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Abstract

Graph neural networks (GNNs) are powerful
tools on graph data. However, their predic-
tions are mis-calibrated and lack interpretabil-
ity, limiting their adoption in critical applica-
tions. To address this issue, we propose a new
uncertainty-aware and interpretable graph
classification model that combines graph func-
tional neural process and graph generative
model. The core of our method is to assume a
set of latent rationales which can be mapped
to a probabilistic embedding space; the predic-
tive distribution of the classifier is conditioned
on such rationale embeddings by learning a
stochastic correlation matrix. The graph gen-
erator serves to decode the graph structure
of the rationales from the embedding space
for model interpretability. For efficient model
training, we adopt an alternating optimiza-
tion procedure which mimics the well known
Expectation-Maximization (EM) algorithm.
The proposed method is general and can be
applied to any existing GNN architecture.
Extensive experiments on five graph classi-
fication datasets demonstrate that our frame-
work outperforms state-of-the-art methods in
both uncertainty quantification and GNN in-
terpretability. We also conduct case studies
to show that the decoded rationale structure
can provide meaningful explanations.
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TATS) 2024, Valencia, Spain. PMLR: Volume 238. Copy-
right 2024 by the author(s).

1 Introduction

Graph neural networks (GNNs) [Kipf and Welling, 2016,
Veličković et al., 2018, Hamilton et al., 2017, Li et al.,
2016b] have been successful in various graph analytic
tasks, such as graph classification, node classification
and link prediction. GNNs provide a flexible framework
to learn node representations with the message pass-
ing scheme, which aggregates vector representations
from their topological neighborhoods. Compared with
traditional graph mining techniques, GNNs transform
the graph from the discrete graph space into the con-
tinuous embedding space that is easier to optimize for
downstream tasks. Moreover, they can leverage the
representation power of deep neural networks (DNNs)
to learn complex input-output mapping functions and
thus can achieve high accuracy across many tasks.

Many graph applications demand not only accurate
but also uncertainty-aware and explainable predictions.
These two features are crucial for understanding and
building trust in GNN predictions. First, the absence
of uncertainty estimates can result in unreliable proba-
bilistic predictions and failure in practice. For example,
in molecular property prediction [Wieder et al., 2020,
Feinberg et al., 2018], highly parameterized GNNs are
vulnerable to overfitting to training scaffolds and may
produce incorrect and poorly calibrated predictions
for new scaffolds without uncertainty quantification.
Second, GNNs are commonly used as black-box pre-
dictors, lacking explanations for their predictions. For
example, it is important to understand which chemical
groups in a molecular graph contribute to the predic-
tions in molecular property prediction [Amara et al.,
2023]. However, the black-box nature of current GNNs
makes it difficult to verify if their working mechanisms
align with real-world chemical rules, reducing trust in
their predictions and limiting their adoption in critical
applications.

The challenge of providing uncertainty-aware and ex-
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plainable predictions with GNNs remains unresolved.
Recent studies [Wang et al., 2021b] have shown that
GNNs are poor at quantifying predictive uncertainty
and miscalibrated in their predictions. One natural
idea to remedy this issue is to apply existing un-
certainty quantification techniques for GNNs, such
as model ensembling and Bayesian neural networks
(BNNs). Model ensembling trains multiple deep neu-
ral networks (DNNs) with different initializations and
ensembles their predictions for uncertainty quantifi-
cation[Lakshminarayanan et al., 2017, Ganaie et al.,
2021], but this approach incurs significant computation
cost. BNN [Welling and Teh, 2011, Louizos and Welling,
2017, Ritter et al., 2018, Blundell et al., 2015, Li et al.,
2015, Zhang et al., 2019] quantify uncertainty by im-
posing probability distributions over model parameters,
but the exact inference of the posterior distribution
and proper specification of prior distributions for un-
interpretable GNN parameters remain difficult. With
regard to interpretability, most existing graph inter-
pretable methods [Ying et al., 2019, Luo et al., 2020]
provide sample-level explanations, but these are too
specific and difficult to generalize. Instead, model-level
interpretations, which aim to explain the overall be-
havior of the model by uncovering the key patterns
or substructures driving predictions, are more general
and require less human supervision. However, gener-
ating model-level explanations for graphs remains an
underexplored area.

We present a new uncertainty-aware and explainable
graph classification approach that combines graph func-
tional neural process and graph generative model. This
framework has the following three capabilities: (1)
quantifying predictive uncertainty directly from the
functional space, (2) generating model-level rationales
for interpretability, and (3) being applicable to any
GNN architecture. The method assumes the existence
of latent model-level rationales that can be mapped
to distributions in the embedding space and predicts
the class based on these stochastic rationale embed-
dings, providing a natural way to quantify uncertainty.
The classifier, inspired by the functional neural process
(FNP) [Louizos et al., 2019], models the relationship
between rationales and training graphs in the shared
latent embedding space by learning a stochastic cor-
relation matrix and generates the final predictive dis-
tribution based on correlated rationales. Additionally,
the framework includes an autoregressive graph gener-
ator that produces the graph structure of the rationale
embeddings for interpretability.

We have conducted thorough experiments to evalu-
ate our proposed model on five graph classification
datasets. Our model consistently outperforms exist-
ing state-of-art (SOTA) methods in both uncertainty

quantification and model interpretability. Specifically,
GraphFNP outperforms the strongest baseline by up
to 4.8% in terms of expected calibration error and mean-
while maintains competitive predictive performance.
To quantitatively evaluate the learned rationales, we
apply a KNN-based classifier by computing the distance
between the rationales and input graphs in the embed-
ding space; GraphFNP outperforms SOTA methods
by up to 10.8% in terms of F1 score. We also qualita-
tively visualize the decoded rationale structure to show
that they do contain critical substructure for the class
and align with the real-world rules.

2 Notations and Problem Definition

We focus on the graph classification problem in this
paper. Let D = {(GD

i , yDi )}Ni=1 be the set of labeled
training data. G = (V, E) represents a graph with
V = {v1, v2, · · · , vn} denoting the node set and E ∈
V×V denoting the edge set. The numbers of nodes and
edges are denoted by n and m, respectively. The nodes
in V are associated with the d-dimensional features,
denoted as by X ∈ Rn×d. y = {1, 2, · · · ,K} denotes
the category of the corresponding whole graph and K
the total number of categories. Taking the molecular
property prediction as an example, V is the set of atoms;
E is the set of bonds; X is the one-hot encoding of the
atom type.

The graph classification problem involves learning a
model Mθ, parameterized by θ, that can categorize a
graph G into different classes. The model outputs a
predicted category ŷ and its corresponding confidence p̂,
such that Mθ(G) → (ŷ, p̂). Traditional GNNs only pro-
vide point estimates and lack interpretability, making
them unsuitable for safety-critical applications. Our
goal is to train a model that, given an unseen graph
G∗ at test time, can provide both (1) a well-calibrated
predictive distribution p(y∗|G∗) and (2) a model-level
rationale GR that explains the crucial patterns that
led to the prediction.

Calibrated Uncertainty Estimates: A well-
calibrated predictive model should have confidence lev-
els in its predictions that align with the actual accuracy
of those predictions. For instance, if 100 data points
are predicted with a confidence of 0.8, we expect 80 of
them to be correctly classified. The calibration error
of the predictive model, as defined by Guo et al. [2017],
Kong et al. [2020a], measures the discrepancy between
the model’s confidence in its predictions and the actual
accuracy of those predictions. Given a confidence level
p ∈ [0, 1], the calibration error is given by:

Ep = |P(ŷ = y|p̂ = p)− p|, (1)

where P(ŷ = y|p̂ = p) is the probability that the
predicted class ŷ is the same as the true class y, given
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Figure 1: The overall generative process of the proposed framework. We assume a set of latent model-level
rationales which can be mapped into a probabilistic embedding space; the graph classifier is conditioned on such
rationale embeddings and graph embeddings through a stochastic correlation matrix. The graph generator is
used to obtain the graph structure of the selected rationales from the latent embedding space.

the predicted confidence level p̂ = p. A model with
perfect predictive uncertainty should satisfy P(ŷ =
y|p̂ = p) = p for all p ∈ [0, 1].

Model-Level Rationales for Interpretability: In
graph classification, model-level rationales refer to a

collection of subgraph structures, (GR
i , y

R
i )

|R|
i=1, where

each subgraph GR
i represents a key pattern associated

with its corresponding category yRi . For instance, in
molecular property prediction, a molecule containing
a NO2 substructure often has mutagenic properties.
By identifying such salient patterns, practitioners can
verify if the model aligns with real-world rules and gain
actionable insights. Note that, unlike sample-level ra-
tionales [Ying et al., 2019, Luo et al., 2020, Schlichtkrull
et al., 2020], which are defined as subgraphs of individ-
ual input graphs, model-level rationales are not specific
to any particular graph.

3 Methodology

3.1 Model Overview

Our objective is to learn a predictive probability dis-
tribution p(y|G) from the training data D and provide
model-level rationales to explain the predictions. To
this end, we propose a non-parametric probabilistic
generative process that jointly models the graph gen-
eration and classification procedures. This framework
is capable of: (1) directly estimating predictive uncer-
tainty in the functional space and (2) identifying the
relationship between model predictions and generated
rationales for better interpretability.

Our framework learns a set of rationale embeddings
from the continuous embedding space. The rationale
embeddings hold crucial information for the classifi-

cation task, and so the predictive distribution p(y|G)
is based on them, which transforms the problem into
learning the correlation between rationale and graph
embeddings. Inspired by the functional neural process
(FNP) [Louizos et al., 2019], we represent these correla-
tions with a binary stochastic matrix. Furthermore, we
include a graph generative model to derive the graph
structure of rationales from their embeddings.

Our method has three key components (Fig. 1):

(1) Probabilistic Rationale Embedding: To learn

the rationale embeddings ZR = {zRi }
|R|
i=1 without hav-

ing access to rationales and to make the learning pro-
cess differentiable, we opt to learn a set of rationale
embeddings from the latent embedding space. To cap-
ture the uncertainty in the embeddings, we represent
them as high-dimensional Gaussian random variables.
The input graphs are transformed into the same space
through a GNN encoder.

(2) Stochastic Correlation Matrix: The correla-
tion matrix C models the relationship between train-
ing graphs and rationales in the embedding space. It
serves a similar role as a kernel function in Gaussian
processes (GPs) for non-parametric uncertainty esti-
mation. The correlated rationales reflect the crucial
substructures emphasized by the model for prediction.
The final predictive distribution is parameterized with
two stochastic latent variables: (a) The local rationale
embedding UD = {uD

i }Ni=1, which summarize corre-
lated rationale embeddings. (b) The graph embedding
ZD = {zDi }Ni=1, which captures embedding uncertainty
and provides novel information not present in the ra-
tionales.
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(3) Graph Generative Model for Model Inter-
pretability: This component is crucial for model in-
terpretability as it allows us to obtain the rationale
structure from the learned rationale embeddings using
the decoder after training. We design the graph gen-
erator as a simple and flexible autoregressive model.
To incorporate information from the latent embedding
space, our generation procedure is dependent on the
graph/rationale embeddings.

Combing all components, we arrive at the following
generative process for the training data:

p(yD|GD) =
∑
C

∫
pθ(Z

R)pθ(Z
D|GD)︸ ︷︷ ︸

Latent embedding

p(C|ZD,ZR)︸ ︷︷ ︸
Stochastic correlation matrix

pθ(U
D|C,ZR)p(yD|UD,ZD)︸ ︷︷ ︸
Predictive distribution

p(GD|ZD)︸ ︷︷ ︸
Graph generator

dZRdZDdUDdG. (2)

3.2 Graph Functional Neural Process With
Learnable Rationales

Our approach differs from the traditional FNP [Louizos
et al., 2019] , which uses a randomly selected subset of
the dataset (known as the reference set) to base its pre-
dictive distribution. This method lacks interpretability
as it fails to provide summarized graph patterns for
each class. In contrast, our approach involves learning
a set of rationales for each class and basing the predic-
tive distribution on these correlated rationales. The
learned rationales represent the crucial substructures
for each class.

3.2.1 Learning rationales from probabilistic
latent space.

Learning the rationales directly in the graph domain
is difficult due to its discrete nature, making it non-
differentiable. Previous approaches, such as the one
in You et al. [2018a]’s work, have used reinforcement
learning techniques to solve this issue through formu-
lating the rationale generation as a Markov decision
process. However, these methods often suffer from poor
performance and instability during training [Wang and
Shen, 2023]. Our proposed solution is to learn a set
of rationale embeddings in the continuous embedding
space, which is easier to optimize and leads to improved
performance.

Specifically, we first randomly initialize a set of vectors

{sRi }
|R|
i=1 for the rationales. For a K-way classification

problem, we assign |Rk| rationales (|R| =
∑K

k=1 |Rk|)
to the k-th class, where |Rk| is a hyper-parameter that
we can tune during the training process. To capture the
embedding uncertainty, we propose to further project

sRi to a high-dimensional Gaussian distribution space:

zRi ∼ N (MLP(sRi ), exp(MLP(sRi ))). (3)

We denote the union of the parameters of {si} and
the two MLPs as θr. The distribution of the rationale
embeddings will be updated during training.

Each rationale embedding will encode one crucial pre-
dictive pattern for a specific class. We will base the
predictive distribution of an input graph on such salient
embeddings based on the correlations between the ra-
tionale embeddings and graph embeddings. These ra-
tionale embeddings share a similar spirit with induc-
ing points in stochastic variational Gaussian Process
(SVGP, [Hensman et al., 2013]). However, we will en-
hance this by utilizing a generative model to decode
the corresponding graph structures for model-level in-
terpretability 3.3.

Then we project the training graph into the same
Gaussian distribution space through a GNN encoder.
The GNN encoder computes node representations
{hi,v|v ∈ Vi} as {hi,v} = GNNe(Gi). The node vec-
tors are aggregated to represent GD

i as a single vector
hD
i = Aggregate({hi,v}). Finally, the graph embedding

follows: zDi ∼ N
(
MLP(hD

i ), exp(MLP(hD
i ))

)
. We de-

note the union of the parameters of the GNN encoder
and the two MLPs as θe.

3.2.2 Constructing stochastic correlation
matrix C

The stochastic correlation matrix C models the re-
lationship between the graphs and rationales in the
embedding space, serving two important purposes: (1)
it captures the uncertainty in the correlations for non-
parametric uncertainty estimation, and (2) it identifies
which rationale can be used to explain the correspond-
ing prediction, thus improving the interpretability of
the model.

Specifically, we first model the correlations in the latent
embedding space using kernel similarity: κ(zDi , zRj ),
e.g., we can use the radial basis function (RBF) kernel:
κ(zDi , zRj ) = exp(−γ||zDi − zRj ||). Instead of directly
using raw kernel similarity to parameterize, we further
use Bernoulli sampling to generate a binary symmetric
correlation matrix:

Ci,j ∼ Bern(Ci,j |κ(zDi , zRj )). (4)

This sampling process leads to sparse correlations for
each sampled matrix and enjoys two benefits: (a) it
can capture uncertainty from the data correlation per-
spective; (b) it can speed up model training by virtue
of sparsity.

When Ci,j = 1, it means that the j-th rationale zRj is
correlated with the i-th graph Gi. Through analyzing
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such a binary correlation matrix, we can identify which
rationale represents a crucial pattern for the input
graph.

3.2.3 Constructing the predictive distribution

With the binary correlation matrix, we summarize the
information of the correlated rationales for each graph
into the local rationale embedding uD

i :

uD
i ∼ N (Ci

∑
j:Cj,i=1

MLP(zRj ), exp(Ci

∑
j:Cj,i=1

MLP(zRj ))),

(5)

where Ci =
∑

j Ci,j is for normalization.

As we can see, Equation 5 encodes the inductive bias
that predictions on points that are “far away,” i.e.,
have very small probability of being connected to the
rationales, will default to an uninformative standard
Gaussian prior. This is similar to the behavior that
Gaussian processes (GPs) with RBF kernels exhibit.

The local rationale embeddings are derived solely from
the rationale embedding set and may not capture novel
information present in the graphs. To address this issue,
we include the graph embedding zi in the final predic-
tion. This allows the neural network to extrapolate
beyond the distribution of the rationale embeddings,
which is important when the unseen test graphs con-
tain novel predictive patterns that are not present in
the learned rationale set. Therefore, we concatenate
the graph embedding and local rationale embedding
into a single vector and obtain the final predictive
distribution:

yi = MLP(concat(zi,ui)). (6)

We denote the parameters of the MLPs in Eq. 5 and
Eq. 6 as θcls.

3.3 Graph Structure Decoder

The goal of learning rationales in the embedding space
is to understand the graph structure that drives the
model’s predictions. To achieve this, we design a graph
generator that can decode the rationales from the em-
bedding space and produce graph structures.

To ensure that our decoded rationale structures con-
tain critical patterns for classification, we propose a
variant of the GraphRNN model [You et al., 2018b].
This variant incorporates latent embedding informa-
tion into the graph generation process. The graph
is generated in breadth-first order, with each step in-
volving the generation of a node and its edges, taking
into account all previously generated nodes. Unlike
standard GraphRNN models, which are only used for
random graph generation, our proposed model ensures
that the decoded rationales retain the critical patterns
necessary for accurate classification.

Specifically, in t-th step, the decoder first runs a de-
coder GNN over current graph Gt to compute node
representations:{ht

v} = GNNd(Gt). The current graph
Gt is represented as an aggregation of its node vectors
hGt

= Aggregate({ht
v}). With the current graph rep-

resentation, we predict the probability of the node type
of vt as:

pvt = softmax(MLP(ht
vt ,hGt , z)). (7)

Note that it is easy to generalize to continuous node fea-
tures by assuming pvt follows a Gaussian distribution.
To fully capture edge dependencies, we predict the edge
type between vt and all the previously generated node
{vj}t−1

j=1 sequentially and update the representation of
vt when a new edge is added to Gt. In the j-th step,
we predict the edge type between vt and vj as:

pevt,vj
= softmax(MLP(ht,j

vt ,h
t
vj ,hGt

, z)), (8)

where ht,j
vt is the new representation of vt after the edge

evt,vj has been added. We denote the parameters of
the graph decoder as θd.

As seen from Eq. 7 and Eq. 8, the generation procedure
of nodes and edges both depend on the latent graph
embedding z. This latent embedding holds crucial
information about graph properties, and the learned
rationale embeddings are salient points within the same
space. Hence, the decoded rationale structure should
reflect the critical subgraph patterns of its correspond-
ing class.

3.4 Model Training

We now describe how to learn the model parameters
during training. The rationales and training graphs are
intertwined in the same space, making direct optimiza-
tion of the overall data likelihood (Eq. 1) difficult. To
solve this, we employ an alternating optimization strat-
egy, similar to the Expectation-Maximization (EM)
approach.

E-step In this step, we aim to update the rationale
embeddings and graph decoder given a fixed graph
encoder and classifier. Canceling out the constant
terms, we have the following loss:

argminθd,θrLE

= −Epθ(ZR)pθ(ZD,UD,C|GD,ZR) log p(y
R|ZR,UR)︸ ︷︷ ︸

Classification loss of training data

− Epθ(ZD|GD) log pθd(G
D|ZD)︸ ︷︷ ︸

Generation loss

− Ep(ZR)p(UR|ZR) log pθ(y
D|ZD,UD)︸ ︷︷ ︸

Classification loss of rationales

(9)
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Table 1: ECE and predictive performance on all the five datasets. We report the average performance and
standard deviation for 5 random initializations. For predictive performance, Graph-SST2 and MUTAG use
accuracy as the metric, while BBBP and BACE use AU-ROC.

ECE Accuracy/AU-ROC

Backbone Model Graph-SST2 BBBP BACE MUTAG Github Graph-SST2 BBBP BACE MUTAG Github

GCN

Vanilla 15.07±0.60 18.30±1.56 19.52±2.87 3.54±1.05 6.73±0.99 82.83±0.58 69.34 ±1.29 77.52 ±0.66 79.38±0.87 61.26±0.39

DropEdge 13.89 ±3.48 16.78±2.11 16.23±3.33 4.57±0.79 7.15±0.67 82.89±1.31 70.02±0.69 76.07± 2.40 76.5±1.63 61.09±0.64

MC-Dropout 13.82±0.73 15.53±1.38 18.76±2.63 3.49±0.62 6.28±0.69 83.21±0.64 69.62± 1.13 78.40± 0.65 78.34±0.81 63.29±0.84

SGLD 10.71± 0.59 15.66± 2.71 14.47± 3.61 5.76± 0.74 3.96±1.84 82.01± 0.62 67.83± 2.33 76.74±1.87 77.89±0.59 59.49±0.21

BBP 14.57± 0.81 14.04± 1.30 13.94± 1.22 7.26± 1.24 4.35±0.93 82.72± 0.67 69.54± 2.26 75.34± 1.37 76.82±0.59 61.06±0.62

Graph-GP 12.52±0.76 14.36± 1.98 14.31±2.87 4.96±1.32 5.32±0.87 81.01± 0.87 68.98± 1.76 76.96± 0.97 78.16±1.03 60.75±1.26

GSAT 16.51±2.11 37.33± 0.71 31.32± 1.66 8.64± 1.86 4.04±0.50 81.09±1.04 71.55± 1.56 77.91± 0.78 78.89±0.58 60.42±0.11

DeepEnsemble 9.81±NA 15.00±NA 16.04±NA 3.22±NA 6.21±0.15 84.71±NA 69.75±NA 78.17±NA 79.03±NA 61.97±0.65

GraphFNP 9.02± 0.58 10.95± 0.92 9.11± 2.96 3.82±1.07 3.25±0.42 83.08± 0.26 70.25± 0.70 80.36± 0.89 79.80±0.71 61.34±0.85

GAT

Vanilla 13.73± 0.60 23.40± 5.30 17.84± 2.45 4.18±0.71 5.72±1.05 83.63± 0.82 69.82± 2.17 77.40± 3.85 72.88±1.34 62.19±1.75

DropEdge 10.33± 0.62 20.34± 1.68 15.39± 3.07 5.32±1.67 9.65±1.03 83.76± 0.60 66.85± 0.74 80.10± 5.76 70.04±2.61 61.67±0.89

MC-Dropout 12.32±0.73 19.85±3.93 15.20± 2.85 3.74±0.65 5.03±0.78 83.46±0.42 70.03± 1.98 77.82± 3.71 72.72±0.63 64.26±0.75

SGLD 10.28± 0.31 17.66± 1.95 20.81± 4.94 4.66±0.57 6.21±1.48 83.67± 0.41 67.87±2.34 74.25± 3.67 72.02±1.33 60.75±0.57

BBP 9.26± 1.94 16.45± 1.47 14.24± 6.25 6.09±1.20 4.95±0.89 80.82± 0.59 68.89± 1.62 74.78± 5.63 72.63±1.75 60.56±1.08

Graph-GP 11.96±1.86 18.25 ±2.01 15.86± 1.75 4.75±1.54 4.32±0.86 82.75±1.86 68.78± 2.01 76.41± 2.76 72.26±1.59 61.94±1.03

GSAT 13.54±2.04 34.17± 0.85 32.08±0.97 7.91±2.10 3.90±2.79 81.98±1.87 68.65± 1.06 72.23±1.54 72.02±1.65 62.22±1.50

DeepEnsemble 8.43±NA 16.80±NA 17.73±NA 4.35±NA 4.92±0.29 85.69±NA 71.98±NA 79.20 ±NA 73.27±NA 63.89±0.72

GraphFNP 7.89 ±1.61 15.76±2.34 13.58±3.43 3.99±0.23 3.74±0.85 83.45±1.56 70.07 ±0.63 79.13 ±1.96 74.19±0.33 62.75±1.03

Note that, in Eq. 9, we also add the classification loss
of the rationales. For the rationales, as their ratio-
nale embedding already represents crucial predictive
patterns, we directly project them into the local ra-
tionale embedding space with the MLP used in Eq. 7,
i.e.,uR

i ∼ N (MLP(zRi ), exp(MLP(zRi )).

M-step In this step, we optimize the parameters
of the probabilistic encoder and classifier by fixing
the distributions of the rationale embeddings and
graph decoder. Directly maximizing the data likeli-
hood is intractable and we choose to use the amor-
tized variational inference. Following the work of
Louizos et al. [2019], we assume that the variational
posterior distribution qϕ(U

D,C,ZD|GD) factorizes as
pθ(Z

D|GD)p(C|ZR,ZD)qϕ(U
D|GD). This leads to the

following loss:

argminθe,θcls,ϕ
LM

= −Epθ(Z
R)qϕ(UD|GD) log pθ(y

D|ZD,UD)︸ ︷︷ ︸
Classification loss of training data

−Epθ(Z
R)pθ(C,ZD|GD,ZR)q(UD|GD) log

pθ(U
D|C,ZR,ZD)

qϕ(UD|GD)︸ ︷︷ ︸
Prior regularization

−Epθ(Z
R)p(UR|ZR)pθ(y

R|ZR,UR)︸ ︷︷ ︸
Classification loss of rationales

(10)

As sampling from the Bernoulli distribution in Equation
4 leads to discrete correlated data points, we make use
of the Gumbel softmax trick [Jang et al., 2016] to make
the model differentiable.

4 Experiments

In this section, we evaluate the empirical performance
of our model GraphFNP. Our experiments are de-

signed to answer the following questions: Q1: Can
GraphFNP provide calibrated predictive uncertainty?
and Q2: How is the predictive power of the learned
rationales? Q3: Does the decoded rationale graph
structure provide meaningful explanations? Q4: How
important are the different components of GraphFNP
(Appendix A.2)?

4.1 Q1: Can GraphFNP provide calibrated
predictive uncertainty?

We first examine if GraphFNP can simultaneously
provide calibrated uncertainty estimates and maintain
high predictive accuracy.

4.1.1 Experimental Setup

We use Expected calibration error (ECE) to evalu-
ate the model calibration [Guo et al., 2017, Naeini et al.,
2015]. We use the following five graph classification
datasets: •BBBP is designed for the modeling and pre-
diction of barrier permeability. This dataset includes
binary labels for 2039 compounds on their permeability
properties. •BACE is a collection of 1522 compounds
with their binary labels for a set of inhibitors of human
β-secretase 1. •Graph-SST2 is a sentiment analysis
dataset, where each text sequence in SST2 is converted
to a graph. Following the splits in the study of Wu
et al. [2022b], this dataset contains degree shifts during
test. •MUTAG consists of 4,337 molecule graphs.
Each graph is assigned to one of 2 classes based on its
mutagenic effect. •Github has 12,725 social networks
and the task is to predict whether a network belongs
to web or machine learning developers.
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Table 2: RF1 of all the methods. K is the number of neighbors in the KNN classifier. We report the average
performance and standard deviation for 5 random seeds. Our method consistently outperforms all the baselines
in RF1 across different datasets and GNN architectures. XGNN cannot be applied on Graph-SST2 because it can
only generate graphs with discrete node features.

K = 1 K = 3

Backbone Model Graph-SST2 BBBP BACE MUTAG Github Graph-SST2 BBBP BACE MUTAG Github

GCN

GNNExplainer 80.45±0.30 63.93±2.66 67.38±0.59 64.36±0.87 54.37±0.16 80.46±0.17 64.98±1.49 68.61±2.17 65.46±1.64 58.78±0.07

PGExplainer 80.16±0.13 59.75±2.46 61.53±3.64 71.52±0.61 45.25±0.54 80.69±0.17 63.32±0.30 66.70±0.99 74.79±2.57 52.79±0.36

XGNN NA 56.23±4.25 53.62±3.72 68.67±3.01 51.92±1.92 NA 52.28±6.29 58.96±2.82 65.86±1.96 50.29±1.85

GstarX 81.60±0.14 58.55±2.40 65.84±1.62 69.47±2.84 56.97±1.21 81.64±0.17 61.00±6.40 65.00±0.43 68.32±1.17 60.12±2.76

GSAT 79.13±1.35 62.62±2.46 63.76±5.96 53.96±14.59 58.19±2.96 78.45±2.73 64.26±4.65 64.98±1.27 65.24±7.35 56.20±2.49

SubgraphX 82.56±0.09 63.70±0.49 68.24±2.45 75.19±0.73 57.28±0.86 82.64±0.19 64.62±0.90 44.35±4.38 68.17±7.78 60.93±1.29

GraphFNP 85.85±0.67 67.42±1.85 71.52±2.53 74.47±0.48 64.62±1.07 85.84±0.64 67.74±2.20 71.52±2.52 74.42±0.45 64.46±1.38

GAT

GNNExplainer 77.23±1.42 60.52±5.52 47.75±5.57 59.20±1.42 51.71±0.80 78.49±1.76 48.76±14.81 44.86±3.75 66.28±2.19 58.40±0.28

PGExplainer 79.59±1.87 55.38±6.61 54.56±3.65 58.81±2.34 48.76±1.45 80.22±2.54 66.44±2.37 48.31±10.88 59.51±1.74 49.09±1.21

XGNN NA 56.26±2.76 49.21±3.28 64.54±3.06 52.86±3.76 NA 50.75±5.06 60.76±10.23 62.07±4.28 50.20±6.08

GstarX 79.82±2.21 58.06±2.02 38.28±6.52 61.14±3.90 56.12±2.18 80.48±1.42 63.24±1.09 55.26±2.84 66.87±0.52 59.21±1.46

GSAT 77.43±2.09 61.23±24.10 62.95±6.20 63.72±3.47 55.25±3.52 78.04±1.87 63.37±18.70 63.67±5.86 63.96±4.32 59.86±2.76

SubgraphX 82.29±1.56 64.16±2.99 58.46±1.47 66.73±1.70 54.26±1.72 81.96±1.79 64.85±1.91 57.91±2.26 63.83±0.35 56.34±1.29

GraphFNP 85.67±2.21 67.99±3.00 70.00±6.28 68.75±0.27 61.38±1.26 85.66±1.90 68.23±3.01 70.57±5.85 69.08±0.32 63.27±1.19

4.1.2 Baselines

We consider the following baselines: Vanilla[Hendrycks
and Gimpel, 2016] directly uses the model’s softmax
score of the predicted category as the uncertainty es-
timate. Monte Carlo dropout (MC-dropout)
[Gal and Ghahramani, 2016] applies dropout at test
time for multiple times and then average the out-
puts. Stochastic Gradient Langevin Dynamics
(SGLD) [Welling and Teh, 2011] is the most popular
Markov Chain Monte Carlo (MCMC) based Bayesian
neural network (BNN). Bayes by Backprop (BBP)
[Blundell et al., 2015] fits a variational approximation
to the true posterior of BNN with a fully factorised
Gaussian assumption. [Kingma et al., 2015] as a vari-
ance reduction technique. GSAT [Miao et al., 2022]
learns a stochastic attention to select task relevant
subgraphs. DropEdge [Rong et al., 2020] randomly
removes a certain number of edges from the input
graph during training. Graph-GP [Ng et al., 2018]
adopts GNN as the feature extractor and replaces the
linear classifier layer with a Gaussian process. Deep-
Ensemble[Lakshminarayanan et al., 2017] trains mul-
tiple GNNs with different initializations and aggregates
their predictions at inference time. We use 5 as the
ensemble size.

4.1.3 Main Results

Table 1 reports the ECE and predictive performance
of all the methods. GraphFNP outperforms all the
baselines on all the datasets except for MUTAG. On
MUTAG, the Vanilla GNN has already achieved a
good calibration score, and thus the room for further
improvement is small. We can also see that the ECE
of some baselines, such as BBP, are even worse than
the Vanilla GNN on this dataset. GraphFNP can
improve ECE up to 4.83% with GCN as the backbone
and 1.62% with GAT as the backbone compared with
the strongest baseline. The consistent improvement

among GCN and GAT verifies that GraphFNP is a
general method that can be compatible with existing
GNN architecture.

Though with better calibration scores, existing
Bayesian uncertainty estimation methods often suffer
from decreased predictive performance. For example,
on the BACE dataset, the predictive accuracy of SGLD
drops by 3.15% compared with Vanilla GAT. However,
GraphFNP can consistently boost the performance of
Vanilla GNN. For example, on BACE, we improve the
AU-ROC by 2.84% compared with Vanilla GCN. This
is because GraphFNP quantifies uncertainty from the
functional space and does not need to specify the unin-
terpretable prior distribution of model parameters as
existing BNNs.

4.2 Q2: How is the predictive power of the
learned rationales?

We have verified that GraphFNP can provide accurate
and calibrated predictions. In this subsection, we fur-
ther study whether GraphFNP can learn high-quality
rationales.

4.2.1 Experimental Setup

Ideally, the rationale set should contain critical class
information and achieve high predictive performance.
We measure the predictive power of the discovered
rationales by using a KNN classifier. To apply the KNN
classifier, we compute the cosine distance between the
test graph and the rationales in the embedding space.
We refer to this metric as ”Rationale F1 (RF1)”. In
the experiments, we set K to 1 and 3.

We compare with the following baselines: GNNEx-
plainer [Ying et al., 2019] learns sample-level ratio-
nales by minimizing the mutual information between
the graph prediction and distribution of possible sub-
graphs. PGExplainer [Luo et al., 2020] uses a deep
neural network to parameterize the generative process
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Figure 2: (a) visualizes the sampled rationale embeddings and graph embeddings. (b) plots the averaged stochastic
correlations matrix for the selected six samples. (c) shows the predictive confidence of sample 1-3.
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Figure 3: The decoded graph structure of the correlated rationale. The first row is the input test graphs, while the
second shows the corresponding correlated model-level rationale structures. The rationales for the mutagen class
contain repeated patterns of NH2 and NO2. While the rationales for the non-mutagen class have no particular
patterns.

of the underlying graph structure as edge distributions,
where the explanatory graph is sampled. SubgraphX
[Yuan et al., 2020] searches representative subgraphs
using Monte Carlo tree search with Shapley values as
the importance score. GStarX [Zhang et al., 2022]
proposes to use cooperative game theory to extract
important subgraphs. GSAT [Miao et al., 2022] learns
a stochastic attention weight to select task-relevant
subgraphs. • XGNN [Yuan et al., 2020] trains a deep
reinforcement learning model to generate the model-
level explanation graphs.

All the baselines except for XGNN are originally de-
signed to obtain sample-level rationales. To obtain
model-level rationales, we first apply them to the train-
ing data and then perform centroid clustering for each
class. The centroid of each cluster is used as the model-
level rationale for each class.

4.2.2 Experimental Results

Table 2 reports the RF1 of all the methods. As shown,
our method consistently outperforms other methods

on all the datasets for both K = 1 and K = 3. The
stable improvements of our method across GCN and
GGNN demonstrates that our proposed the framework
is general and can be applied to any GNN architectures.

Fig. 2 shows the sampled graph and rationale embed-
dings. As shown in Fig. 2(a), the rationale embeddings
for each class are evenly distributed within their respec-
tive class cluster, demonstrating that each rationale
encodes a critical predictive pattern. Fig. 3(b) depicts
the average stochastic correlation matrix for six se-
lected samples. It can be seen that the most correlated
rationale for each sample is from the same class. The
average values for rationales from other classes are close
to zero for all samples except for sample 3, which is
located near the boundary of two classes and has simi-
lar distances to the closest rationales of both classes,
resulting in high uncertainty in model predictions. On
the other hand, other samples are closely positioned
to the rationales within their class cluster, leading to
more confident predictions by the model.
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4.3 Q3: Does the decoded graph structure of
the rationale provide meaningful
explanations?

In this subsection, we study whether the decoded graph
structure of the correlated rationale can provide mean-
ingful explanations for the model prediction.

We start by visualizing the synthetic BA2Motifs
dataset, which consists of graphs built on an arabasi-
Albert (BA) structure. Half of the graphs are attached
with a house motif, and the other half with a five-node
cycle motif. As seen in Fig. 4(b), the decoded graph
structure of the selected rationale is a five-node cycle,
aligning with the data generation process.

We further validate our method on the real-world MU-
TAG dataset. As reported by Debnath et al. [1991], the
presence of chemical groups NH2 and NO2 in molecules
is associated with mutagenicity. Fig. 3 shows the re-
sults on this dataset. The first two graphs in the first
row are from the mutagen class and have either one
NH2 or one NO2 group. The decoded rationales of
these graphs, shown in the second row, reveal repeated
patterns of NH2 and NO2, respectively. Conversely,
the decoded rationale structures for the non-mutagen
class do not display any specific patterns, which aligns
with our prior knowledge.

The above results demonstrate that our decoded ratio-
nale structures contain crucial substructures for each
class. These model-level rationales offer practitioners
valuable insights into domain knowledge and help con-
firm if the model’s workings align with real-world rules.

5 Related Works

Uncertainty quantification on GNNs. Ng et al.
[2018] propose Graph Gaussian Process (Graph-GP),
which stacks a Bayesian linear model on the feature rep-
resentation of GNNs. Liu et al. [2020] further, extend
Graph-GP by considering the uncertainty in the input
graph. Zhao et al. [2020] proposes subjective GNN
considering multi-source uncertainty. Hasanzadeh et al.
[2020] adaptively drops some edges during training and
shows that it approximates the variational inference
of BNNs. Stadler et al. [2021] generalize the Posterior
Network [Charpentier et al., 2020] to graph data. Along
another line, Kang et al. [2022], Wang et al. [2021b]
propose two post-hoc methods to improve GNN’s cali-
bration. However, these works are all designed for node
classification and semi-supervised learning, while our
work focuses on the graph-level property classification.
Localized Neural Kernel (LNK, [Wollschläger et al.,
2023]) primarily concentrates on energy prediction and
a molecule’s energy is additive concerning its atoms.
Therefore, it initially defines a Gaussian process at the
atom level, followed by summing up the energy predic-

tions from each node for the final regression output.
In contrast, our paper tackles graph-level classification
tasks. We opt to aggregate node-level representations
into a global one for classification purposes.

Explaining GNNs. There have been a large num-
ber of works in generating sample-level rationales for
GNNs. These methods aim to provide the salient pat-
terns for a specific input graph. According to Yuan
et al. [2022]’s work, most existing works can be catego-
rized into four directions [Wu et al., 2022a]: gradient-
based methods [Baldassarre and Azizpour, 2019, Pope
et al., 2019], pertubation-based methods [Ying et al.,
2019, Luo et al., 2020, Zhang et al., 2022, Funke et al.,
2021, Schlichtkrull et al., 2021], decomposition meth-
ods [Baldassarre and Azizpour, 2019, Schwarzenberg
et al., 2019, Schnake et al., 2021, Wang et al., 2021a]
and surrogate methods [Huang et al., 2022, Vu and
Thai, 2020, Zhang et al., 2021]. In contrast, model-
level rationale generation remains underexplored. It
aims to explain the overall behavior of the model and
is not specific to any particular graph. XGNN [Yuan
et al., 2020] proposes to formulate the model-level ra-
tionale generation as a Markov decision process and
use reinforcement learning to for optimization. DAG-
Explainer [Lv and Chen, 2023] proposes a data-aware
global explainer based on randomized greedy algorithm.
Recently, Wang and Shen [2023] proposes a numerical
optimization method to obtain the explanation graph
via continuous relaxation. Both of these two works
are post-hoc methods while we develop an inherently
interpretable model. Existing work [Miao et al., 2022]
has shown that the post-hoc interpretability methods
are suboptimal from the information bottleneck per-
spective and can be sensitive to the pre-trained models.

6 Conclusion

We have proposed a new graph classification frame-
work based on graph functional neural process (FNP)
and graph generative model. The proposed framework
quantifies the predictive uncertainty directly from the
functional space and generates the model-level ratio-
nales for model interpretability. The core of our method
is that we assume a set of latent rationales which can be
mapped into a probabilistic latent space. Motivated by
FNP, we design a stochastic correlation matrix to learn
the correlations between rationale and graph embed-
dings. The predictive distribution of the graph classifier
is conditioned on correlated rationale embeddings and
graph embedding. To obtain the graph structures of
the rationales, we further incorporate a graph gener-
ator into our framework. Extensive experiments on
five graph classification datasets demonstrate that our
method outperforms state-of-the-art uncertainty quan-
tification and graph interpretability methods.
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A Additional Experiments

A.1 Fig. 4

(a) Calibration plot on the Graph-SST2 dataset.

(b) Visualization on the BA2Motifs dataset.

Figure 4: (a) GraphFNP improves model calibration significantly while maintaining high predictive performance.
(b) GraphFNP learns a set of model-level rationales and decodes the structure of the correlated one for model
interpretability.

A.2 Ablation Study

Table 3: Ablation Study on the BBBP and BACE datasets. We use GCN as the backbone. We set K = 1 when
computing RF1.

ECE Acc/ROC-AUC RF1

SST2 BACE SST2 BACE SST2 BACE

w/o zD 9.93±0.92 9.65±2.64 79.83±1.92 77.29±3.02 83.94±0.83 63.12±4.92

w/o C 11.78±0.63 13.82±3.19 82.05±1.37 79.23±2.19 81.25±1.52 61.58±5.36

w/o zR 15.29±1.53 16.03±3.74 82.83±0.53 79.78±1.37 NA NA
w/o EM 14.65±1.32 12.18±2.06 74.12±3.62 73.13±1.92 75.83±2.39 54.13±4.47

GraphFNP 9.02±0.58 9.11±2.96 83.08±0.26 80.36±0.89 85.85±0.67 66.11±3.75

We evaluate the impact of individual components in our method through an ablation study. The results obtained
using the GCN architecture on the Graph-SST2 and BACE datasets are summarized in Table 3.

• The removal of the graph embedding zD from the final predictive distribution leads to a significant decline
in classification performance. This is due to the fact that without the graph embedding, the model may miss
important information unique to the test graph and therefore have a poorer ability to generalize.

• Removing the binary stochastic correlation matrix C and using the pairwise kernel distance directly to obtain
the local rationale embedding results in a decrease in the model’s calibration score. This is because the sampling
process of the binary stochastic matrix captures the uncertainty in data correlation, thereby improving the
expected calibration error (ECE).
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Figure 5: Hyper parameter study on the Graph-SST2 and MUTAG datasets. We use GCN as the backbone and
set K = 1 when computing RF1.

• The removal of the rationale embedding (zR) results in a degradation of the Expected Calibration Error (ECE)
to the same level as a basic Graph Convolutional Network (GCN) model. This highlights the crucial role the
rationale embedding plays in the uncertainty quantification of our method. The RF1 metric cannot be evaluated
in this scenario since the rationale embedding is not learned.

• By eliminating the EM algorithm from the training process, we optimize all model parameters together. We
observe a marked decline in performance across all metrics. This is due to the coupling of the rationale and graph
embeddings in the same embedding space, making simultaneous optimization difficult.

A.3 Compatibability with Post-hoc Calibration Method

In addition, post-hoc calibration techniques aim to enhance model calibration without altering the training
procedure of standard neural networks. We evaluate the potential of such methods to improve the performance of
existing uncertainty estimation techniques. Specifically, we apply temperature scaling, a widely-used post-hoc
calibration method, to each method and evaluate their Expected Calibration Error (ECE) on the validation set.
Table 4 shows the results on the Graph-SST2 and BACE datasets. As can be seen, with post-hoc calibration,
GraphFNP significantly improves the ECE and remains the best among all methods in terms of uncertainty
quantification performance.

Table 4: ECE with temperature scaling. We report the average performance and standard deviation for 5 random
initializations

Backbone GCN GAT

Model Graph-SST2 BBBP Graph-SST2 BBBP

Vanilla 13.34±1.04 15.72±1.8 11.49±0.51 18.35 ±1.84

DropEdge 11.95±1.29 12.25±2.01 8.02±0.82 16.02±1.96

MC-Dropout 11.35±1.24 13.51±1.73 10.74±1.21 15.51±3.46

SGLD 9.74±0.93 13.03±2.57 10.33±1.05 14.22±2.06

BBP 11.95±0.84 11.12±3.03 8.05±1.57 14.73±2.27

Graph-GP 10.76±1.13 13.12±2.13 9.27±1.25 15.01±1.67

GSAT 9.69±1.89 29.95±2.68 9.28±3.07 27.70±1.57

DeepEnsemble 8.26±NA 11.03±NA 7.43±6.96 13.74±NA

GraphFNP 7.25±0.74 8.72±1.26 6.72±1.38 11.94±2.97

A.4 Hyper-parameter Study

We conduct experiments to study the effect of the number of rationales on the Graph-SST2 and MUTAG datasets.
As we can see from Fig. 5, the performance of GraphFNP is stable when Rk is larger than 2. In our experiments,
we did not do extensive hyper-parameter tuning and simply set Rk = 5 for all the datasets.
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B Additional Related Work

Uncertainty Quantification Bayesian Neural Networks (BNNs) [Blundell et al., 2015, Louizos and Welling, 2017,
MacKay, 1992] are realized by first imposing prior distributions over NN parameters, next inferring parameter
posteriors and integrating over them to make predictions. However, due to the intractability of posterior inference,
approximation methods have been proposed, including variational inference [Blundell et al., 2015, Louizos and
Welling, 2017], Monte Carlo dropout [Gal and Ghahramani, 2016] and stochastic gradient Markov chain Monte
Carlo (SG-MCMC) [Li et al., 2016a, Zhang et al., 2019]. Neural Process (NP), a recently introduced framework
[Garnelo et al., 2018] attempts to combine the stochastic processes and DNNs. It defines a distribution over a
global latent variable to capture the functional uncertainty, while the Functional neural process (FNP) [Louizos
et al., 2019] uses a dependency graph to encode the data correlation uncertainty. However, they are both designed
for non-graph data. Besides the Bayesian methods, model ensembling [Lakshminarayanan et al., 2017] trains
multiple DNNs with different initializations and uses their predictions for uncertainty estimation. However,
training an ensemble of DNNs can be prohibitively expensive in practice. Kong et al. [2020b] proposes SDE-Net
which quantifies uncertainty from a stochastic dynamical system perspective.

Graph Generation. The initial deep generation models for graphs were autoregressive, such as GraphRNN
[You et al., 2018b] and GRAN [Liu et al., 2019] where nodes and edges were generated in a sequential manner.
Later, Variational Autoencoder (VAE) based graph generation models were proposed[Simonovsky and Komodakis,
2018, Liu et al., 2019]. Normalizing flows have also been used for graph generation, with the first application
introduced by Liu et al. [2019], where a flow models the node representations of a pre-trained autoencoder.
Recently, GraphNVP [Madhawa et al., 2019], and GraphAF [Shi et al., 2019] have been proposed for molecular
graph generation. GraphNVP consists of two flows, one for the adjacency matrix and another for the node
types. GraphAF [Shi et al., 2019] is an autoregressive normalizing flow models that samples nodes and edges in
sequence. Recently, diffusion models [Jo et al., 2022, Vignac et al., 2023, Kong et al., 2023] have been used for
graph generation and achieved state-of-the-art performance.

C Datasets

We provide the dataset statistics in Table. 5. All datasets are publicly available:

1. BBBP and BACE: https://moleculenet.org/.

2. Graph-SST2: https://github.com/Graph-COM/GSAT

3. MUTAG: https://github.com/flyingdoog/PGExplainer

4. Github: https://chrsmrrs.github.io/datasets/

Table 5: Dataset statistics of BBBP, BACE, Graph-SST2, MUTAG, and Github

Datasets BBBP BACE Graph-SST2 MUTAG Github

# of Graphs 2039 505 70042 188 12725

# of Nodes (avg) 24.06 36.46 10.19 17.93 52.33

# of Edges (avg) 25.95 39.28 9.20 19.79 86.41

# of Nodes (min-max) 2-132 10-97 1-56 4-417 10-957

# of Edges (min-max) 1-145 10-101 0-55 3-112 9-1340

D Implementation details

We adopt ADAM Kingma and Ba [2014] as the optimizer for all the methods and select the learning rate from
{1 × 10−3, 5 × 10−4, 1 × 10−4} based on the predictive performance on the validation set. In the generator
fine-tuning stage, we adopt a learning rate of 10−5 for all the datasets. For a fair comparison, we adopt the same
graph convolutional network (GCN) and graph attention network (GAT) architectures for all the methods as the
backbones. We found that the performance of GraphFNP is quite stable with regard to the hyper-parameter
Rk, i.e.,the number of rationales for each class, and simply set it as 5 for all the datasets. For all the datasets,

https://moleculenet.org/
https://github.com/Graph-COM/GSAT
https://github.com/flyingdoog/PGExplainer
https://chrsmrrs.github.io/datasets/
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we employ three layers of GCNs with output dimensions equal to 256. We average all node representations as
the whole graph representation. The final classifier contains three fully-connected layers in which the hidden
dimension is set to 256. The MLPs used in GraphFNP are all one-hidden layers with ReLU activation with
hidden dimension 256.

For all the baselines, we select the hyper-parameters from their recommended ranges in the original papers based
on the validation predictive performance. For the GNN interpretability baseline, GNNExplainer, PGExplainer,
and SubgraphX use the implementations provided by Dive into Graphs (DIG) library. GstarX and GSAT use
their original code.

1. GNNExplainer, PGExplainer, and SubgraphX (based on DIG): https://github.com/divelab/DIG.

2. GstarX: https://github.com/ShichangZh/GStarX

3. GSAT: https://github.com/Graph-COM/GSAT

For XGNN, their original code cannot be used in the Pytorch-geometric framework. We reimplement it
using the PyTorch-Geometric framework under the guidance of their paper and code in DIG library https:

//github.com/divelab/DIG/blob/main/dig/xgraph/XGNN/gcn.py.

All experiments are conducted on CPU: Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz and GPU: NVIDIA
GeForce RTX A5000 GPUs using python 3.8 and PyTorch 1.12.

https://github.com/divelab/DIG
https://github.com/ShichangZh/GStarX
https://github.com/Graph-COM/GSAT
https://github.com/divelab/DIG/blob/main/dig/xgraph/XGNN/gcn.py
https://github.com/divelab/DIG/blob/main/dig/xgraph/XGNN/gcn.py
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