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Abstract

We propose a new regret minimization al-
gorithm for episodic sparse linear Markov
decision process (SMDP) where the state-
transition distribution is a linear function
of observed features. The only previously
known algorithm for SMDP requires the
knowledge of the sparsity parameter and or-
acle access to an unknown policy. We over-
come these limitations by combining the dou-
bly robust method that allows one to use
feature vectors of all actions with a novel
analysis technique that enables the algo-
rithm to use data from all periods in all
episodes. The regret of the proposed algo-
rithm is Õ(σ−1

mins⋆H
√
N), where σmin denotes

the restrictive the minimum eigenvalue of the
average Gram matrix of feature vectors, s⋆ is
the sparsity parameter, H is the length of an
episode, and N is the number of rounds. We
provide a lower regret bound that matches
the upper bound to logarithmic factors on a
newly identified subclass of SMDPs. Our nu-
merical experiments support our theoretical
results and demonstrate the superior perfor-
mance of our algorithm.

1 INTRODUCTION

The goal of reinforcement learning (RL) is to maximize
the cumulative expected reward while simultaneously
learning the unknown transition structure of the un-
derlying Markov decision process (MDP). RL has been
applied to robotics (Kober et al., 2013), human-level
game plays (Mnih et al., 2013; Silver et al., 2016), di-
alogue systems (Li et al., 2016), among others (Barto
et al., 2017). Modern RL applications have exponen-
tially large, possibly infinite state space, and therefore
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tabular RL (Auer et al., 2008; Osband et al., 2016;
Azar et al., 2017; Dann et al., 2017; Jin et al., 2018;
Strehl et al., 2006) is intractable, and value function
approximation is essential.

RL with deep neural networks-based value function
approximation had empirical success in a variety
of settings with high dimensional state and action
spaces (Mnih et al., 2013, 2016; Schulman et al., 2015).
However, providing theoretical guarantees for these
methods has been challenging because, in the high
dimensional setting, most states are not visited even
once during a set of learning episode (Sutton and
Barto, 2018; Szepesvári, 2022) Consequently, there
was an effort to establish convergence results when
the true (unknown) value function is assumed to be
a linear function of d features (Hu et al., 2022; Zhou
et al., 2021; He et al., 2021a,b). Extensions to the set-
ting where the value function is within a prescribed
distance from a linear function (Cai et al., 2020; Jin
et al., 2023; Ayoub et al., 2020; Zanette et al., 2020),
and to settings the state transition, and therefore, the
value function, is a sparse linear function of the fea-
tures, i.e., a linear function of s⋆ ≪ d features (Jiang
et al., 2017; Sun et al., 2019; Agarwal et al., 2020;
Hao et al., 2021b). The latter class of problems in-
cludes low-rank MDPs and sparse linear Markov de-
cision processes (SMDPs). It is known that when hu-
mans play video games, their strategy depends on a
few significant pixels. Once the set of informative fea-
tures is identified, a policy linear in these features is of-
ten optimal (Barto et al., 2017). The SMDP approach
provides flexibility over linear function approximation
since one is now allowed to consider a much larger set
d≫ 1 of features and select only the s⋆ ≪ d informa-
tive features. In the SMDP setup, we jointly estimate
the informative features and a linearly parameterized
value function that is close to optimal.

Most of the prior work using sparse linear approxima-
tion is for offline RL, and the extension to online RL
has remained challenging. Hao et al. (2021b) proposed
the first online algorithm for RL with sparse linear ap-
proximation with a regret bound that is logarithmic
in the number of features d. However, their algorithm
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requires knowledge of the number of informative fea-
tures s⋆, and needs oracle access to an exploratory pol-
icy, and, unfortunately, identifying such a policy is as
hard as designing the learning algorithm. Therefore,
the problem of designing a practical online algorithm
for RL with sparse linear function approximation re-
mains open.

Our main contributions are as follows.

(a) Online RL with bandit feedback is hard because
only samples for the Q-value function of the se-
lected actions are observed. We propose a novel
algorithm that leverages a technique called dou-
bly robust (DR) estimation to impute values for
the Q-values for unselected actions (Section 4).
The estimator proposed by Hao et al. (2021b) re-
quires oracle access to an exploratory policy in or-
der to guarantee that Q-value estimates converge
to the true Q-values. In contrast, our estimator
converges to the optimalQ-value function without
the oracle access to an exploratory policy, which
is possible using features of all actions.

(b) We develop a new analysis technique that care-
fully accounts for the dependence between Q-
value estimates for different periods h, which al-
lows us to use data from all H periods and all
n episodes to estimate the Q-value function of a
time-homogeneous MDP (Section 5.1). In con-
trast, previous methods partition the episodes
into H groups and use the h-th group to estimate
the Q-value function for period h. Thus, our esti-
mation method increases the number of effective
samples from n/H to n.

(c) We leverage our estimation to propose new al-
gorithm RDRLVI for homogeneous SMDPs whose
regret is Õ(σ−1

mins⋆H
√
N) (Theorem 5.5), where

σmin is the restrictive minimum eigenvalue defined
in Definition 3.2 and s⋆ is the sparsity param-
eter defined in Definition 3.1. RDRLVI does not
require knowledge of the number of informative
features s⋆ and does not need oracle access to an
exploratory policy, and yet the regret bound that
is logarithm in the number of features d.

(d) We provide a novel lower bound on the regret for
SMDPs (Theorem 3.2). We show that the lower
bound critically depends on σmin. For SMDP in-
stances with σ2

min ≥ s⋆/d we show that the regret
of our proposed algorithm is tight to within loga-
rithmic factors; whereas when σ2

min ≤ s⋆/d there
is a gap that needs to addressed. This result is an
improvement and an extension of the lower bound
results for sparse linear bandits.

(e) The results of our numerical experiments demon-
strate the superior performance of the proposed
algorithm over the previously known algorithms.
The results empirically verify the dependence of
regret on σmin, and that the regret is almost inde-
pendent of the dimension of the feature vector d.

2 RELATED WORK

Function approximation MDP is introduced by Sut-
ton (1988); Tsitsiklis and Van Roy (1996) and Bradtke
and Barto (1996). For inhomogeneous episodic MDP,
Hu et al. (2022) and Zhou et al. (2021) proved an
Õ(dH3/2

√
N) regret bound with a nearly matching

lower bound when the optimal value function is as-
sumed to be a linear function of the features, and He
et al. (2021a) established a logarithmic regret bound
when there is a positive sub-optimality gap. Jin et al.
(2023); Ayoub et al. (2020) and Zanette et al. (2020)
established a regret bound when the true value func-
tion is within a prescribed distance from a linear func-
tion. For offline RL, Jiang et al. (2017) and Sun et al.
(2019) considered a larger class of MDPs that have, re-
spectively, low Bellman rank and witness rank. Agar-
wal et al. (2020) introduced the low-rank MDP setting
where the algorithm chooses a low-dimensional feature
from a certain function class. Kolter and Ng (2009);
Geist and Scherrer (2011) and Painter-Wakefield and
Parr (2012) studied the feature selection in offline RL
using ℓ1 regularization. Finite sample guarantees for
offline RL were established by Ghavamzadeh et al.
(2011); Geist et al. (2012) and Hao et al. (2021a).

Online SMDP reduces to contextual linear bandits
with sparse parameters when the episode length H =
1. Abbasi-Yadkori et al. (2012) proposed an algorithm
that achieves an Õ(

√
s⋆dN) regret bound and matches

a lower bound established in Lattimore and Szepesvári
(2020). Hao et al. (2020) and Jang et al. (2022) pro-
posed an algorithm with a regret upper bound that
does not have

√
d and depends only on the mini-

mum eigenvalue of the Gram matrix of contexts. (Oh
et al., 2021) and (Kim and Paik, 2019; Bastani and
Bayati, 2020) use results in high dimensional statis-
tics (Bühlmann and Van De Geer, 2011; van de Geer
and Bühlmann, 2009) to establish regret bounds that
depend on the restrictive minimum eigenvalue and the
compatibility condition, respectively. Even though the
fact that (restrictive) minimum eigenvalue is the criti-
cal parameter determining the upper and lower bound
of regret for linear bandits is known, extending these
results to the SMDP is nontrivial and remains open.

Applying the DR method (Bang and Robins, 2005;
Fleiss et al., 2013) to bandit literature was introduced
by Kim and Paik (2019) and Dimakopoulou et al.
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(2019). A line of linear bandit literature applied the
DR method to design an algorithm with improved re-
gret bound Kim et al. (2023b,c) and near-optimal re-
gret bound Kim et al. (2021, 2023d) However, all pre-
ceding works are limited to (sparse) linear bandits, and
extending these results to online sparse linear RL is
nontrivial.

3 SPARSE LINEAR MARKOV
DECISION PROCESS

In this section, we present the problem formulation of
the SMDP and a lower bound that depends only on
the restrictive minimum eigenvalue for the regret.

3.1 Problem Formulation

Let MDP(X ,A, H,P, r) denote an episodic homoge-
neous MDP where X and A are the sets of possi-
ble states and actions, H ∈ N is the length of each
episode, P is the state transition probability measure,
and r is the reward function. We allow the cardinal-
ity of the state space X to be infinite but require A
to have finite cardinality |A|. For x ∈ X and a ∈ A,
the probability measure P(·|x, a) denotes over the state
in the next time if action a is taken in state x, and
r : X × A → [0, 1] is the deterministic reward func-
tion. For simplicity of exposition, we assume that the
reward function is known; all our results hold when
the reward is unknown.

An agent interacts with this episodic MDP as follows.
At the beginning of each episode, an initial state x1
is sampled from the unknown distribution P0. Then,
in each period h ∈ [H], the agent observes the state
xh ∈ X , picks an action ah ∈ A, and receives a re-
ward r (xh, ah). The MDP evolves into a new state
xh+1 drawn from the probability measure P (·|x, a).
The episode terminates after H interactions, i.e. when
xH+1 is observed. Note that the agent does take an
action at xH+1 and hence receives no reward.

We focus on the sparse linear Markov decision process
(SMDP) defined as follows.

Definition 3.1 (Sparse linear MDP, Hao et al.
(2021b)). The MDP(X ,A, H,P, r) is s⋆-sparse to a
(known) feature map ϕ : X × A → [−1, 1]d if there
exists an (unknown) function ψ = (ψ1(x), . . . , ψd(x)) :
X → Rd and an (unknown) set I⋆ ⊆ [d] with |I⋆| :=
s⋆ ≪ d such that ψi(x) = 0 for all x ∈ X and i ̸∈ I⋆,
and

P (Xh+1 = x|Xh = x′, ah = a′) = ϕ(x′, a′)⊤ψ(x),

=
∑
i∈I⋆

ϕi(x
′, a′)ψi(x)

for all h ∈ [H] and (x′, a′) ∈ X × A. We denote a
sparse MDP by SMDP (X ,A, H, ϕ, ψ, r).

A policy π := (π1, . . . , πH) where πh : X → ∆A, h ∈
[H], is a function from the state X to the set ∆A of
probability distributions over A. Let

V π
h (x) := Eπ

[
H∑

h′=h

r (xh′ , ah′)

∣∣∣∣∣xh = x

]
, ∀x ∈ X ,

denote the expected reward of policy π over periods
h, . . . ,H when the state in period h ∈ [H] is x. For
(x, a) ∈ X ×A, define the Q-value function

Qπ
h(x, a) := r (x, a) + Ex′∼P( ·|xh=x,ah=a)

[
V π
h+1(x

′)
]
,

which is the expected value of cumulative rewards over
[h,H] when the agent takes action a ∈ A in period h,
and follows policy π thereafter. Since |A| and H are
both finite, there always exists an optimal policy π⋆

that achieves the optimal value V ⋆
h (x) = supπ V

π
h (x)

for all x ∈ X and h ∈ [H] (see e.g. Puterman

(2014)). Let Â denote an algorithm that takes as in-

put (X ,A, H, ϕ, r) (ψ is not known to Â) and a se-
quence of episodes and computes a sequence of policies
π̂(1), . . . , π̂(N). The total regret R(N, Â) of Â over N
episodes

R(N, Â) :=

N∑
n=1

[
V ⋆
1 (x

(n)
1 )− V π̂(n)

1 (x
(n)
1 )
]
,

where V ⋆
1 (x

(n)
1 ) − V π̂(n)

1 (x
(n)
1 ) denotes the regret over

episode n ∈ [N ].

For f : X → R, let [Pf ](x, a) := Ex′∼P(·|x,a)f(x
′).

Then the Q-value function Qπ
h(x, a) and the value

function V π
h (x) of the policy π is given by the Bell-

man equation: For all (x, a) ∈ X ×A,

Qπ
h(x, a) = r (x, a) + [PV π

h+1](x, a),

V π
h (x) = Ea∼πh(x) [Q

π
h(x, a)] , V π

H+1(x) = 0.
(1)

The optimal Q-value function Q⋆
h(x, a) and the opti-

mal value V ⋆
h (x) is given by the Bellman equations:

Q⋆
h(x, a) = r (x, a) +

[
PV ⋆

h+1

]
(x, a),

V ⋆
h (x) = max

a∈A
Q⋆

h(x, a), V ⋆
H+1(x) = 0.

(2)

The Bellman equation (2) implies that the optimal
policy is the greedy policy with respect to the opti-
mal Q-value function {Q⋆

h}h∈[H]. Thus, to identify the
optimal policy π⋆, it suffices to estimate the optimal
Q-value functions.

We will extensively use a result that, for SMDPs, the
Q-value function is linear in the feature map ϕ.
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Proposition 3.1 (Sparse linearity of the expected
value function). For an SMDP(X ,A, H, ϕ, ψ, r) and
for any policy π, there exists a set of vectors {wπ

h ∈
Rd : h ∈ [H]} such that

[PV π
h ](x, a) = ϕ(x, a)⊤wπ

h .

for all (x, a) ∈ X × A, and the i-th entry of wπ
h = 0

for all h ∈ [H] and i /∈ I⋆.

3.2 A Regret Lower Bound

Proposition 3.1 implies that the learning task for
SMDPs reduces to estimating weights {wπ

h}h∈[H]. The
following restricted minimum eigenvalue is critical in
this estimation task.

Definition 3.2 (Restrictive minimum eigenvalue).
The restricted minimum eigenvalue (RME) for a pos-
itive semi-definite matrix M ∈ Rd×d as a function of
a sparsity parameter s ∈ [d] is defined as follows:

σmin(M, s) := min
I⊂[d],|I|≤s

{β⊤Mβ

∥βI∥22
: ∥βIc∥1≤3 ∥βI∥1

}
.

The restricted minimum eigenvalue (RME) of the ma-
trix M is the minimum value of the quadratic form
β⊤Mβ
β⊤
I βI

, when β is restricted to the set {β ∈ Rd :

∥βIc∥1 ≤ 3∥βI∥1, |I| = s}. The RME controls the rate
of convergence in sparse linear reinforcement learning
(Hao et al., 2021a) and was introduced by Bühlmann
and Van De Geer (2011) to understand the properties
of the Lasso estimator. The RME is also essential for
establishing finite sample bounds for the Lasso estima-
tors (see Lemma B.4 for details), and Raskutti et al.
(2011) established an RME-dependent lower bound on
the ℓ1 error for any estimator.

Let Σ(π) := Eπ
[
1
H

∑H
h=1 ϕ(x

(n)
h , a

(n)
h )ϕ(x

(n)
h , a

(n)
h )⊤

]
denote the expected Gram matrix over the states and
actions from a policy π. Let πU denote the policy
that chooses actions uniformly over the set A for all
h ∈ [H] and x ∈ X , and let ΣU := Σ(πU ) denote
the expected Gram matrix of the uniform policy πU .
Let SE (resp. SH) denote a collection of SMDP in-
stances of which satisfy σmin(Σ

U , s⋆) ≥
√
s⋆/d (resp.

σmin(Σ
U , s⋆) <

√
s⋆/d). We show that the lower

bound on the regret of any algorithm on an SMDP
instance depends on whether the instance is in SE or
SH.

Theorem 3.2 (SMDP Regret Lower Bound.). Sup-
pose N ≥ s⋆ ≥ 5 and d ≥ s2⋆. Then for any algorithm

Â,

sup
SMDP∈SE

E[R(N,Â)]≥min

{
Hs⋆

√
N

20σmin(ΣU, s⋆)
, HN

}
, (3)

(a) Upper and lower regret bound when ds⋆ > 25N .

(b) Upper and lower regret bound when ds⋆ ≤ 25N .

Figure 1: Illustration of the regret lower bound (solid)
and upper bound (dashed) proved in this paper (ignor-
ing logarithmic terms). Our upper bound matches the
lower bound for SMDPs in SE or when ds⋆ > 25N .

and

sup
SMDP∈SH

E[R(N,Â)] ≥ min

{
H
√
s⋆dN

5
, HN

}
. (4)

The HN term in the bounds is from the rewards
bounded by 1. For instances in SE, i.e. when the
RME σmin(Σ

U , s⋆) ≥
√
s⋆/d the lower bound (3) does

not depend on dimension d, which is because the RME
provides enough variability on the s⋆ non-zero entries
of the feature vectors to estimate the non-zero entries
of {w⋆

h}h∈[H].

The RME σmin(Σ
U , s⋆) is a measure of the variabil-

ity of the s⋆ informative features: when RME is large
(small), the reward provides a strong (weak) signal
of the s⋆ non-zero features, and therefore, it is easier
(harder) to select the s⋆ informative features; result-
ing in the faster (slower) convergence of the estimator.
As the RME increases, the lower bound decreases be-
cause it is easier to identify I⋆. However, when RME
σmin(Σ

U , s⋆) ≤
√
s⋆/d, the features do not have suf-

ficient variability on I⋆ and any algorithm must esti-
mate all d entries of the weight {w⋆

h}h∈[H], resulting
in d appearing in the regret bound (4).

We compare the regret upper and lower bounds (ig-
noring the trivial HN term and logarithmic terms)
in Figure 1. The regret of our proposed algorithm
is tight within a logarithmic term on SE or when
ds⋆/25 > N > Ω(log7 d), i.e. d is large compared
to N ; however, there is a gap for SMDPs in SH when
d ≤ 25N/s⋆.

The bound (4) generalizes Ω(
√
s⋆dN) lower bound

for sparse linear bandits established by Lattimore
and Szepesvári (2020) to SMDPs. When d ≥ N ,

Hao et al. (2020) proved Ω(λ
−1/3
min s

1/3
⋆ N2/3) regret
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bound and Jang et al. (2022) improved the result to

Ω(λ
−1/3
min s

2/3
⋆ N2/3), where λmin is the (unrestricted)

minimum eigenvalue. Hao et al. (2021b) proved an
Ω(dH) regret bound when d ≥ N for SMDPs. How-
ever, the impact of the restrictive minimum eigenvalue
on the regret lower bound for general d and N has
not been discovered. Theorem 3.2 establishes a lower
bound for SMDPs with any d and N , and sparse linear
bandits as a special case. Furthermore, we identify SE

and a novel lower bound where the regret depends on
the RME instead of d. When λmin = σmin(Σ

U , s⋆),
the lower bound (3) is an improvement over the best

known lower bound Ω(λ
−1/3
min s

2/3
⋆ N2/3) for sparse lin-

ear bandits. This is because N2/3 ≤ d
1
6

√
N ≤

λ
1/3
mins

1/3
⋆

√
N is implied by the assumption that d ≥ N

and σmin(Σ
U , s⋆) ≥

√
s⋆/d. The proof of the lower

bound is in Appendix C.2.

4 PROPOSED METHOD

We propose a novel estimator and an algorithm that
uses features from all actions, periods, and episodes.

4.1 Randomized Doubly Robust Q-Value
Function

The Bellman equation (2) and Proposition 3.1 implies,

V ⋆
h (x

′) =max
a′∈A

{
r (x′, a′) +

[
PV ⋆

h+1

]
(x′, a′)

}
=max

a′∈A

{
r (x′, a′) + ϕ(x′, a′)⊤w⋆

h+1

}
.

Thus, it follows that

[PV ⋆
h ](x, a) = ϕ(x, a)⊤w⋆

h

= Ex′∼P(·|x,a)

[
max
a′∈A

{r (x′, a′) + ϕ(x′, a′)⊤w⋆
h+1}

]
.

Then,

max
a′∈A

Q̂w⋆
h+1

(x′, a′) := max
a′∈A

{r (x′, a′)+ϕ(x′, a′)⊤w⋆
h+1}

is an unbiased estimator for ϕ(x, a)⊤w⋆
h for any (x, a) ∈

X × A when x′ is generated from the distribution
P(·|x, a). Since w⋆

h+1 is unknown, we need an esti-

mate w
(n)
h+1 for w⋆

h+1 using data from n episodes and
H periods.

For period k ∈ [H] and action a ∈ A, let X
(τ)
k+1(a)

denote a random sample of the state according to

P(·|x(τ)k , a). Note that X
(τ)
k+1(a

(τ)
k ) = x

(τ)
k+1. Let

Π[0,H](x) := min{max{x, 0}, H} is a projection func-
tion onto [0, H]. Let

Ŷ
w

(n)
h+1

(x
(τ)
k , a) :=Π[0,H]

(
max
a′∈A

Q̂
w

(n)
h+1

(X
(τ)
k+1(a), a

′)
)

(5)

denote an estimate for the Q-value function on (x
(τ)
k , a)

for a ∈ A. For τ ∈ [n] and k ∈ [H], we only ob-

serve x
(τ)
k+1 = X

(τ)
k+1(a

(τ)
k ), the estimate (5) is observ-

able only when a = a
(τ)
k . Therefore, the conventional

least square value iteration for (inhomogeneous) MDP
estimates w⋆

h by minimizing the loss function,

n∑
τ=1

{
Ŷ
w

(n)
h+1

(x
(τ)
h , a

(τ)
h )− w⊤

h ϕ(x
(τ)
h , a

(τ)
h )
}2

. (6)

Hao et al. (2021b) equally divide n episodes into
H partitions {Dh}h∈[H] and estimate w⋆

h using the
episodes in Dh, i.e., by minimizing the loss function,∑
τ∈Dh

H∑
k=1

{
Ŷ
w

(n)
h+1

(x
(τ)
k , a

(τ)
k )− w⊤

h ϕ(x
(τ)
k , a

(τ)
k )
}2

. (7)

The loss function (7) sums up over k ∈ [H], enabling
the estimation procedure to use a Gram matrix that
sums up over all periods k ∈ [H] in each episode. How-

ever, in order to ensure that the estimate for w
(n)
h is

independent of w
(n)
k for k > h, the estimator of w

(n)
h

can only use episodes in Dh, since w
(n)
h+1 in (7) is esti-

mated with (x
(τ)
k , a

(τ)
k )k∈[H],τ∈Dh+1

. In order to use all
n episodes in each estimation, the correlation between

w
(n)
h+1 and (x

(τ)
k , a

(τ)
k )k∈[H],τ∈Dh+1

need to be analyzed
carefully.

While the loss functions (6) and (7) used in previ-

ous work only utilize selected actions a
(τ)
k , we con-

sider the estimated Q-value function Ŷ
w

(n)
h+1

(x
(τ)
k , a)

for unselected actions a ̸= a
(τ)
k as missing data and

apply the DR method to develop a novel estimator

that uses all actions. Let ã
(τ)
k denote a random vari-

able sampled from the Uniform distribution on A, i.e.,

P(ã(τ)k = a) = |A|−1, independent of all other random
variables. We define the pseudo-reward analogous to
the DR method as follows:

Ỹ
(τ)
w,k(a) :=

I(ã(τ)k = a)

|A|−1
Ŷw(x

(τ)
k , a)

+

{
1−

I(ã(τ)k = a)

|A|−1

}
ϕ(x

(τ)
k , a)⊤ŵ

Im(n)
h ,

(8)

where the imputation estimator

ŵ
Im(n)
h = argmin

wh

{
λ
(n)
Im ∥wh∥1 +

n∑
τ=1

H∑
k=1

(
Ŷ
ŵ

(n)
h+1

(x
(τ)
k , a

(τ)
k )− w⊤

h ϕ(x
(τ)
k , a

(τ)
k )
)2}

.

(9)

Taking expectation over ã
(τ)
k on both sides of (8) gives

E[Ỹ (τ)
h,k (a)] = Ŷh(x

(τ)
k , a). Thus, the pseudo-reward

Ỹ
(τ)
h,k (a) is unbiased for all a ∈ A.
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Still, we observe Ŷh(x
(τ)
k , a) only when a = a

(τ)
k and we

resample ã
(τ)
k until ã

(τ)
k = a

(τ)
k . The resampling further

randomizes the policy and connects it to the uniform

policy. Let M(τ)
k denote the event of obtaining the

matching ã
(τ)
k = a

(τ)
k with certain number of resam-

ples. On the event M(τ)
k , we use unbiased pseudo-

rewards {Ỹ (τ)
h,k (a)}a∈A, otherwise we do not use the

data. Let ŵ
(n)
H+1 = 0 and we will construct our estima-

tor ŵ
(n)
h recursively for h = H, . . . , 2 by minimizing

ŵ
(n)
h = argmin

wh

{
λ
(n)
Est ∥wh∥1 +

n∑
τ=1

H∑
k=1

I(M(τ)
k )

∑
a∈A

(
Ỹ

(τ)

ŵ
(n)
h+1,k

(a)− w⊤
h ϕ(x

(τ)
k , a)

)2}
,

(10)

where λ
(n)
Est > 0 is another regularization parameter.

Although ŵ
(n)
h+1 is correlated with x

(τ)
k , we develop a

novel analysis technique to obtain finite sample guar-
antees (see Section 5.1 for details). Note that with a

sufficiently large number of resamples, the event M(τ)
k

happens with high probability. Then our estimator
utilizes data that are not used by previous works in
that (i) we use unbiased pseudo-rewards and feature
vectors of all arms in A and (ii) we use all data points
in τ ∈ [n] instead of splitting them into independent
partitions as in (7). These two novel contributions en-
able us to design a practical and optimal algorithm for
SMDP.

4.2 Proposed Algorithm

Our proposed algorithm, Randomized Doubly Robust
Lasso Value Iteration (RDRLVI), is described in Algo-

rithm 1. The RDRLVI samples a
(n)
h as ϵ-greedy algo-

rithm with ϵ = 1 − (1 − n−1/2)
1
H in order to induce

exploration. Before taking the action a
(n)
h , RDRLVI re-

samples at most M
(n)
h = log(H(τ +1)2/δ)/ log(1/(1−

|A|−1)) times to ensure that the pseudo-action ã
(n)
h =

a
(n)
h . Since P(ã(τ)k = a

(τ)
k ) = |A|−1

, the matching event
Mk(τ) occurs with probability at least 1− δH−1(τ +
1)−2. The resampling couples the ϵn-greedy policy
with the uniform policy. This coupling is crucial for
employing the doubly robust estimator that is able to
transfer information across actions to converge faster
than conventional estimators (Theorem 5.2). In prac-
tice, resampling succeeds within a few trials; however,

if there is no match after M
(τ)
h trials, the algorithm

does not update the estimators.

The computational complexity of RDRLVI is higher
than the previous algorithm because it needs to com-
pute the imputation estimator and pseudo-rewards.

Algorithm 1 Randomized Doubly Robust Lasso
Value Iteration (RDRLVI)

INPUT: Confidence parameter (δ > 0).

Initialize ŵ
(0)
1 = · · · = ŵ

(0)
H = 0 and set ŵ

(n)
H+1 = 0.

for Episode n = 1, . . . , N do

Receive the initial state x
(n)
1 .

Set ϵn = 1− (1− n−1/2)
1
H

Set M
(n)
h = ln(H(τ + 1)2/δ)/ ln(1/(1− |A|−1))

for period h = 1, . . . ,H do

while (ã
(n)
h ̸= a

(n)
h ) and (count ≤M

(n)
h ) do

Sample ã
(n)
h ∼ unif(A)

Select a
(n)
h using ϵn-greedy policy

a
(n)
h =


argmax

a∈A
{Π[0,H]

(
Q̂

ŵ
(n−1)
h+1

(x
(n)
h , a)

)
w.p. 1− ϵn,

∼ unif(|A| − 1)
w.p. ϵn.

count = count + 1
end while
Play a

(n)
h

end for
for period h = H, . . . , 1 do

Update ŵ
Im(n)
h by minimizing the loss (9).

if ã
(n)
h ̸= a

(n)
h then

Set ŵ
(n)
h := ŵ

(n−1)
h

else
Compute pseudo-rewards Ỹ

(τ)

ŵ
Im(n)
h ,k

(a) in (8).

Compute ŵ
(n)
h by minimizing the loss (10).

end if
end for

end for

However, this additional cost is compensated by the
benefits: RDRLVI uses all samples in estimating value
function resulting in a faster convergence rate (The-
orem 5.2) and a significantly superior regret bound
(Theorem 5.5) – all without requiring oracle access to
an exploratory policy whose expected Gram matrix
has positive RME, or the knowledge of σU and s⋆.
This relaxation is possible since the algorithm collects
features from all actions in A to compose a Gram ma-
trix with a larger RME than a Gram matrix generated
by an exploratory policy.

5 REGRET ANALYSIS

Next, we present our novel analysis to establish an
upper bound for the regret of RDRLVI.
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5.1 Analysis for Tail Inequality

First, we bound the regret in terms of the ℓ1 error of

the estimator ŵ
(n)
h .

Lemma 5.1 (Regret decomposition). Let ÂRDRLVI de-
note Algorithm RDRLVI, and for each n ∈ [N ], define

ŵ
(n)
H+1 = 0 and

w̄
(n)
h :=

∫
X
Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+1

(x, a′)

)
ψ(x)dx, (11)

Then, for any N1 ∈ [N ],

R(N,ÂRDRLVI)≤2H(
√
N+N1)+2

N−1∑
n=N1

H∑
h=2

∥ŵ(n)
h −w̄(n)

h ∥1.

In the bound, the first term comes from the ϵn = 1−
(1−n−1/2)

1
H -greedy policy in RDRLVI and the number

of episodes N1 required to obtain an effective ℓ1- error

bound of the estimator ŵ
(n)
h .

The parameter w̄
(n)
h defined in (11) yields the expecta-

tion of the estimate Q̂ of the true Q-value over the true

state-transit distribution, i.e., ϕ(x
(τ)
k , a

(τ)
k )⊤w̄

(n)
h =

E[Π[0,H](maxa′∈A Q̂ŵ
(n)
h+1

(X, a′))|x(τ)k , a
(τ)
k ] and the es-

timator ŵ
(n)
h is the finite sample approximate of w̄

(n)
n .

As ŵ
(n)
h converges to w̄

(n)
h for all h ∈ [H], the ex-

pected Q-value functions ϕ(x, a)⊤w̄
(n)
h satisfy the Bell-

man equation for the optimal policy (2) and converges
to w⋆

h.

Theorem 5.2 (Tail inequality for the estimator). For

any given δ ∈ (0, 1), set λ
(n)
Im := 8H

√
n log 2dHn2

δ and

λ
(n)
Est := 9|A|H

√
n log 2dHn2

δ . Then, there exists an

absolute constant C such that for all h ∈ [H] \ {1},
and n ≥ Cσ−4

U s4⋆H
2 log5(dHn2/δ) log2(2d),∥∥∥ŵ(n)

h − w̄
(n)
h

∥∥∥
1
≤ 8s⋆
σU

√
n

√
log

dHn2

δ
,

with probability at least 1 − 12δ, where w̄
(n)
h defined

in (11) and σU := σmin(Σ
U , s⋆).

Note that the episode length H appears only as√
log(H) in the convergence rate of our estimator.

This is a significant improvement compared to the
rate Õ(σ−1

U s⋆(n/H)−
1
2 ) of the estimator in Hao et al.

(2021b) of which estimator only uses n/H episodes in
each period h.

The main challenge here is to obtain a bound for the
residual,

η
(τ)

ŵ
(n)
h+1,k

(a) :=Ŷ
ŵ

(k)
h+1

(x
(τ)
k , a)

−
[
PΠ[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+1

(x, a′)
)]
(x

(τ)
k , a).

Here, ŵ
(n)
h+1 is correlated with (x

(τ)
k )k∈[H],τ∈[n] result-

ing in a bias. However, for sufficiently large n, the

residual η
(τ)

ŵ
(n)
h+1,k

is close to η
(τ)
w⋆

h+1,k
and the worst-case

bias can be bounded. For ρ > 0, define Wh+1(ρ) :=

{w ∈ Rd : ∥w − w⋆
h+1∥1 ≤ ρ} and let ϕ

(τ)
k :=

ϕ(x
(τ)
k , ã

(τ)
k ) and η

(τ)

ŵ
(n)
h+1,k

:= η
(τ)

ŵ
(n)
h+1,k

(ã
(τ)
k ). We decom-

pose the residual vector as the worst case bound on
the vicinity of w⋆

h+1 and on w⋆
h+1,∥∥∥∥∥

n∑
τ=1

H∑
k=1

η
(τ)

ŵ
(n)
h+1,k

ϕ
(τ)
k

∥∥∥∥∥
∞

≤

∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)
w⋆

h+1,k
ϕ
(τ)
k

∥∥∥∥∥
∞

+ sup
w∈Wh+1(ρ)

∥∥∥∥∥
n∑

τ=1

H∑
k=1

(
η
(τ)
w,k − η

(τ)
w⋆

h+1,k

)
ϕ
(τ)
k

∥∥∥∥∥
∞

.

(12)

The following lemma bounds the worst case bound on
Wh+1(ρ).

Lemma 5.3 (Worst-case bound on the sum of resid-

uals). Suppose n3 ≥ 16e2 and let a
(τ)
1 , . . . , a

(τ)
H de-

note the selected actions by policy π(τ) and ϕ
(τ)
k :=

ϕ(x
(τ)
k , a

(τ)
k ). Then for any policy π(τ),

sup
w∈Wh+1(ρ)

∥∥∥∥∥
n∑

τ=1

H∑
k=1

{
η
(τ)
w,k(a

(τ)
k )−η(τ)w⋆

h+1,k
(a

(τ)
k )
}
ϕ
(τ)
k

∥∥∥∥∥
∞

≤ ρ
√

2nH log 2d
(
8 +

256
√
3

3
log3/2

Hdn2

δ

)
,

with probability at least 1− δ/(Hn2).

The proof Lemma 5.3 involves nontrivial extensions
using Rademacher complexity for sequential data de-
veloped by Rakhlin et al. (2015), and details are in
Appendix B.4.

Another challenge arises in bounding the first term of
(12). By definition of the optimal value function, it fol-

lows that η
(τ)
w⋆

h+1,k
= V ⋆

h (X
(τ)
k+1(ã

(τ)
k ))−[PV ⋆

h ](x
(τ)
k , ã

(τ)
k ).

To bound the sum of the conditional variance of V ⋆
h ,

previous inequalities (e.g., Lemma C.5 in Jin et al.
(2018)) are not applicable because the actions are not
from the optimal policy, and the summation is over
the state k ∈ [H] not the index of the value function
h ∈ [H]. Hence, we develop the novel inequality in the
following lemma.

Lemma 5.4 (Bound on sum of variance of the optimal

value functions). Let a
(τ)
1 , . . . , a

(τ)
H denote a sequence

of actions selected by a policy π(τ) and H(τ) denote

the sigma algebra generated by {x(u)h′ , a
(u)
h′ }u∈[τ ],h′∈[H]

Then, for any policy π(τ) and h ∈ [H], the sum of the
variance of the optimal value function is bounded by

E
[ H∑
k=1

{
V ⋆
h (x

(τ)
k+1)−[PV ⋆

h ] (x
(τ)
k , a

(τ)
k )
}2∣∣∣∣H(τ−1)

]
≤10H2.
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With two novel lemmas, we bound the sum of residuals
of Q-value function in (12) by Õ(H

√
n). Lemma 5.3

and Lemma 5.4 can applied to handle correlation for a
more general class of estimators. We defer the detailed
derivation in Appendix C.3.

5.2 A Regret Bound of RDRLVI

Theorem 5.5 (A regret bound of RDRLVI). Fix δ ∈
(0, 1). Then, with probability at least 1− 12δ,

R(N, ÂRDRLVI)≤min

{
HN,

16s⋆H

σU

√
N log dHN2

+ 2H
(√

N +
CH2s4⋆
σ4
U

log5
dHN2

δ
log22d

)}
,

(13)

for all N ≥ Cs4⋆H
2 log2(2d)

σ4
U

log5
2ds4/5⋆ H2/5

eσ4/5
√
δ

, where C > 0

is an absolute constant.

The first HN term represents the trivial bound result-
ing from the rewards bounded by 1. Thus, the leading
order term is Õ(σ−1

U s⋆H
√
N). For the SMDP such

that σ2
U ≥ s⋆/d, the upper regret bound matches the

lower bound (3) up to logarithmic factors. As long as
σU does not change, our regret bound increases in the
logarithmic of the ambient dimension d.

In Section 6.1, we discuss how σU and d affect the
regret RDRLVI in our numerical experiments.

With oracle access to an exploratory policy πE such

that σE := σmin(Σ
πE

, s⋆) is a positive constant inde-
pendent of d and N , Hao et al. (2021b) established

an Õ(σ
− 2

3

E H
4
3 s

2
3
⋆N

2
3 ) regret bound for SMDP. If s⋆

and σmin are unknown, the regret bound increases to

Õ(σ−1
minH

7/3s
5/3
⋆ N2/3). Lemma B.1) establishes that

the uniform policy πU is also exploratory whenever the
SMDP admits an exploratory policy. Therefore, one
can design an algorithm that uses πU as default choice
for an exploratory policy; however, simply using πU for
pure exploration results in high regret. We employ πU

to introduce the random pseudo-actions ã
(τ)
k for the

DR method and use features from all actions. This
approach yields Õ(σ−1

U Hs⋆N
1
2 ) regret bound, without

the oracle access to πE , s⋆ and σE .

SMDPs are a special case of low-rank MDPs with a
function class Φ with cardinality |Φ| = O(sd⋆); however,
the low-rank MDP results imply a loose bound for the
SMDP. Specifically, Lemma 9 in Uehara et al. (2021)
implies Õ(Hs2⋆|A|2

√
N log |Φ|) = Õ(Hs2⋆|A|2

√
Nd)∗

regret bound for the SMDP. By leveraging the linear
structure, we establish a Õ(σ−1

U s⋆H
√
N log(dHN2))

regret bound, independent of |A| and logarithmic in d.
Thus, we are able to accommodate exponentially large

Figure 2: Logarithmic of cumulative regret of the
proposed RDRLVI algorithm on RME σU . The dots
are average regret based on ten experiments, and the
slope of the right regression line is −0.76 (s⋆ = 12) and
−1.28 (s⋆ = 24), respectively. The slopes of the flat
regression lines are both −0.06. The figure supports
our regret bound (13) which is proportional to σ−1

U

and converges to HN as σU decreases to 0.

Figure 3: Cumulative regrets of the proposed RDRLVI

algorithm on increasing ambient dimensions d with
σU = 1/6. The dots and error bars represent the aver-
age and standard deviation based on ten experiments.
As d increases, the regret remains flat since the algo-
rithm selects s⋆ features among d features.

action spaces. Note that our bound is tighter when
σU = Ω̃(s−1

⋆ |A|−2d−1/2), and, as Hao et al. (2021a)
pointed out, σU is a constant in many applications of
interest.

6 EXPERIMENTS

In this section, we discuss the results of numerical ex-
periments that validate our theoretical results and su-
perior performance of RDRLVI. We use an environment
where the RME σU is explicitly computable. Details
of the setting are in Appendix A.1.

6.1 Empirical Analysis of the Regret Bound

Figure 2 shows the two-phase behavior of the cumu-
lative regret as the RME σU decreases to 0. We set
H = 10 and N = 500 for s⋆ = 12 case and N = 1000
for s⋆ = 24 case. For sufficiently large value of σU ,
log R(N, Â) decreases linearly with log(σU ) with the
slope −0.76 for s⋆ = 12 (−1.28 for s⋆ = 24). The slope
decreases for larger s⋆ because of the impact of the
first term in (13). For sufficiently small σU , the regret
reaches a plateau as it converges to the trivial bound
HN . These results validate our regret bound (13).

In Figure 3, we plot the cumulative regret as a func-
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(a) Cumulative regret comparison

(b) Average episodic regret comparison

Figure 4: Comparison of regrets of the proposed
RDRLVI with Lasso-FQI (Hao et al., 2021b). The line
and shade represent the average and standard devia-
tion based on ten experiments. The figures show that
RDRLVI finds a low-regret policy while exploiting the
reward.

tion of d for a RME σU = 1/6, H = 10, N = 500 and
s⋆ = 8 (see Appendix A.2 for results for other values of
s⋆). The results show that when RME is sufficiently
large, RDRLVI quickly identifies the s⋆ non-zero fea-
tures, and the dimension d does not impact the regret
of the algorithm.

6.2 Comparison of RDRLVI and Lasso-FQI

We compare our RDRLVI with the Lasso fitted-Q-
iteration algorithm (Lasso-FQI) proposed by Hao
et al. (2021b). Lasso-FQI uses oracle access to the
exploratory policy πE , the size of the active entries
s⋆ and RME σE . Hao et al. (2021b) proposed that
the number of episodes N1 for exploration bet set to
N1 := (2048s2⋆H

4N2σ−2
E log(2dH/δ))1/3. However, N1

involves worst-case bounds, and the algorithm may
over-explore. Hence, we reduce the number of episodes

used for exploration toN1 := H4/3N2/3s
2/3
⋆ σ−1

E . Simi-
larly, RDRLVI uses reduced the reduced value for λIm :=
H
√
n log(2dH/δ) with δ = 0.1.

Figure 4 show cumulative and episodic regrets of the
proposed RDRLVI and Lasso-FQI when d = 200,
H = 2, s⋆ = 24, and σU = σE = 1 (for re-
sults on other parameters, see Appendix A.2). Since
Lasso-FQI chooses action according to the exploratory
πE without using the estimated value function when
n ≤ N1, it causes high regret in most episodes. When
n ≥ N1, Lasso-FQI finds the high-reward policy and
takes greedy action until the end of the episodes. In
contrast, the proposed RDRLVI finds the low-regret pol-
icy while selecting the best action at each episode.
We see that RDRLVI balances the trade-off between ex-

ploration and exploitation by using unbiased pseudo-
rewards and features of all actions and possible states.
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conditions used to prove oracle results for the lasso.
Electronic Journal of Statistics, 3:1360–1392, 2009.

Andrea Zanette, David Brandfonbrener, Emma Brun-
skill, Matteo Pirotta, and Alessandro Lazaric. Fre-
quentist regret bounds for randomized least-squares
value iteration. In International Conference on Ar-
tificial Intelligence and Statistics, pages 1954–1964.
PMLR, 2020.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari.
Nearly minimax optimal reinforcement learning for
linear mixture markov decision processes. In Confer-
ence on Learning Theory, pages 4532–4576. PMLR,
2021.



A Doubly Robust Approach to Sparse Reinforcement Learning

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]



Wonyoung Kim, Garud Iyengar, Assaf Zeevi

A Doubly Robust Approach to Sparse Reinforcement Learning:
Supplementary Materials

A SUPPLEMENTARY MATERIALS FOR EXPERIMENTS

A.1 Experiment Setting

In this section, we present the setting used in our numerical experiment. For given d, let U
(τ)
1 ∈ [−1, 1]d denote a

random variable whose entries are independent and have equal probability on [−1, 1] and we sample initial state

x
(τ)
1 := ((U (τ))⊤, 1)⊤. For given s⋆ = 4, 8, 12, . . ., we set A := [s⋆]. For each a ∈ A, the reward is

r (x, a) := I (xd+1 = 1) (1− a− 1

s⋆
) + I (xd+1 = −1)

a

2s⋆
,

which heavily depends on the last entry of state xd+1. When xd+1 = −1, the maximum reward is 1/2 and
increasing in a. In contrast, when xd+1 = 1, the maximum reward is 1 and decreasing in a. Let ν := a mod (s⋆/4).
For any σ > 0, we define feature,

ϕ(x, a)⊤ := σ(−x1, . . . ,−xν−1, xν , . . . , xs⋆/2,−xs⋆/2+1, . . . ,−x3s⋆/4−ν+1, x3s⋆/4−ν+2 . . . , xs⋆ , xs⋆+1, . . . , xd)

The σ > 0 will control the (restrictive) minimum eigenvalue σU . To define transition distribution of states, let
x1:d := (x1, . . . , xd), and

ψ(x1:d, 1)
⊤ := 2σ−1s−1

⋆ (x−1
1 , . . . , x−1

s⋆/2
, 0, . . . , 0),

ψ(x1:d,−1)⊤ := 2σ−1s−1
⋆ (0, . . . , 0, x−1

s⋆/2+1, . . . , x
−1
s⋆ , 0, . . . , 0).

Now we obtain the transition probability,

P ( (x1:d, 1)| (x1:d, 1), a) = ϕ((x1:d,±1), a)⊤ψ(x1:d, 1) = 1− 4(ν − 1)

s⋆

P ( (x1:d,−1)| (x1:d, 1), a) = ϕ((x1:d,±1), a)⊤ψ(x1:d,−1) =
4(ν − 1)

s⋆
.

Because x
(τ)
1:d = U

(τ)
1 , we have σU = σ/6. The optimal policy is to choose a = 1, where the state stays xd+1 = 1

and reward r (x, 1) = 1. Therefore, the optimal policy gains HN reward for N episodes.

A.2 Additional Experiment Results

In this section, we present additional numerical results demonstrating the superior performance of RDRLVI. In
Figure 5, we plot the cumulative regret as a function of d for a RME σU = 1/6, H = 10 and N = 1000 with two
different values of s⋆ = 16, 24. The results show that, for other environments than in Section 6.1, RDRLVIalso
quickly finds the s⋆ non-zero weights, and the dimension does not impact the regret.

As in Section 6.2, we present additional results of comparing LASSO-FQI (Hao et al., 2021b) with our RDRLVI.
Figure 6 shows cumulative and episodic regrets of LASSO-FQI and our RDRLVI. The results show that, for other
environments than in Section 6.2, RDRLVIalso finds the low-regret policy while selecting the best action at each
episode. We see that RDRLVIbalances the trade-off between exploration and exploitation by using unbiased
pseudo-rewards and features of all actions and possible states.
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(a) Regret changes with increasing d when s⋆ = 16. (b) Regret changes with increasing d when s⋆ = 24.

Figure 5: Cumulative regrets of the proposed RDRLVI algorithm on increasing ambient dimensions d with
σU = 1/6, H = 10, and N = 1000. The dots and error bars represent the average and standard deviation
based on ten experiments. As d increases, the regret remains flat since the algorithm selects s⋆ features among
d features.

(a) Cumulative regret comparison (H = 3, s⋆ = 8). (b) Cumulative regret comparison (H = 5, s⋆ = 4).

(c) Episodic regret comparison (H = 3, s⋆ = 8). (d) Episodic regret comparison (H = 5, s⋆ = 4)

Figure 6: Comparison of regrets of the proposed RDRLVI with Lasso-FQI (Hao et al., 2021b) when d = 200
and σU = 1. The line and shade represent the average and standard deviation based on ten experiments. The
figures show that RDRLVI finds a low-regret policy while exploiting the reward and achieves lower regret than
Lasso-FQI.

B TECHNICAL LEMMAS

In this section, we present technical lemmas used in our analysis. We provide proof after the novel lemmas.

B.1 Comparison of an Exploratory Policy and the Uniform Policy

Lemma B.1 (Comparison of σU and σE). Let π
E denote an exploratory policy such that σE := σmin(Σ(π

E), s⋆) >
0 and πE(x, a) denote the probability of selecting an action a ∈ A for the state x ∈ X . Then,

σU ≥
(

max
(x,a)∈X×A

πE(x, a) |A|
)−H

σE . (14)

Remark B.2. The inequality (14) does not involve d and N . While the cost of the worst-case of replacing the
πE by πU involves |A| and H, it does not involve d or N . We can redefine an exploratory policy πE close to the
uniform policy which gives max(x,a)∈X×A π

E(x, a) = O(|A|−1).

Proof. Let Φ(x, a) := ϕ(x, a)ϕ(x, a)⊤. Let a1, . . . , aH denote a sequence of actions selected by the policy πE .
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Note that

HΣπE

:=EπE

[
H∑

k=1

Φ(xk, ak)

]

=EπE

[
H∑

k=2

Φ(xk, ak)

]
+ EπE

[E [Φ(x1, a1)|x1]]

=EπE

[
H∑

k=2

Φ(xk, ak)

]
+ EπE

[
E

[∑
a∈A

πE(x1, a)Φ(x1, a)

∣∣∣∣∣x1
]]

=EπE

[
H∑

k=2

Φ(xk, ak)

]
+ EπE

[∑
a∈A

πE(x1, a)Φ(x1, a)

]
.

where πE(x, a) is the probability that the policy πE selects an action a when the state is x. Recursively, we
obtain,

HΣπE

=

H∑
k=1

EπE

[∑
a∈A

πE(xk, a)Φ(xk, a)

]
.

Because x1 is sampled from P0,

EπE

[∑
a∈A

πE(x1, a)Φ(x1, a)

]
=

∫
X

∑
a∈A

πE(z1, a)Φ(z1, a)dP0(z1).

Using the SMDP setting, for each k ≥ 2,

EπE

[∑
a∈A

πE(xk, a)Φ(xk, a)

]

= EπE

[
E

[∑
a∈A

πE(xk, a)Φ(xk, a)

∣∣∣∣∣xk−1, ak−1

]]

= EπE

[∫
X

∑
a∈A

πE(zk, a)Φ(zk, a)ϕ(xk−1, ak−1)
⊤ψ(zk)dzk

]

= EπE

[
E

[∫
X

∑
a∈A

πE(zk, a)Φ(zk, a)ϕ(xk−1, ak−1)
⊤ψ(zk)dzk

∣∣∣∣∣xk−1

]]

= EπE

∫
X

∑
uk∈A

∑
uk−1∈A

πE(zk, uk)Φ(zk, uk)π
E(xk−1, uk−1)ϕ(xk−1, uk−1)

⊤ψ(zk)dzk

 .
Applying the equality recursively, we obtain,

EπE

[∑
a∈A

πE(xk, a)Φ(xk, a)

]

=

∫
Xk

k∑
j=1

∑
uj∈A

Φ(zk, uk)

 k∏
j=1

πE(zj , uj)

 k∏
j=2

ϕ(zj−1, uj−1)
⊤ψ(zj)

 dzk · · · dz2dP(z1)

⪯
(

max
(x,a)∈X×A

πE(x, a)

)k ∫
Xk

k∑
j=1

∑
uj∈A

Φ(zk, uk)

 k∏
j=2

ϕ(zj−1, uj−1)
⊤ψ(zj)

 dzk · · · dz2dP(z1)
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Because πU (x, a) = |A|−1,

EπE

[∑
a∈A

πE(xk, a)Φ(xk, a)

]

=
(
|A| max

(x,a)∈X×A
πE(x, a)

)k∫
Xk

k∑
j=1

∑
uj∈A

Φ(zk, uk)

( k∏
j=1

πU (zj , uj)

)( k∏
j=2

ϕ(zj−1, uj−1)
⊤ψ(zj)

)
dzk · · · dz2dP(z1)

⪯
(
|A| max

(x,a)∈X×A
πE(x, a)

)kEπU

[∑
a∈A

πU (xk, a)Φ(xk, a)

]
.

Thus,

HΣπE

⪯
H∑

k=1

(
|A| max

(x,a)∈X×A
πE(x, a)

)k

EπU

[∑
a∈A

πU (xk, a)Φ(xk, a)

]

⪯
(
|A| max

(x,a)∈X×A
πE(x, a)

)H H∑
k=1

EπU

[∑
a∈A

πU (xk, a)Φ(xk, a)

]

=

(
|A| max

(x,a)∈X×A
πE(x, a)

)H

EπU

[
H∑

k=1

Φ(Hk, ak)

]
.

This concludes the proof.

B.2 Lower Bound for the Restrictive Minimum Eigenvalue

Lemma B.3. (Corollary 6.8 in Bühlmann and Van De Geer (2011)) Let Σ0 and Σ1 be two positive semi-
definite block diagonal matrices. Suppose that the restricted eigenvalue of Σ0 satisfies σmin(Σ0, s) > 0 and
∥Σ1 − Σ0∥∞ ≤ σmin(Σ0, s)/(32s). Then the restrictive eigenvalue of Σ1 satisfies σmin(Σ1, s) > σmin(Σ0, s)/2.

B.3 An Error bound for the Lasso Estimator

Lemma B.4. (An ℓ1-error bound for Lasso estimator) Let {xτ}τ∈[t] denote the covariates in [−1, 1]d and yτ =

x⊤τ w̄ + eτ for some w̄ ∈ Rd and eτ ∈ R. For λ > 0, let

ŵt = argmin
w

t∑
τ=1

(
yτ − x⊤τ w

)2
+ λ ∥w∥1 .

Let S̄ := {i ∈ [d] : w̄(i) ̸= 0} and Σt :=
∑t

τ=1 xτx
⊤
τ . Suppose ∥

∑t
τ=1 eτxτ∥ ≤ λ

4 , for some λ > 0 and
∥t−1Σt − Σ̄∥∞ ≤ 32|S̄|−1σmin(Σ̄,

∣∣S̄∣∣) for some Σ̄ ∈ Rd×d. Then the ℓ1-error is bounded as

∥ŵt − w̄∥1 ≤
8λ
∣∣S̄∣∣

tσmin

(
Σ̄,
∣∣S̄∣∣) .

Proof. Let X⊤
t := (x1, . . . , xt) ∈ [−1, 1]d×t and e⊤t := (e1, . . . , et) ∈ Rt. We write Xt(j) and ŵt(j) as the j-th

column of Xt and j-th entry of ŵt, respectively. By definition of ŵt,

∥Xt (w̄ − ŵt) + et∥22 + λ ∥ŵt∥1 ≤
∥∥∥e(j)t

∥∥∥2
2
+ λ ∥w̄∥1 ,

which implies

∥Xt (w̄ − ŵt)∥22 + λ ∥ŵt∥1 ≤2 (ŵt − w̄)
⊤
X⊤

t et + λ ∥w̄∥1
≤2 ∥ŵt − w̄∥1

∥∥X⊤
t et

∥∥
∞ + λ ∥w̄∥1

≤λ
2
∥ŵt − w̄∥1 + λ ∥w̄∥1 ,
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where the last inequality uses the bound on λ. On the left hand side, by triangle inequality,

∥ŵt∥1 =
∑
i∈S̄

|ŵt(i)|+
∑

i∈[d]\S̄

|ŵt(i)|

≥
∑
i∈S̄

|ŵt(i)| −
∑
i∈S⋆

|ŵt(i)− w̄(i)|+
∑

i∈[d]\S̄

|w̄(i)|

= ∥w̄∥1 −
∑
i∈S̄

|ŵt(i)− w̄(i)|+
∑

i∈[d]\S̄

|ŵt(i)|

and for the right-hand side,

∥ŵt − w̄∥1 =
∑
i∈S̄

|ŵt(i)− w̄(i)|+
∑

i∈[d]\S̄

|ŵt(i)| .

Plugging in both sides and rearranging the terms,

2 ∥Xt (w̄ − ŵt)∥22 + λ
∑

i∈[d]\S̄

|ŵt(i)| ≤ 3λ
∑
i∈S̄

|ŵt(i)− w̄(i)| . (15)

The inequality (15) implies
∑

i∈[d]\S̄ |ŵt(i)− w̄(i)| ≤ 3
∑

i∈S̄ |ŵt(i)− w̄(i)| and

∥Xt (w̄ − ŵt)∥22 ≥σmin

(
X⊤

t Xt,
∣∣S̄∣∣)∑

i∈S̄

|ŵt(i)− w̄(i)|2

≥
σmin

(
X⊤

t Xt,
∣∣S̄∣∣)∣∣S̄∣∣

∑
i∈S̄

|ŵt(i)− w̄(i)|

2

≥
σmin

(
tΣ̄,
∣∣S̄∣∣)

2
∣∣S̄∣∣

∑
i∈S̄

|ŵt(i)− w̄(i)|

2

,

where the last inequality holds by assumption ∥t−1Σt − Σ̄∥∞ ≤ 32|S̄|−1σmin(Σ̄,
∣∣S̄∣∣) and Lemma B.3. Plugging

in (15) gives,

2 ∥Xt (w̄ − ŵt)∥22 + λ

 ∑
i∈[d]\S̄

|ŵt(i)|+
∑
i∈S̄

|ŵt(i)− w̄(i)|

 ≤4λ

√
2
∣∣S̄∣∣

σmin

(
tΣ̄,
∣∣S̄∣∣) ∥Xt (w̄ − ŵt)∥2

≤
8λ2

∣∣S̄∣∣
σmin

(
tΣ̄,
∣∣S̄∣∣) + ∥Xt (w̄ − ŵt)∥2 ,

where the last inequality uses ab ≤ a2/4 + b2. Rearranging the terms,

∥Xt (w̄ − ŵt)∥22 + λ ∥ŵt − w̄∥1 ≤
8λ2

∣∣S̄∣∣
σmin

(
tΣ̄,
∣∣S̄∣∣) ,

which proves the result.

B.4 Sequential Rademacher Complexity for Martingales

The following lemma connects the sum of martingale differences to the sequential Rademacher complexity.

Lemma B.5. (Lemma 4 in Rakhlin et al. (2015).) Let Zi ∈ Z denote a stochastic process adapted to filtration Hi

and F a class of functions f : Z → [−1, 1]. Let z := (z1, . . . , zn) denote a sequence of binary trees zi : {±1}i−1 →
Z and {ξi}i∈[n] denote independent Bernoulli random variables such that P(ξi = −1) = P(ξ = 1) = 1/2. Then
for any α > 0,

P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

f(Zi)− E [Zi|Hi−1]

∣∣∣∣∣ > α

)
≤ 4 sup

z
P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

ξif(zi(ξ1, . . . , ξi−1))

∣∣∣∣∣ > α

4

∣∣∣∣∣ z
)
.
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We provide a novel lemma for a bound for sequential Rademacher complexity (Rakhlin et al., 2015). The
following lemma is a generalization of Lemma 6 in Rakhlin et al. (2015).

Lemma B.6. (Bound for sequential Rademacher complexity) Let {ξi}i∈[n] denote independent Bernoulli random
variables such that P(ξi = −1) = P(ξ = 1) = 1/2 and z := (z1, . . . , zn) denote a sequence of binary trees zi :
{±1}i−1 → Z. Let F denote a class of functions f : Z → [−1, 1]. For a fixed tree z and ϵ > 0, let N(ϵ,F , ∥·∥∞,z)
denote a covering number of F in the norm defined by ∥f∥∞,z := max{ξi}i∈[n]∈{±1}n |f(z(ξ1, . . . , ξn)|. Then with
probability at least 1− δ,

sup
f∈F

∣∣∣∣∣
n∑

i=1

ξif(zi(ξ1:i−1))

∣∣∣∣∣ ≤ 2 inf
α>0

{
nα+ 2

∫ 1/2

α

√
3n log

N(ϵ,F , ∥ · ∥∞,z)√
δ

dϵ

}
.

Proof. For given ϵ > 0, define ϵj = 2−j . For a fixed tree z of depth n, let Vj be an ϵj-cover with respect to
ℓ∞-norm, ∥ · ∥∞,z. For any path ξ := {ξi}i∈[n] ∈ {±1}n and any f ∈ F , let v(j)(f, ξ) ∈ Vj denote a ϵj-close
element of the cover in the ∥ · ∥∞,z-norm. Now for any f ∈ F and J ∈ N,∣∣∣∣∣

n∑
i=1

ξif(zi(ξ1:i−1))

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

ξi

{
f(zi(ξ1:i−1))− v

(J)
i (f, ξ1:i−1)

}∣∣∣∣∣+
J∑

j=1

∣∣∣∣∣
n∑

i=1

ξi

{
v
(j)
i (f, ξ1:i−1)− v

(j−1)
i (f, ξ1:i−1)

}∣∣∣∣∣
≤ nmax

i∈[n]

∣∣∣f(zi(ξ1:i−1))− v
(J)
i (f, ξ1:i−1)

∣∣∣+ J∑
j=1

∣∣∣∣∣
n∑

i=1

ξi

{
v
(j)
i (f, ξ1:i−1)− v

(j−1)
i (f, ξ1:i−1)

}∣∣∣∣∣
≤ n max

ξ′∈{±1}n
max
i∈[n]

∣∣∣f(zi(ξ′1:i−1))− v
(J)
i (f, ξ′1:i−1)

∣∣∣+ J∑
j=1

∣∣∣∣∣
n∑

i=1

ξi

{
v
(j)
i (f, ξ1:i−1)− v

(j−1)
i (f, ξ1:i−1)

}∣∣∣∣∣
= n∥f(z)− v(J)(f)∥∞,z +

J∑
j=1

∣∣∣∣∣
n∑

i=1

ξi

{
v
(j)
i (f, ξ1:i−1)− v

(j−1)
i (f, ξ1:i−1)

}∣∣∣∣∣
Because v(N)(f, ξ) ∈ VN ,

sup
f∈F

∣∣∣∣∣
n∑

i=1

ξif(zi(ξ1:i−1))

∣∣∣∣∣ ≤ nϵJ + sup
f∈F

 J∑
j=1

∣∣∣∣∣
n∑

i=1

ξi

{
v
(j)
i (f, ξ1:i−1)− v

(j−1)
i (f, ξ1:i−1)

}∣∣∣∣∣
 .

To bound the second term, consider all possible pairs of vr ∈ Vj−1 and vs ∈ Vj , for r ∈ [|Vj−1|] and s ∈ [|Vj |].
For each pair (vr,vs), define a real-valued tree w(j|r,s)by

w
(j|r,s)
i (ξ) :=

{
vs
i (ξ)− vr

i (ξ) if there exists f ∈ F s.t. vs = v(j)(f, ξ),vr = v(j−1)(f, ξ)

0 otherwise
,

for all i ∈ [n] and ξ ∈ {±1}n. Note that w(j|r,s) is non-zero only on those ξ such that v(r)and v(s) are the
members of covers Vj and Vj−1 close in the ∥ · ∥∞,z-norm for some f ∈ F . Define the set of trees Wj ,

Wj := {w(j|r,s) : 1 ≤ r ≤ |Vj−1|, 1 ≤ s ≤ |Vj |}.

Then we get

sup
f∈F

∣∣∣∣∣
n∑

i=1

ξif(zi(ξ1:i−1))

∣∣∣∣∣ ≤nϵJ + sup
f∈F

 J∑
j=1

∣∣∣∣∣
n∑

i=1

ξi

{
v
(j)
i (f, ξ1:i−1)− v

(j−1)
i (f, ξ1:i−1)

}∣∣∣∣∣
 .

≤nϵJ +

J∑
j=1

sup
w(j)∈Wj

∣∣∣∣∣
n∑

i=1

ξiw
(j)
i (ξ1:i−1)

∣∣∣∣∣ .
(16)
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Note that for w(j) ∈Wj , there exists f ∈ F such that

∥w(j)∥∞,z ≤ sup
vr∈Vj−1,vs∈Vj

sup
ξ∈{±1}n

max
i∈[n]

|vr
i (f, ξ1:i−1)− vs

i (f, ξ1:i−1)|

= sup
vr∈Vj−1,vs∈Vj

sup
ξ∈{±1}n

max
i∈[n]

|vr
i (f, ξ1:i−1)− f(zi(ξ1:i−1)) + f(zi(ξ1:i−1))− vs

i (f, ξ1:i−1)|

≤ϵj−1 + ϵj = 3ϵj .

For any measurable set A and λ ∈ R,

E

[
sup

w(j)∈Wj

∣∣∣∣∣
n∑

i=1

ξiw
(j)
i (ξ1:i−1)

∣∣∣∣∣ I (A)
]

= P (A)
E
[
supw(j)∈Wj

∣∣∣∑n
i=1 ξiw

(j)
i (ξ1:i−1)

∣∣∣ I (A)]
P (A)

= P (A)
E
[
log
{
exp

(
λ supw(j)∈Wj

∣∣∣∑n
i=1 ξiw

(j)
i (ξ1:i−1)

∣∣∣)} I (A)
]

λP (A)

≤ P (A)

λ
log

E
[
exp

(
λ supw(j)∈Wj

∣∣∣∑n
i=1 ξiw

(j)
i (ξ1:i−1)

∣∣∣) I (A)]
P (A)


≤ P (A)

λ
log

E
[
exp

(
λ supw(j)∈Wj

∣∣∣∑n
i=1 ξiw

(j)
i (ξ1:i−1)

∣∣∣)]
P (A)

 ,

where the first inequality holds by Jensen’s inequality (Note that E[·I (A)]/P(A) = E[·|A] defines a conditional
distribution). Let us write the covering number N(ϵj) := |Vj |. Because

E

[
exp

(
λ sup

w(j)∈Wj

∣∣∣∣∣
n∑

i=1

ξiw
(j)
i (ξ1:i−1)

∣∣∣∣∣
)]

≤ E

 ∑
w(j)∈Wj

exp

(
λ

∣∣∣∣∣
n∑

i=1

ξiw
(j)
i (ξ1:i−1)

∣∣∣∣∣
)

≤ E

 ∑
w(j)∈Wj

exp

(
λ

n∑
i=1

ξiw
(j)
i (ξ1:i−1)

)
+ exp

(
−λ

n∑
i=1

ξiw
(j)
i (ξ1:i−1)

)
≤ |Wj | exp

(
3λ2ϵjn

2

)
≤ N(ϵj)

2 exp

(
3λ2ϵ2jn

2

)
,

we obtain

E

[
sup

w(j)∈Wj

∣∣∣∣∣
n∑

i=1

ξiw
(j)
i (ξ1:i−1)

∣∣∣∣∣ I (A)
]
≤P (A)

λ

(
3λ2ϵ2jn

2
+ log

N(ϵj)
2

P(A)

)

Setting λ = ϵ−1
j

√
2 log(N2

j /P(A))/(3n),

E

[
sup

w(j)∈Wj

∣∣∣∣∣
n∑

i=1

ξiw
(j)
i (ξ1:i−1)

∣∣∣∣∣ I (A)
]
≤2P (A) ϵj

√
3n log

N(ϵj)√
P(A)
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Summing up over j ∈ [J ],

E

 J∑
j=1

sup
w(j)∈Wj

∣∣∣∣∣
n∑

i=1

ξiw
(j)
i (ξ1:i−1)

∣∣∣∣∣ I (A)
 ≤2P (A)

J∑
j=1

ϵj

√
3n log

N(ϵj)√
P(A)

=2P (A)

J∑
j=1

ϵj
ϵj − ϵj+1

∫ ϵj

ϵj+1

√
3n log

N(ϵj)√
P(A)

dϵ

=4P (A)

J∑
j=1

∫ ϵj

ϵj+1

√
3n log

N(ϵj)√
P(A)

dϵ.

Because N(ϵ) is nonincreasing in ϵ,

E

 J∑
j=1

sup
w(j)∈Wj

∣∣∣∣∣
n∑

i=1

ξiw
(j)
i (ξ1:i−1)

∣∣∣∣∣ I (A)
 ≤4P (A)

J∑
j=1

∫ ϵj

ϵj+1

√
3n log

N(ϵ)√
P(A)

dϵ

=4P (A)

∫ 1/2

ϵJ+1

√
3n log

N(ϵ)√
P(A)

dϵ.

From (16),

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

ξif(zi(ξ1:i−1))

∣∣∣∣∣ I (A)
]
≤P (A)

(
nϵJ + 4

∫ 1/2

ϵJ+1

√
3n log

N(ϵ)√
P(A)

dϵ

)

=2P (A)

(
nϵJ+1 + 2

∫ 1/2

ϵJ+1

√
3n log

N(ϵ)√
P(A)

dϵ

)
.

For any a > 0, let Et(a) := {supf∈F |
∑n

i=1 ξif(zi(ξ1:i−1))| > a}. Then, by Markov inequality,

P (Et(a)) ≤
1

a
E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

ξif(zi(ξ1:i−1))

∣∣∣∣∣ I (Et(a))
]

≤2

a
P (Et(a))

(
nϵJ+1 + 2

∫ 1/2

ϵJ+1

√
3n log

N(ϵ)√
P(Et(a))

dϵ

)
Canceling out the probability terms,

a ≤2

(
nϵJ+1 + 2

∫ 1/2

ϵJ+1

√
3n log

N(ϵ)√
P(Et(a))

dϵ

)
Setting

a = 2

(
nϵJ+1 + 2

∫ 1/2

ϵJ+1

√
3n log

N(ϵ)√
δ
dϵ

)
gives

P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

ξif(zi(ξ1:i−1))

∣∣∣∣∣ > a

)
= P (Et(a)) ≤ δ.

Setting suitable J ∈ N proves the result.

B.5 Probabilistic Inequalities

Lemma B.7. (Exponential martingale inequality) If a martingale (Xt; t ≥ 0), adapted to filtration Ft, satisfies
E [ exp(λXt)| Ft−1] ≤ exp(λ2σ2

t /2) for some constant σt, for all t, then for any a ≥ 0,

P (|XT −X0| ≥ a) ≤ 2 exp

(
− a2

2
∑T

t=1 σ
2
t

)
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Thus, with probability at least 1− δ,

|XT −X0| ≤

√√√√2

T∑
t=1

σ2
t log

2

δ
.

Lemma B.8. (Azuma-Bernstein inequality) Let {Xs}s≥1 denote the martingale difference adapted to the filtra-
tion {Fs}s≥0 such that E [Xs| Fs−1] = 0. Suppose that |Xs| ≤M almost surely for s ≥ 1. Then with probability
at least 1− δ,

n∑
s=1

Xs ≤
2

3
M log

1

δ
+

√√√√2

n∑
s=1

E [X2
s | Fs−1] log

1

δ
.

C MISSING PROOFS

In this section, we provide complete proofs omitted in the manuscript.

C.1 Proof of Proposition 3.1

Proof. For h ∈ [H] and (x, a) ∈ X ×A,

[PhV
π
h ](x, a) :=

∫
X
V π
h (x′)ϕ(x, a)⊤ψ(x′)dx′

=ϕ(x, a)⊤
{∫

X
V π
h (x′)ψ(x′)dx′

}
.

Setting wπ
h :=

∫
X V

π
h (x′)ψ(x′)dx′ proves the result.

C.2 Proof of Theorem 3.2

Proof. Without loss of generality, suppose s⋆ and s = s⋆/2 are even. Let ei ∈ Rs⋆ denote the i-th Euclidean
basis. We set the action space A := [s⋆]

s and the state space X := {−1, 1}d × {x0, xg, xb}. Since d > s2⋆, we can
define ψ(x1,1, . . . , x|S⋆|,2s, x|S⋆|2+1, . . . , xd, x0) := 0. Let us write x1:d := (x1,1, . . . , x|S⋆|,2s, x|S⋆|2+1, . . . , xd). For
σ2 ∈ (0, 1], given (i1, . . . , is) ∈ [s⋆]

s set

ψ(x1:d, xg|i1, . . . , is)⊤ :=
1

σs
(xi1,1e

⊤
i1 , . . . , xis,se

⊤
is︸ ︷︷ ︸

s×s⋆

, 0, . . . , 0),

ψ(x1:d, xb|i1, . . . , is)⊤ :=
1

σs
(xj1,1e

⊤
j1 , . . . , xjs,se

⊤
js︸ ︷︷ ︸

s×s⋆

, 0, . . . , 0),

where jv ∈ [s⋆] \ {iv} for each v ∈ [s]. Note that ψ(x)Sc
⋆

= 0 for S⋆ := {i1, j1, s⋆ + i2, s⋆ + j2, . . . , (s −
1)s⋆ + is, (s − 1)s⋆ + js}. Here, x1:d are sampled independently from d Bernouill distributions over {±1}. For
each v ∈ [s], let zv :=

∑
u∈[s⋆]\{iv} xu,veu. Note that z⊤v eiv = 0 and z⊤v ejv = xjv . Further, for each action

a = (a(1), . . . , a(s)) ∈ A, let yv(a) :=
∑

u∈[|S⋆|]\{iv,a(v)} xu,veu + I (a(v) ̸= iv)xa(v),vea(v). we construct the
feature vectors

ϕ((x1:d, x0), A)
⊤ :=


σ
2 (xi1,1e

⊤
i1 + z⊤1 , . . . , xis,se

⊤
is + z⊤s︸ ︷︷ ︸

s×s⋆

, xs2⋆+1, . . . , xd) a = (i1, . . . , is)

σ(v1xi1,1e
⊤
i1 + y1(a)

⊤, . . . , vsxis,se
⊤
is + ys(a)

⊤︸ ︷︷ ︸
s×s⋆

, xs2⋆+1, . . . , xd) a ̸= (i1, . . . , is)

ϕ((x1:d, xg), A)
⊤ = σ(xi1,1e

⊤
i1 , . . . , xis,se

⊤
is︸ ︷︷ ︸

s×s⋆

, xs2⋆+1, . . . , xd)

ϕ((x1:d, xb), A)
⊤ = σ

(
z⊤1 + v1xi1,1e

⊤
i1 , . . . , z

⊤
s + vsxis,se

⊤
is , xs2⋆+1, . . . , xd

)
,
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where v1, . . . , vs ∈ {±1} satisfies v1 + · · · + vs = 0. The condition σ2 ≤ 1 ensures ∥ϕ(x, a)∥∞ ≤ 1. Under this
construction, the transition probability is

P ( (x1:dxg)| (x1:d, x0), a) = ϕ((x1:d, x0), a)
⊤ψ(x1:d, xg; i1, . . . , is) =

{
1
2 a = (i1, . . . , is)

0 a ̸= (i1, . . . , is)
,

P ( (x1:d, xb)| (x1:d, x0), a) = ϕ((x1:d, x0), a)
⊤ψ(x1:d, xb; i1, . . . , is) =

{
1
2 a = (i1, . . . , is)

1 a ̸= (i1, . . . , is)
,

P ( (x1:d, xb)| (x1:d, xb), a) = ϕ((x1:d, xb), a)
⊤ψ(x1:d, xb; i1, . . . , is) = 1,

P ( (x1:d, xg)| (x1:d, xg), a) = ϕ((x1:d, xg), a)
⊤ψ(x1:d, xg; i1, . . . , is) = 1.

The construction fixes x1:d and the good (xg) or bad state (xb) after the choice of the first step. To evaluate the
restrictive minimum eigenvalue,

ΣπU

= EπU

[
1

H |A|

H∑
h=1

ϕ(Xh, ah)ϕ(Xh, ah)
⊤

]

= EπU

[
1

H |A|

H∑
h=1

∑
a∈A

ϕ(Xh, a)ϕ(Xh, a)
⊤

]

⪰ EπU

[
1

H |A|

H∑
h=2

∑
a∈A

ϕ(Xh, a)ϕ(Xh, a)
⊤

]

= EπU

[
E

[
1

H |A|

H∑
h=2

∑
a∈A

ϕ(Xh, a)ϕ(Xh, a)
⊤

∣∣∣∣∣ a1 ̸= (i1, . . . , is)

]
P (a1 ̸= (i1, . . . , is))

]

= EπU

[
E

[
1

H |A|

H∑
h=2

∑
a∈A

ϕ(Xh, a)ϕ(Xh, a)
⊤

∣∣∣∣∣X2(d+ 1) = · · · = XH(d+ 1) = xb

]
|A| − 1

|A|

]
Because x1:d are independent random variables such that E[xixj ] = 0 and E[x2i ] = 1, we obtain
Eϕ(Xh, a)ϕ(Xh, a)

⊤ = σId for Xh(d+ 1) = xb. Thus,

ΣπU

⪰|A| − 1

H |A|2
H∑

h=2

|A|σ2Id

⪰H − 1

H

|A| − 1

|A|
σ2Id

⪰σ
2

4
Id.

Thus we obtain σmin(i1, . . . , is) := σmin(i1,...,is)(Σ
πU , s⋆) ≥ σ2/4. Define y := min{5/s⋆,

√
s⋆d/N, 1/(σ

2
√
N)} ∈

[0, 1] and set the rewards for good state r ((x1:d, xg), a) = y and for the bad states r ((x1:d, xb), a) = 0 for all
a ∈ A. For the initial state we set r ((x1:d, x0), (i1, . . . , is)) = y/2 and r ((x1:d, x0), (j1, . . . , js)) = y/2. For
a ̸= (i1, . . . , is) and a ̸= (j1, . . . , js) we set, r ((x1:d, x0), a) = 0. Because the optimal policy gains expected

reward HyN/2, for any (i1, . . . , is) ∈ [s⋆]
s and any algorithm Â which generates the policy π̂(n) that selects

â
(n)
1 , . . . â

(n)
H , the expected regret is

E(i1,...,is)

[
R(N, Â)

]
=
Hy

2
N −

N∑
n=1

E(i1,...,is)

[
V π̂(n)

1 (X1)
]
.

By construction of the SMDP,

E(i1,...,is)

[
V π̂(n)

1 (X1)
]

=
Hy

2
E(i1,...,is)

[
I
(
â
(n)
1 = (i1, . . . , is)

)]
+
y

2
E(i1,...,is)

[
I
(
â
(n)
1 = (j1, . . . , js)

)]
≤ Hy

2
E(i1,...,is)

[
I
(
â
(n)
1 = (i1, . . . , is) ∪ â(n)1 = (j1, . . . , js)

)]
.
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Let M
(N)
(i1,...,is)

=
∑N

n=1 I(â
(n)
1 = (i1, . . . , is) ∪ â(n)1 = (j1, . . . , js)). Note that 0 ≤ M

(N)
(i1,...,is)

≤ N , almost surely.

For each v ∈ [s], by Pinsker’s inequality,

E(i1,...,is)

[
M

(N)
(i1,...,is)

]
≤ E(i1,...,iv−10,iv+1...,is)

[
M

(N)
(i1,...,is)

]
+N

√
1

2
D(P(i1,...,iv−10,iv+1...,ip),P(i1,...,ip)),

(17)

where the distribution of E(i1,...,iv−10,iv+1...,is) is constructed by modifying

ψ(x1:d, xg|i1, . . . , iv−10, iv+1 . . . , is)
⊤ :=

1

(s− 1)
(e⊤i1 , . . . , e

⊤
iv−1

, 0⊤, e⊤iv+1
, . . . , e⊤is , 0

⊤, . . . , 0⊤) · 1

2d

ψ(x1:d, xb|i1, . . . , iv−10, iv+1 . . . , is)
⊤ :=

1

(s− 1)
(e⊤j1 , . . . , e

⊤
jv−1

, 0⊤, e⊤jv+1
. . . , , e⊤js , 0

⊤, . . . , 0⊤) · 1

2d

and for ∆ ∈ (0, 1/4) to be determined later

ϕ((x1:d, x0), a)
⊤

:=


(
1
2 +∆

) (
e⊤i1 , . . . , e

⊤
iv−1

, 0⊤, e⊤iv+1
, . . . , e⊤is , 0

⊤, . . . , 0⊤
)

+
(
1
2 −∆

) (
e⊤j1 , . . . , e

⊤
jv−1

, 0⊤, e⊤jv+1
. . . , , xjse

⊤
js
, 0⊤, . . . , 0⊤

)
a = (i1, . . . , is)(

e⊤j1 , . . . , e
⊤
jv−1

, 0⊤, e⊤jv+1
. . . , , xjse

⊤
js
, 0⊤, . . . , 0⊤

)
a ̸= (i1, . . . , is)

.

This construction modifies the distribution when a = (i1, . . . , is)

P (X2(d+ 1) = xg|x0, a) =
1

2
+∆,

P (X2(d+ 1) = xb|x0, a) =
1

2
−∆.

Other feature vectors are constructed as:

ϕ((x1:d, xg), a)
⊤ =

(
e⊤i1 , . . . , e

⊤
iv−1

, 0⊤, e⊤iv+1
, . . . , e⊤is , 0

⊤, . . . , 0⊤
)
,

ϕ((x1:d, xb), a)
⊤ =

(
e⊤j1 , . . . , e

⊤
jv−1

, 0⊤, e⊤jv+1
. . . , , xjse

⊤
js , 0

⊤, . . . , 0⊤
)
,

for all a ∈ A. Then the distribution of P(i1,...,is) and P(i1,...,iv−10,iv+1...,is) only differs when the action of the

first step â
(n)
1 = (i1, . . . , is) (Note that this problem does not count in hard instances and its RME can be zero).

Let D(P1,P2) denote the relative entropy between probability measures P1 and P2 and P(i1,...,is)(a) denote the
distribution of states when a1 = a. By the divergence decomposition (Lemma 15.1 in Lattimore and Szepesvári
(2020)),

D(P(i1,...,iv−10,iv+1...,is),P(i1,...,is))

=
∑
a∈A

E(i1,...,iv−10,iv+1...,is)

[
N∑

n=1

I
(
â
(n)
1 = a

)]
D(P(i1,...,iv−10,iv+1...,is)(a),P(i1,...,is)(a))

= E(i1,...,iv−10,iv+1...,is)

[
N∑

n=1

I
(
â
(n)
1 = (i1, . . . , is)

)]
D(P(i1,...,iv−10,iv+1...,is)((i1, . . . , is)),P(i1,...,is)((i1, . . . , is)))

= E(i1,...,iv−10,iv+1...,is)

[
N∑

n=1

I(â(n)1 = (i1, . . . , is))

]((
1

2
+ ∆

)
log (1 + 2∆) +

(
1

2
−∆

)
log (1− 2∆)

)

= E(i1,...,iv−10,iv+1...,is)

[
N∑

n=1

I(â(n)1 = (i1, . . . , is))

](
log
(
1− 4∆2

)
2

+ ∆ log
1 + 2∆

1− 2∆

)

≤ E(i1,...,iv−10,iv+1...,is)

[
M

(N)
(i1,...,is)

]( log
(
1− 4∆2

)
2

+ ∆ log
1 + 2∆

1− 2∆

)
.
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Because ∆ ≤ 1/4, we have

(
log(1−4∆2)

2 +∆ log 1+2∆
1−2∆

)
≤ 4∆2 and

D(P(i1,...,iv−10,iv+1...,is),P(i1,...,is)) ≤ E(i1,...,iv−10,iv+1...,is)

[
M

(N)
(i1,...,is)

] (
4∆2

)
.

From (17)

E(i1,...,is)

[
M

(N)
(i1,...,is)

]
≤ E(i1,...,iv−10,iv+1...,is)

[
M

(N)
(i1,...,is)

]
+N

√
1

2
D(P(i1,...,iv−10,iv+1...,is),P(i1,...,is))

≤ E(i1,...,iv−10,iv+1...,is)

[
M

(N)
(i1,...,is)

]
+N∆

√
2E(i1,...,iv−10,iv+1...,is)

[
M

(N)
(i1,...,is)

]
From the regret, we obtain

E(i1,...,is)

[
R(N, Â)

]
=
Hy

2
N −

N∑
n=1

E(i1,...,is)

[
V π̂(n)

1 (X1)
]

≥Hy
2
N − Hy

2
E(i1,...,is)

[
M

(N)
(i1,...,is)

]
≥Hy

2

(
N − E(i1,...,iv−10,iv+1...,is)

[
M

(N)
(i1,...,is)

]
−N∆

√
2E(i1,...,iv−10,iv+1...,is)

[
M

(N)
(i1,...,is)

])
.

Taking supremum over (i1, . . . , is) ∈ [s⋆]
s,

sup
(i1,...,is)

E(i1,...,is)

[
R(N, Â)

]
≥ 1

ss⋆

∑
(i1,...,is)

E(i1,...,is)

[
R(N, Â)

]

=
1

ss−1
⋆

s∑
v=1

∑
(i1,...,iv−1,iv+1,...,is)

1

s⋆

s⋆∑
iv=1

E(i1,...,is)

[
R(N, Â)

]
.

Taking the average over iv ∈ [s⋆],

1

s⋆

s⋆∑
iv=1

E(i1,...,is)

[
R(N, Â)

]
≥ Hy

2

1

s⋆

s⋆∑
iv=1

(
N − E(i1,...,iv−10,iv+1...,is)

[
M

(N)
(i1,...,is)

]
−N∆

√
2E(i1,...,iv−10,iv+1...,is)

[
M

(N)
(i1,...,is)

])

≥ Hy

2

N − 1

s⋆
E(i1,...,iv−10,iv+1...,is)

[
s⋆∑

iv=1

M
(N)
(i1,...,is)

]
− N∆

s⋆

√√√√2s⋆E(i1,...,iv−10,iv+1...,is)

[
s⋆∑

iv=1

M
(N)
(i1,...,is)

]
≥ Hy

2

(
N − N

s⋆
−N∆

√
2N

s⋆

)

≥ HyN

2

(
4

5
−∆

√
2N

s⋆

)
,

where the third inequality holds by s⋆ ≥ 5. Setting ∆ = (1/5)
√
s⋆/N ∈ (0, 1/4) gives

1

s⋆

s⋆∑
iv=1

E(i1,...,is)

[
R(N, Â)

]
≥ HyN

5
.
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Thus,

sup
(i1,...,is)

E(i1,...,is)

[
R(N, Â)

]
≥ 1

ss−1
⋆

s∑
v=1

∑
(i1,...,iv−1,iv+1,is)

HyN

5

=
s⋆HyN

5

=Hmin{N,
√
s⋆dN

5
,
s⋆
√
N

5σ2
}

We conclude that there exists (̃i1, . . . , ĩs) ∈ [s⋆]
s such that

E(̃i1,...,̃is)

[
R(N, Â)

]
≥Hmin{N,

√
s⋆dN

5
,
s⋆
√
N

5σ2
}

≥Hmin{N,
√
s⋆dN

5
,

s⋆
√
N

20σmin(̃i1, . . . , ĩs)
},

where the last inequality holds by σmin(̃i1, . . . , ĩs) ≥ σ2/4.

C.3 Proof of Theorem 5.2

Proof. By Lemma B.4, it is sufficient to prove the following inequalities∥∥∥∥∥ 1

nH |A|

n∑
τ=1

H∑
k=1

∑
a∈A

ϕ(x
(τ)
k , a)ϕ(x

(τ)
k , a)⊤ − ΣπU

∥∥∥∥∥
∞

≤ σU
32 |S⋆|

(18)

∥∥∥∥∥
n∑

τ=1

H∑
k=1

∑
a∈A

{
Ỹ

(τ)

ŵ
(n)
h+1

(a)− ϕ(x
(τ)
k , a)⊤w̄

(n)
h

}
ϕ(x

(τ)
k , a)

∥∥∥∥∥
∞

≤ λ
(n)
Est (19)

To prove (18), let A := (a
(1)
1 , . . . , a

(n)
H ) and Ã := (ã

(1)
1 , . . . , ã

(n)
H ) denote a collection of actions selected by the

policy of RDRLVI and pseudo-actions selected by Uniform policy πU , respectively. Let X := (x
(1)
1 , . . . , x

(N)
H )

and X̃h := (x̃
(1)
1 , . . . x̃

(N)
H ) denote a sample path for states under algorithm policy and the uniform policy πU .

Let n1 := min{n ∈ N : n ≥ 1024σ−4
U s4⋆H

2 log 2d2Hn2

δ } and

B(X,A) :=
N⋃

n=n1

{∥∥∥∥∥ 1

nH |A|

n∑
τ=1

H∑
k=1

∑
a∈A

ϕ(x
(τ)
k , a)ϕ(x

(τ)
k , a)⊤ − ΣπU

∥∥∥∥∥
∞

>
σU
32s⋆

}
,

B(X̃, Ã) :=

N⋃
n=n1

{∥∥∥∥∥ 1

nH

n∑
τ=1

H∑
k=1

ϕ(x̃
(τ)
k , ã

(τ)
k )ϕ(x̃

(τ)
k , ã

(τ)
k )⊤ − ΣπU

∥∥∥∥∥
∞

>
σU
32s⋆

}
.

Note the algorithm restricts the event on A = Ã. For Z := (z
(1)
1 , . . . , z

(n)
H ) ∈ XHN ,

P
(
B(X,A) ∩

{
A = Ã

})
=

∫
XNH×ANH×ANH

I (B(X,A)) I
(
A = Ã

)
dP(X,A, Ã)

=

∫
XN

∫
X (H−1)N

∫
ANH

∫
ANH

I (B(X,A)) I
(
A = Ã

) N∏
n=1

H+1∏
h=2

ϕ(z
(n)
h−1, a

(n)
h−1)

⊤ψ
(
x
(n)
h

)
dP(A)dP(Ã)dP(Z)

=

∫
XN

∫
X (H−1)N

∫
ANH

∫
ANH

I
(
B(X, Ã)

)
I
(
A = Ã

) N∏
n=1

H+1∏
h=2

ϕ(z
(n)
h−1, ã

(τ)
h−1)

⊤ψ
(
x
(n)
h

)
dP(A)dP(Ã)dP(Z).

Because the term
N∏

n=1

H+1∏
h=2

ϕ(z
(n)
h−1, ã

(τ)
h−1)

⊤ψ
(
x
(n)
h

)
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is the density function for X̃. we obtain,

P
(
B(X,A) ∩

{
A = Ã

})
=

∫
XN

∫
X (H−1)N

∫
ANH

∫
ANH

I
(
B(X, Ã)

)
I
(
A = Ã

) N∏
n=1

H+1∏
h=2

ϕ(z
(n)
h−1, ã

(τ)
h−1)

⊤ψ
(
x
(n)
h

)
dP(A)dP(Ã)dP(Z)

≤
∫
XN

∫
X (H−1)N

∫
ANH

∫
ANH

I
(
B(X, Ã)

) N∏
n=1

H+1∏
h=2

ϕ(z
(n)
h−1, ã

(τ)
h−1)

⊤ψ
(
x
(n)
h

)
dP(A)dP(Ã)dP(Z)

= P
(
B(X̃, Ã)

)
.

For i, j ∈ [d], let

v
(τ)
ij :=

1

H

H∑
k=1

ϕ(x̃
(τ)
k , ã

(τ)
k )(i)ϕ(x̃

(τ)
k , ã

(τ)
k )⊤(j)− ΣπU

ij .

Then E
[
v
(τ)
ij

]
= 0 and |v(τ)ij | ≤ 1. Applying Lemma B.7, with probability at least 1− 2δ/(dn)2,∣∣∣∣∣

n∑
τ=1

v
(τ)
ij

∣∣∣∣∣ ≤
√
2n log

d2n2

δ
.

Thus, with probability at least 1− 2δ/n2,∥∥∥∥∥ 1

nH

n∑
τ=1

H∑
k=1

ϕ(x̃
(τ)
k , ã

(τ)
k )ϕ(x̃

(τ)
k , ã

(τ)
k )⊤ − ΣπU

∥∥∥∥∥
∞

≤
√

2

n
log

d2n2

δ
.

For all n ≥ n1, we have n ≥ 211σ−2
U s2⋆ log

d2n2

δ and∥∥∥∥∥ 1

nH

n∑
τ=1

H∑
k=1

ϕ(x̃
(τ)
k , ã

(τ)
k )ϕ(x̃

(τ)
k , ã

(τ)
k )⊤ − ΣπU

∥∥∥∥∥
∞

≤ σU
32s⋆

.

Therefore, we obtain,

P
(
B(X,A) ∩

{
A = Ã

})
≤ P

(
B(X̃, Ã)

)
≤

N∑
n=n1

δ

n2
≤ δ,

which proves the inequality (18) for all n ≥ n1. Similarly, we can prove

P

(
N⋃

n=n1

{∥∥∥∥∥ 1

nH

n∑
τ=1

H∑
k=1

ϕ(x
(τ)
k , a

(τ)
k )ϕ(x

(τ)
k , a

(τ)
k )⊤ − ΣπU

∥∥∥∥∥
∞

≥ σU
32s⋆

}
∩
{
A = Ã

})
≤ P

(
B(X̃, Ã)

)
≤ δ,

and with probability at least 1− 2δ,∥∥∥∥∥ 1

nH

n∑
τ=1

H∑
k=1

ϕ(x
(τ)
k , a

(τ)
k )ϕ(x

(τ)
k , a

(τ)
k )⊤ − ΣπU

∥∥∥∥∥
∞

≤ σU
32s⋆

, (20)

for all n ≥ n1.

To prove the inequality (19), recall that for h ∈ [H] and n ∈ [N ],

w̄
(n)
h :=

∫
X
Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+1

(x, a′)

)
ψ(x)dx.

Define

η
(τ)
w,k(a) := Π[0,H]

(
max
a′∈A

Q̂w(X
(τ)
k+1(a), a

′)

)
− E

X∼P
(
·|x(τ)

k ,a
) [Π[0,H]

(
max
a′∈A

Q̂w(X, a
′)

)]
. (21)
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Note that

Ŷ
(τ)

ŵ
(n)
h+1,k

(x
(τ)
k , a)− ϕ(x

(τ)
k , a)⊤w̄

(n)
h

= Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+1

(X
(τ)
k+1(a), a

′)

)
− ϕ(x

(τ)
k , a)⊤w̄

(n)
h

= Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+1

(X
(τ)
k+1(a), a

′)

)
− ϕ(x

(τ)
k , a)⊤

{∫
X
Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+1

(x, a′)

)
ψ(x)dx

}
= Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+1

(X
(τ)
k+1(a), a

′)

)
− E

X∼P
(
·|x(τ)

k ,a
) [Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+1

(X, a′)

)]
:= η

(τ)

ŵ
(n)
h+1,k

(ã
(τ)
k )

and

η̃
(τ)

ŵ
(n)
h+1,k

(a) :=Ỹ
(τ)

ŵ
(n)
h+1

(a)− ϕ(x
(τ)
k , a)⊤w̄

(n)
h

=
I
(
ã
(τ)
k = a

)
|A|−1 η

(τ)

ŵ
(n)
h+1,k

(a) +

1−
I
(
ã
(τ)
k = a

)
|A|−1

ϕ(x
(τ)
k , a)⊤

(
ŵ

Im(n)
h − w̄

(n)
h

)

= |A| η(τ)
ŵ

(n)
h+1,k

(ã
(τ)
k ) +

1−
I
(
ã
(τ)
k = a

)
|A|−1

ϕ(x
(τ)
k , a)⊤

(
ŵ

Im(n)
h − w̄

(n)
h

)
Then the inequality (19) becomes ∥∥∥∥∥

n∑
τ=1

H∑
k=1

∑
a∈A

η̃
(τ)

ŵ
(n)
h+1,k

(a)ϕ(x
(τ)
k , a)

∥∥∥∥∥
∞

≤ λ
(n)
Est.

The left-hand side is decomposed as∥∥∥∥∥
n∑

τ=1

H∑
k=1

∑
a∈A

η̃
(τ)

ŵ
(n)
h+1,k

(a)ϕ(x
(τ)
k , a)

∥∥∥∥∥
∞

≤ |A|

∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)

ŵ
(τ)
h+1,k

(ã
(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

+

∥∥∥∥∥∥
n∑

τ=1

H∑
k=1

∑
a∈A

1−
I
(
ã
(τ)
k = a

)
|A|−1

ϕ(x
(τ)
k , a)⊤

(
ŵ

Im(n)
h − w̄

(n)
h

)
ϕ(x

(τ)
k , a)

∥∥∥∥∥∥
∞

≤ |A|

∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)

ŵ
(τ)
h+1,k

(ã
(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

+

∥∥∥∥∥∥
n∑

τ=1

H∑
k=1

∑
a∈A

1−
I
(
ã
(τ)
k = a

)
|A|−1

ϕ(x
(τ)
k , a)

∥∥∥∥∥∥
∞

∥∥∥ŵIm(n)
h − w̄

(n)
h

∥∥∥
1
,

where the last inequality involves ∥ϕ(x, a)∥∞ ≤ 1. Since

E

∑
a∈A

1−
I
(
ã
(τ)
k = a

)
|A|−1

ϕ(x
(τ)
k , a)

∣∣∣∣∣∣x(τ)k

 = 0,

we can use Lemma B.7 to obtain with probability at least 1− 2δ/(Hn2)∥∥∥∥∥∥
n∑

τ=1

H∑
k=1

∑
a∈A

1−
I
(
ã
(τ)
k = a

)
|A|−1

ϕ(x
(τ)
k , a)

∥∥∥∥∥∥
∞

≤ |A|
√
nH log

dHn2

δ
.
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Thus it is sufficient to prove

|A|

∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)

ŵ
(n)
h+1,k

(ã
(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

+ |A|
√
nH log

dHn2

δ

∥∥∥ŵIm(n)
h − w̄

(n)
h

∥∥∥
1
≤ λ

(n)
Est. (22)

We prove (22) by inductive arguments. For stepH, we have ŵ
(n)
H+1 = 0 and Q̂

ŵ
(n)
H+1

H+1 (x, a) = 0 for all (x, a) ∈ X×A.

This implies η
(τ)

ŵ
(n)
H+1,k

(a) = 0 for all a ∈ A, and the inequality

∥∥∥∥∥
n∑

τ=1

H∑
k=1

{
Ŷ

(τ)

ŵ
(n)
H+1

(x
(τ)
k , a

(τ)
k )− ϕ(x

(τ)
k , a

(τ)
k )⊤w̄

(n)
h

}
ϕ(x

(τ)
k , a

(τ)
k )

∥∥∥∥∥
∞

=

∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
ŵ

(n)
H+1

(a
(τ)
k )ϕ(x

(τ)
k , a

(τ)
k )

∥∥∥∥∥
∞

≤ λ
(n)
Im

holds. By Lemma B.4 and (20), we obtain

∥∥∥ŵIm(n)
H − w̄

(n)
H

∥∥∥
1
≤
8λ

(n)
Im s⋆

HnσU
=

64s⋆
σU

√
n

√
log

dHn2

δ
,

which implies

|A|

∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)

ŵ
(n)
H+1,k

(ã
(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

+ |A|
√
nH log

dHn2

δ

∥∥∥ŵIm(n)
h − w̄

(n)
h

∥∥∥
1

=
64 |A| s⋆

√
H

σU
log

dHn2

δ

≤ 9 |A|H
√
n log

dHn2

δ

= λ
(n)
Est,

where the last inequality holds because n ≥ 212s2⋆σ
−2
U H−1 log(dHn2/δ) for n ≥ n1. Suppose (22) holds for steps

H, . . . , h+ 1. Then by Lemma B.4 and (18),

max
h′≥h+1

∥∥∥ŵ(n)
h′ − w̄

(n)
h′

∥∥∥
1
≤

8λ
(n)
Ests⋆

nH |A|σU
=

72s⋆√
nσU

√
log

dHn2

δ
.

We decompose∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)

ŵ
(n)
h+1,k

(ã
(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

≤

∥∥∥∥∥
n∑

τ=1

H∑
k=1

{
η
(τ)

ŵ
(n)
h+1,k

(ã
(τ)
k )− η

(τ)
w⋆

h+1,k
(ã

(τ)
k )

}
ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

+

∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)
w⋆

h+1,k
(ã

(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

Because ŵ
(n)
h+1 depends on the data, we take supremum over Wh+1 := {w ∈ Rd : ∥w − w⋆

h+1∥1 ≤√
H/(52 log Hdn2

δ

√
log 2d)}. To prove ŵ

(n)
h+1 ∈ Wh+1, we observe∥∥∥ŵ(n)

h+1 − w⋆
h+1

∥∥∥
1
≤
∥∥∥ŵ(n)

h+1 − w̄
(n)
h+1

∥∥∥
1
+
∥∥∥w̄(n)

h+1 − w⋆
h+1

∥∥∥
1

≤
∥∥∥ŵ(n)

h+1 − w̄
(n)
h+1

∥∥∥
1
+
√
s⋆

∥∥∥w̄(n)
h+1 − w⋆

h+1

∥∥∥
2

≤
∥∥∥ŵ(n)

h+1 − w̄
(n)
h+1

∥∥∥
1
+

√
2s⋆
σU

∥∥∥w̄(n)
h+1 − w⋆

h+1

∥∥∥
1

nH

∑n
τ=1

∑H
k=1 ϕ(x̃

(τ)
k ,ã

(τ)
k )ϕ(x̃

(τ)
k ,ã

(τ)
k )⊤

,
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where the last inequality holds by Lemma B.3 and (20). By definition of w̄
(n)
h+1,∥∥∥w̄(n)

h+1 − w⋆
h+1

∥∥∥2
1

nH

∑n
τ=1

∑H
k=1 ϕ(x̃

(τ)
k ,ã

(τ)
k )ϕ(x̃

(τ)
k ,ã

(τ)
k )⊤

≤ max
(x,a)∈X×A

∣∣∣ϕ(x, a)⊤(w̄(n)
h+1 − w⋆

h+1)
∣∣∣

≤ max
(x,a)∈X×A

∣∣∣∣∫ {Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+2

(x′, a)

)
− V ⋆

h+1(x
′)

}
ϕ(x, a)⊤ψ(x′)dx′

∣∣∣∣
≤ max

x′∈X

∣∣∣∣Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+2

(x′, a)

)
−max

a′∈A
Q⋆

h+1(x
′, a)

∣∣∣∣ ∫ ϕ(x, a)⊤ψ(x′)dx′

= max
x′∈X

∣∣∣∣Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+2

(x′, a)

)
−max

a′∈A
Q⋆

h+1(x
′, a)

∣∣∣∣ .
By definition of Q⋆

h+1(x
′, a) = r (x′, a) + ϕ(x′, a)⊤w⋆

h+2 = Q̂w⋆
h+2

(x′, a) ∈ [0, H], we obtain∥∥∥w̄(n)
h+1 − w⋆

h+1

∥∥∥2
1

nH

∑n
τ=1

∑H
k=1 ϕ(x̃

(τ)
k ,ã

(τ)
k )ϕ(x̃

(τ)
k ,ã

(τ)
k )⊤

≤ max
x′∈X

∣∣∣∣Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+2

(x′, a)

)
−max

a′∈A
Q̂w⋆

h+2
(x′, a)

∣∣∣∣
= max

x′∈X

∣∣∣∣Π[0,H]

(
max
a′∈A

Q̂
ŵ

(n)
h+2

(x′, a)

)
−Π[0,H]

(
max
a′∈A

Q̂w⋆
h+2

(x′, a)

)∣∣∣∣
≤ max

x′∈X
max
a′∈A

∣∣∣∣Q̂ŵ
(n)
h+2

(x′, a)−max
a′∈A

Q̂w⋆
h+2

(x′, a)

∣∣∣∣
≤ max

(x,a)∈X×A

∣∣∣ϕ(x, a)⊤ (ŵ(n)
h+2 − w⋆

h+2

)∣∣∣ .
Therefore,∥∥∥ŵ(n)

h+1 − w⋆
h+1

∥∥∥
1
≤
∥∥∥ŵ(n)

h+1 − w̄
(n)
h+1

∥∥∥
1
+

√
2s⋆
σU

max
(x,a)∈X×A

∣∣∣ϕ(x, a)⊤ (ŵ(n)
h+2 − w⋆

h+2

)∣∣∣
≤
∥∥∥ŵ(n)

h+1 − w̄
(n)
h+1

∥∥∥
1
+

√
2s⋆
σU

(∥∥∥ŵ(n)
h+2 − w̄

(n)
h+2

∥∥∥
1
+ max

(x,a)∈X×A

∣∣∣ϕ(x, a)⊤ (w̄(n)
h+2 − w⋆

h+2

)∣∣∣)
Applying the inequality recursively,

∥∥∥ŵ(n)
h+1 − w⋆

h+1

∥∥∥
1
≤
∥∥∥ŵ(n)

h+1 − w̄
(n)
h+1

∥∥∥
1
+

√√√√2s⋆
σU

H∑
h′=h+2

∥∥∥ŵ(n)
h′ − w̄

(n)
h′

∥∥∥
1
.

By inductive assumption,∥∥∥ŵ(n)
h+1 − w⋆

h+1

∥∥∥
1
≤ 72s⋆√

nσU

√
log

dHn2

δ
+

√
144Hs2⋆√
nσ2

U

√
log

dHn2

δ

≤
√
H

52 log Hdn2

δ

√
log 2d

where the last inequality holds by n ≥ Cs4⋆σ
−4
U H−2 log5(dHn2/δ) log2(2d) for some absolute constant C :=

(144)2 · (52)4 + 8 · (72)2(52)2 for n ≥ n1. Thus, we obtain ŵ
(n)
h+1 ∈ Wh+1, and∥∥∥∥∥

n∑
τ=1

H∑
k=1

η
(τ)

ŵ
(n)
h+1,k

(ã
(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

≤ sup
w∈Wh+1

∥∥∥∥∥
n∑

τ=1

H∑
k=1

{
η
(τ)
w,k(ã

(τ)
k )− η

(τ)
w⋆

h+1,k
(ã

(τ)
k )
}
ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

+

∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)
w⋆

h+1,k
(ã

(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞
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By Lemma 5.3, with probability at least 1− δ/(Hn2)

sup
w∈Wh+1

∥∥∥∥∥
n∑

τ=1

H∑
k=1

{
η
(τ)
w,k(ã

(τ)
k )− η

(τ)
w⋆

h+1,k
(ã

(τ)
k )
}
ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

≤ 3H

√
n log

dHn2

δ
(23)

Note that ∥ηwh (x
(τ)
u , a

(τ)
u )ϕ(x

(τ)
u , a

(τ)
u )∥∞ ≤ H. By Lemma B.8, with probability at least 1− 2δ/(Hn2),∥∥∥∥∥

n∑
τ=1

H∑
k=1

η
(τ)
w⋆

h+1,k
(ã

(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

≤ 2H

3
log

dHn2

δ
+

√√√√2

n∑
τ=1

H∑
k=1

E
[(
η
(τ)
w⋆

h+1,k
(ã

(τ)
k )
)2∣∣∣∣H(τ)

k

]
log

dHn2

δ
,

where H(τ)
k is a sigma algebra generated by {x(u)h′ , a

(u)
h′ }u∈[τ−1],h′∈[H] ∪ {x(τ)h′ , a

(τ)
h′ }h′∈[k]. Note that

Π[0,H]

(
max
a′∈A

Q̂w⋆
h+1

(x, a′)

)
=Π[0,H]

(
max
a∈A

{
r (x, a) + ϕ(x, a)⊤w⋆

h+1

})
=Π[0,H]

(
max
a∈A

{
r (x, a) +

[
PV ⋆

h+1

]
(x, a)

})
=Π[0,H]

(
max
a∈A

Q⋆
h(x, a)

)
=Π[0,H] (V

⋆
h (x))

=V ⋆
h (x).

By definition (21),

η
(τ)
w⋆

h+1,k
(ã

(τ)
k ) =Π[0,H]

(
max
a′∈A

Q̂w⋆
h+1

(X
(τ)
k+1(ã

(τ)
k ), a′)

)
− E

X∼P
(
·|x(τ)

k ,ã
(τ)
k

) [Π[0,H]

(
max
a′∈A

Q̂w⋆
h+1

(X, a′)

)]
=V ⋆

h (X
(τ)
k+1(ã

(τ)
k ))− [PV ⋆

h ](x
(τ)
k , ã

(τ)
k ).

Applying Lemma B.7, with probability at least 1− 2δ/(Hn2),

n∑
τ=1

H∑
k=1

E
[
η
(τ)
w⋆

h+1,k
(ã

(τ)
k )2

∣∣∣H(τ)
k

]
≤

n∑
τ=1

E

[
H∑

k=1

E
[
η
(τ)
w⋆

h+1,k
(ã

(τ)
k )2

∣∣∣H(τ)
k

]]
+H2

√
2n log

Hn2

δ
.

Using the variance bound (Lemma 5.4) we get

n∑
τ=1

H∑
k=1

E
[
η
(τ)
w⋆

h+1,k
(ã

(τ)
k )2

∣∣∣H(τ)
k

]
≤5n(H2 +H) +H3

√
2n log

Hn2

δ

≤11nH2,

where the last inequality holds by n ≥ n1 ≥ 2H2 log(Hn2/δ). Thus,∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)
w⋆

h+1,k
(ã

(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

≤ 2H

3
log

dHn2

δ
+H

√
22n log

dHn2

δ
≤ 5H

√
n log

dHn2

δ
,

where the last inequality holds by n ≥ n1 ≥ (100/9) log(dHn2/δ). Thus, we obtain∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)

ŵ
(n)
h+1,k

(ã
(τ)
k )ϕ

(τ)
k

∥∥∥∥∥
∞

≤ 8H

√
n log

dHn2

δ
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which implies

|A|

∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)

ŵ
(n)
h+1,k

(ã
(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

+ |A|
√
nH log

dHn2

δ

∥∥∥ŵIm(n)
h − w̄

(n)
h

∥∥∥
1

≤ 8 |A|H
√
n log

dHn2

δ
+ |A|

√
nH log

dHn2

δ

∥∥∥ŵIm(n)
h − w̄

(n)
h

∥∥∥
1
.

By using a similar argument, we obtain with probability at least 1− 5δ/(Hn2),∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)

ŵ
(n)
h+1,k

(a
(τ)
k )ϕ

(τ)
k

∥∥∥∥∥
∞

≤ λ
(n)
Im , (24)

Using Lemma B.4, ∥∥∥ŵIm(n)
h − w̄

(n)
h

∥∥∥
1
≤

8λ
(n)
Im s⋆

σUHn
=

64s⋆
σU

√
n

√
log

dHn2

δ
,

which implies

|A|

∥∥∥∥∥
n∑

τ=1

H∑
k=1

η
(τ)

ŵ
(n)
h+1,k

(ã
(τ)
k )ϕ(x

(τ)
k , ã

(τ)
k )

∥∥∥∥∥
∞

+ |A|
√
nH log

dHn2

δ

∥∥∥ŵIm(n)
h − w̄

(n)
h

∥∥∥
1

≤ 8 |A|H
√
n log

dHn2

δ
+

64s⋆
√
H

σU
log

dHn2

δ

≤ 9 |A|H
√
n log

dHn2

δ
,

where the last inequality holds by n ≥ n1. Therefore we conclude∥∥∥∥∥
n∑

τ=1

H∑
k=1

∑
a∈A

η̃
(τ)

ŵ
(n)
h+1,k

(a)ϕ(x
(τ)
k , a)

∥∥∥∥∥
∞

≤ 9 |A|H
√
n log

dHn2

δ
= λ

(n)
Est

C.4 Proof of Lemma 5.3

Proof. Fix the policies π(1), . . . , π(n) and set Z
(τ)
k := (x

(τ)
k , a

(τ)
k , x

(τ)
k+1, u

(τ)
k ) and Z := (X × A)2, where

{u(τ)k }k∈[H],τ∈[n] are the IID Uniform random variables over A. Let H(τ)
k denote the sigma-algebra generated by

{x(u)v , a
(u)
v }v∈[H],u∈[τ−1] ∪ {x(τ)v , a

(τ)
v }v∈[k] with H(τ)

0 := H(τ−1)
H . For i ∈ [d],

fw,i(x1, a, x2, u) := ρ−1

{
Π[0,H]

(
max
a′∈A

Q̂w(x2, a
′)

)
−Π[0,H]

(
max
a′∈A

Q̂w⋆
h+1

(x2, a
′)

)}
ϕ(x1, a)(i)

Then with the function class Fi := {fw,i : w ∈ Wh+1},

sup
w∈Wh+1

∥∥∥∥∥
n∑

τ=1

H∑
k=1

{
η
(τ)
w,k − η

(τ)
w⋆

h+1,k

}
ϕ
(τ)
k

∥∥∥∥∥
∞

= ρmax
i∈[d]

sup
fi∈Fi

∣∣∣∣∣
n∑

τ=1

H∑
k=1

fi(x
(τ)
k , a

(τ)
k , x

(τ)
k+1, u

(τ)
k )

∣∣∣∣∣ .
Note that for any f ∈ Fi, there exists w ∈ Wh+1 such that

max
(x1,a,x2,u)∈Z

|f(x1, a, x2, u)| ≤ρ−1

∣∣∣∣Π[0,H]

(
max
a′∈A

Q̂w(x2, a
′)

)
−Π[0,H]

(
max
a′∈A

Q̂w⋆
h+1

(x2, a
′)

)∣∣∣∣
≤ρ−1 max

a′∈A

∣∣∣Q̂w
h (x, a

′)− Q̂
w⋆

h+1

h (x, a′)
∣∣∣

≤ρ−1
∥∥w − w⋆

h+1

∥∥
1

≤1.
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Let z := (z
(1)
1 , . . . , z

(n)
H ) denote a sequence of binary tree such that z

(τ)
k : {±1}τH+k → Z and ξ := (ξ

(1)
1 , . . . , ξ

(n)
H )

denote a sequence of IID Bernoulli random variables with P(ξ(1)1 = −1) = P(ξ(1)1 = 1) = 1/2. By Lemma B.5,
for any x > 0,

P

(
max
i∈[d]

sup
f∈Fi

∣∣∣∣∣
n∑

τ=1

H∑
k=1

f(x
(τ)
k , a

(τ)
k , x

(τ)
k+1, u

(τ)
k )

∣∣∣∣∣ > x

)
≤ 4

d∑
i=1

sup
z

P

(
sup
f∈Fi

∣∣∣∣∣
n∑

τ=1

H∑
k=1

ξ
(τ)
k f(z

(τ)
k (ξ))

∣∣∣∣∣ > x

4

∣∣∣∣∣ z
)
.

By Lemma B.6, setting

x = 8 sup
z

inf
α>0

nHα+ 2

∫ 1/2

α

√
3nH log

N(ϵ,F , ∥ · ∥∞,z)
√
n2Hd√

δ
dϵ


we obtain

P

(
max
i∈[d]

sup
f∈Fi

∣∣∣∣∣
n∑

τ=1

H∑
k=1

f(x
(τ)
k , a

(τ)
k , x

(τ)
k+1, u

(τ)
k )

∣∣∣∣∣ > x

)
≤ δ

n2Hd
.

To find an upper bound for x, define a function gw,i : Z → R by

gw,i(x1, a, x2, u) := L−1ϕ(x2, u)
⊤wϕ(x1, a)(i),

and a function class Gi := {gw,i − gw⋆
h+1,i

: w ∈ Wh+1}. Given ϵ > 0 and a binary tree z := (z
(1)
1 , . . . , z

(n)
H ) =

((x
(1)
1 , a

(1)
1 , x

(1)
2 , u

(1)
1 ), . . . (x

(n)
H , a

(n)
H , x

(n)
H+1, u

(n)
H )), for any f ∈ Fi, there exists gw̃,i in the ϵ-cover of Gi such that

max
τ,k

∣∣∣∣fw,i(z
(τ)
k )−Π[0,H]

(
max
a′∈A

Q̂
w⋆

h+1

h (x
(τ)
k+1, a

′)

)
ϕ(x

(τ)
k , a

(τ)
k )(i)

−Π[0,H]

(
max
u∈A

r(u, x
(τ)
k+1) + gw̃,i(x

(τ)
k , a

(τ)
k , x

(τ)
k+1, u)

)
ϕ(x

(τ)
k , a

(τ)
k )(i)

∣∣∣∣
≤ max

τ,k

∣∣∣∣Π[0,H]

(
max
u∈A

r(u, x
(τ)
k+1) + gw,i(x

(τ)
k , a

(τ)
k , x

(τ)
k+1, u)

)
−Π[0,H]

(
max
u∈A

r(u, x
(τ)
k+1) + gw̃,i(x

(τ)
k , a

(τ)
k , x

(τ)
k+1, u)

) ∣∣∣∣
≤ max

τ,k
max
u∈A

∣∣∣gw,i(x
(τ)
k , a

(τ)
k , x

(τ)
k+1, u)− gw̃,i(x

(τ)
k , a

(τ)
k , x

(τ)
k+1, u)

∣∣∣
≤ max

τ,k

∣∣∣gw,i(z
(τ)
k )− gw⋆

h+1,i
(z

(τ)
k ) + gw⋆

h+1,i
(z

(τ)
k )− gw̃,i(z

(τ)
k )
∣∣∣

≤ ϵ.

Thus ,N(ϵ,Fi, ∥ · ∥∞,z) ≤ N(ϵ,Gi, ∥ · ∥∞,z) and

2

∫ 1/2

α

√
3nH log

N(ϵ,Fi, ∥ · ∥∞,z)
√
n2Hd√

δ
dϵ ≤ 2

∫ 1/2

α

√
3nH log

N(ϵ,Gi, ∥ · ∥∞,z)
√
n2Hd√

δ
dϵ.

Define the sequential Rademacher complexity,

R
(n)
H (Gi) := sup

z
E

[
sup
g∈Gi

n∑
τ=1

H∑
k=1

ξ
(τ)
k g(z

(τ)
k (ξ))

]
.

Note that the Rachmechar complexity is bounded as

R
(n)
H (Gi) = sup

z
E

[
sup
g∈Gi

n∑
τ=1

H∑
k=1

ξ
(τ)
k g(z

(τ)
k (ξ))

]

=ρ−1 sup
z

E

[
sup

w∈Wh+1

n∑
τ=1

H∑
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ξ
(τ)
k ϕ(x

(τ)
k , u

(τ)
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(
w − w⋆

h+1

)
ϕ(x

(τ)
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(τ)
k )(i)

]

≤ρ−1 sup
z

sup
w∈Wh+1

∥∥w − w⋆
h+1

∥∥
1
E

[∥∥∥∥∥
n∑

τ=1

H∑
k=1

ξ
(τ)
k ϕ(x

(τ)
k , u

(τ)
k )ϕ(x

(τ)
k , a

(τ)
k )(i)

∥∥∥∥∥
∞

]

≤ sup
z

E

[∥∥∥∥∥
n∑

τ=1

H∑
k=1

ξ
(τ)
k ϕ(x

(τ)
k , u

(τ)
k )ϕ(x

(τ)
k , a

(τ)
k )(i)

∥∥∥∥∥
∞

]
.
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By Jensen’s inequality, for any λ > 0,

E

[∥∥∥∥∥
n∑

τ=1

H∑
k=1

ξ
(τ)
k ϕ(x

(τ)
k , u

(τ)
k )ϕ(x

(τ)
k , a

(τ)
k )(i)

∥∥∥∥∥
∞

]

≤ 1

λ
logE exp

(
λ

∥∥∥∥∥
n∑

τ=1

H∑
k=1

ξ
(τ)
k ϕ(x

(τ)
k , u

(τ)
k )ϕ(x

(τ)
k , a

(τ)
k )(i)

∥∥∥∥∥
∞

)

≤ 1

λ
log

∑
j∈[d]

E exp

(
λ

∣∣∣∣∣
n∑

τ=1

H∑
k=1

ξ
(τ)
k ϕ(x

(τ)
k , u

(τ)
k )(j)ϕ(x

(τ)
k , a

(τ)
k )(i)

∣∣∣∣∣
)

≤ 1

λ
log

{ ∑
j∈[d]

E exp

(
λ

n∑
τ=1

H∑
k=1

ξ
(τ)
k ϕ(x

(τ)
k , u

(τ)
k )(j)ϕ(x

(τ)
k , a

(τ)
k )(i)

)

+ E exp

(
−λ

n∑
τ=1

H∑
k=1

ξ
(τ)
k ϕ(x

(τ)
k , u

(τ)
k )(j)ϕ(x

(τ)
k , a

(τ)
k )(i)

)}
≤ 1

λ
log 2d exp

(
λ2nH

2

)
=

log 2d

λ
+
λnH

2
.

where the last inequality uses ∥ϕ(x, a)∥∞ ≤ 1. Minimizing over λ > 0 gives

E

[∥∥∥∥∥
n∑

τ=1

H∑
k=1

ξ
(τ)
k ϕ(x

(τ)
k , u

(τ)
k )ϕ(x

(τ)
k , a

(τ)
k )(i)

∥∥∥∥∥
∞

]
≤
√
nH log 2d

2
.

Therefore we obtain,

R
(n)
H (Gi) ≤

√
nH log 2d

2
.

Setting α =
√

2 log 2d
nH ,

sup
z

inf
α>0

nHα+ 2

∫ 1/2

α

√
3nH log

N(ϵ,Gi, ∥ · ∥∞,z)
√
n2Hd√

δ
dϵ


≤
√

2nH log 2d+ 2 sup
z

∫ 1/2

√
2 log 2d

nH

√
3nH log

N(ϵ,Gi, ∥ · ∥∞,z)
√
n2Hd√

δ
dϵ.

By Corollary 1 and Lemma 2 in Rakhlin et al. (2015), whenever ϵ ≥
√

2 log 2d
nH ≥ 2n−1H−1R

(n)
H (Gi),

logN(ϵ,G, ∥ · ∥∞,z) ≤
32

nHϵ2
R

(n)
H (Gi)

2 log
2enH

ϵ
.

Thus, ∫ 1/2

√
2 log 2d

nH

√
3nH log

N(ϵ,Gi, ∥ · ∥∞,z)
√
n2Hd√

δ
dϵ

≤ 4
√
6R

(n)
H (Gi)

∫ 1/2

√
2 log 2d

nH

1

ϵ

√
− log ϵ+ log

2enH
√
n2Hd√
δ

dϵ

= 4
√
6R

(n)
H (Gi)

−2

3

(
− log ϵ+ log

2enH
√
n2Hd√
δ

)3/2
1/2

√
2 log 2d

nH

≤ 8
√
6

3
R

(n)
H (Gi)

(
log

√
nH

2 log 2d
+ log

2enH
√
n2Hd√
δ

)3/2

.
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Now we obtain

x ≤8
√
2nH log 2d+ 16

8
√
6

3
R

(n)
H (Gi) log

3/2 2enH2
√
n3d√

2δ log 2d

≤8
√
2nH log 2d+

128
√
3

3

√
nH log 2d log3/2

4enH2
√
n3d√

2δ log 2d

≤8
√

2nH log 2d+
256

√
3

3

√
2nH log 2d log3/2

2
√
eHdn

5
4

δ

≤8
√
2nH log 2d+

256
√
3

3

√
2nH log 2d log3/2

Hdn2

δ
,

the last inequality holds by n3 ≥ 16e2. Thus we conclude with probability at least 1− δ/(Hn2)

sup
w∈Wh+1(ρ)

∥∥∥∥∥
n∑

τ=1

H∑
k=1

{
η
(τ)
w,k − η

(τ)
w⋆

h+1,k

}
ϕ
(τ)
k

∥∥∥∥∥
∞

≤ρ

(
8
√
2nH log 2d+

256
√
3

3

√
2nH log 2d log3/2

Hdn2

δ

)

≤ρ
√
2nH log 2d

(
8 +

256
√
3

3
log3/2

Hdn2

δ

)

C.5 Proof of Lemma 5.4

Proof. For each k ∈ [H], the definition of action value function Q⋆
h−1(x, a) gives,{

V ⋆
h (x

(τ)
k+1)− [PV ⋆

h ] (x
(τ)
k , a

(τ)
k )
}2

=
{
V ⋆
h (x

(τ)
k+1)−Q⋆

h−1(x
(τ)
k , a

(τ)
k ) + r

(
x
(τ)
k , a

(τ)
k

)}2

≤5

4

{
V ⋆
h (x

(τ)
k+1)−Q⋆

h−1(x
(τ)
k , a

(τ)
k )
}2

+ 5r
(
x
(τ)
h′−1, a

(τ)
h′−1

)2
where the second inequality holds by (a+ b)2 ≤ 5

4a
2 + 5b2 for a, b ∈ R. Because the reward function is bounded

by 1, {
V ⋆
h (x

(τ)
k+1)− [PV ⋆

h ] (x
(τ)
k , a

(τ)
k )
}2

≤ 5

4

{
V ⋆
h (x

(τ)
k+1)−Q⋆

h−1(x
(τ)
k , a

(τ)
k )
}2

+ 5.

For k ∈ [H], let H(τ)
k denote the sigma algebra generated by {x(τ)u , a

(τ)
u }u=1,...,k ∪ {x(s)u , a

(s)
u }s∈[τ−1],u∈[H]. Taking

conditional expectations on both sides,

E
[{

V ⋆
h (x

(τ)
k+1)− [PV ⋆

h ] (x
(τ)
k , a

(τ)
k )
}2
∣∣∣∣H(τ)

k

]
≤ 5

4
E
[{

V ⋆
h (x

(τ)
k+1)−Q⋆

h−1(x
(τ)
k , a

(τ)
k )
}2
∣∣∣∣H(τ)

k

]
+ 5.

In the first term,

E
[{

V ⋆
h (x

(τ)
k+1)−Q⋆

h−1(x
(τ)
k , a

(τ)
k )
}2
∣∣∣∣H(τ)

k

]
= E

[
V ⋆
h (x

(τ)
k+1)

2
∣∣∣H(τ)

k

]
− 2Q⋆

h−1(x
(τ)
k , a

(τ)
k ) [PV ⋆

h ] (x
(τ)
k , a

(τ)
k ) +Q⋆

h−1(x
(τ)
k , a

(τ)
k )2.

Note that for any a
(τ)
k ∈ A, we have

[PV ⋆
h ] (x

(τ)
k , a

(τ)
k ) =Q⋆

h−1(x
(τ)
k , a

(τ)
k )− r

(
x
(τ)
k , a

(τ)
k

)
≤Q⋆

h−1(x
(τ)
k , a

(τ)
k ).
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Because the function f(x) = −2xb+ x2 is non-decreasing for x ≥ b,

E
[
V ⋆
h (x

(τ)
k+1)

2
∣∣∣H(τ)

k

]
− 2Q⋆

h−1(x
(τ)
k , a

(τ)
k ) [PV ⋆

h ] (x
(τ)
k , a

(τ)
k ) +Q⋆

h−1(x
(τ)
k , a

(τ)
k )2

≤ E
[
V ⋆
h (x

(τ)
k+1)

2
∣∣∣H(τ)

k

]
− 2max

a∈A
Q⋆

h−1(x
(τ)
k , a) [PV ⋆

h ] (x
(τ)
k , a

(τ)
k ) + max

a∈A
Q⋆

h−1(x
(τ)
k , a)2

= E
[
V ⋆
h (x

(τ)
k+1)

2
∣∣∣H(τ)

k

]
− 2V ⋆

h−1(x
(τ)
k ) [PV ⋆

h ] (x
(τ)
k , a

(τ)
k ) + V ⋆

h−1(x
(τ)
k )2

= E
[{

V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )
}2
∣∣∣∣H(τ)

k

]
,

Summing up over k ∈ [H],

H∑
k=1

E
[{

V ⋆
h (x

(τ)
k+1)− [PV ⋆

h ] (x
(τ)
k , a

(τ)
k )
}2
∣∣∣∣H(τ)

k

]
≤ 5

4

H∑
k=1

E
[{

V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )
}2
∣∣∣∣H(τ)

k

]
+ 5H.

Note that [PV ⋆
h ] (x

(τ)
k , a

(τ)
k ) ≤ Q⋆

h−1(x
(τ)
k , a

(τ)
k ) ≤ maxa′∈AQ

⋆
h−1(x

(τ)
k , a′) = V ⋆

h−1(x
(τ)
k ) for any k ∈ [H]. Thus, for

any k1 ̸= k2, the cross-product terms,

E
[
V ⋆
h (x

(τ)
k1+1)− V ⋆

h−1(x
(τ)
k1

)
∣∣∣H(τ)

k1

]
E
[
V ⋆
h (x

(τ)
k2+1)− V ⋆

h−1(x
(τ)
k2

)
∣∣∣H(τ)

k2

]
≥ 0,

which implies

H∑
k=1

E
[{

V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )
}2
∣∣∣∣H(τ)

k

]
≤

{
H∑

k=1

E
[
V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )
∣∣∣H(τ)

k

]}2

Taking conditional expectations on both sides,

E

[
H∑

k=1

E
[{

V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )
}2
∣∣∣∣H(τ)

k

]∣∣∣∣∣H(τ)

]

≤ E

{ H∑
k=1

E
[
V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )
∣∣∣H(τ)

k

]}2
∣∣∣∣∣∣H(τ)


= E

{H−1∑
k=1

E
[
V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )
∣∣∣H(τ)

k

]
+ E

[
V ⋆
h (x

(τ)
H+1)− V ⋆

h−1(x
(τ)
H )
∣∣∣H(τ)

H

]}2
∣∣∣∣∣∣H(τ)


≤ E

E
{H−1∑

k=1

E
[
V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )
∣∣∣H(τ)

k

]
+ V ⋆

h (x
(τ)
H+1)− V ⋆

h−1(x
(τ)
H )

}2
∣∣∣∣∣∣H(τ)

H

∣∣∣∣∣∣H(τ)


= E

{H−1∑
k=1

E
[
V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )
∣∣∣H(τ)

k

]
+ V ⋆

h (x
(τ)
H+1)− V ⋆

h−1(x
(τ)
H )

}2
∣∣∣∣∣∣H(τ)

 ,
where the second inequality holds by Jensen’s inequality. Applying the inequality recursively,

E

[
H∑

k=1

E
[{

V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )
}2
∣∣∣∣H(τ)

k

]∣∣∣∣∣H(τ)

]
≤ E

{ H∑
k=1

V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )

}2
∣∣∣∣∣∣H(τ)

 .
There we obtain{

H∑
k=1

V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )

}2

=

{
H∑

k=1

V ⋆
h (x

(τ)
k+1)− V ⋆

h (x
(τ)
k ) + V ⋆

h (x
(τ)
k )− V ⋆

h−1(x
(τ)
k )

}2

=

{
V ⋆
h (x

(τ)
H+1)− V ⋆

h (x
(τ)
1 ) +

H∑
k=1

V ⋆
h (x

(τ)
k )− V ⋆

h−1(x
(τ)
k )

}2

.
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Note that
∣∣∣V ⋆

h (x
(τ)
H+1)− V ⋆

h (x
(τ)
1 )
∣∣∣ ≤ H. Because V ⋆

h (x) := supπ V
⋆
h (x) for all x ∈ X and h ∈ [H],∣∣∣∣∣

H∑
k=1

V ⋆
h (x

(τ)
k )− V ⋆

h−1(x
(τ)
k )

∣∣∣∣∣ ≤
H∑

k=1

∣∣∣V ⋆
h (x

(τ)
k )− V ⋆

h−1(x
(τ)
k )
∣∣∣

≤
H∑

k=1

sup
x∈X

∣∣V ⋆
h (x)− V ⋆

h−1(x)
∣∣

=

H∑
k=1

sup
x∈X

∣∣∣∣sup
π
V π
h (x)− sup

π
V π
h−1(x)

∣∣∣∣
≤

H∑
k=1

sup
x∈X

sup
π

∣∣V π
h (x)− V π

h−1(x)
∣∣

=

H∑
k=1

sup
x∈X

max
a∈A

|r (x, a)|

≤H.

Thus, we obtain {
H∑

k=1

V ⋆
h (x

(τ)
k+1)− V ⋆

h−1(x
(τ)
k )

}2

≤ 4H2.

Gathering the inequalities proves the variance bound.

C.6 Proof of Lemma 5.1

Proof. By definition of the regret,

E
[
R(N, Â)

]
:=E

[
N∑

τ=1

V ⋆
1 (x

(τ)
1 )− V π̂(τ)

1 (x
(τ)
1 )

]

For any τ ∈ [N ] and h ∈ [H], define S(τ)
h := {a(τ)h = argmaxa∈A r

(
x
(τ)
h , a

)
+ ϕ(x

(τ)
h , a)⊤ŵ

(τ−1)
h+1 )}. By con-

struction of the algorithm we have P(S(τ)
h ) = (1 − τ−1/2)1/H .For τ ∈ [N ] and h ∈ [H], define â

(τ)
H (x) :=

argmaxa∈A r (x, a) + ϕ(x, a)⊤ŵ
(τ−1)
h+1 ). Because ŵ

(τ−1)
H+1 = 0, for any x ∈ X ,

V π̂(τ)

H (x) = Eπ̂ [r (x, aH)]

≥
(
1− τ−1/2

)1/H
r
(
x, â

(τ)
H

)
=
(
1− τ−1/2

)1/H
Π[0,H](r

(
x, â

(τ)
H

)
+ ϕ(x, â

(τ)
H )⊤ŵ

(τ−1)
H+1 )

=
(
1− τ−1/2

)1/H
max
a∈A

Π[0,H](r (x, a) + ϕ(x, a)⊤ŵ
(τ−1)
H+1 )

=
(
1− τ−1/2

)1/H
max
a∈A

Π[0,H]

(
Q̂

ŵ
(τ−1)
H+1

(x, a)
)
,

where the first inequality holds because the reward function is nonnegative. For step H − 1,

V π̂(τ)

H−1(x) =E
[
Qπ̂

H−1(x, aH−1)
]

≥
(
1− τ−1/2

)1/H
Π[0,H]

(
Qπ̂

H−1(x, â
(τ)
H−1(x))

)
=
(
1− τ−1/2

)1/H
Π[0,H]

(
r
(
x, â

(τ)
H−1(x)

)
+ [PV π̂

H ](x, â
(τ)
H−1(x))

)
≥
(
1− τ−1/2

)2/H
Π[0,H]

(
r
(
x, â

(τ)
H−1(x)

)
+

∫
X
max
a∈A

Π[0,H]

(
Q̂

ŵ
(τ−1)
H+1

(x, a)
)
ϕ(x, â

(τ)
H−1(x))

⊤ψ(x′)dx′
)
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By definition of w̄
(τ−1)
H ,

V π̂(τ)

H−1(x) ≥
(
1− τ−1/2

)2/H
Π[0,H]

(
r
(
x, â

(τ)
H−1(x)

)
+ ϕ(x, â

(τ)
H−1(x))

⊤w̄
(τ−1)
H

)
≥
(
1− τ−1/2

)2/H
Π[0,H]

(
r
(
x, â

(τ)
H−1(x)

)
+ ϕ(x, â

(τ)
H−1(x))

⊤ŵ
(τ−1)
H

)
−
∥∥∥w̄(τ−1)

H − ŵ
(τ−1)
H

∥∥∥
1

=
(
1− τ−1/2

)2/H
max
a∈A

Π[0,H]

(
Q̂

ŵ
(τ−1)
H

(x, a)
)
−
∥∥∥w̄(τ−1)

H − ŵ
(τ−1)
H

∥∥∥
1
.

Recursively, for step 1,

V π̂(τ)

1 (x) ≥
(
1− τ−1/2

)
max
a∈A

Π[0,H]

(
Q̂

ŵ
(τ−1)
2

(x, a)
)
−

H∑
h=2

∥∥∥ŵ(τ−1)
2 − w̄

(τ−1)
2

∥∥∥
1
.

For the optimal value function,

V ⋆
1 (x) =max

a∈A
Q⋆

1(x, a)

=max
a∈A

{r (x, a) + [PV ⋆
2 ](x, a)}

=max
a∈A

Π[0,H]

(
r (x, a) + ϕ(x, a)⊤w⋆

2

)
≤max

a∈A
Π[0,H]

{
r (x, a) + ϕ(x, a)⊤ŵ

(τ−1)
2

}
+ max

(x,a)∈X×A

∣∣∣ϕ(x, a)⊤ (w⋆
2 − ŵ

(τ−1)
2

)∣∣∣
=max

a∈A
Π[0,H]

(
Q̂

ŵ
(τ−1)
2

(x, a)
)
+ max

(x,a)∈X×A

∣∣∣ϕ(x, a)⊤ (w⋆
2 − ŵ

(τ−1)
2

)∣∣∣ .
By definition of w̄

(τ−1)
2 ,

max
(x,a)∈X×A

∣∣∣ϕ(x, a)⊤ (w⋆
2 − ŵ

(τ−1)
2

)∣∣∣
≤ max

(x,a)∈X×A

∣∣∣ϕ(x, a)⊤ (w⋆
2 − w̄

(τ−1)
2

)∣∣∣+ ∥∥∥ŵ(τ−1)
2 − w̄

(τ−1)
2

∥∥∥
1

= max
(x,a)∈X×A

∣∣∣∣ϕ(x, a)⊤{∫
X

{
max
a∈A

Q⋆
2(x

′, a)−max
a∈A

Π[0,H]

(
Q̂

ŵ
(τ−1)
3

(x′, a)
)}

ψ(x′)dx′
}∣∣∣∣+ ∥∥∥ŵ(τ−1)

2 − w̄
(τ−1)
2

∥∥∥
1

Because
∫
ϕ(x, a)⊤ψ(x′)dx′ =

∫
P(x′|x, a)dx′ = 1 for all (x, a) ∈ X ×A,

max
(x,a)∈X×A

∣∣∣ϕ(x, a)⊤ (w⋆
2 − ŵ

(τ−1)
2

)∣∣∣
≤ max

x∈X

∣∣∣∣max
a∈A

Q⋆
2(x

′, a)−max
a∈A

Π[0,H]

(
Q̂

ŵ
(τ−1)
3

(x′, a)
)∣∣∣∣+ ∥∥∥ŵ(τ−1)

2 − w̄
(τ−1)
2

∥∥∥
1

= max
x∈X

∣∣∣∣max
a∈A

Π[0,H] (Q
⋆
2(x, a))−max

a∈A
Π[0,H]

(
Q̂

ŵ
(τ−1)
3

(x, a)
)∣∣∣∣+ ∥∥∥ŵ(τ−1)

2 − w̄
(τ−1)
2

∥∥∥
1

≤ max
(x,a)∈X×A

∣∣∣ϕ(x, a)⊤ (w⋆
3 − ŵ

(τ−1)
3

)∣∣∣+ ∥∥∥ŵ(τ−1)
2 − w̄

(τ−1)
2

∥∥∥
1
.

Recursively, we obtain

V ⋆
1 (x) ≤max

a∈A
Π[0,H]

(
Q̂

ŵ
(τ−1)
2

(x, a)
)
+ max

(x,a)∈X×A

∣∣∣ϕ(x, a)⊤ (w⋆
H+1 − ŵ

(τ−1)
H+1

)∣∣∣+ H∑
h=2

∥∥∥ŵ(τ−1)
h − w̄

(τ−1)
h

∥∥∥
1

=max
a∈A

Π[0,H]

(
Q̂

ŵ
(τ−1)
2

(x, a)
)
+

H∑
h=2

∥∥∥ŵ(τ−1)
h − w̄

(τ−1)
h

∥∥∥
1
,
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where the inequality holds by w⋆
H+1 = ŵ

(τ−1)
H+1 = 0. Therefore

V ⋆
1 (x

(τ)
1 )− V π̂(τ)

1 (x
(τ)
1 ) ≤ 1√

τ
max
a∈A

Π[0,H]

(
Q̂

ŵ
(τ−1)
2

(x
(τ)
1 , a)

)
+ 2

H∑
h=2

∥∥∥ŵ(τ−1)
h − w̄

(τ−1)
h

∥∥∥
1

≤ H√
τ
+ 2

H∑
h=2

∥∥∥ŵ(τ−1)
h − w̄

(τ−1)
h

∥∥∥
1
.

Summing over τ ∈ [N ] proves the result.

C.7 Proof of Theorem 5.5

By Lemma B.4 in Kim et al. (2023a), N ≥ Cs4⋆H
2 log2(2d)

σ4
U

log5
2ds4/5⋆ H2/5

eσ4/5
√
δ

, implies

N ≥ Cσ−4
U s4⋆H

2 log5(dHN2/δ) log2(2d).

By the regret decomposition (Lemma 5.1), with N1 = Cσ−4
U s4⋆H

2 log5(dHN2/δ) log2(2d),

R(N, ÂRDRLVI) ≤ 2H(
√
N + Cσ−4

U s4⋆H
2 log5(dHN2/δ) log2(2d)) + 2

N−1∑
n=N1

H∑
h=2

∥ŵ(n)
h − w̄

(n)
h ∥1.

Applying the tail inequality (Theorem 5.2) for the estimator proves the regret bound.
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