to qualitatively match the sam-
ples from the ground truth distribution. The DDPM
samples are similar in quality, but do not respect the
range of values seen in the data. For DDO, we observe
smoothness issues, and for GANO, we again see mode
collapse issues.

Quantitatively, Table 1 evaluates model performance on
the one-dimensional datasets by computing pointwise
statistics of the generated functions and computing the
MSE between these pointwise statistics and those of
the real data. Table 2a reports the MSE between the
density and spectra [Lim et al., 2023b] of the real and
generated samples on the Navier-Stokes dataset. See
Appendix A.3 for visualizations.

Variants of FFM perform the best, on average, in almost
all metrics considered across the wide range of domains

https://github.com/GavinKerrigan/functional_flow_matching
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Table 1: Average MSEs between true and generated samples for pointwise statistics on five one-dimensional
datasets, along with the standard deviation across ten random seeds. The average number of function evaluations
(NFEs) for each sampling procedure in our implementation is also reported. Our FFM models obtain the best
average performance across nearly all metrics, while simultaneously requiring fewer NFEs than the diffusion
baselines.

Mean Variance Skewness Kurtosis Autocorrelation NFEs

A
E
M

E
T FFM-OT (ours) 8.4e-2 (9.9e-2) 1.7e+0 (1.1e+0) 7.7e-2 (6.6e-2) 3.3e-2 (3.7e-2) 3.0e-6 (4.0e-6) 668

FFM-VP (ours) 1.3e-1 (1.4e-1) 1.5e+0 (1.2e+0) 5.e-2 (4.3e-2) 1.7e-2 (1.6e-2) 6.0e-6 (7.0e-6) 488
DDPM 3.0e-1 (3.0e-1) 3.5e+0 (4.6e+0) 2.2e-1 (2.2e-1) 4.8e-2 (3.7e-2) 1.2e-5 (9.e-6) 1000
DDO 2.4e-1 (1.4e-1) 6.6e+0 (5.1e+0) 2.1e-1 (4.1e-2) 3.8e-2 (1.3e-2) 6.7e-4 (1.3e-4) 2000
GANO 6.5e+1 (1.9e+2) 3.7e+1 (4.0e+1) 2.9e+0 (4.8e+0) 3.3e-1 (4.0e-1) 1.2e-3 (3.1e-3) 1

G
en

es

FFM-OT (ours) 6.7e-4 (4.5e-4) 3.9e-3 (2.6e-4) 2.4e-1 (4.7e-2) 7.7e-2 (9.0e-3) 2.5e-4 (1.7e-4) 386
FFM-VP (ours) 4.2e-4 (3.8e-4) 7.3e-4 (3.5e-4) 1.9e-1 (6.1e-2) 4.3e-2 (1.1e-2) 1.3e-4 (1.0e-4) 290
DDPM 8.8e-4 (4.5e-4) 1.9e-3 (4.2e-4) 3.6e-1 (1.9e-1) 6.3e-2 (1.1e-2) 4.3e-4 (9.3e-5) 1000
DDO 4.2e-3 (1.5e-3) 1.2e-3 (3.6e-4) 3.0e-1 (5.7e-2) 1.1e-1 (1.1e-2) 1.0e-3 (1.7e-4) 2000
GANO 4.6e-3 (2.0e-3) 7.4e-3 (1.5e-3) 1.7e+0 (1.3e+0) 3.3e-1 (8.4e-2) 2.e-3 (1.0e-3) 1

P
o
p
.

FFM-OT (ours) 3.9e-5 (3.8e-5) 7.0e-6 (9.e-6) 4.1e+0 (5.3e+0) 9.0e-2 (1.0e-1) 2.7e-5 (4.6e-5) 662
FFM-VP (ours) 6.3e-5 (4.5e-5) 7.0e-6 (7.e-6) 1.3e+0 (6.1e-1) 7.8e-2 (4.5e-2) 2.5e-3 (5.2e-4) 494
DDPM 5.7e-5 (5.2e-5) 6.0e-6 (7.0e-6) 1.9e+0 (1.2e+0) 5.9e-2 (4.4e-2) 5.6e-5 (3.5e-5) 1000
DDO 1.9e-4 (8.7e-5) 2.7e-4 (1.9e-5) 4.2e+0 (4.1e-1) 2.7e-1 (3.7e-2) 3.2e-2 (1.9e-3) 2000
GANO 1.1e-3 (9.8e-4) 4.3e-5 (7.1e-5) 8.e+0 (2.4e+0) 8.6e-1 (5.3e-1) 1.6e-3 (3.6e-3) 1

G
D

P

FFM-OT (ours) 2.0e-5 (1.2e-5) 9.e-6 (6.e-6) 6.3e-1 (3.5e-1) 3.9e-2 (1.9e-2) 2.8e-5 (1.4e-5) 536
FFM-VP (ours) 4.1e-5 (2.1e-5) 8.0e-6 (7.0e-6) 6.2e-1 (4.1e-1) 5.0e-2 (2.5e-2) 1.9e-4 (2.3e-5) 494
DDPM 1.6e-4 (1.5e-4) 2.5e-5 (2.9e-5) 8.6e-1 (5.9e-1) 5.1e-2 (2.1e-2) 1.4e-4 (1.0e-4) 1000
DDO 2.1e-4 (1.1e-4) 2.9e-4 (9.4e-5) 1.7e+0 (1.1e-1) 2.7e-1 (2.4e-2) 9.6e-3 (1.5e-3) 2000
GANO 8.4e-4 (7.8e-4) 5.0e-5 (3.7e-5) 2.6e+0 (1.3e+0) 2.1e-1 (1.4e-1) 1.6e-4 (1.6e-4) 1

L
ab

o
r

FFM-OT (ours) 6.9e-5 (6.1e-5) 2.6e-5 (1.1e-5) 5.4e+0 (3.3e+0) 1.5e-1 (1.8e-1) 1.3e-4 (7.5e-5) 308
FFM-VP (ours) 7.1e-5 (5.5e-5) 2.1e-5 (9.0e-6) 2.0e+0 (1.5e+0) 8.6e-2 (7.3e-2) 5.8e-4 (1.4e-4) 302
DDPM 4.2e-4 (3.3e-4) 3.5e-4 (5.6e-4) 1.8e+3 (3.5e+3) 1.0e+1 (1.5e+1) 2.9e-4 (1.6e-4) 1000
DDO 3.1e-4 (1.9e-4) 4.0e-4 (1.2e-4) 4.8e+0 (5.3e-1) 4.3e-1 (3.9e-2) 7.8e-3 (1.2e-3) 2000
GANO 3.2e-3 (6.3e-3) 6.5e-4 (4.6e-4) 7.8e+0 (7.6e+0) 1.2e+0 (3.7e-1) 1.8e-3 (9.4e-4) 1

on which we performed evaluation. While pointwise
statistics have limitations, for functional models there
are no clear alternatives for evaluation, and pointwise
metrics are broadly used in the literature [Rahman
et al., 2022, Lim et al., 2023a]. Together with the
qualitative results, these metrics further validate the
performance of our method.

A key benefit of the FNO architecture is the ability to
perform generation at arbitrary resolutions, a necessary
component in any functional task. We demonstrate this
on the Labor dataset in Figure 4. All models are trained
on the original data resolution, but samples are drawn
at a five times greater resolution. Samples from FFM
and DDPM qualitatively match the characteristics of
the ground truth distribution, whereas samples from
DDO and GANO do not match the smoothness of the
original data. See Appendix A.3 for further evaluation.

Conditional Generation We also demonstrate an
extension of our method for conditional tasks, such as
interpolating (or extrapolating) a finite set of given
observations. We explore two approaches: conditional
training and a modified sampling process inspired by
ILVR [Choi et al., 2021]. We note alternative con-
ditional methods [Mathieu et al., 2023] are readily
applicable as well. In Figure 5, we demonstrate these
two approaches. See Appendix A.4 for details.

0

15

30

Conditional Training Conditional Sampling

0

15

30

Figure 5: Conditional samples from the FFM-OT model.
Darker curves indicate samples and lighter curves depict real
data. Conditioning information is shown in black. The first
column corresponds to a conditionally trained model and
the second column corresponds to a conditionally trained
model in addition to conditional sampling. We see that,
while the conditionally trained model takes into account the
conditioning information, the conditional sampling method
allows us to enforce equality of the generated samples to
the conditioning information at the observation locations.
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6 Conclusion

We introduce Functional Flow Matching (FFM), a
continuous-time normalizing flow model which allows
us to model infinite-dimensional distributions. We
demonstrate that FFM is able to outperform several
recently proposed function space generative models in
terms of qualitative samples and pointwise metrics on
a diverse set of benchmarks. Our work builds the foun-
dations for function space normalizing flows, and our
hope is that future work may build on these founda-
tions. In terms of limitations, FFM is implemented
via the FNO [Li et al., 2021], which can only handle
data observed on uniform grids. Exploring architec-
tures which alleviate this assumption may increase the
applicability of our methods. Additionally, there are
no established benchmarks for functional generation,
unlike FID [Heusel et al., 2017] for images. Developing
benchmarks for these tasks is critical for future work.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Yes]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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Functional Flow Matching: Appendix

A.1 Proofs of Theorems

Theorem 1.
Assume that

∫ 1

0

∫
F×F ||vft (g)|| dµ

f
t (g) dν(f) dt <∞. If µf

t ≪ µt for ν-almost every f and almost every t ∈ [0, 1],
then the vector field

vt(g) =

∫
F
vft (g)

dµf
t

dµt
(g) dν(f) (5)

generates the marginal path of measures (µt)t∈[0,1] specified by Equation (4). That is, (vt)t∈[0,1] and (µt)t∈[0,1]

solve the continuity equation (2). Here, dµf
t /dµt is the Radon-Nikodym derivative of the conditional measure

with respect to the marginal.

Proof. In this proof, we denote the variable of integration for integrals over F via a subscript on the integral. We
show that for an arbitrary but fixed test function φ,

∫ 1

0

∫
g

∂tφ(g, t) dµt(g) dt = −
∫ 1

0

∫
g

⟨vt(g),∇gφ(g, t) dµt(g) dt. (11)

To that end, we begin by analyzing the left-hand side, replacing the integration of the marginal measure µt with
a double integral over its components:

∫ 1

0

∫
g

∂tφ(g, t) dµt(g) dt =

∫ 1

0

∫
f

∫
g

∂tφ(g, t) dµ
f
t (g) dν(f) dt (12)

By Fubini-Tonelli and using the assumption that vft generates µf
t , we obtain via the continuity equation for

(vft , µ
f
t ):

= −
∫
f

∫ 1

0

∫
g

⟨vft (g),∇gφ(g, t)⟩dµf
t (g) dtdν(f) (13)

Using our absolute continuity assumption and Fubini-Tonelli once again, we perform a change of measure to
obtain

= −
∫ 1

0

∫
f

∫
g

⟨vft (g),∇gφ(g, t)⟩

(
dµf

t

dµt
(g)

)
dµt(g) dν(f) dt (14)

= −
∫ 1

0

∫
f

∫
g

⟨vft (g)
dµf

t

dµt
(g),∇gφ(g, t)⟩dµt(g) dν(f) dt (15)

Using the fact that Bochner integrals commute with inner products, an application of Fubini-Tonelli yields
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= −
∫ 1

0

∫
g

〈∫
f

vft (g)
dµf

t

dµt
(g) dν(f),∇fφ(f, t)

〉
dµt(g) dt (16)

= −
∫ 1

0

∫
g

⟨vt(g),∇fφ(f, t)⟩ dµt(g) dt (17)

Hence, we have shown that the vector field generating µt is given by

vt(g) =

∫
f

vft (g)
dµf

t

dµt
(g) dν(f). (18)

Theorem 2.
Consider a probability measure ν on F and a collection of measures µf

t parametrized by f ∈ F . Suppose that the
collection of parametrized measures are ν-a.e. mutually absolutely continuous. Define the marginal measure µt

via Equation (4). Then, µf
t ≪ µt for ν-a.e. f .

Proof. By assumption, there exists G ⊆ F with ν(G) = 1 and for any f, g ∈ G, we have µf
t ≪ µg

t and µg
t ≪ µf

t .
Fix A ∈ B(F) with µt(A) = 0. We claim that µf (A) = 0 for every f ∈ G. Note that as G ⊆ F has full measure,
the integral defining µT may be taken over G rather than F . Suppose for the sake of contradiction that µf

t (A) > 0
for some f ∈ G. From the mutual equivalencies of the measures parametrized by G, it follows that µg

t (A) > 0
for every g ∈ G. Given the form of the mixture measure µt, it would then follow that µt(A) > 0, which is a
contradiction. Thus, µf

t ≪ µt for ν-a.e. f as claimed.

Theorem 3.
Assume that the true and model vector fields are square-integrable, i.e.

∫ 1

0

∫
F ∥vt(g)∥2 dµt(g) dt < ∞ and∫ 1

0

∫
F ∥ut(g | θ)∥2 dµt(g) dt <∞. Then, L(θ) = J (θ) + C where C ∈ R is a constant independent of θ.

Proof. First, note that since we are working in a real Hilbert space, for fixed f, g ∈ F we have

∥vt(g)− ut(g | θ)∥2 = ⟨vt(g)− ut(g | θ), vt(g)− ut(g | θ)⟩ (19)

= ∥vt(g)∥2 + ∥ut(g | θ)∥2 − 2⟨vt(g), ut(g | θ)⟩ (20)

and similarly, ∥∥∥vft (g)− ut(g | θ)
∥∥∥2 =

∥∥∥vft (g)∥∥∥2 + ∥ut(g | θ)∥2 − 2⟨vt(g), ut(g | θ)⟩. (21)

The first term in both is independent of the model parameters θ. We analyze the remaining two terms. Below,
we use subscripts on integrals over F to denote the variable of integration.

First, using the fact that µt is a mixture measure,

Et,µt

[
∥ut(g | θ)∥2

]
= (22)

=

∫ 1

0

∫
g

∥ut(g | θ)∥2 dµt(g) dt (23)

=

∫ 1

0

∫
f

∫
g

∥ut(g | θ)∥2 dµf
t (g) dν(f) dt (24)

= Et,g∼µf
t ,f∼ν

[
∥ut(g | θ)∥2

]
. (25)
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Next, using the exchangeability between Bochner integrals and inner products and Fubini-Tonelli,

Et,g∼µt [⟨vt(g), ut(g | θ)] = (26)

=

∫ 1

0

∫
g

⟨vt(g), ut(g | θ)⟩dµt(g) dt (27)

=

∫ 1

0

∫
g

〈∫
f

vft (g)
dµf

t

dµt
(g) dν(f), ut(g | θ)

〉
dµt(g) dt (28)

=

∫ 1

0

∫
f

∫
g

⟨vft (g), ut(g | θ)⟩

(
dµf

t

dµt
(g)

)
dµt(g) dν(f) dt (29)

=

∫ 1

0

∫
f

∫
g

⟨vft (g), ut(g | θ) dµf
t (g) dν(f) dt (30)

= Et,f∼ν,g∼µf
t

[
⟨vft (g), ut(g | θ)⟩

]
. (31)

This shows the equivalency of the two losses.

A.2 Experiment Details

A.2.1 Parametrizations

The FM-OT and FM-VP model require specifying a variance schedule via the hyperparameter σf
t . In this work, we

parametrize FFM-OT by setting σmin = 1e−4. For FFM-VP, we set αt = cos
(

t+s
1+s

π
2

)
where s = 0.08, following a

formulation similar to the cosine schedule introduced by Nichol and Dhariwal [2021].

Model-specific hyperparameters have been extensively fine-tuned via grid search, and we found the following
parametrizations to consistently perform optimally across several domains:

• DDPM: the noise schedule, following the notation of Kerrigan et al. [2023], is set to linearly interpolate
between β0 = 1e − 4 and βT = 0.02 in T = 1000 timesteps. The code for this implementation was taken
directly from the official repository2.

• DDO: following the notation of Lim et al. [2023a], we set the time interval to T = 10, and the noise schedule
geometrically interpolates between σ10 = 1e−3 and σ1 = 1 on the 1D datasets and σ10 = 1e−2 and σ1 = 100
on the 2D datasets. Sampling is performed by running their annealed Langevin dynamics algorithm with
ϵ = 2× 10−5 and M = 200.

• GANO: the generator is trained every 5 epochs, and gradient penalty set to λ = 0.1 in 1D and λ = 10 in 2D.
[Rahman et al., 2022]. The code for this implementation was taken directly from the official repository3.

Model Architectures For FFM, DDPM, and DDO, the architecture used is the FNO implemented in the
neuraloperator package [Li et al., 2021, Kovachki et al., 2021]. For GANO, we directly use the FNO-based
model architectures for both the discriminator and generator implemented by Rahman et al. [2022] for the 2D
dataset, while for the 1D datasets we use the same FNO architecture as the other methods.

Gaussian Measures Each model experimented with relies on noise sampled from a Gaussian measure. In our
work, we consider a mean-zero Gaussian process (GP) parametrized by a Matérn kernel with ν = 1/2. In 1D, the
kernel hyperparameters are set to have a variance σ2 = 0.1 and length scale ℓ = 1e− 2. In 2D, the variance is
σ2 = 1 and the length scale was set to ℓ = 1e− 3 for DDO and GANO, and ℓ = 1e− 2 for FFM and DDPM.

2https://github.com/GavinKerrigan/functional_diffusion
3https://github.com/neuraloperator/GANO
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Training All models are trained using the Adam optimizer. In 1D, we use an initial learning rate of 1e−3,
scheduled to decrease by one order of magnitude after 50 epochs for all datasets but AEMET, where it is decreased
every 25 epochs. In 2D, we use an initial learning rate of 5e − 4 for FFM, DDPM, and DDO, and an initial
learning rate of 1e− 4 for GANO, and this initial learning rate was decayed by one order of magnitude every 25
epochs.

A.2.2 Dataset Details

Navier-Stokes. This dataset consists of solutions to the Navier-Stokes equations on a 2D torus at a resolution
of 64x64. For the sake of efficient training, we randomly selected 20,000 datapoints for training from the original
dataset [Li et al., 2022] as there is a high degree of redundancy in the data. For FFM, DDPM, and DNO, we use
4 Fourier layers of 32 modes and 64 hidden channels, 256 lifting channels, 256 projection channels, and the GeLU
activation function [Hendrycks and Gimpel, 2016]. For GANO, we use 32 modes and set the number of hidden
channels to 16 due to memory constraints. All models were trained for 300 epochs at a batch size of 128.

AEMET dataset. This dataset consists of a set of functions describing the mean curve of the average daily
temperature (in Celsius) for the period 1980-2009 recorded by 73 weather stations in Spain [Febrero-Bande and
de la Fuente, 2012]. Each function is observed on a uniform grid at a resolution of 365. The neural architecture
we use for this dataset is an FNO with a width of 256 and 64 modes, kept constant for all models considered in
this experiment. The model is trained for 50 epochs, with batch size set to 73.

Gene expression. The original dataset consists of 10,928 time series at 20 uniformly spaced time points,
recording the amplitude of gene expression for 4 different genes. The genes are concatenated to create the visual
effect of spikes occurring periodically in time, while maintaining the structure of the original dataset. The data
was log-transformed and centered before being fed to the model. We restrict our focus to a subset of 156 functions
exhibiting large gene expression, determined by the standard deviation averaged across time for each centered
function being greater than 0.3. For this dataset, we use an FNO with a width of 256 and 16 modes across all
models. The model is trained for 200 epochs, with batch size set to 16.

Economic datasets. The first two datasets are taken from the Maddison Project database [Bolt and Van Zanden,
2020, Inklaar et al., 2018], and the third from the IMF [International Financial Statistics, 2022]. The datasets
were picked specifically for their distinct visual characteristics, explored in greater detail in Appendix A.3.

• Population: time series of the evolution of the population for 169 countries across the globe from the year
1950 to 2018 (that is, discretized at 69 points in time). For a clearer visual representation, each time series
was divided by its mean, so each curve represents the population for each country, relative to the mean
population for that country over the 69 years under consideration. The functions in this dataset exhibit
linear growth over time, with a change point shared across observations.

• GDP : time series representing the evolution of GDP per capita from 1950 to 2018. The original dataset
consists of 169 countries, but time series presenting missing values were removed yielding 145 observations.
The same preprocessing as that described above was applied to the data. While the functions seem to exhibit
the same change point as that observed for the population datasets, the growth over time is noisier and
exhibits irregular patterns.

• Labor : size of labor force per quarter between Q1 2017 and Q4 2022 (for a total of 24 points in time), for a
subset of 35 countries (obtained removing those with missing values from the original 105 observations). The
same preprocessing as that described for the population dataset was applied to the data. This dataset tests
the ability of the generative models to learn from small and multimodal data.

The models for the population and GDP datasets have width set to 256 and 32 modes, while the one for the
labor dataset has width set to 128 and 8 modes. All models were trained for 100 epochs, with a batch size of 16.

A.2.3 Sampling Details

We use the torchdiffeq [Chen, 2018] package for all ODE solvers. The specific solver we use is dopri5, an
implementation of the Dormand-Prince method [Dormand and Prince, 1980] of order 5. We set the absolute and
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relative tolerance parameters to 1e−10 for the 1D datasets and 1e−5 for the 2D datasets. Note that setting such
a tolerance gives us an explicit way of trading off sample quality for sampling efficiency.

A.3 Additional Experimental Results

This section contains several additional experimental results and figures. First, in Section A.3.1 we explore an
additional synthetic dataset consisting of a mixture of Gaussian processes (MoGP). Next, we provide additional
results on super-resolution in Section A.3.2. Sections A.3.3 and A.3.4 provide further visualizations of our results
on the 1D and 2D datasets considered in the main paper respectively.

A.3.1 Additional Results: MoGP

Mixture of Gaussian Processes (MoGP) Dataset. The experiment considers the task of generating
samples from a mixture of two GPs. The two components, with equal weights, have mean functions m1 = 10x− 5
and m2 = −10x+ 5, and a squared-exponential kernel with variance σ2 = 0.04 and length scale ℓ = 0.1. The
synthetic samples used for training are observed on a uniform grid at a resolution of 64 on the interval [0, 1]. All
models were trained on the same sample of N = 5000 realizations of the mixture of GPs. Figure 6 illustrates a
visual comparison of 500 samples from each model, while Table 2 presents a quantitative comparison of the mean
squared error (MSE) on various pointwise statistics. Additionally, Figure 6 provides a comprehensive depiction of
the variations in these pointwise statistics across different models.

Table 2: Average MSEs between true and generated samples for various pointwise statistics on the MoGP dataset,
along with the standard deviation (across ten random seeds). The average number of function evaluations (NFEs)
for each model is also reported. Variants of our proposed FFM model obtain the best or second best average
performance across all metrics. DDPM outperforms FFM in terms of variance, but only by a small margin.

Mean Variance Skewness Kurtosis Autocorrelation NFEs

FFM-OT (ours) 2.2e-2 (3.e-2) 2.9e-1 (3.2e-1) 1.6e-2 (1.1e-2) 1.1e-2 (1.2e-2) 7.e-6 (6.e-6) 740
FFM-VP (ours) 3.9e-2 (3.6e-2) 3.6e-1 (5.6e-1) 1.4e-2 (5.2e-3) 1.5e-2 (1.2e-2) 8.e-6 (8.e-6) 716
DDPM 3.0e-2 (2.4e-2) 1.4e-1 (1.9e-1) 1.5e-2 (9.6e-3) 1.2e-2 (8.1e-3) 1.9e-5 (2.2e-5) 1000
DDO 7.3e-1 (9.6e-1) 2.7e+0 (5.3e+0) 4.2e-1 (8.7e-1) 2.8e-1 (3.9e-1) 1.3e-5 (8.e-6) 2000
GANO 1.9e-1 (1.6e-1) 8.1e+0 (6.0e+0) 3.4e-1 (2.5e-1) 4.6e-2 (3.9e-2) 6.2e-4 (6.7e-4) 1

A.3.2 Additional Results: Super-Resolution

Here, we provide additional visualizations regarding the ability of all models considered to perform super-resolution,
i.e. to sample at a resolution greater than the training dataset. All models considered are trained at the original
dataset resolution, but due to the neural operator architectures being used, we may sample at arbitrary resolutions.
We note that quantitatively evaluating these super-resolved samples is difficult as we do not have access to a
notion of higher-resolution ground truth here.

Figure 7 shows samples from the original Gene expression time series dataset [Orlando et al., 2008] at a resolution
of 20, as well as samples from each model at a 5x resolution, i.e. a resolution of 100. We see that, qualitatively,
samples from FFM, DDPM, and GANO resemble those of the original dataset. The samples from DDO appear
overly rough, and the samples from GANO are smoother than those from FFM and DDPM.

Figure 8 shows qualitatively similar results on the econometrics datasets [Bolt and Van Zanden, 2020, Inklaar
et al., 2018, International Financial Statistics, 2022], with the exception of FFM-VP generating samples that are
rougher than the original data. To further explore the quality of these super-resolved samples, we additionally
provide the correlation matrices of the original data and super-resolved samples in Figure 9. We generally see
that FFM-OT, FFM-VP, DDPM, and GANO are able to qualitatively capture the original correlation structures,
whereas DDO fails to do so. We additionally note that on the Population and GPD datasets, FFM-VP, DDO,
and GANO display a consistent strong diagonal band, indicating that these models generate samples at a variance
which is too large when super-resolved. All models display this failure mode on the Labor dataset.
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Figure 6: Various pointwise statistics on the MoGP dataset. Curves in black indicate the corresponding pointwise
statistic for the original dataset (top row). The green error bands represent the minimal and maximal value of
the pointwise statistic from 500 samples across ten random seeds of the corresponding model. The dashed green
lines indicate the mean pointwise statistic across these ten runs for each model. See Table 2 for a quantitative
comparison.



Gavin Kerrigan, Giosue Migliorini, Padhraic Smyth

Figure 7: Samples from the gene expression dataset and samples from the various models at a 5x super-resolution.
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Figure 8: Samples from the three economics datasets and samples from the various models at a 5x super-resolution.
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Figure 9: Correlation matrices for the three economics datasets (top row), as well as correlation matrices for each
dataset for the generated samples from each model at a 5x super-resolution.
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A.3.3 Additional Results: 1D Datasets

This section provides a further analysis and visualization of the generated samples for the 1D datasets considered
in the main paper. In Figures 10 through 14, we plot the original data, generated samples from each model,
and various pointwise statistics for the real and generated samples. Curves in black indicate the corresponding
pointwise statistic for the original dataset (top row). The green error bands represent the minimal and maximal
value of the pointwise statistic from 500 samples across ten random seeds of the corresponding model. The
dashed green lines indicate the mean pointwise statistic across these ten runs for each model. See Table 1 for a
quantitative comparison derived from these figures.
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Figure 10: Various pointwise statistics on the AEMET dataset.
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Figure 11: Various pointwise statistics on the Population dataset.
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Figure 12: Various pointwise statistics on the GDP dataset.
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Figure 13: Various pointwise statistics on the Labor dataset.
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Figure 14: Various pointwise statistics on the Genes dataset.
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A.3.4 Additional Results: Navier-Stokes Dataset

In this section, we provide additional visualizations and evaluation on the Navier-Stokes dataset, corresponding to
the samples in Figure 2 and Table 2a in the main paper. The first row of Figure 15 plots a Gaussian KDE with a
fixed bandwidth of 0.5 for the pixel-wise values of both the real and generated samples across all methods. We
observe that FFM and DDPM closely match the ground-truth distribution, whereas DDO places too much mass
around zero, and GANO learns a multimodal distribution. In the second row, we plot the spectrum of both the
real and generated samples, i.e. the log-energy as a function of the wavenumber. We see that FFM and DDPM
closely match the true spectrum for low wavenumbers, whereas the fits of DDO and GANO are less close. For all
models, the generated samples fail to match the true spectrum at high wavenumbers. We obtain quantiative
metrics from these visualizations by considering the pointwise MSE between the ground truth and generated
curves to obtain the metrics in Table 2a.

Figure 15: Additional visualizations corresponding to the samples in Figure 2 and Table 2a. We use 1000 samples
from each of the models.

A.4 Conditional Models

In addition to unconditional generation of functions, we demonstrate that our method can be extended to perform
conditional generation. That is, we have access to side information z ∈ Rd (assumed to be finite dimensional) and
we are interested in sampling from the conditional data measure ν( df | z). For instance, z could be a collection
of observed values of some function, and we may be interesting in generating functions which interpolate (or
extrapolate) these given observations. We describe two approaches to performing conditional generation: one
based on a modified training process, and a second based on a modified sampling process. In Figure 5, we
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demonstrate these two approaches on the AEMET dataset.

Conditional Training. Using the unconditional paths of measures µf
t as described in the unconditional setting,

we may define a conditional marginal µt( df | z) by mixing over dν(f | z), i.e. µt(A | z) :=
∫
F µ

f
t (A) dν(f | z).

As long as µf
t is concentrated around f , then µt( df | z) ≈ ν( df | z). Note that this condition is satisfied for the

paths of measures constructed for unconditional generation, and hence no modification is necessary. However,
modifying the conditional measures to account for the information z could potentially be beneficial, and we leave
exploration of such design choices to future work. In all, we obtain a modified loss function

JC(θ) = Et∼U [0,1],z∼q(z),f∼ν( df |z),g∼µf
t

[∥∥∥vft (g)− ut(f | z, θ)
∥∥∥2] . (32)

In other words, we simply adapt our model architecture to also take in conditioning information z at training
time. In practice, because z is assumed to be finite dimensional, we concatenate z to the input of our FNO model
[Li et al., 2021]. We note that a similar loss appears in the context of Flow Matching generative models for video,
as proposed by [Davtyan et al., 2022].

Conditional Sampling. As an alternative, we may instead modify the sampling process to account for z.
This allows one to train an unconditional model and sample conditionally at generation time (in contrast to
the conditional training setup, which only allows you to condition on the particular form of z you have trained
on). Here, we assume that z = (x⃗, y⃗) consists of a collection of function observations, and that we would like to
generate functions whose values match those observed in z.

In order to achieve this, at time t ∈ [0, 1], we take a step as dictated by our ODE solver and model vector field to
obtain a function f̃t. Next, we flow the information contained in z forwards for t seconds along the conditional
vector field designated by our model to obtain zt = (x⃗, y⃗t). Then, we set ft(x⃗) = y⃗t. This approach can be seen as
an extension of the ILVR method, which has been successfully applied to diffusion models for conditional image
generation [Choi et al., 2021] and diffusion models for conditional function generation [Kerrigan et al., 2023].
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