
Towards Costless Model Selection in Contextual Bandits: A
Bias-Variance Perspective

Sanath Kumar Krishnamurthy* Adrienne Margaret Propp* Susan Athey
Stanford University

Abstract

Model selection in supervised learning pro-
vides costless guarantees as if the model that
best balances bias and variance was known
a priori. We study the feasibility of similar
guarantees for cumulative regret minimiza-
tion in the stochastic contextual bandit set-
ting. Recent work (Marinov and Zimmert,
2021) identifies instances where no algorithm
can guarantee costless regret bounds. Never-
theless, we identify benign conditions where
costless model selection is feasible: gradually
increasing class complexity, and diminishing
marginal returns for best-in-class policy value
with increasing class complexity. Our algo-
rithm is based on a novel misspecification test,
and our analysis demonstrates the benefits
of using model selection for reward estima-
tion. Unlike prior work on model selection
in contextual bandits, our algorithm carefully
adapts to the evolving bias-variance trade-off
as more data is collected. In particular, our
algorithm and analysis go beyond adapting
to the complexity of the simplest realizable
class and instead adapt to the complexity of
the simplest class whose estimation variance
dominates the bias. For short horizons, this
provides improved regret guarantees that de-
pend on the complexity of simpler classes.

1 INTRODUCTION

Contextual bandit algorithms are a fundamental tool
for sequential decision making and have been the focus
of an increasing amount of research in recent decades
(Lattimore and Szepesvári, 2020). These algorithms
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have been used in a wide range of applications from rec-
ommendation systems (Agarwal et al., 2016) to mobile
health (Tewari and Murphy, 2017).

We study the finite-armed, stochastic contextual bandit
setting. In each round, the learner observes a feature
vector, or context, drawn from a fixed distribution. The
learner then selects an action and receives a reward
that is a function of both the context and action. The
data collected in each round is incorporated into the
decision-making framework for the next round, with the
goal of minimizing cumulative regret, i.e. maximizing
the rewards received during the experiment.

A common approach to contextual bandits, which we
call the regression-based approach, hinges on estimat-
ing the reward model. In each round, the data col-
lected over prior rounds is used to estimate the true
conditional expected reward for any context and ac-
tion. When the next context is observed, the estimated
reward is used to construct an action selection rule
to balance two objectives: reduce uncertainty in the
estimate for future rounds (exploration), and maximize
the reward received in the current round (exploitation).
This approach has led to the development of several
contextual bandit algorithms (e.g. Agrawal and Goyal,
2013; Li et al., 2010; Foster and Rakhlin, 2020). In gen-
eral, the analyst specifies a model class F for the true
reward model, and as data is gathered, the algorithm
updates its selection from the class. When we assume
realizability – that is, that the true reward model lies
in F – these algorithms ensure optimal minimax guar-
antees on regret.

However, these algorithms do not specify how the model
class F should be chosen, motivating recent work on
model selection in contextual bandits (Agarwal et al.,
2017; Foster et al., 2019). In a COLT 2020 open prob-
lem, Foster et al. (2020b) pose a key question: given
a set of M nested model classes F1,F2, . . . ,FM , such
that at least one of these classes is realizable, can a
contextual bandit algorithm achieve the best regret
guarantees ensured by regression-based algorithms for
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a single model class? We refer to this as a costless
model selection guarantee.1

In this work, we present Mod-IGW, an algorithm that
achieves costless model selection under mild structural
assumptions of: 1) gradually increasing class complex-
ity, and 2) diminishing best-in-class policy improvement
with increasing class complexity (diminshing marginal
returns). As we discuss in Section 1.2, our assumptions
reflect a natural setting for model selection. Further,
even without such assumptions, our algorithm still
achieves state-of-the-art (SOTA) guarantees (though
not costless).

Our algorithm also addresses the bias-variance tradeoff
inherent in contextual bandits (Foster et al., 2020a;
Krishnamurthy et al., 2021a,b), a topic that remains
unexplored in the literature on model selection for
contextual bandits. Existing work focuses on adapt-
ing to the complexity of the smallest realizable class,
attempting to identify the single best-performing al-
gorithm. We propose that attempting to find a sin-
gle best-performing algorithm for all time horizons
may not be the most effective strategy because simpler
model classes provide better guarantees for shorter time
horizons, while more expressive classes outperform in
longer time horizons. We therefore argue that cost-
less model selection should adapt to the simplest class
where variance dominates bias. The difficulty in achiev-
ing such costless guarantees lies in detecting when the
unknown bias of a class starts dominating its variance,
and correcting for the potential under-exploration costs
involved with delays in this detection.

We overcome this challenge to achieve our new defi-
nition of costless model selection through two main
innovations:

1. We develop a new misspecification test based on
the accuracy of estimated reward models in evalu-
ating policies from different classes. A key property
of this test is that it fails (with high probability)
after reward model bias dominates variance but be-
fore policy class bias dominates variance, allowing
us to smoothly navigate the bias-variance trade-
off. The misspecification test is of independent
interest. Subsequent work has used this test to
enable efficient pure exploration algorithms with-
out assuming realizability (Krishnamurthy et al.,
2023).

2. We quantify the cost of potential under-
exploration due to delays in detecting when re-
ward model bias dominates variance, and develop

1For brevity, we use the term costless guarantees to also
capture near-costless guarantees, where we ignore terms
logarithmic in number of model classes, model complexities,
number of rounds, and confidence parameters.

a method called “self-correction” to resolve any
potential under-exploration.

1.1 Related Work

While Marinov and Zimmert (2021) have already re-
sponded to the COLT 2020 open problem in the nega-
tive, we argue that this result is too pessimistic. Their
specific counterexample of one very simple and one very
complex class is an unfavorable setting for model selec-
tion and unnecessary to enforce in practice. Building
on recent work quantifying the bias-variance tradeoff in
contextual bandits (Foster et al., 2020a; Krishnamurthy
et al., 2021a,b) and literature reducing contextual ban-
dit problems to supervised learning tasks (Langford and
Zhang, 2007; Dudik et al., 2011; Agarwal et al., 2012,
2014; Foster et al., 2018; Foster and Rakhlin, 2020) we
show that it is indeed possible to achieve costless regret
bounds under mild structural assumptions.

Existing algorithms for model selection in contextual
bandits can generally be described as adopting either
sequential (e.g. Foster et al., 2019) or parallel (e.g.
Agarwal et al., 2017) search strategies. These are two
alternative approaches to addressing the main challenge
of model selection in contextual bandits: balancing
exploration and exploitation in classes of increasing
complexity. Both strategies consider bandit algorithms
corresponding to models from each class Fi, and try
to identify the “best” (simplest realizable) model class
such that the corresponding algorithm minimizes re-
gret.

Sequential search strategies have largely focused on
model selection over a nested sequence of linear classes
F1 ⊂ F2 ⊂ · · · ⊂ FM that are linear over a nested
sequence of feature maps (e.g. Foster et al., 2019). In
this strategy, contextual bandits are run in sequence
with increasing class complexity. For each model class
Fi, some share of rounds are devoted to sampling arms
uniformly at random and testing for misspecification,
with the ultimate goal of identifying the smallest re-
alizable class, Fi∗ , for i∗ ∈ [M ]. To achieve costless
guarantees, these strategies rely on stringent distribu-
tional assumptions for model identification known as
diversity conditions – i.e., they assume that the min-
imum eigenvalue of the covariance matrix for these
feature maps is greater than some positive constant.2

This is in contrast to our algorithm which has no such
requirements on the feature distribution.

Parallel search strategies use master algorithms (e.g.
Agarwal et al., 2017) to run M contextual bandit algo-
rithms in parallel, one for each of the M classes. The
master algorithm allocates rounds to the M base algo-

2This may not be easily satisfied for feature maps with
many correlated features.
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rithms, learns which algorithm maximizes expected cu-
mulative reward, and ultimately allocates most rounds
to this algorithm. Since the introduction of this ap-
proach, several master algorithms have been proposed
(e.g. Arora et al., 2021; Pacchiano et al., 2020b,a). How-
ever, none achieve costless model selection.

1.2 Preliminaries

The stochastic contextual bandit setting is defined by
a set of contexts X , a finite set of arms A = {1, ...,K},
and a distribution D over contexts and arm rewards.
At every time-step t ∈ [T ], nature samples a context
xt ∈ X and reward vector rt ∈ [0, 1]K from the fixed
but unknown distribution D. Upon observing context
xt, the learner chooses an arm at and receives a reward
rt(at). Unless stated otherwise, all expectations are
taken with respect to D.

We let f∗ : X ×A → [0, 1] denote the true conditional
expected reward function given contexts and actions;
i.e. f∗(x, a) := E[rt(a)|xt = x]. A model f is a map
from X × A to [0, 1], and a model class F is a set
whose elements are models. A policy π is any func-
tion that maps contexts to a distribution over arms,
and a policy class Π is a set of policies. For deter-
ministic policies, π(x) denotes the arm recommended
by policy π at context x, and for randomized policies,
π(a|x) denotes the probability of sampling arm a at
context x. For any model f , we let πf denote the
deterministic policy induced by the model f , that is
πf (x) := argmaxa f(x, a) for every x.3 We let π∗ de-
note the policy that maximizes the conditional mean
reward; i.e., π∗(x) = argmaxa f

∗(x, a).

We use the term exploration policy to refer to any
randomized policy that our algorithm constructs for
use in exploration. For any exploration policy p, we let
D(p) be the induced distribution over X ×A× [0, 1],
where sampling (x, a, r(a)) ∼ D(p) is equivalent to
sampling (x, r) ∼ D and then sampling a ∼ p(·|x). We
let pt denote the exploration policy for round t.

For any model f and policy π, we let f(x, π(x)) :=

Ea∼π(x)[f(x, a)] at every context x, and we let Rf (π)
denote the expected instantaneous reward of the policy
π with respect to model f :

Rf (π) := E
x∼DX

[f(x, π(x))]. (1)

Similarly, we let Regf (π) denote the expected instan-
taneous regret for policy π with respect to model f :

Regf (π) := E
x∼DX

[f(x, πf (x))− f(x, π(x))]. (2)

When there is no possibility of confusion, we write R(π)
and Reg(π) to mean Rf∗(π) and Regf∗(π) respectively.

3Where ties are broken with any fixed tie-breaking rule.

In this paper, we study contextual bandit algorithms
that minimize expected cumulative regret CRegT :

CRegT :=

T∑
t=1

Regf∗(pt). (3)

We consider M reward model classes F1,F2, . . . ,FM .
We let parameter di denote a bound on the complexity
of class Fi. Without loss of generality, for all i ∈
[M ], we require di ∈ {2q|q ∈ N}.4 For notational
convenience, we group the model classes F1, . . . ,FM

in terms of their complexities. Let M ′ be the number
of unique parameters in the set {di|i ∈ [M ]}, and let
d̃i be the i-th smallest parameter in this set such that
d̃1 ≤ d̃2 ≤ · · · ≤ d̃M ′ . For all i ∈ [M ′], we then define
model class F̃i and corresponding policy class Π̃i:

F̃i :=
⋃

{j|dj≤d̃i}

Fj , Π̃i := {πf |f ∈ F̃i}. (4)

We let π∗
i denote the policy that maximizes the con-

ditional mean reward among those belonging to class
Π̃i, that is π

∗
i (x) = argmaxπ∈Π̃i

f∗(x, π(x)). Similarly,
we let Regi(π) denote the true expected instantaneous
regret against the best policy in class Π̃i:

Regi(π) := max
π̃∈Π̃i

R(π̃)−R(π). (5)

We can also define the bias (misspecification error) of
policy class F̃i as:

βi := R(π∗)−R(π∗
i ). (6)

To quantify how well class F̃i can approximate f∗, we
use the definition of average squared misspecification
error studied in Krishnamurthy et al. (2021a). Similar
definitions of misspecification were studied in Foster
et al. (2020a) and Krishnamurthy et al. (2021b). We
denote by Bi the average squared misspecification error
for the class F̃i, that is:

Bi := max
p

min
f∈F̃i

E
x∼DX

E
a∼p(·|x)

[(f(x, a)− f∗(x, a))2],

(7)
where DX is the marginal distribution of D on the set
of contexts X . We label model class F̃i as misspecified
if Bi > 0, and as well-specified or realizable if Bi = 0.
Note the difference in scales between our two measures
of misspecification error: Bi captures squared error,
while βi captures non-squared error. For notational
convenience, we let β0 = B0 = 1 and d̃0 = 0.

Assumption 1 (Realizability). We assume that there
exists a class index i ∈ [M ′] such that Bi = 0, and we
let i∗ denote the smallest class index with zero squared
misspecification error.

4This is without loss of generality because we can always
round di up to the nearest exponent of 2, only increasing
excess risk bounds by a constant multiplicative factor.
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Assumption 1 is standard and allows Mod-IGW to reli-
ably use more complex classes upon detecting misspec-
ification. Assumptions 2 and 3 formalize our structural
conditions of gradually increasing class complexity and
diminishing marginal returns from increasing class com-
plexity.

Assumption 2 (Gradually Increasing Class Complex-
ity). For any i ∈ [i∗], there exists a class index j ∈ [M ′]
such that d̃i < d̃j ≤ ωd̃i for some fixed but unknown
constant ω > 1.

Assumption 3 (Diminishing Policy Improvement with
Increasing Class Complexity). Consider any i ∈ [M ′]
such that Bi > 0. Let j ∈ [M ′] be the largest index such
that d̃j ≤ ωd̃i. We denote by ∆i the improvement in
the best-in-class policy value obtained by moving from
policy class i to policy class j, defined as follows:

∆i := max
π∈Π̃j

E
x∼DX

[f∗(x, π(x))]−max
π∈Π̃i

E
x∼DX

[f∗(x, π(x))].

We assume that ∆i is non-increasing in class index i.

Both Assumptions 2 and 3 are parameterized by an
unknown parameter ω > 1 quantifying the statistical
hardness of the instance. In particular, for ω = d̃i∗/d̃1,
the assumptions trivially hold and so do the negative
results of Marinov and Zimmert (2021) – in this case
we achieve SOTA (though not costless) guarantees.
However, these assumptions are often satisfied for much
smaller ω – in which case we achieve costless model
selection guarantees.

Assumption 2 can be ensured with small ω by construc-
tion, as it is always possible to add additional classes for
a small cost. Assumption 3 with small ω is standard in
the fields of statistics and machine learning; evidence of
this can be found in recent work on neural scaling laws,
where loss scales as a power-law with model size (Ka-
plan et al., 2020; Hestness et al., 2017); decision trees
and random forests, where it is well-known that larger
complexity parameters and more terminal nodes offer
diminishing returns (Boehmke and Greenwell, 2019;
Kuhn, 2022); and empirical results of discrete event
simulation (Robinson, 2023).

2 ORACLES

There is a long line of work that reduces contextual
bandit algorithms to oracle subroutines (e.g., Agarwal
et al., 2014; Foster et al., 2018; Foster and Rakhlin,
2020). We take a similar approach, and describe our
key oracle subroutines and assumptions in this section.

To estimate models in class F̃i, we use a model selection
oracle over the set {Fk|dk ≤ d̃i}. In Oracle Assump-
tion 1, we state our requirements for this oracle.

Oracle Assumption 1 (Estimation Oracle). For all
j ∈ [M ′], we assume access to an offline model se-
lection oracle for estimation (EstOraclej) over classes

{Fk|dk ≤ d̃j} satisfying the following property: There
exists a constant C0 ≥ 1 such that for any exploration
policy p, any natural number n, and any ζ ∈ (0, 1), the
following holds with probability at least 1− ζ:

E
x∼DX

E
a∼p(·|x)

[(f̂(x, a)− f∗(x, a))2]

≤ min
i∈[j]

(
C0Bi + ξi(n, ζ)

)
.

(8)

Here, f̂ is the output of EstOraclej fitted on n indepen-
dently and identically drawn samples from D(p), Bi is
defined in (7), and ξi is given by:

ξi(n, ζ) := C1

(
d̃i ln(nM/ζ)

n

)ρ

, (9)

for some known constant C1 > 0 and ρ ∈ (0, 1].5

We refer to ξi(·, ·) as the estimation rate for model
class F̃i as it can be used to bound the squared pre-
diction error of a regression oracle on model class F̃i.
In Appendix H.1, we outline one of many approaches
to construct an oracle that achieves the “fast rates”
of Oracle Assumption 1. The approach we describe
there is based on validation with the holdout method.
Other potential approaches include cross validation,
aggregation algorithms (see Lecué et al., 2014, and ref-
erences therein), and penalized regression (see relevant
chapters in Koltchinskii, 2011; Wainwright, 2019).

An important component of Mod-IGW is the com-
parison of a given policy’s true value with its value
according to estimated reward models. These tests ver-
ify the accuracy of estimated reward models, allowing
us to detect misspecification. Oracle Assumptions 2
and 3 provide rates for estimating these quantities.

Oracle Assumption 2 (Direct Method Policy Es-
timation Rate). For any index i ∈ [M ′], any set of
M ′ + 1 policies {q0, q1, . . . , qM ′}, any reward model f ,
any natural number n, and any ζ ∈ (0, 1), the following
holds with probability at least 1− ζ:∣∣∣∣ 1n ∑

x∈S

f(x, π(x)) − E
x∼DX

[f(x, π(x))]

∣∣∣∣
≤
√

ξi(n, ζ), ∀ π ∈ Π̃i ∪ {q0, q1, . . . , qM ′},

where S is a set of n independently and identically
drawn samples from the distribution DX .

Oracle Assumption 2 often follows from uniform conver-
gence arguments (see Shalev-Shwartz and Ben-David,

5That is, the function ξi(·, ·) is known and can be used
to compute (exploitation) parameters of our algorithm.
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2014; Koltchinskii, 2011; Wainwright, 2019). For
example, for finite function classes with ξi(n, ζ) =
O(ln(|Fi|/ζ)/n), Oracle Assumption 2 follows from
Hoeffding’s inequality with uniform convergence.

Oracle Assumption 3 (Policy Evaluation Oracle).
For any index i ∈ [M ′], any set of M ′ + 1 policies
{q0, q1, . . . , qM ′}, any natural number n, any explo-
ration policy p with p(a|x) ≥ η for all a ∈ A and
x ∈ X , and any ζ ∈ (0, 1), the following holds with
probability at least 1− ζ:∣∣∣∣R̂(π) − E

x∼DX
[f∗(x, π(x))]

∣∣∣∣ ≤ ξi(n, ζ)

η

+

√
E

x∼DX

[
1

p(π(x)|x)

]
ξi(n, ζ),∀ π ∈ Π̃i ∪ {qk}M

′

k=0,

where R̂ is the output of EvalOraclei fitted on n inde-
pendently and identically drawn samples from D(p).

When R̂ is estimated via inverse propensity score es-
timation, Agarwal et al. (2014) show that Oracle As-
sumption 3 is satisfied for finite function classes with
ξi(n, ζ) = O(ln(|Fi|/ζ)/n). The covering arguments in
Maurer and Pontil (2009) can be used to show Oracle
Assumption 3 holds for general function classes. 6

3 ALGORITHM

We present our algorithm, Mod-IGW, in Algorithm 1.
As its name suggests, Mod-IGW is based on an in-
verse gap weighting (IGW) approach to action selection,
which provides a simple analytical handle on important
quantities like the expected inverse probability weight
for any policy at any round, and is often used to develop
optimal algorithms (Abe and Long, 1999; Foster and
Rakhlin, 2020; Foster et al., 2020c; Simchi-Levi and
Xu, 2020). However, Mod-IGW deviates from the stan-
dard IGW approach in three major respects: 1) how
the model is estimated – specifically, using EstOracle
(e.g. classical model selection for supervised learning;
see Section 2); 2) how the exploitation parameter is
determined – using a novel misspecification test that
selects among M ′ candidate exploitation parameters
(Section 3.1); and 3) how the candidate exploitation
parameters scale with the number of rounds – using a
“self-correction” strategy that accounts for any potential
under-exploration in earlier rounds and updates the
exploitation parameter accordingly (Section 3.2).

Mod-IGW proceeds in epochs indexed by m, with
epoch m spanning time-steps t ∈ [τm−1+1, τm]. At any
such t, the algorithm observes context xt and samples

6For example, Jin (2023) show Oracle Assumption 3
holds for tree-based and neural network function classes
with appropriate choices of ξ(·, ·).

action at from the distribution of exploration policies
pm, defined as:

pm(a|x) :=

{
1

K+γm(f̂m(x,â)−f̂m(x,a))
, a ̸= â,

1−
∑

a′ ̸=â pm(a′|x), a = â.
(10)

Here, f̂m is an estimate of the reward model computed
via EstOracle with data from previous epochs, and
â = argmaxa f̂m(x, a) is the predicted best action. The
exploitation parameter γm governs the balance between
exploration and exploitation. The higher the value of
γm, the greater the probability that the greedy action
â is chosen. The remainder of this section focuses on
how the exploitation parameter γm should be chosen.

To optimize cumulative regret, we want to exploit as
much as possible while still allowing for estimation of
useful reward models. Following the IGW approach
(Foster and Rakhlin, 2020; Simchi-Levi and Xu, 2020),
γm should be specified based on the reward model error
to balance this tradeoff. A common metric for gauging
reward model error is the mean squared prediction
error, which decomposes into bias and variance. Bias
(Bi) is unknown and can be challenging to estimate, but
in early rounds when the variance (ξi(·, ·)) dominates
the bias, we can bound the squared error by 2ξi(·, ·)
(similar ideas were used to quantify the bias-variance
tradeoff in contextual bandits in Krishnamurthy et al.,
2021a). Following prior IGW approaches, we can use
this candidate bound on the squared prediction error
to set the candidate exploitation parameter γm+1,i:

γm+1,i := max

(
K,

√√√√ K

8ξi

(
τm−τm−1

2 , δ
6TM ′2

)), (11)

and corresponding exploration policies pm+1,i (by sub-
stituting γm+1 = γm+1,i in the formula for pm+1). Pa-
rameter γm+1,i induces sufficient exploration so long as
the variance of estimating a reward model from class
i dominates the bias of that class.7 We refer to the
(unknown) last epoch where variance dominates bias
as the “safe epoch,” denoted by m∗

i :
8

m∗
i := max

{
m
∣∣ξi(τm − τm−1

2
,

δ

6TM ′2

)
≥ C0Bi

}
.

We let m∗
0 = 1 and note that m∗

i∗ is infinity.9 Note that
since ξi is increasing in i, γm+1,i is non-increasing in
i. Therefore, to maximize exploitation (while ensuring
enough exploration to estimate a useful model), we

7Estimation variance decreases with more data and is
eventually dominated by bias.

8m∗
i is unknown because the bias Bi is unknown.

9That is, the exploitation parameter corresponding to
the realizable class always induces sufficient exploration.
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want to use the exploitation parameter corresponding
to the simplest class i ∈ [M ′] such that m ∈ [m∗

i ].

Since bias (Bi), and hence the safe epoch (m∗
i ) are

unknown, we don’t know which of the candidate ex-
ploitation parameters to choose for a given epoch m.
The challenge of estimating bias stems from the diffi-
culty of estimating the prediction error of the estimated
reward model.10 Note that we can’t extract measures
of mean prediction error from mean squared error (or
other similar measures of error that average absolute
differences between outcomes and predicted values) due
to unknown irreducible noise.11

To overcome this, we develop a new way of testing if
these variance-based candidate error bounds actually
bound the prediction error of the estimated model. In
particular, we posit a shift in perspective from measur-
ing error via the mean squared prediction error, and
instead gauge the error of an estimated reward model
by its accuracy in evaluating candidate policies. We
do this by comparing an estimated reward model’s di-
rect method estimates (see Oracle Assumption 2) with
consistent policy estimates (see Oracle Assumption 3).
Importantly, by leveraging the consistent estimators
available for policies (which average out reward noise),
we are able to capture the real prediction error of the
estimated model in evaluating the candidate policies.12

This policy-based approach forms the foundation for
our misspecification test, MTOracle (described in the
next section).

3.1 Misspecification Test

As discussed above, a key challenge for our exploration
strategy is the specification of the exploitation parame-
ter γm given that the safe epochs m∗

i are unknown. To
address this challenge, we introduce a new misspecifi-
cation test: MTOracle. This section describes the test
in detail. In subsequent work, this test enables efficient
pure exploration in contextual bandits (Krishnamurthy
et al., 2023).

MTOracle adopts a policy-based approach to assess es-
timated models. With high-probability, the test detects
misspecification for class i after its reward model bias
dominates variance (that is, after the corresponding
safe epoch) but before its policy class bias dominates
variance. This allows Mod-IGW to explore with the

10Asymptotically, prediction error of the estimated re-
ward model converges to squared misspecification error.

11For example, while the mean squared error can be
empirically estimated, it converges to the sum of mean
squared prediction error and irreducible noise.

12We are unavoidably limited in the number of policies
used to perform the comparison (due to issues related to
multiple hypothesis testing), and using larger policy classes
for the comparison requires more exploration data.

Algorithm 1 Mod-IGW (Model Selection with Inverse
Gap Weighting)

input: Initial epoch length τ1 ≥ 2, horizon T , and
confidence parameter δ.

1: Let f̂1 ≡ 0, i1 = 1, γ1 = 1, τ0 = 0, and m̂ = 0
2: for epoch m = 1, 2, . . . do
3: Let pm be given by (10)
4: for round t = τm−1 + 1, . . . , τm do
5: Observe context xt

6: Sample at ∼ pm(·|xt) and observe rt(at)
7: end for
8: Let Sm denote the data collected in epoch m.

Split Sm into training (Sm,tr) and holdout (Sm,ho)
sets of roughly equal size (|Sm,ho| = ⌈|Sm|/2⌉)

9: f̂m+1 ← EstOracleM ′(Sm,tr)

10: f̂m+1,i ← EstOraclei(Sm,tr) ∀i ≥ im
11: R̂m+1 ← EvalOraclei(Sm,ho)

12: R̂m+1,f (π) :=
1

|Sm,ho|
∑

(x,a,r)∈Sm,ho
f(x, π(x))

13: Let im+1 = MTOracleim(Sm,ho)
14: if im+1 ̸= im then
15: m̂← m+ ⌈log2(log2(γm,1/γm,im+1

))⌉
16: end if
17: τm+1 ← τm + (1 + 1{m ≥ m̂})(τm − τm−1).
18: γm+1 ← γm+1,im+1 .
19: end for

exploitation parameter corresponding to the simplest
class whose variance dominates bias. There are three
components to MTOracle, given in Oracle Assump-
tion 4. Each of these is sufficient to rule out classes
whose bias dominates variance.

The main policy-based misspecification test in
MTOracle checks whether the estimated reward mod-
els can be used to construct sufficiently accurate direct
method estimates of policy values. We test this by
comparing R̂m+1(π), the estimate of a policy value
obtained via EvalOracle(Sm), and R̂m+1,f (π), the di-
rect method estimate of a policy value under some
estimated reward model f , defined by:

R̂m+1,f (π) :=
1

|Sm,ho|
∑

(x,a,r)∈Sm,ho

f(x, π(x)). (12)

If the difference between these two estimates surpasses
the threshold given in Oracle Assumption 4 for some
f ∈ {f̂m+1, f̂m+1,i}, this indicates the bias of class i
dominates the variance of estimating from class i. In
other words, we are underestimating the error of the
estimated reward model, and so parameter γm+1,i does
not induce sufficient exploration.

Oracle Assumption 4. (Misspecification Test Oracle)
In each epoch m, our misspecification test MTOracleim
identifies index im+1, which we define as the smallest
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index such that im+1 ≥ im and, for all i ≥ im+1, j ≥ i,
h ≤ im, and α > 0, the following inequalities hold:

Policy-based misspecification test

|R̂m+1(π)− R̂m+1,f (π)|

≤
(
1 + θi,j

α
+

(1 + θi,j)α

16

+
(2θ2i,j + (1 + θi,j)

2/α)γm

γm+1,i
+ θi,j

)
K

γm+1,i

+
(1 + θi,j)γm
αγm+1,i

R̂egm+1,f̂m
(π)

∀f ∈ {f̂m+1, f̂m+1,i}, π ∈ Π̃j ∪Π0,m+1,i,

Reward model agreement

R̂egm+1,f̂m+1
(πf̂m+1,i

)

≤ 26
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

K

γm+1,i
,

R̂egm+1,f̂m
(π)

≤ 4R̂egm+1,f (π)

+ 34
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2max(0,m−m̂h−1−1)

K

γm,i
,

∀f ∈ {f̂m+1, f̂m+1,i}, π ∈ Π0,m+1,i,

where Π0,m+1,i = {πf̂m+1
, πf̂m+1,i

, pm+1,1, . . . , pm+1,M ′},
θi,j = (d̃j/d̃i)

ρ/2, and m̂i := max{m|im ≤ i}
(m̂0 := 0). That is, m̂i is the latest epoch such that
model class i has not been labeled as misspecified. The
above inequalities are derived in Lemmas 7, 13 and 16,
respectively. Index im+1 is the output of MTOracleim .

MTOracle also includes two tests to verify that the
estimated reward model exhibits agreement across pos-
sibly well-specified classes and across epochs. The first
component confirms that the policy induced by f̂m+1,i

(the model estimated for class i) is a good policy accord-

ing to f̂m+1 (the model estimated across all classes).

In this case, R̂egm+1,f̂m+1
(πf̂m+1,i

) should not exceed

the threshold given in Oracle Assumption 4, where
R̂egm,f (π) denotes the empirical regret for policy π
with respect to model f :

R̂egm,f (π) = R̂m,f (πf )− R̂m,f (π). (13)

This helps ensure that once f̂m+1 believes a notably
better policy lies in a larger policy class, we use candi-
date exploitation parameters corresponding to larger
classes to ensure sufficient exploration.

To ensure reward model agreement across epochs, the
final component of MTOracle confirms that the can-
didate exploration policies (Π0,m+1,i, defined in Or-
acle Assumption 4) have sufficiently low regret un-
der the prior epoch’s estimated reward model. Thus,

R̂egm+1,f̂m
(π) should not exceed R̂egm+1,f (π) for f ∈

{f̂m+1, f̂m+1,i} for policies in Π0,m+1,i beyond the
threshold given in Oracle Assumption 4. This test
helps confirm that candidate exploration policies for
epoch m+ 1 were sufficiently explored in epoch m.

In Appendix H.2, we describe one approach to compu-
tationally test the inequalities in Oracle Assumption 4
via cost-sensitive classification. Note that not only do
the tests in MTOracle check whether reward model
bias dominates variance, but they also verify the ac-
curacy of the estimated reward models in evaluating
policies from different classes.

3.2 Self-Correction

To recap, for any epoch m, the goal of Oracle Assump-
tion 4 is to verify that the prediction error of model
f̂m can be bounded by the variance of estimating from
the class F̃im . This verification involves testing if f̂m
can accurately evaluate policies from classes of various
complexities up to this error bound. Unfortunately,
this verification is loose up to a factor (d̃j/d̃im)ρ/2, for

policy class Π̃j more complex than Π̃im . The detection
of misspecification indicates that in past epochs, the
ability of f̂m to evaluate policies from Π̃j may have

been loose, up to a multiplicative factor of (d̃j/d̃im)ρ/2.
As a result, we may have under-estimated the value
of some policies up to this factor, leading to corre-
sponding under-exploration in prior epochs. Note that
under-exploration in prior rounds affects our ability to
evaluate these policies well in future rounds. Hence,
upon detecting misspecification, we want to correct for
the effects of potential under-exploration on our esti-
mated models.13 Our analysis uncovers a self-correction
mechanism to manage this challenge, which we describe
in this section.

Upon detecting misspecification, we hold the epoch
length fixed for a small number of epochs. Importantly,
this results in the candidate exploitation parameters
being held fixed while the algorithm continues to collect
data and improve the reward model via EstOracle. As
the estimated reward model improves, we better explore
good policies that were previously not well-explored,
leading to reward models that are better at estimating
good policies. After this process continues for a small
number of epochs, we will have sufficiently corrected
for potential prior underexploration and can resume
increasing our candidate exploitation parameters.

Mod-IGW is the first algorithm to leverage this strat-
egy. The typical approach is to restart a bandit al-
gorithm from scratch upon detecting misspecification

13The factors described here bound the potential extent
of this under-exploration.
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(e.g., Foster et al., 2019). However, this may lead
to larger than necessary cumulative regret, particu-
larly leading to worse bounds for shorter horizons.
Self-correction, in contrast, is efficient and unintru-
sive, allowing Mod-IGW to recalibrate after detecting
misspecification in just a few epochs.

Finally, to better understand how Assumptions 2 and 3
help with detecting misspecification sufficiently quickly,
consider a misspecified class that is being used to set
exploitation parameters at some round. Our assump-
tions ensure that there exists a slightly more complex
class (Assumption 2) with a sufficiently higher best-
in-class policy value (Assumption 3). Since this class
is only slightly more complex, the data collected is
sufficiently explorative to evaluate policies in this class
up to the desired accuracy. This allows us to leverage
this estimation accuracy and gap between optimum
policy values to quickly detect misspecification in the
considered class.

4 MAIN RESULT

We now present our main result in Theorem 1.

Theorem 1. Suppose Assumptions 1 to 3 hold and
the oracle subroutines perform as stated in Oracle As-
sumptions 1 to 4. With probability at least 1− δ: for
any i, j ∈ [M ′] such that i ≤ j and F̃j not yet labelled
as misspecified as of round T , Mod-IGW attains the
following regret guarantee:

CRegT ≤ Õ

(
(ω2K1/ρ)

d̃i−1

β
2/ρ
i−1

+ βjT +

(
d̃j

d̃i

)ρ/2√
Kd̃ρjT

2−ρ

) (14)

Here, Õ hides terms logarithmic in T,M, 1/δ, d̃i∗ . Fur-
ther, F̃j is not determined to be misspecified for at least

Ω(d̃j/B
1/ρ
j ) rounds.

To simplify our discussion and provide more insight
into Theorem 1, we focus on the implications for classes
with ρ = 1 14 and ignore constant factors, logarithmic
factors, and ω from Assumption 3. Then we achieve a
cumulative regret bound of the form (Kd̃i−1)/β

2
i−1 +

βjT +
√

d̃j/d̃i

√
Kd̃jT , so long as F̃j has not yet been

determined to have larger bias than variance.

Let us understand these terms better. The first term,
(Kd̃i−1)/β

2
i−1, bounds the time to detect misspecifica-

tion in class F̃i−1. This marks the number of rounds

14Estimation rates with ρ = 1 hold for a wide vari-
ety of popular classes, e.g. finite function classes, linear
classes, and classes with finite VC-sub-graph dimension (see
Koltchinskii, 2011).

required for policy class bias (βi−1) to dominate the
corresponding variance for policy learning from class

i under uniform sampling (
√

Kd̃i−1/T ). The second

term, βjT , accounts for the bias of class Π̃j . This
term would not appear in our bound had we defined
cumulative regret relative to π∗

j (the best policy in class

Π̃j). The third term,
√
d̃j/d̃i

√
Kd̃jT , is the product of

two quantities. The quantity
√

Kd̃jT accounts for the

estimation variance for class F̃j . This is also the mini-
max regret bound for contextual bandits working with
class F̃j , assuming realizability in this class. The quan-

tity
√

d̃j/d̃i accounts for potential under-exploration

of policies in class Π̃j after self-correcting to the ex-
ploitation parameters induced by class i. Note that the

multiplicative cost of
√
d̃j/d̃i = 1 for i = j. As stated

earlier, the cumulative regret bound we discussed holds
if F̃j was not determined to be misspecified through
round T . Note that we only detect misspecification
for class F̃j after the average squared misspecification
error (Bj) is larger than the corresponding variance

(d̃j/T ). That is, F̃j is not determined to be misspecified

for at least Ω(d̃j/Bj) rounds. In this way, we always
rely on the simplest class whose bias dominates the
variance, achieving costless model selection guarantees
under mild assumptions.

An important implication concerns how well we adapt
to the realizable class F̃i∗ . Choosing i = j = i∗, our
cumulative regret in terms of (K,T, d̃i∗) is given by

Õ(
√
Kd̃iT ). This shows that, despite the negative

result in Marinov and Zimmert (2021), under mild
assumptions, it is possible to achieve the costless regret
guarantees requested in the COLT 2020 open problem
(Foster et al., 2020b).

As argued in Section 1, Assumptions 2 and 3 hold with
small ω in many instances, allowing us to achieve the
costless guarantees described in this section. However
for those instances where Assumptions 2 and 3 do not
hold with small ω, we show Mod-IGW can achieve any
SOTA (although not costless) guarantee on the Pareto
frontier of Marinov and Zimmert (2021).

To see this, note that Assumptions 2 and 3 capture
instance hardness with parameter ω > 1 and are al-
ways satisfied for the choice ω = d̃i∗/d̃1. Recall that
Mod-IGW does not need ω as an input, as it automati-
cally adapts to instance hardness. By setting i = 1, we
achieve regret bounds that are independent of ω (since
d̃0 ≡ 0), giving us our worst-case guarantees (free of
Assumptions 2 and 3). Further, setting j = i∗, we

achieve a regret bound of Õ(
√

d̃i∗/d̃1
√

KTd̃i∗). This

recovers one point on the SOTA (although not costless)



Sanath Kumar Krishnamurthy*, Adrienne Margaret Propp*, Susan Athey

Pareto-front from Marinov and Zimmert (2021).

To recover the other Pareto-front guarantees, we use
looser class complexity bounds as input to Mod-IGW.
Consider any C > 0, and let max(d̃i, C2) be the looser
class complexity input to the algorithm for every class
F̃i. This ensures the looser complexity for F̃1 is greater
than or equal to C2, and the looser complexity for F̃i∗

is max(d̃i∗ , C2). Substituting this into the above bound
that did not rely on Assumptions 2 and 3, we achieve
a regret bound of Õ(max(C, d̃i∗/C)

√
KT ). Adjusting

C then allows us to navigate the SOTA Pareto front in
Marinov and Zimmert (2021).

5 CONCLUSION

We study the feasibility of costless model selection in
contextual bandits. First, we expanded the definition
of costless model selection to not just adapt to the
complexity of the simplest realizable class, but adapt
to the complexity of the simplest class whose variance
dominates the bias. This introduces the perspective of
bias-variance trade-off to model selection in contextual
bandits. Second, we identify mild assumptions under
which costless model selection is feasible and can be
achieved by our algorithm, Mod-IGW. If the unknown
parameter ω in our assumptions is large enough, the
assumptions we introduce are trivially satisfied – in this
case, we can’t achieve costless model selection guar-
antees, but still recover near-optimal guarantees. Our
analysis is enabled by two key algorithmic insights: our
policy-based misspecification test and self-correction.

The policy-based misspecification test we develop
here, in particular, is of broad interest – allowing us
to sidestep the challenge of unknown reward model
class bias. It has been used to develop oracl-efficient
assumption-free algorithms for pure exploration in con-
textual bandits (Krishnamurthy et al., 2023). The key
insight is that, without the need for additional assump-
tions, we can gauge the error of an estimated reward
model by its accuracy in evaluating candidate policies,
and this error gauge is sufficient for decision-making in
contextual bandits.
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Ecole d’Eté de Probabilités de Saint-Flour XXXVIII-
2008, volume 2033. Springer Science & Business
Media.

Krishnamurthy, A., Agarwal, A., Huang, T.-K.,
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A ADDITIONAL PRELIMINARIES

We now work towards proving Theorem 1. We start with providing a proof outline, set up additional notation in
Appendix A.1, and aggregate commonly used notation in Table 1.

Proof outline: Appendix A.2 provides basic well-known properties of the IGW exploration strategy, after which
we get into the meat of our proof. Appendix B provides bounds on accuracy of the estimated reward model in
evaluating policies via the direct method within various safe epochs (this argument is similar to the one provided
in Krishnamurthy et al., 2021a). Appendix C designs and analyzes our main policy-based misspecification
test, in order to test and verify the direct method implications of the estimated reward model.15 Appendix D
adds additional tests to ensure sufficient reward model agreement across epochs and classes. Appendix E then
bounds the true regret of various policies with regret according to estimated models via an inductive argument.
Appendix F upper bounds the time to detect misspecification for various classes under our assumptions. Finally,
Appendix G uses these results to prove Theorem 1. Additional details of interest are discussed in Appendix H.

Symbol Description

im simplest possibly-well-specified model class
h, i, j class indices such that h ≤ i ≤ j

d̃i complexity of model class F̃i

ξi estimation rate for model class F̃i, defined in (9)

γm,i exploration parameter for model class F̃i in epoch m, defined in (11)
m epoch index
m∗

i “safe epoch” for model class i, up to which sufficient exploration is guaranteed, defined in (3)
m̂i implicit estimate of safe epoch for model class i, defined in Oracle Assumption 4,

where m̂i = 0 for i ≤ 0
τm final round of epoch m
pm exploration policy for epoch m
V (p, π) expected inverse probability weight, defined in (16)
f model mapping from contexts and actions to rewards
f∗ true conditional expectation reward function

f̂m ∈ F̃ estimated reward model according to EstOracleM (Sm−1,tr), fitted over classes F̃1, ..., F̃M

f̂m,i ∈ F̃ estimated reward model according to EstOraclei(Sm−1,tr), fitted over classes F̃1, ..., F̃i

πf optimal policy with respect to reward model f
Rf (π) expected reward of policy π with respect to reward model f

R̂m+1(π) estimated reward of policy π according to EvalOracle(Sm)

R̂m+1,f (π) implicit estimated reward of policy π, defined in (12)
Regf (π) regret of policy π with respect to reward model f : Regf (π) = Rf (πf )−Rf (π)

Regi(π) true expected instantaneous regret against the best policy in the class Π̃i

R̂egm,f (π) empirical regret of policy π with respect to model f , defined in (13)
Sm data collected in epoch m
MTOracle Misspecification test
EstOraclei Estimation oracle over model classes in [i]
EvalOracle Policy evaluation oracle
Mod-IGW Model selection with inverse gap weighting

Table 1: Table of notations

A.1 Additional Notation

The most commonly used notations in this paper are collected in Table 1. Let Γt denote the set of observed data
points up to and including time t. That is

Γt := {(xs, as, rs(as))}ts=1 (15)

15Since safe epochs, which depend on model class bias, are unknown, we must test and verify these direct method bounds
via our policy-based misspecification test.
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For any randomized policy p and any policy π, we let V (p, π) denote the expected inverse probability weight of
covering π under p:

V (p, π) := E
x∼DX ,a∼π(x)

[
π(a|x)
p(a|x)

]
. (16)

The variance term for several policy evaluation estimators like IPW depends on this expected inverse probability
weight (see e.g. Agarwal et al., 2014). We also let let m(t) denote the epoch containing round t, so that
m(t) := min{m|t ≤ τm}.

A.2 Properties of the IGW Exploration Policy

We now state helpful properties of the exploration policy, and only include the proofs for completeness. Similar
properties are explicitly stated and proven in Simchi-Levi and Xu (2020), but also show up in the analysis for
Foster and Rakhlin (2020) (see section B.1 of their paper). Arguably, these properties characterize the key
features of inverse gap weighting algorithms. Lemma 1 and Lemma 2 bound the estimated instantaneous regret
and the expected inverse probability weight for the exploration policy constructed by inverse gap weighting.

Lemma 1. For any epoch m ≥ 1, we have:

Regf̂m(pm) ≤ K

γm
.

Proof. Note that:

Regf̂m(pm) = E
x∼DX

[∑
a∈A

pm(a|x)
(
f̂m(x, πf̂m

(x))− f̂m(x, a)
)]

= E
x∼DX

[∑
a∈A

(
f̂m(x, πf̂m

(x))− f̂m(x, a)
)

K + γm

(
f̂m(x, πf̂m

(x))− f̂m(x, a)
)] ≤ K

γm
.

Lemma 2. For all policy π and epochs m ≥ 1, we have:

V (pm, π) ≤ K + γm E
x∼DX

[(
f̂m(x, πf̂m

(x))− f̂m(x, π(x))
)]
.

Proof. Consider any policy π and epoch m ≥ 1. For any context x ∈ X and action a ∈ A \ {πf̂m
(x)}, from our

choice for pm, we get:
1

pm(a|x)
= K + γm(f̂m(x, πf̂m

(x))− f̂m(x, a)).

For the action a = πf̂m
(x), we have:

1

pm(a|x)
=

1

1−
∑

a′ ̸=a
1

K+γm

(
f̂m(x,πf̂m

(x))−f̂m(x,a′)
) ≤ K

In particular, putting the above inequality together, we get:

π(a|x)
pm(a|x)

≤ 1

pm(a|x)
≤ K + γm

[(
f̂m(x, πf̂m

(x))− f̂m(x, a)
)]
.

The lemma now follows by taking expectation over x ∼ DX , a ∼ π(x).

B DIRECT METHOD GUARANTEES FOR ESTIMATED MODELS

We judge our estimated reward model by its ability to evaluate policies via the direct method. In this section we
prove direct method bounds that should hold with high-probability up to various safe epochs.
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B.1 High Probability Events For Regression

In this section, we define an event W1 that holds with high probability under Oracle Assumption 1. At a high
level, W1 defines the event where the prediction guarantees of EstOracle hold. That is, this event bounds the
expected squared error difference between the true model (f∗) and the estimated model (f̂m+1).

W1 :=

{
∀m ∈ [m∗

i ], j ∈ [i,M ′],

E
x∼DX

E
a∼pm(·|x)

[(f̂m+1,j(x, a)− f∗(x, a))2] ≤ 2ξi

(τm − τm−1

2
, δ/(6TM ′2)

)}
.

(17)

In Lemma 3, we use standard union bound arguments to show that the event W1 holds with high probability.

Lemma 3. Suppose Oracle Assumption 1 holds. Then the event W1 holds with probability at least 1− δ/2.

Proof. Consider any epoch m. Note that, conditional on Γτm−1 the number of samples in epoch m are fixed
and these samples are i.i.d. from the distribution D(pm).16 Hence with probability 1− δ/(6TM ′), from Oracle
Assumption 1, for all i ∈ [M ′] and j ∈ [i,M ′] such that m ∈ [m∗

i ] we have:

E
x∼DX

E
a∼pm(·|x)

[(f̂m+1,j(x, a)− f∗(x, a))2] ≤ min
i′∈[j]

(C0Bi′ + ξi′(
τm − τm−1

2
, δ/(6TM ′2)))

≤ C0Bi + ξi(
τm − τm−1

2
, δ/(6TM ′2))

≤ 2ξi(
τm − τm−1

2
, δ/(6TM ′2)),

(18)

where the last inequality follows from the definition of m∗
i and the fact that m ≤ m∗

i . Therefore, the probability
that W1 does not hold can be bounded by:

m(T )∑
m=1

δ

6TM ′ ≤
δ

6M ′ ≤
δ

2
.

B.2 Direct Method for Policy Optimization

Given any estimated model f̂ , Rf̂ (π) gives us an implicit estimate for any policy π. Moreover, as discussed
earlier, πf̂ is the policy that maximizes these implicitly estimated rewards. This approach to policy optimization
is known as the direct method for policy optimization. Several papers have analyzed the direct method for policy
evaluation (e.g. Qian and Murphy, 2011; Simchi-Levi and Xu, 2020; Krishnamurthy et al., 2021a).

In Lemma 4 we state a guarantee on the direct method via a model selection oracle for estimation. The proof is
essentially the same as the proof of prior guarantees on the direct method.

Lemma 4. Suppose the event W1 defined in (17) holds. Then, for all policies π, class indices i ∈ [M ′] and
j ∈ [i,M ′], α > 0, and epochs m ∈ [m∗

i ], we have:

|Rf̂m+1,j
(π)−R(π)| ≤

(
1

α
+

α

16

)
K

γm+1,i
+

γm
αγm+1,i

Regf̂m(π).

Proof. For any policy π, class indices i ∈ [M ′] and j ∈ [i,M ′], α > 0, and epochs m ∈ [m∗
i ], note that:

|Rf̂m+1,j
(q)−R(q)|

=
∣∣ E
x∼DX ,a∼q

[f̂m+1,j(x, a)− f∗(x, a)]
∣∣

16D(pm) depends on Γτm−1 because pm is constructed using the data in Γτm−1 .
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(i)
=

∣∣∣∣ E
x∼DX ,a∼pm

[ q(a|x)
pm(a|x)

(
f̂m+1,j(x, a)− f∗(x, a)

)]∣∣∣∣
(ii)

≤ E
x∼DX ,a∼pm

[ q(a|x)
pm(a|x)

∣∣f̂m+1,j(x, a)− f∗(x, a)
∣∣]

= E
x∼DX ,a∼pm

[√( q(a|x)
pm(a|x)

)2∣∣f̂m+1,j(x, a)− f∗(x, a)
∣∣2]

(iii)

≤

√
E

x∼DX ,a∼pm

[( q(a|x)
pm(a|x)

)2]√
E

x∼DX ,a∼pm

[
(f̂m+1,j(x, a)− f∗(x, a))2

]
(iv)
=

√
E

x∼DX ,a∼q

[ q(a|x)
pm(a|x)

]√
E

x∼DX ,a∼pm

[
(f̂m+1,j(x, a)− f∗(x, a))2

]
(v)

≤
√
V (pm, q)

√
2ξi

(τm − τm−1

2
,

δ

6TM ′2

)
=

√
V (pm, q)

√
K

2γm+1,i

(vi)

≤ V (pm, q)

αγm+1,i
+

αK

16γm+1,i

(vii)

≤
K + γmRegf̂m(q)

αγm+1,i
+

αK

16γm+1,i
=

(
1

α
+

α

16

)
K

γm+1,i
+

γm
αγm+1,i

Regf̂m(q),

where (i) and (iv) follow from change of measure arguments, (ii) follows from Jenson’s inequality, (iii) follows
from Cauchy-Schwartz inequality, (v) follows from W1, (vi) follows from AM-GM inequality, and (vii) follows
from Lemma 2.

The accuracy of the direct method for policy evaluation only depends on the prediction error of the underlying
estimator. We therefore note that when the underlying estimator is constructed by a model selection oracle for
estimation, the prediction error will decrease more rapidly in terms of sample size for small datasets. This allows
us to accordingly increase the corresponding exploitation parameters more rapidly for earlier rounds.

C POLICY-BASED MISSPECIFICATION TEST

In this section, we establish the foundation for the main misspecification test. By the definition of m̂i, none of
the tests corresponding to class i fail until this epoch.

Proof outline: Appendix C.1 provides a high-probability event for policy evaluation that holds under Oracle
Assumptions 2 and 3. Moving forward, all our analysis relies on the high-probability events defined so far
(W1,W2). Appendix C.2 provides refined policy evaluation guarantees. Appendix C.3 develops the policy-based
misspecification test (MTOracle), and provides validated guarantees for the direct method estimates.

C.1 High Probability Events For Explicit Policy Evaluation

In this section, we define an event W2 that holds with high-probability under Oracle Assumption 2 and Oracle
Assumption 3. At a high-level, W2 defines the event where the evaluation guarantees of consistent (e.g. IPS/DR)
and direct method policy estimates hold.

W2 :=

{
∀m, ∀i, j ∈ [M ′], ∀ π ∈ Π̃i ∪ {πf̂m+1

, pm+1,1, . . . , pm+1,M ′},

|R̂m+1(π)−R(π)| ≤
√
V (pm, π)ξi

(τm − τm−1

2
,

δ

6TM ′2

)
+ 2γmξi

(τm − τm−1

2
,

δ

6TM ′2

)
,

|R̂m+1,f̂m+1
(π)−Rf̂m+1

(π)| ≤
√
ξi

(τm − τm−1

2
,

δ

6TM ′2

)
,

|R̂m+1,f̂m+1,j
(π)−Rf̂m+1,j

(π)| ≤
√
ξi

(τm − τm−1

2
,

δ

6TM ′2

)}
.

(19)
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In Lemma 5, we use standard union bound arguments to show that the event W2 holds with high-probability.

Lemma 5. Suppose Oracle Assumption 2 and Oracle Assumption 3 hold. The event W2 holds with probability at
least 1− δ/2.

Proof. Consider any epoch m. Note that, conditional on Γτm−1 the number of samples in epoch m are fixed
and these samples are i.i.d. from the distribution D(pm). Consider any pair of model indices i, j. Hence
with probability 1 − 3 δ

6TM ′2 , from Oracle Assumption 2 and Oracle Assumption 3, for all policies π ∈ Π̃i ∪
{πf̂m+1

, pm+1,1, . . . , pm+1,M ′} we have:17

|R̂m+1(π)−R(π)| ≤
√
V (pm, π)ξi

(τm − τm−1

2
,

δ

6TM ′2

)
+ 2γmξi

(τm − τm−1

2
,

δ

6TM ′2

)
,

|R̂m+1,f̂m+1
(π)−Rf̂m+1

(π)| ≤
√
ξi

(τm − τm−1

2
,

δ

6TM ′2

)
,

|R̂m+1,f̂m+1,j
(π)−Rf̂m+1,j

(π)| ≤
√
ξi

(τm − τm−1

2
,

δ

6TM ′2

)
.

Hence, W2 holds with probability at least:

1−
M∑
i=1

M∑
j=1

m(T )∑
m=1

3δ

6TM ′2 ≥ 1− δ/2.

C.2 Policy Evaluation

In this section, we bound the error of R̂m+1(π), the estimate of a policy value obtained via EvalOracle.

Lemma 6. Suppose the event W2 defined in (19) holds. Then, for all class indices i ∈ [M ′], policies π ∈
Π̃i ∪ {πf̂m+1

, pm+1,1, . . . , pm+1,M ′}, α > 0, and epochs m ≥ 1, we have:

|R̂m+1(π)−R(π)| ≤
(
1

α
+

α

16
+

2γm
γm+1,i

)
K

γm+1,i
+

γm
αγm+1,i

Regf̂m(π).

Proof. For any class index i, policy π ∈ Π̃i ∪ {πf̂m+1
, pm+1,1, . . . , pm+1,M ′}, and epoch m ≥ 1, we have:

|R̂m+1(π)−R(π)|
(i)

≤
√
V (pm, π)ξi

(τm − τm−1

2
,

δ

6TM ′2

)
+ 2γmξi

(τm − τm−1

2
,

δ

6TM ′2

)
(ii)

≤
√
V (pm, π)

√
K

2γm+1,i
+

2γm
γm+1,i

K

γm+1,i

(iii)

≤ V (pm, π)

αγm+1,i
+

αK

16γm+1,i
+

2γm
γm+1,i

K

γm+1,i

(iv)

≤
(
1

α
+

α

16
+

2γm
γm+1,i

)
K

γm+1,i
+

γm
αγm+1,i

Regf̂m(π),

where (i) follows from W2, (ii) follows from the definition of γm+1,i, (iii) follows from the AM-GM inequality for
any α > 0, and (iv) follows from Lemma 2.

C.3 Validating Direct Method Estimates

In this section, we design the main policy-based misspecification test and provide the implied guarantees when
some conditions of the test hold. In Lemma 7 we develop the empirical test that must hold through epoch m∗

i .
The implications of this test are captured in Lemma 9, which provides guarantees through m̂i (by definition, the
test corresponding to class i is satisfied until m̂i).

17Note that K ≤ γm, hence pm(·|·) ≥ 1/(K + γm) ≥ 1/(2γm).
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Lemma 7. Suppose W1 and W2 hold. Consider any pair of class indices i, j ∈ [M ′] such that j ≥ i, any

epoch m ∈ [m∗
i ], α > 0, and model f ∈ {f̂m+1, f̂m+1,i}. Let θi,j :=

γm+1,i

γm+1,j
. Then for any policy π ∈ Π̃j ∪

{πf̂m+1
, pm+1,1, . . . , pm+1,M ′}, we have:

|R̂m+1(π)− R̂m+1,f (π)|

≤
(
1 + θi,j

α
+

(1 + θi,j)α

16
+

(2θ2i,j + (1 + θi,j)
2/α)γm

γm+1,i
+ θi,j

)
K

γm+1,i

+
(1 + θi,j)γm
αγm+1,i

R̂egm+1,f̂m
(π).

(20)

Proof. Consider any pair of class indices i, j ∈ [M ′] such that j ≥ i, any epoch m ∈ [m∗
i ], α > 0, and model

f ∈ {f̂m+1, f̂m+1,i}. For any policy π ∈ Π̃j ∪ {πf̂m+1
, pm+1,1, . . . , pm+1,M ′}, we have:

|R̂m+1(π)− R̂m+1,f (π)|
(i)

≤|R̂m+1(π)−R(π)|+ |R(π)−Rf (π)|+ |Rf (π)− R̂m+1,f (π)|
(ii)

≤
(
1

α
+

α

16
+

2γm
γm+1,j

)
K

γm+1,j
+

γm
αγm+1,j

Regf̂m(π)

+

(
1

α
+

α

16

)
K

γm+1,i
+

γm
αγm+1,i

Regf̂m(π) +
K

γm+1,j

(iii)

≤
(
1 + θi,j

α
+

(1 + θi,j)α

16
+

2θ2i,jγm

γm+1,i
+ θi,j

)
K

γm+1,i
+

(1 + θi,j)γm
αγm+1,i

Regf̂m(π),

where (i) is an application of triangle inequality, and (ii) follows from Lemma 4, Lemma 6, and events W1 and
W2. Then (iii) follows from applying the definition of parameter θi,j . Lemma 7 now follows from noting that:

(1 + θi,j)γm
αγm+1,i

Regf̂m(π)

(i)

≤ (1 + θi,j)γm
αγm+1,i

(
R̂egm+1,f̂m

(π) + |Rf̂m
(πf̂m

)− R̂m+1,f̂m
(πf̂m

)|+ |Rf̂m
(π)− R̂m+1,f̂m

(π)|
)

(ii)

≤ (1 + θi,j)γm
αγm+1,i

(
R̂egm+1,f̂m

(π) + (1 + θi,j)
K

γm+1,i

)
,

where (i) is an application of triangle inequality, and (ii) follows from W2.

Lemma 8. Suppose W1 and W2 hold. Consider any pair of class indices i, j ∈ [M ′] such that j ≥ i, any epoch

m ∈ [m̂i], α > 0, and model f ∈ {f̂m+1, f̂m+1,i}. Then for any policy π ∈ Π̃j ∪ {πf̂m+1
, pm+1,1, . . . , pm+1,M ′}, we

have:

|Rf (π)−R(π)| − |R̂m+1,f (π)− R̂m+1(π)|

≤
(
1

α
+

α

16
+

2γm
γm+1,j

+ 1

)
K

γm+1,j
+

γm
αγm+1,j

Regf̂m(π).

Proof. Consider any pair of class indices i, j ∈ [M ′] such that j ≥ i, any epoch m ∈ [m̂i], α > 0, and model

f ∈ {f̂m+1, f̂m+1,i}. Then for any policy π ∈ Π̃j ∪ {πf̂m+1
, pm+1,1, . . . , pm+1,M ′}, we have:

|Rf (π)−R(π)| − |R̂m+1,f (π)− R̂m+1(π)|
(i)

≤ |R̂m+1(π)−R(π)|+ |Rf (π)− R̂m+1,f (π)|
(ii)

≤
(
1

α
+

α

16
+

2γm
γm+1,j

+ 1

)
K

γm+1,j
+

γm
αγm+1,j

Regf̂m(π),

where (i) is an application of triangle inequality, and (ii) follows from Lemma 6 and W2 .
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Lemma 9. Suppose W1 and W2 hold. Consider any pair of class indices i, j ∈ [M ′] such that j ≥ i, any

epoch m ∈ [m̂i], α > 0, and model f ∈ {f̂m+1, f̂m+1,i}. Let θi,j :=
γm+1,i

γm+1,j
. Then for any policy π ∈ Π̃j ∪

{πf̂m+1
, pm+1,1, . . . , pm+1,M ′}, we have:

|Rf (π)−R(π)| ≤
(
1 + 2θi,j

α
+

(1 + 2θi,j)α

16
+

(2θ2i,j + 2(1 + θi,j)
2/α+ 2θi,j)γm

γm+1,i
+ 2θi,j

)
K

γm+1,i

+
(1 + 2θi,j)γm

αγm+1,i
Regf̂m(π).

Proof. Consider any pair of class indices i, j ∈ [M ′] such that j ≥ i, any epoch m ∈ [m̂i], α > 0, and model

f ∈ {f̂m+1, f̂m+1,i}. Then for any policy π ∈ Π̃j ∪ {πf̂m+1
, pm+1,1, . . . , pm+1,M ′}, we have from Lemma 8:

|Rf (π)−R(π)| − |R̂m+1,f (π)− R̂m+1(π)|

≤
(
1

α
+

α

16
+

2γm
γm+1,j

+ 1

)
K

γm+1,j
+

γm
αγm+1,j

Regf̂m(π).

From Lemma 7, we know that for any class index i ∈ [M ], epoch m ∈ [m∗
i ], model f ∈ {f̂m+1, f̂m+1,i}, and policy

π ∈ Π̃j ∪ {πf̂m+1
, pm+1,1, . . . , pm+1,M ′}, we have:

|R̂m+1(π)− R̂m+1,f (π)|

≤
(
1 + θi,j

α
+

(1 + θi,j)α

16
+

(2θ2i,j + (1 + θi,j)
2/α)γm

γm+1,i
+ θi,j

)
K

γm+1,i
+

(1 + θi,j)γm
αγm+1,i

R̂egm+1,f̂m
(π).

Combining the above results, we have:

|Rf (π)−R(π)|

≤
(
1 + θi,j

α
+

(1 + θi,j)α

16
+

(2θ2i,j + (1 + θi,j)
2/α)γm

γm+1,i
+ θi,j

)
K

γm+1,i
+

(1 + θi,j)γm
αγm+1,i

R̂egm+1,f̂m
(π)

+

(
1

α
+

α

16
+

2γm
γm+1,j

+ 1

)
K

γm+1,j
+

γm
αγm+1,j

Regf̂m(π)

(i)

≤
(
1 + 2θi,j

α
+

(1 + 2θi,j)α

16
+

(2θ2i,j + (1 + θi,j)
2/α+ 2θi,j)γm

γm+1,i
+ 2θi,j

)
K

γm+1,i

+
(1 + θi,j)γm
αγm+1,i

R̂egm+1,f̂m
(π) +

θi,jγm
αγm+1,i

Regf̂m(π),

where (i) follows from plugging in 1
γm+1,j

≤ θi,j
γm+1,i

. We can then combine the last two terms using the same

approach used in the proof of Lemma 7:

(1 + θi,j)γm
αγm+1,i

R̂egm+1,f̂m
(π)

(i)

≤ (1 + θi,j)γm
αγm+1,i

(
Regf̂m(π) + |Rf̂m

(πf̂m
)− R̂m+1,f̂m

(πf̂m
)|+ |Rf̂m

(π)− R̂m+1,f̂m
(π)|

)
(ii)

≤ (1 + θi,j)γm
αγm+1,i

(
Regf̂m(π) + (1 + θi,j)

K

γm+1,i

)
.

Here, (i) is an application of triangle inequality, and (ii) follows from W2. Applying this to our expression above
gives the final form for Lemma 9:

|Rf (π)−R(π)|

≤
(
1 + 2θi,j

α
+

(1 + 2θi,j)α

16
+

(2θ2i,j + 2(1 + θi,j)
2/α+ 2θi,j)γm

γm+1,i
+ 2θi,j

)
K

γm+1,i

+
(1 + 2θi,j)γm

αγm+1,i
Regf̂m(π).
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D VERIFYING REWARD MODEL AGREEMENT

In this section, we design the remainder of the misspecification test. In particular, we ensure agreement in reward
models estimated across classes and epochs. We first prove an inductive result that allows us to relate the true
regret to the regret according to estimated models. Then, in Appendix D.1, we develop an empirical test for
reward model agreement and prove verified guarantees that hold as long as the test doesn’t fail. By the definition
of m̂i, none of the tests corresponding to class i fail until this epoch.

Proof outline: Lemma 10 proves our key inductive step that holds within safe epochs. Lemmas 11 and 12 use
this inductive step to relate the true regret to the regret according to estimated models (within safe epochs).
Lemma 13 provides the expected reward model agreement across classes and describes the corresponding test.
Lemma 14 provides implied guarantees as long this test holds. Lemmas 15 and 16 provide the expected reward
model agreement across epochs and describe the corresponding test. Lemma 17 provides implied guarantees as
long this test holds.

Lemma 10. Suppose the event W1 defined in (17) holds. Consider any class index i ∈ [M ′] and consider any
epoch m ∈ [m∗

i ]. Suppose there exists a constant (η > 0) such that for all policies π, we have:

Reg(π) ≤ 2Regf̂m(π) +
ηK

γm,i

Regf̂m(π) ≤ 2Reg(π) +
ηK

γm,i
.

We then have that:

Reg(π) ≤ 2Regf (π) +
η′K

γm+1,i
, ∀f ∈ {f̂m+1, f̂m+1,i}

Regf̂m+1
(π) ≤ 2Reg(π) +

η′K

γm+1,i
.

where η′ = 2max
(

γm

γm,i
,
√
1 + γm

γm,i
η
)
.

Proof. Let α be any positive constant, and let α′ = γm/γm,i. Note that for any f ∈ {f̂m+1, f̂m+1,i}, we have:

Reg(π)− Regf (π) =
(
R(π∗)−R(π)

)
−
(
Rf (πf )−Rf (π)

)
(i)

≤
(
R(π∗)−R(π)

)
−
(
Rf (π

∗)−Rf (π)
)

(ii)

≤ |R(π∗)−Rf (π
∗)|+ |R(π)−Rf (π))|

(iii)

≤
(
2

α
+

α

8

)
K

γm+1,i
+

γm
αγm+1,i

(
Regf̂m(π) + Regf̂m(π∗)

)
,

(21)

where (i) follows from the definition of πf for f ∈ {f̂m+1, f̂m+1,i}, (ii) follows from the triangle inequality, and
(iii) follows from Lemma 4. Now note that:

γm
αγm+1,i

Regf̂m(π)
(i)

≤ γm
αγm+1,i

(
2Reg(π) +

ηK

γm,i

)
≤ 2α′

α
Reg(π) +

α′ηK

αγm+1,i
, (22)

where (i) follows from the conditions stated in Lemma 10. Similarly note that:

γm
αγm+1,i

Regf̂m(π∗)
(i)

≤ γm
αγm+1,i

(
2Reg(π∗) +

ηK

γm,i

)
(ii)
=

α′ηK

αγm+1,i
, (23)

where (i) follows from the conditions stated in Lemma 10, and (ii) follows from the fact that Reg(π∗) = 0. Now
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from combining (21), (22), and (23), we get:

Reg(π)− Regf (π) ≤
(
2

α
+

α

8
+

2α′η

α

)
K

γm+1,i
+

2α′

α
Reg(π)

α− 2α′

α
Reg(π) ≤ Regf (π) +

(
2

α
+

α

8
+

2α′η

α

)
K

γm+1,i

Reg(π) ≤ α

α− 2α′Regf (π) +
α

α− 2α′

(
2

α
+

α

8
+

2α′η

α

)
K

γm+1,i
.

(24)

Similar to (21), we get:

Regf̂m+1
(π)− Reg(π) =

(
Rf̂m+1

(πf̂m+1
)−Rf̂m+1

(π)
)
−
(
R(π∗)−R(π)

)
(i)

≤
(
Rf̂m+1

(πf̂m+1
)−Rf̂m+1

(π)
)
−
(
R(πf̂m+1

)−R(π)
)

(ii)

≤ |R(πf̂m+1
)−Rf̂m+1

(πf̂m+1
)|+ |R(π)−Rf̂m+1

(π))|
(iii)

≤
(
2

α
+

α

8

)
K

γm+1,i
+

γm
αγm+1,i

(
Regf̂m(π) + Regf̂m(πf̂m+1

)

)
,

(25)

where (i) follows from the definition of π∗, (ii) follows from the triangle inequality, and (iii) follows from Lemma 4.
Similar to (23), we get:

γm
αγm+1,i

Regf̂m(πf̂m+1
)
(i)

≤ γm
αγm+1,i

(
2Reg(πf̂m+1

) +
ηK

γm,i

)
≤ 2α′

α
Reg(πf̂m+1

) +
α′ηK

αγm+1,i

(ii)

≤ 2α′

α

( α

α− 2α′

(
2

α
+

α

8
+

2α′η

α

)
K

γm+1,i

)
+

α′ηK

αγm+1,i
,

(26)

where (i) follows from the conditions stated in Lemma 10, and (ii) follows from (24). Combining (22), (24), (25),
and (26), we get:

Regf̂m+1
(π)− Reg(π) ≤

(
2

α
+

α

8
+

2α′η

α

)
K

γm+1,i

(
1 +

2α′

α− 2α′

)
+

2α′Reg(π)

α
.

Regf̂m+1
(π) ≤ α+ 2α′

α
Reg(π) +

α

α− 2α′

(
2

α
+

α

8
+

2α′η

α

)
K

γm+1,i
.

(27)

If α ≥ 4α′, we have that:

α+ 2α′

α
≤ 2, and

α

α− 2α′ ≤ 2. (28)

Further, if it is also true that α ≥ 4
√
1 + α′η, we get:

α

α− 2α′

(
2

α
+

α

8
+

2α′η

α

)
≤ 2

(
2

α
+

α

8
+

2α′η

α

)
≤ 2

(
α

4

)
.

(29)

We therefore choose α = 4max(α′,
√
1 + α′η). We finally get the required result by combining (24), (27), (28),

and (29).

Lemma 11. Suppose the event W1 holds. Consider any class index i ∈ [M ′]. For all policies π and epochs
m ≤ m∗

i + 1 we have:

Reg(π) ≤ 2Regf (π) +
ηi,mK

γm,i
, ∀f ∈ {f̂m, f̂m,i},
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Regf̂m(π) ≤ 2Reg(π) +
ηi,mK

γm,i
,

where ηi,m = 2 + 4(γm−1,1/γm−1,i).

Proof. We will prove this by induction. The base case follows from the fact that for all policies π, we have:

Reg(π) ≤ 1 ≤ η1K/γ1,i

Regf̂1(π) ≤ 1 ≤ η1K/γ1,i.

For the inductive step, fix some m ≤ m∗
i . Assume for all policies π, we have:

Reg(π) ≤ 2Regf (π) +
ηi,mK

γm,i
, ∀f ∈ {f̂m, f̂m,i},

Regf̂m(π) ≤ 2Reg(π) +
ηi,mK

γm,i
.

Therefore, from Lemma 10 we have:

Reg(π) ≤ 2Regf (π) +
η′i,m+1K

γm+1,i
, ∀f ∈ {f̂m+1, f̂m+1,i},

Regf̂m+1
(π) ≤ 2Reg(π) +

η′i,m+1K

γm+1,i
,

where η′i,m+1 = 2max
(

γm

γm,i
,
√
1 + γm

γm,i
ηi,m

)
. Then we have:

η′i,m+1 = 2max

(
γm
γm,i

,

√
1 +

γm
γm,i

ηi,m

)
≤ 2max

(
γm,1

γm,i
,

√
1 +

γm,1

γm,i
ηi,m

)

≤ 2max

(
γm,1

γm,i
,

√
1 + 22

γ2
m,1

γ2
m,i

+ 2
γm,1

γm,i

)
≤ max

(
2
γm,1

γm,i
, ηi,m+1

)
= ηi,m+1.

This completes the inductive argument.

Lemma 12. Suppose the event W1 holds. Consider any two class indices i, h ∈ [M ′] such that h ≤ i. For all
policies π and epochs m ∈ [m̂h−1 + 1,m∗

i + 1], we have:

Reg(π) ≤ 2Regf (π) + 8
γm−1,h

γm−1,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1−1

K

γm,i
, ∀f ∈ {f̂m, f̂m,i},

Regf̂m(π) ≤ 2Reg(π) + 8
γm−1,h

γm−1,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1−1

K

γm,i
.

Proof. Consider any two class indices i, h ∈ [M ′] such that h ≤ i. We will prove the required bound by induction.
The bound for the base case m = m̂h−1 + 1 follows from Lemma 11. Suppose the bound in Lemma 12 holds for
class indices i, h and for some epoch m ∈ [m̂h−1 + 1,m∗

i ]. From Lemma 10, we have:

Reg(π) ≤ 2Regf (π) +
η′K

γm+1,i
, ∀f ∈ {f̂m+1, f̂m+1,i},

Regf̂m+1
(π) ≤ 2Reg(π) +

η′K

γm+1,i
,
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along with:

η′ = 2max

(
γm
γm,i

,

√√√√
1 +

γm
γm,i

8
γm−1,h

γm−1,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1−1)

(i)

≤ 2max

(
γm,h

γm,i
,

√√√√
1 +

γm,h

γm,i
8
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1−1)
(ii)

≤ 8
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

,

where (i) follows from the fact that γm ≤ γm,h (since m ≥ m̂h−1 + 1), and
γm−1,h/γm−1,i ≤ γm,h/γm,i for h ≤ i. Then (ii) follows from the fact that 1 + z ≤ 2z for z ≥ 1. Hence we
have shown the bound in Lemma 12 holds for class indices i, h and epoch m+ 1. This completes our inductive
argument.

D.1 Verifying Reward Model Agreement Across Classes

In Lemma 13, we develop a bound on R̂egm+1,f̂m+1
(πf̂m+1,i), which indicates whether the policy induced by

the model predicted for class i is considered to be a good policy by the model we have estimated. When this
bound is exceeded, it suggests that we should use the exploitation parameter corresponding to larger classes. The
implications of this test are captured in Lemma 14, which provides a bound on Regm+1,f̂m+1

(πf̂m+1,i) through

m̂i, provided the test is satisfied.

Lemma 13. Suppose the events W1 and W2 hold. Consider h ≤ i and m ∈ [m̂h−1,m
∗
i ], we then have:

R̂egm+1,f̂m+1
(πf̂m+1,i

) ≤ 26
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

K

γm+1,i
. (30)

Proof. From Lemma 12, we have the following for any policy π:

Reg(π) ≤ 2Regf (π) + 8
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

K

γm+1,i
, ∀f ∈ {f̂m+1, f̂m+1,i},

Regf̂m+1
(π) ≤ 2Reg(π) + 8

γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

K

γm+1,i
.

Combining the above and plugging in π = πf̂m+1,i
, we have:

Regf̂m+1
(πf̂m+1,i

) ≤ 2Reg(πf̂m+1,i
) + 8

γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

K

γm+1,i

≤ 4Regf̂m+1,i
(πf̂m+1,i

) + 24
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

K

γm+1,i

≤ 24
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

K

γm+1,i
,

(31)

where the last inequality follows from Regf̂m+1,i
(πf̂m+1,i

) = 0. We then have:

R̂egm+1,f̂m+1
(πf̂m+1,i

)

= R̂m+1,f̂m+1
(πf̂m+1

)− R̂m+1,f̂m+1
(πf̂m+1,i

)

=
(
R̂m+1,f̂m+1

(πf̂m+1
)−Rf̂m+1

(πf̂m+1
)
)

+
(
Rf̂m+1

(πf̂m+1,i
)− R̂m+1,f̂m+1

(πf̂m+1,i
)
)
+Regf̂m+1

(πf̂m+1,i
)
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(i)

≤ 2K

γm+1,i
+Regf̂m+1

(πf̂m+1,i
)

(ii)

≤ 26
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

K

γm+1,i
,

where (i) follows from W2 and (ii) follows from (31).

Lemma 14. Suppose the event W2 holds. Consider h ≤ i and m ∈ [m̂h−1, m̂i], we then have:

Regf̂m+1
(πf̂m+1,i

) ≤ 28
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

K

γm+1,i
.

Proof. Since the test in Lemma 13 holds up to m̂i, we have the following guarantee:

Regf̂m+1
(πf̂m+1,i

) = Rf̂m+1
(πf̂m+1

)−Rf̂m+1
(πf̂m+1,i

)

=
(
Rf̂m+1

(πf̂m+1
)− R̂m+1,f̂m+1

(πf̂m+1
)
)

+
(
R̂m+1,f̂m+1

(πf̂m+1,i
)−Rf̂m+1

(πf̂m+1,i
)
)
+ R̂egm+1,f̂m+1

(πf̂m+1,i
)

≤ 2K

γm+1,i
+ R̂egm+1,f̂m+1

(πf̂m+1,i
)

≤ 28
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

K

γm+1,i
.

(32)

D.2 Verifying Reward Model Agreement Across Epochs

The goal of this section is to verify that potential new exploration policies had sufficiently low regret according to
models in previous epochs. This helps ensure that these new exploration policies were well-explored in previous
epochs and we can rely on our estimates for these policies. Lemma 15 provides the expected reward model
agreement across epochs by bounding Regf̂m(π) in terms of regret according to f̂m+1 and f̂m+1,i. Lemma 16
describes the corresponding test. Lemma 17 provides implied guarantees as long this test holds.

Lemma 15. Suppose the event W1 holds. Consider any two class indices i, h ∈ [M ′] such that h ≤ i. For all
policies π and epochs m ∈ [m̂h−1,m

∗
i ], we have:

Regf̂m(π) ≤ 4Regf (π) + 24
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2max(0,m−m̂h−1−1)

K

γm,i
, ∀f ∈ {f̂m+1, f̂m+1,i}.

Proof. Consider m ∈ [m̂h−1,m
∗
i ], policy π, and f ∈ {f̂m+1, f̂m+1,i}.

Regf̂m(π)
(i)

≤ 2Reg(π) + 8
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2max(0,m−m̂h−1−1)

K

γm,i

(ii)

≤ 4Regf (π) + 24
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2max(0,m−m̂h−1−1)

K

γm,i
.

(33)

To show (i) we consider two cases. For the case m = m̂h−1, (i) follows from Lemma 11 and the fact that
γm−1,1

γm−1,i
≤ γm,1

γm,i
. For the case m > m̂h−1, (i) follows from Lemma 12 and the fact that

γm−1,h

γm−1,i
≤ γm,h

γm,i
. Then (ii)

follows from Lemma 12 and the fact that
γm̂h−1,1

γm̂h−1,i
≥ 1, K

γm,i
≥ K

γm+1,i
.

Lemma 16. Suppose the event W1 holds. Consider any two class indices i, h ∈ [M ′] such that h ≤ i. For
all policies Π0,m+1,i = π ∈ {πf̂m+1

, πf̂m+1,i
, pm+1,1, . . . , pm+1,M ′}, epochs m ∈ [m̂h−1,m

∗
i ], and models f ∈

{f̂m+1, f̂m+1,i}, we have:

R̂egm+1,f̂m
(π) ≤ 4R̂egm+1,f (π) + 34

γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2max(0,m−m̂h−1−1)

K

γm,i
. (34)
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Proof. Consider any policy π ∈ {πf̂m+1
, πf̂m+1,i

, pm+1,1, . . . , pm+1,M ′}, model f ∈ {f̂m+1, f̂m+1,i}, and epoch

m ∈ [m̂h−1,m
∗
i ].

R̂egm+1,f̂m
(π)− 4R̂egm+1,f (π)

= (R̂m+1,f̂m
(πf̂m

)− R̂m+1,f̂m
(π))− 4(R̂m+1,f (πf )− R̂m+1,f (π))

=
(
R̂m+1,f̂m

(πf̂m
)−Rf̂m

(πf̂m
)
)
+
(
Rf̂m

(π)− R̂m+1,f̂m
(π)
)
+Regf̂m(π)

+ 4
(
Rf (πf )− R̂m+1,f (πf )

)
+ 4
(
R̂m+1,f (π)−Rf (π)

)
− 4Regf (π)

(i)

≤ 10K

γm+1,i
+Regf̂m(π)− 4Regf (π)

(ii)

≤ 34
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2max(0,m−m̂h−1−1)

K

γm,i
,

where (i) follows from W2 and (ii) follows from Lemma 15.

Lemma 17. Suppose the event W1 holds. Consider any two class indices i, h ∈ [M ′] such that h ≤ i. For all

policies π ∈ {πf̂m+1
, πf̂m+1,i

, pm+1,1, . . . , pm+1,M ′}, epochs m ∈ [m̂h−1, m̂i], and models f ∈ {f̂m+1, f̂m+1,i}, we
have:

Regf̂m(π) ≤ 4Regf (π) + 44
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2max(0,m−m̂h−1−1)

K

γm,i
.

Proof. Consider any policy π ∈ {πf̂m+1
, πf̂m+1,i

, pm+1,1, . . . , pm+1,M ′}, model f ∈ {f̂m+1, f̂m+1,i}, and epoch

m ∈ [m̂h−1, m̂i].

Regf̂m(π)− 4Regf (π)

= (Rf̂m
(πf̂m

)−Rf̂m
(π))− 4(Rf (πf )−Rf (π))

=
(
Rf̂m

(πf̂m
)− R̂m+1,f̂m

(πf̂m
)
)
+
(
R̂m+1,f̂m

(π)−Rf̂m
(π)
)
+ R̂egm+1,f̂m

(π)

+ 4
(
R̂m+1,f (πf )−Rf (πf )

)
+ 4
(
Rf (π)− R̂m+1,f (π)

)
− 4R̂egm+1,f (π)

(i)

≤ 10K

γm+1,i
+ R̂egm+1,f̂m

(π)− 4R̂egm+1,f (π)

(ii)

≤ 44
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2max(0,m−m̂h−1−1)

K

γm,i
,

where (i) follows from W2 and (ii) follows from Lemma 16.

E INDUCTIVE ARGUMENT BASED ON TESTED GUARANTEES

In Appendices C and D, we developed several verified guarantees on our estimated reward models. In this section,
we rely on these guarantees to relate the true regret (with respect to the best policies in different classes) to
the regret according to estimated models. Our proof follows by induction and demonstrates the benefits of the
self-correction step (holding candidate exploitation parameters fixed by not increasing epoch lengths for a few
epochs) in our algorithm.

Proof outline: Lemma 18 is our main inductive step. Lemmas 19 and 20 apply this step in order to relate the
true regret (with respect to the best policies in different classes) to the regret according to estimated models.
Lemma 20 in particular demonstrates how holding candidate exploitation parameters fixed for some epochs helps
with correcting for the effects of under-exploration on our estimated reward models.

E.1 Inductive Step Based on Tested Guarantees

Lemma 18 is our main inductive step that utilizes tested guarantees. We state and prove it in this section.
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Lemma 18. Suppose the event W1 defined in (17) holds. Consider any class indices i, j ∈ [M ′] such that j ≥ i,
and consider any epoch m ∈ [m̂i]. Let θi,j :=

γm+1,i

γm+1,j
. Suppose there exist constants (η, η̃, η̃′ > 0) such that we

have the following for any f ∈ {f̂m+1, f̂m+1,i}:

Regj(π) ≤ 2Regf̂m(π) +
ηK

γm,i
, ∀π ∈ Π̃j

Regf̂m(π) ≤ 2Regj(π) +
ηK

γm,i
, ∀π ∈ Π̃j

Regf̂m+1
(πf̂m+1,i

) ≤ η̃K

γm+1,i
,

Regf̂m(π) ≤ 4Regf (π) +
η̃′K

γm,i
, ∀π ∈ {πf̂m+1

, πf̂m+1,i
, pm+1,1, . . . , pm+1,M ′}.

(35)

We then have that for all polices π ∈ Π̃j ∪ {πf̂m+1
, pm+1,1, . . . , pm+1,M ′} and models f ∈ {f̂m+1, f̂m+1,i}:

Regj(π) ≤ 2Regf (π) +
η′K

γm+1,i

Regf (π) ≤ 2Regj(π) +
η′K

γm+1,i
,

(36)

where η′ = 5α′(1 + 2θi,j)
2 + 2η̃ + 2(1 + 2θi,j)

√
α′(η + η̃′) and α′ = γm/γm,i.

Proof. To begin our proof, we first define a few quantities. Let α′ = γm/γm,i, and let α ≥ 8α′(1 + 2θi,j) be

a positive constant (will be fixed later in the proof). Let f be any model in {f̂m+1, f̂m+1,i}. Let Π̃0,m+1 =
{πf̂m+1

, pm+1,1, . . . , pm+1,M ′}. Our proof is broken into two parts.

Part 1: The first part of the proof works towards the first inequality in (36). We start with bounding the
difference between Regj(π) and Regf (π) for all policies π ∈ Π̃j ∪ Π̃0,m+1.

π ∈ Π̃j ∪ Π̃0,m+1, Regj(π)− Regf (π)

=
(
R(π∗

j )−R(π)
)
−
(
Rf (πf )−Rf (π)

)
(i)

≤
(
R(π∗

j )−R(π)
)
−
(
Rf (π

∗
j )−Rf (π)

)
(ii)

≤ |R(π∗
j )−Rf (π

∗
j )|+ |R(π)−Rf (π))|

(iii)

≤ 2C̄ +
(1 + 2θi,j)

α

γm
γm+1,i

(
Regf̂m(π∗

j ) + Regf̂m(π)

)
,

(iv)

≤ 2C̄ +
(1 + 2θi,j)α

′

α

ηK

γm+1,i
+

(1 + 2θi,j)

α

γm
γm+1,i

Regf̂m(π),

(37)

where (i) follows from the definition of πf , (ii) follows from the triangle inequality, (iii) follows from Lemma 9,
and (iv) follows from (35) and Regj(π

∗
j ) = 0. For brevity, in (iii), we have defined the quantity:

C̄ =

(
1 + 2θi,j

α
+

(1 + 2θi,j)α

16
+

(2θ2i,j + 2(1 + θi,j)
2/α+ 2θi,j)γm

γm+1,i
+ 2θi,j

)
K

γm+1,i
,

which is the first term from the result of Lemma 9.

Part 1 (Case 1: π ∈ Π̃j): This case only considers policies π ∈ Π̃j , we refine (37) for such policies using (35).
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Combining (37) and (35), we get:

Regj(π)− Regf (π) ≤ 2C̄ +
(1 + 2θi,j)α

′

α

ηK

γm+1,i
+

(1 + 2θi,j)

α

γm
γm+1,i

(
2Regj(π) +

ηK

γm,i

)
=⇒ α− 2α′(1 + 2θi,j)

α
Regj(π) ≤ Regf (π) + 2C̄ +

2α′ηK(1 + 2θi,j)

αγm+1,i

=⇒ Regj(π) ≤
α

α− 2α′(1 + 2θi,j)

(
Regf (π) + 2C̄ +

2α′ηK(1 + 2θi,j)

αγm+1,i

)
=⇒ Regj(π) ≤ 2Regf (π) + 4C̄ +

4α′ηK(1 + 2θi,j)

αγm+1,i
,

(38)

where the last implication follows from the fact that α ≥ 4α′(1 + 2θi,j) and hence α
α−2α′(1+2θi,j)

≤ 2.

Part 1 (Case 2: π ∈ Π0,m+1): This case only considers policies π ∈ Π0,m+1, we refine (37) for such policies
using (35). Combining (37) and (35), we get:

Regj(π)− Regf (π) ≤ 2C̄ +
(1 + 2θi,j)α

′

α

ηK

γm+1,i
+

(1 + 2θi,j)

α

γm
γm+1,i

(
4Regf (π) +

η̃′K

γm,i

)
=⇒ Regj(π) ≤

(
1 +

4(1 + 2θi,j)

α

γm
γm+1,i

)
Regf (π) + 2C̄ +

α′(η + η̃′)K(1 + 2θi,j)

αγm+1,i

=⇒ Regj(π) ≤ 2Regf (π) + 2C̄ +
α′(η + η̃′)K(1 + 2θi,j)

αγm+1,i
,

(39)

where the last implication follows from the fact that α ≥ 4α′(1 + 2θi,j).

Part 2: The second part of the proof works towards the second inequality in (36). We start with bounding the
difference between Regf (π) and Regj(π) for all policies π ∈ Π̃j ∪ Π̃0,m+1.

π ∈ Π̃j ∪ Π̃0,m+1, Regf (π)− Regj(π)

=
(
Rf (πf )−Rf (π)

)
−
(
R(π∗

j )−R(π)
)

(i)

≤
(
Rf (πf )−Rf (π)

)
−
(
R(πf̂m+1,i

)−R(π)
)

(ii)

≤ Regf (πf̂m+1,i
) +

∣∣∣Rf (πf̂m+1,i
)−R(πf̂m+1,i

)
∣∣∣+ ∣∣∣R(π)−Rf (π)

∣∣∣,
(iii)

≤ η̃K

γm+1,i
+
∣∣∣Rf (πf̂m+1,i

)−R(πf̂m+1,i
)
∣∣∣+ ∣∣∣R(π)−Rf (π)

∣∣∣
(iv)

≤ η̃K

γm+1,i
+ 2C̄ +

(1 + 2θi,j)

α

γm
γm+1,i

(
Regf̂m(πf̂m+1,i

) + Regf̂m(π)

)
(v)

≤ η̃K

γm+1,i
+ 2C̄ +

(1 + 2θi,j)α
′

α

η̃′K

γm+1,i
+

(1 + 2θi,j)

α

γm
γm+1,i

Regf̂m(π),

(40)

where (i) follows from the definition of π∗
j and πf̂m+1,i

∈ Π̃j , (ii) follows from triangle inequality, (iii) follows from

(35), (iv) follows from Lemma 9, and (v) follows from (35) and Regf̂m+1,i
(πf̂m+1,i

) = 0.

Part 2 (Case 1 π ∈ Π̃j): This case only considers policies π ∈ Π̃j , we refine (40) for such policies using (35).
Combining (40) and (35), we get:

Regf (π)

≤ η̃K

γm+1,i
+ 2C̄ +

(1 + 2θi,j)α
′

α

η̃′K

γm+1,i
+

(1 + 2θi,j)

α

γm
γm+1,i

(
2Regj(π) +

ηK

γm,i

)
+Regj(π)

≤
(
1 +

2(1 + 2θi,j)

α

γm
γm+1,i

)
Regj(π) + 2C̄ +

K

γm+1,i

(
η̃ +

(1 + 2θi,j)α
′

α
(η + η̃′)

)
≤ 2Regj(π) + 2C̄ +

K

γm+1,i

(
η̃ +

(1 + 2θi,j)α
′

α
(η + η̃′)

)
,

(41)



Sanath Kumar Krishnamurthy*, Adrienne Margaret Propp*, Susan Athey

where the last inequality follows from the fact that α ≥ 4α′(1 + 2θi,j).

Part 2 (Case 2 π ∈ Π̃0,m+1): This case only considers policies π ∈ Π̃0,m+1, we refine (40) for such policies using
(35). Combining (40) and (35), we get:

Regf (π)− Regj(π) ≤
η̃K

γm+1,i
+ 2C̄ +

(1 + 2θi,j)α
′

α

η̃′K

γm+1,i
+

(1 + 2θi,j)

α

γm
γm+1,i

(
4Regf (π) +

η̃′K

γm,i

)
=⇒

(
1− 4(1 + 2θi,j)

α

γm
γm+1,i

)
Regf (π) ≤ Regj(π) + 2C̄ +

K

γm+1,i

(
η̃ +

2(1 + 2θi,j)α
′η̃′

α

)
=⇒ Regf (π) ≤ 2Regj(π) + 4C̄ +

K

γm+1,i

(
2η̃ +

4(1 + 2θi,j)α
′η̃′

α

)
,

(42)

where the last implication follows from the fact that α ≥ 8α′(1 + 2θi,j).

Note that, if (43) holds and if α ≥ 8α′(1 + 2θi,j), then (38),(39), (41) (42) imply (36) holds for all policies in

Π̃j ∪Π0,m+1:

η′ ≥4
(
1 + 2θi,j

α
+

(1 + 2θi,j)α

16
+

(2θ2i,j + 2(1 + θi,j)
2/α+ 2θi,j)γm

γm+1,i
+ 2θi,j

)
+ 2η̃ +

4(1 + 2θi,j)α
′(η + η̃′)

α
.

(43)

We now fix our choice of α in a way that ensures (43) and α ≥ 8α′(1 + 2θi,j) does infact hold. We choose

α = 8α′(1 + 2θi,j) + 4
√
α′(η + η̃′).Clearly, α ≥ 8α′(1 + 2θi,j) holds. We will now show that (43) holds.

4

(
1 + 2θi,j

α
+

(1 + 2θi,j)α

16
+

(2θ2i,j + 2(1 + θi,j)
2/α+ 2θi,j)γm

γm+1,i
+ 2θi,j

)
+ 2η̃ +

4(1 + 2θi,j)α
′(η + η̃′)

α
(i)

≤4
(
1

8
+

(1 + 2θi,j)α

16
+ 2θ2i,jα

′ +
1 + θi,j

4
+ 2θi,jα

′
)
+ 2η̃ + (1 + 2θi,j)

√
α′(η + η̃′)

(ii)
= 4

(
1

8
+

(1 + 2θi,j)
2

2
+ 2θ2i,jα

′ +
1 + θi,j

4
+ 2θi,jα

′
)
+ 2η̃ + 2(1 + 2θi,j)

√
α′(η + η̃′)

≤5α′(1 + 2θi,j)
2 + 2η̃ + 2(1 + 2θi,j)

√
α′(η + η̃′) = η′,

(44)

where (i) follows from α ≥ max{8α′(1 + 2θi,j), 4
√
α′(η + η̃′)}, (ii) follows from our choice of α, and the last

inequality follows from simple algebraic manipulations. This completes our proof.

E.2 Under-Exploration and Self Correction

Lemmas 19 and 20 apply the inductive step established in Appendix E.1 to relate the true regret (with respect
to the best policies in different classes) to the regret according to estimated models. Lemma 20 in particular
demonstrates the self-correction property of Mod-IGW.

Lemma 19. Suppose the eventW1 holds. Consider any class indices i, j ∈ [M ′] such that j ≥ i. Let θi,j :=
γm+1,i

γm+1,j
.

For any policy π ∈ Π̃j ∪Π0,m, model fm ∈ {f̂m, f̂m,i}, and epoch m ≤ m̂i + 1, we have:

Regj(π) ≤ 2Regfm(π) +
ηi,mK

γm,i

Regfm(π) ≤ 2Regj(π) +
ηi,mK

γm,i
,

where ηi,m = 100(1 + 2θi,j)
2(γm−1,1/γm−1,i).
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Proof. We will prove this by induction. The base case follows from the fact that for any policy π ∈ Π̃j ∪Π0,1 and

model f1 ∈ {f̂1, f̂1,i}, we have:
Regj(π) ≤ 1 ≤ −2 + η1K/γ1,i

Regf1(π) ≤ 1 ≤ −2 + η1K/γ1,i.
(45)

For the inductive step, fix some m ≤ m̂i. Assume for any policy π ∈ Π̃j ∪Π0,m and model fm ∈ {f̂m, f̂m,i}, we
have:

Regj(π) ≤ 2Regfm(π) +
ηi,mK

γm,i

Regfm(π) ≤ 2Regj(π) +
ηi,mK

γm,i
.

(46)

Let fm+1 ∈ {f̂m+1, f̂m+1,i}. From Lemma 14 and Lemma 17, we have that (47) holds:

Regf̂m+1
(πf̂m+1,i

) ≤ η̃K

γm+1,i
,

Regf̂m(π) ≤ 4Regfm+1
(π) +

η̃′K

γm,i
, ∀π ∈ {πf̂m+1

, πf̂m+1,i
, pm+1,1, . . . , pm+1,M ′},

η̃ = 28
γm,1

γm,i
, η̃′ = 44

γm,1

γm,i
.

(47)

Now from (46), (47), and Lemma 18, we have that (48) holds:

∀π ∈ Π̃j ∪Π0,m+1, Regj(π) ≤ 2Regfm+1
(π) +

η′i,m+1K

γm+1,i
,

Regfm+1
(π) ≤ 2Regj(π) +

η′i,m+1K

γm+1,i
,

(48)

where η′i,m+1 = 5(γm/γm,i)(1 + 2θi,j)
2 + 2η̃ + 2(1 + 2θi,j)

√
(γm/γm,i)(ηi,m + η̃′). To complete our inductive

argument, we only need to argue that η′i,m+1 ≤ ηi,m+1; we will now show this.

η′i,m+1 ≤ 5
γm,1

γm,i
(1 + 2θi,j)

2 + 56
γm,1

γm,i
+ 2(1 + 2θi,j)

√
γm,1

γm,i
(ηi,m + 44

γm,1

γm,i
)

(i)

≤ 75
γm,1

γm,i
(1 + 2θi,j)

2 + 2(1 + 2θi,j)

√
γm,1

γm,i
ηi,m

(ii)
= 75

γm,1

γm,i
(1 + 2θi,j)

2 + 2(1 + 2θi,j)

√
γm,1

γm,i
100(1 + 2θi,j)2

γm−1,1

γm−1,i

(iii)

≤ 95
γm,1

γm,i
(1 + 2θi,j)

2 ≤ ηi,m+1,

(49)

where (i) follows from
√
a+ b ≤

√
a +
√
b for any a, b ≥ 0, (ii) follows from substituting ηi,m = 100(1 +

2θi,j)
2(γm−1,1/γm−1,i), and (iii) follows from

γm−1,1

γm−1,i
≤ γm,1

γm,i
. This completes the inductive argument.

In the following lemma, we derive the self-correction property of our algorithm. That is, after a small number of
epochs, we correct for effects of potential past under-exploration. This is evident in the factor of γm−1,1/γm−1,i in

the bound of Lemma 19, which is improved to a factor of
γm−1,h

γm−1,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1−1

in the bound of Lemma 20.

Increasing epochs without increasing the candidate exploitation parameters helps reduce the term with the
exponent, which converges to a constant within a small number of rounds.

Lemma 20. Suppose the event W1 holds. Consider any two class indices i, h ∈ [M ′] such that h ≤ i. Let

θi,j :=
γm+1,i

γm+1,j
. For any policy π ∈ Π̃j ∪Π0,m, model fm ∈ {f̂m, f̂m,i}, and epoch m ∈ [m̂h−1 +1, m̂i +1], we have:

Regj(π) ≤ 2Regfm(π) +
ηi,h,mK

γm,i
,
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Regfm(π) ≤ 2Regj(π) +
ηi,h,mK

γm,i
,

where ηi,h,m = 100(1 + 2θi,j)
2 γm−1,h

γm−1,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1−1

. Further for m ∈ [m̂h−1 +

⌈log2(log2(γm̂h−1,1/γm̂h−1,i))⌉, m̂i + 1], we have ηi,h,m ≤ 400(1 + 2θi,j)
2 γm−1,h

γm−1,i
.

Proof. Consider any two class indices i, h ∈ [M ′] such that h ≤ i. We will prove the required bound by induction.
The bound for the base case m = m̂h−1 + 1 follows from Lemma 19. Suppose the bound in Lemma 20 holds for
class indices i, h and for some epoch m ∈ [m̂h−1 + 1, m̂i]. Let fm+1 ∈ {f̂m+1, f̂m+1,i}. To complete our inductive
argument, we will show the bound in Lemma 20 holds for class indices i, h and epoch m+1. Now, from Lemma 14
and Lemma 17 we have (50) holds.

Regf̂m+1
(πf̂m+1,i

) ≤ η̃K

γm+1,i
,

Regf̂m(π) ≤ 4Regfm+1
(π) +

η̃′K

γm,i
, ∀π ∈ {πf̂m+1

, πf̂m+1,i
, pm+1,1, . . . , pm+1,M ′},

η̃ = 28
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

, η̃′ = 44
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1−1

.

(50)

Now from (50), inductive hypothesis (bounds in Lemma 20 hold for epoch m) and Lemma 18, we have (51) holds.

∀π ∈ Π̃j ∪Π0,m+1, Regj(π) ≤ 2Regfm+1
(π) +

η′i,h,m+1K

γm+1,i
,

Regfm+1
(π) ≤ 2Regj(π) +

η′i,h,m+1K

γm+1,i
,

(51)

where η′i,h,m+1 = 5(γm/γm,i)(1+2θi,j)
2+2η̃+2(1+2θi,j)

√
(γm/γm,i)(ηi,h,m + η̃′). Note that since m ≥ m̂h−1+1,

we have γm ≥ γm,h. To complete our inductive argument, we only need to argue that η′i,h,m+1 ≤ ηi,h,m+1; we
will now show this.

η′i,h,m+1 ≤ 5
γm,h

γm,i
(1 + 2θi,j)

2 + 56
γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

+ 2(1 + 2θi,j)

√√√√γm,h

γm,i

(
ηi,h,m + 44

γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1−1)
(i)

≤ 75(1 + 2θi,j)
2 γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

+ 2(1 + 2θi,j)

√
γm,h

γm,i
ηi,h,m

(ii)
= 75(1 + 2θi,j)

2 γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

+ 2(1 + 2θi,j)

√√√√γm,h

γm,i
100(1 + 2θi,j)2

γm−1,h

γm−1,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1−1

(iii)

≤ 95(1 + 2θi,j)
2 γm,h

γm,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1

≤ ηi,h,m+1,

(52)

where (i) follows from
√
a+ b ≤

√
a +
√
b for any a, b ≥ 0, (ii) follows from substituting ηi,h,m = 100(1 +

2θi,j)
2 γm−1,h

γm−1,i

(
γm̂h−1,1

γm̂h−1,i

)1/2m−m̂h−1−1

, and (iii) follows from
γm−1,h

γm−1,i
≤ γm,h

γm,i
. This completes the inductive argument.
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Finally for m ∈ [m̂h−1 + ⌈log2(log2(γm̂h−1,1/γm̂h−1,i))⌉, m̂i + 1], we have (53):

ηi,h,m ≤ 100(1 + 2θi,j)
2 γm−1,h

γm−1,i

(
γm̂h−1,1

γm̂h−1,i

)2/2
log2(log2(γm̂h−1,1/γm̂h−1,i))

≤ 400(1 + 2θi,j)
2 γm−1,h

γm−1,i
.

(53)

F BOUNDING TIME TO DETECTION OF MISSPECIFICATION

In this section, we bound the number of rounds to determine whether class F̃i is misspecified. In particular,
under Assumptions 2 and 3, we show that that misspecification for class F̃i is detected before the corresponding
policy class bias dominates the corresponding variance. Unlike previous sections, the analysis in this section relies
on Assumptions 2 and 3.

Proof outline: Lemma 21 first derives a minimum direct method evaluation error for models in F̃i in terms of
∆i. Lemma 22 allows us to re-write this error in terms of policy class bias βi. The rest of our analysis bounds the
number of rounds required to detect this error. Lemma 23 bounds the length of the epoch where misspecification
is detected for class F̃i in terms of the length of the epoch where misspecification is detected for class F̃i−1.
Lemma 24 bounds the last round in an epoch in terms of its epoch length. Hence, Corollary 1 uses these results
to bound the time to detect misspecification for class F̃i.

Lemma 21. Suppose Assumption 3 holds. Consider some i < j ∈ [M ′] such that Bi > 0 and dj ≤ ωdi. Further,

consider any reward model f ∈ F̃i. We then have:

∃π ∈ {πf , π
∗
j }, ∆i/2 ≤ |R(π)−Rf (π)|. (54)

Proof. From Assumption 3, we have (55) holds.

∆i := R(π∗
j )−R(π∗

i ). (55)

Suppose for contradiction, assume that (56) holds.

∆i/2 > |R(π)−Rf (π)| ∀ π ∈ {πf , π
∗
j }. (56)

We can decompose (56) to obtain the following two relations:

R(πf ) + ∆i/2 > Rf (πf )

R(π∗
j )− ∆̃i/2 < Rf (π

∗
j ).

(57)

By the definitions of πf , we have Rf (πf ) ≥ Rf (π
∗
j ). Together with (57), this gives us:

R(π∗
i ) + ∆i/2 ≥ R(πf ) + ∆i/2 > Rf (πf ) ≥ Rf (π

∗
j ) > R(π∗

j )−∆i/2

=⇒ R(π∗
j )−R(π∗

i ) < ∆i.
(58)

This contradicts (55), hence (56) must be false. Therefore (54) holds.

Lemma 22. Suppose Assumption 1 and Assumption 3 hold. Then for any i < i∗, we have ∆i ≥ βi/(i
∗ − i) ≥

βi/ log2(d̃i∗).

Proof. The proof is fairly straightforward:

βi =R(π∗
i∗)−R(πi)

=

i∗−1∑
j=i

(
R(π∗

j+1)−R(π∗
j )
)
≤ (i∗ − i)∆i.

(59)

The first equality follows from definition of βi and the last inequality follows from Assumption 3. Hence, we have
∆i ≥ βi/(i

∗ − i). Now to complete the proof, note that (i∗ − i) ≤ i∗ ≤ log2(d̃i∗)
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Lemma 23. Suppose the events W1 and W2 hold. Suppose also that Assumption 3 holds. Consider any i ∈ [M ′]
such that Bi > 0. There exists a constant C2 such that the following holds:

τm̂i
− τm̂i−1 ≤ (τm̂i−1

− τm̂i−1−1) + C2

(
K

∆2
i

)1/ρ

ω2d̃i ln(6M
3T 2/δ). (60)

Proof. We will prove Lemma 23 via induction. Note that the base case is trivially satisfied by defining τm̂l
= 0 for

any l ≤ 0. For our inductive hypothesis, suppose the statement in Lemma 23 holds for class index i− 1 ∈ [M ′− 1].
To complete our inductive argument, we will show that the statement in Lemma 23 holds for class index i ∈ [M ′].

We split our analysis into two cases, a trivial case and a more involved case. The first case is m̂i ≤ m̂i−1 + l,
where l = log2 log2(γm,1/γm,im+1

). In this case, the algorithm is still undergoing self-correction of the learning
rates following detection of misspecification in model class m̂i−1, and so the epoch lengths are not yet doubling.
Therefore, we have that τm̂i − τm̂i−1 = τm̂i−1 − τm̂i−1−1. Hence, the inequality we want to show (60) is trivially

satisfied. The second case is m̂i > m̂i−1 + l. Let m = m̂i − 1, and let j be the largest index such that d̃j ≤ ωd̃i.
By Assumption 3 and Lemma 21, we know that (61) holds:

∃ π ∈ {πf̂m+1,i
, π∗

j }, ∆i/2 ≤ |R(π)−Rf̂m+1,i
(π)|. (61)

Let θi,j :=
γm+1,i

γm+1,j
, and let α > 0 be a positive constant that we will fix later. Since m ≤ m̂i, from Lemma 9 and

(61), we have (62) holds:

∆i

2
≤
(
1 + 2θi,j

α
+

(1 + 2θi,j)α

16
+

(2θ2i,j + 2(1 + θi,j)
2/α+ 2θi,j)γm

γm+1,i
+ 2θi,j

)
K

γm+1,i

+
(1 + 2θi,j)γm

αγm+1,i
max

π∈{πf̂m+1,i
,π∗

j }
Regf̂m(π).

(62)

We will now bound maxπ∈{πf̂m+1,i
,π∗

j } Regf̂m(π). From Lemma 20, the fact that Regj(π
∗
j ) = 0 =

Regf̂m+1,i
(πf̂m+1,i

), m > m̂i−1 + l, and γm+1,i ≥ γm,i – we have (63) holds:

Regf̂m(π∗
j ) ≤ 400(1 + 2θi,j)

2 K

γm,i
,

Regf̂m(πf̂m+1,i
) ≤ 2Regj(πf̂m+1,i

) + 400(1 + 2θi,j)
2 K

γm,i
≤ 1200(1 + 2θi,j)

2 K

γm,i
.

(63)

Hence, combining (62) and (63), we have (64) holds:

∆i

2
≤
(
1 + 2θi,j

α
+

(1 + 2θi,j)α

16
+

(2θ2i,j + 2(1 + θi,j)
2/α+ 2θi,j)γm

γm+1,i
+ 2θi,j

)
K

γm+1,i

+
(1 + 2θi,j)γm

αγm+1,i
1200(1 + 2θi,j)

2 K

γm,i
.

(64)

We will now simplify (64). Since m ∈ (m̂i−1, m̂i), we have γm = γm,i. Also note that γm,i ≤ γm+1,i. Now by
choosing α = 128(1 + 2θi,j), we get the following simplification of (64):

∆i

2
≤
(

1

128
+ 8(1 + 2θi,j)

2 + 2θ2i,j + (1 + θi,j)/64 + 4θi,j + 10(1 + 2θi,j)
2

)
K

γm,i

=⇒ ∆i ≤ 40(1 + 2θi,j)
2 K

γm,i
≤ 360 θ2i,j

√
8C1K

(
d̃i ln(6M3T 2/δ)

(τm−1 − τm−2)/2

)ρ

=⇒ τm̂i − τm̂i−1 ≤ 4(τm−1 − τm−2) ≤ 8 · (8C1 · 3602)1/ρ
K1/ρθ

4/ρ
i,j d̃i ln(6M

3T 2/δ)

∆
2/ρ
i

.

(65)

By substituting θi,j =
γm+1,i

γm+1,j
=

√
dρ
j

dρ
i
≤ ωρ/2, we completes the proof of the inductive step for the second case.

Hence this completes the proof of the inductive argument.
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Lemma 24. For any epoch m, we have τm ≤ 2l(τm − τm−1), where l = ⌈log2 log2(γm,1/γm,im)⌉.

Proof. In Mod-IGW, at any epoch, the length of the next epoch is either equal to the length of the current epoch
(if misspecification was recently detected) or two times the length of the current epoch (if it has been a while
since misspecification was detected). By definition, within the first m epochs, misspecification is not detected
for any class index in [im,M ′]. Hence for any epoch upto epoch m, at most l consecutive epochs have the same
length. Since doubling more frequently would enable larger epoch length, given a bound on the length of epoch
m, τm is the largest when epoch lengths only double once every l epochs. Hence τm ≤ l · 2(τm − τm−1).

Corollary 1. There exists a constant C2 such that the following holds with probability at least 1− δ. Suppose
Assumption 3 holds. Consider any i ∈ [M ′] such that Bi > 0. We then have that:

τm̂i
≤ 4lC2

(
K

∆2
i

)1/ρ

ω2d̃i ln(6M
3T 2/δ), (66)

where l = ⌈log2 log2(γm̂i,1/γm̂i,i)⌉.

Proof. For any i ∈ [M ′], we have (67) holds.

τm̂i
− τm̂i−1

(i)
=

i∑
h=1

((τm̂h
− τm̂h−1)− (τm̂h−1

− τm̂h−1−1))

(ii)

≤
i∑

h=1

C2

(
K

∆2
h

)1/ρ

ω2d̃h ln(6M
3T 2/δ)

(ii)

≤C2

(
K

∆2
i

)1/ρ

ω2d̃i ln(6M
3T 2/δ)

i∑
h=1

1

2(i−h)
≤ 2C2

(
K

∆2
i

)1/ρ

ω2d̃i ln(6M
3T 2/δ),

(67)

where (i) follows from the fact that τm̂h
= 0 for all h ≤ 0, (ii) follows from Lemma 23, and (iii) follows from the

fact that d̃h+1 ≥ 2d̃h by construction and that ∆h+1 ≤ ∆h (Assumption 3). The result now follows by combining
(67) and Lemma 24.

G FINAL REGRET GUARANTEES

In this section, we derive our final regret bounds by utilizing the analysis in Lemma 20 and Corollary 1. Lemma 20
allows us to bound exploration regret until m̂i (the epoch where misspecification is detected with respect to class
F̃i). Corollary 1 bounds the time to detect misspecfication for various classes.

Theorem 1. Suppose Assumptions 1 to 3 hold and the oracle subroutines perform as stated in Oracle Assumptions 1
to 4. With probability at least 1− δ: for any i, j ∈ [M ′] such that i ≤ j and F̃j not yet labelled as misspecified as
of round T , Mod-IGW attains the following regret guarantee:

CRegT ≤ Õ

(
(ω2K1/ρ)

d̃i−1

β
2/ρ
i−1

+ βjT +

(
d̃j

d̃i

)ρ/2√
Kd̃ρjT

2−ρ

) (14)

Here, Õ hides terms logarithmic in T,M, 1/δ, d̃i∗ . Further, F̃j is not determined to be misspecified for at least

Ω(d̃j/B
1/ρ
j ) rounds.



Sanath Kumar Krishnamurthy*, Adrienne Margaret Propp*, Susan Athey

Proof. From Lemma 3 and Lemma 5, we have that both W1 and W2 hold with probability at least 1− δ. We
now bound the expected cumulative regret up to round T while assuming that this high-probability event holds.

Let θi,j = (d̃j/d̃i)
ρ/2 and let m′ ≥ 1 be the first epoch after detecting misspecification with respect to class F̃i

when we are guaranteed to self-correct (see Lemma 20) for possibly under-exploring with respect to the class
i. That is, if i = 1 let m′ = 1 and if i > 1 let m′ = m̂i−1 + ⌈log2(log2(γm̂i−1,1/γm̂i−1,i))⌉). Note that for i > 1,

γm̂i−1,1/γm̂i−1,i = (d̃i/d̃1)
ρ/2 ≤

√
d̃i. Hence, τm′ ≤ max(τ1, τm̂i−1 log2(d̃i)).

Now, from Lemma 20, we have that:

CRegT :=

T∑
t=1

Regf∗(pm(t))
(i)
= βjT +

T∑
t=1

Regj(pm(t)) ≤ βjT + τm′ +

T∑
t=τm′+1

Regj(pm(t))

(ii)

≤ βjT + τm′ +

T∑
t=τm′+1

(
2Regf̂m(t)

(pm(t)) +
400(1 + 2θi,j)

2K

γm(t),i

)
(iii)

≤ βjT + τm′ +

T∑
t=τm′+1

(
2K

γm(t),j
+

3600θ2i,jK

γm(t),i

)
(iv)

≤ βjT + τm′ +

T∑
t=τm′+1

3602θi,jK

γm(t),j

(v)

≤ βjT + τm′ +

T∑
t=τm′+1

3602θi,j
√
8KC1

(
d̃j ln(6M

3T 2/δ)

(τm(t)−1 − τm(t)−2)/2

)ρ/2

(vi)

≤ βjT + τ1 + τm̂i−1
log2(d̃i) + (3602 · 2ρ

√
8C1) · θi,j

√
K(d̃j ln(6M

3T 2/δ))ρ/2
m(T )∑

m=m′+1

τm(t) − τm(t)−1

(τm(t) − τm(t)−1)ρ/2

(vii)

≤ βjT + τ1 + 4 log2 log2(d̃i−1)C2

(
K

∆2
i−1

)1/ρ

ω2d̃i−1 ln(6M
3T 2/δ) log2(d̃i)

+ (3602 · 2ρ
√

8C1) · θi,j
√
K(d̃j ln(6M

3T 2/δ))ρ/2T 1−ρ/2 log2 log2(d̃j) log2 T,
(68)

where (i) follows from βj := R(πf∗) − R(π∗
j ); (ii) follows from Lemma 20; (iii) follows from Lemma 1, the

fact that γm ≥ γm,j (misspecification is not detected for class F̃j), and (1 + 2θi,j)
2 ≤ 9θ2i,j ; (iv) follows from

θi,j =
√

γm(t),i/γm(t),j ; (v) follows from our choice of γm(t),j ; (vi) follows from τm′ ≤ max(τ1, τm̂i−1
log2(d̃i))

and length of epoch m(t) is at most double the size of length for epoch m(t) − 1; (vii) follows from the
bound on τm̂i−1

from Corollary 1, the fact that (τm(t) − τm(t)−1)
1−ρ/2 ≤ T 1−ρ/2 for any t ≤ T , and the fact that

m(T ) ≤ log2 log2(d̃j) log2 T (since misspecification is not detected for F̃j and hence fraction of non-doubling rounds

is at most log2 log2(d̃j). Finally, the regret guarantee follows from additionally noting that ∆i−1 ≥ βi−1/ log2(d̃i∗)
(Lemma 22).

Also, since misspecification with respect to class F̃j is not detected until epoch m∗
j (see Lemma 7, Lemma 13,

and Lemma 16), we know misspecification is not detected for at least Ω(d̃j/B
1/ρ
j ) rounds.

H ADDITIONAL DETAILS

H.1 Constructing An Estimation Oracle

For completeness, we outline one of many approaches to construct an oracle that achieves the “fast rates” of
Oracle Assumption 1. Consider a sequence of classes F1,F2, . . . ,Fi with VC subgraph dimensions of d1, d2, . . . , di
respectively. Consider a probability kernel p and a natural number n. Consider n independently and identically
drawn samples from the distribution D(p). Let f̂j be an estimator in Fj that minimizes empirical squared error
loss over the first ⌈n/2⌉ samples. For any ζ ∈ (0, 1), from fairly standard arguments based on local Rademacher
complexities (see Theorem 5.2 and example 3 in chapter 5 of Koltchinskii, 2011), with probability 1− ζ/(2i) we
have:

E
x∼DX

E
a∼p(·|x)

[(f̂j(x, a)− f∗(x, a))2] ≤ (1 + ϵ)bj(p) +O
(
dj ln(ni/ζ)

n

)
, (69)
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where ϵ > 0 is any fixed constant.18 Now let f̂ be an estimator in the set {f̂1, f̂2, . . . , f̂i} that minimizes empirical
squared error loss over the remaining ⌊n/2⌋ samples. Again from using the same arguments based on localization
(e.g. Mitchell et al., 2009; Koltchinskii, 2011), with probability 1− ζ/2 we have:

E
x∼DX

E
a∼p(·|x)

[(f̂(x, a)− f∗(x, a))2]

≤ (1 + ϵ′)min
j∈[i]

E
x∼DX

E
a∼p(·|x)

[(fj(x, a)− f∗(x, a))2] +O
(
ln(i/ζ)

n

)
,

(70)

where ϵ′ > 0 is any fixed constant. By combining (69) and (70), with probability 1− ζ, we have:

E
x∼DX

E
a∼p(·|x)

[(f̂(x, a)− f∗(x, a))2] ≤ (1 + ϵ)(1 + ϵ′)bj(p) +O
(
dj ln(ni/ζ)

n

)
. (71)

This completes our outline for the construction of an oracle that satisfies Oracle Assumption 1. The approach
described here is based on using empirical risk minimization on training and validation sets. Other approaches
one could use include aggregation algorithms (see Lecué et al., 2014, and references therein), penalized regression
(see relevant chapters in Koltchinskii, 2011; Wainwright, 2019), cross validation, etc.

H.2 Constructing an Implementation of a Misspecification Test Oracle

Oracle Assumption 4 describes a computational oracle to test/verify several inequalities. The test relies on
several parameters, we can search over α > 0 via single variable optimization methods and search over i, j ∈ [M ′]

and f ∈ {f̂m+1, f̂m+1,i} via enumeration. The number of policies in Π0,m+1,i are few and the corresponding

inequalities can be easily verified. Hence, we primarily need to argue that the inequalities corresponding to Π̃j in
the “policy-based misspecification test” can be verified computationally.

For any choice of α > 0, i, j ∈ [M ′], f ∈ {f̂m+1, f̂m+1,i}, we restate the “policy-based misspecification test” that is
used at the end of epoch m and argue how this test can be verified via two calls to a cost sensitive classification
solver. First, let us restate the test as a maximization problem for a given set of parameters (here λi,j,α serves as
a short-hand for the policy independent terms):

max
π∈Πj

|R̂m+1,f (π)− R̂m+1(π)| −
(1 + θi,j)γm
αγm+1,i

R̂egm+1,f̂m
(π)

≤
(
1 + θi,j

α
+

(1 + θi,j)α

16
+

(2θ2i,j + (1 + θi,j)
2/α)γm

γm+1,i
+ θi,j

)
K

γm+1,i
=: λi,j,α

(72)

We are interested in calculating the value of the maximization problem in (72). To calculate this maximum, we need
to fix our estimators. Let R̂m+1,f (π) :=

1
|Sm,ho|

∑
t∈Sm,ho

f(xt, π(xt)) =
1

|Sm,ho|
∑

t∈Sm,ho
Ea∼π(·|xt) f(xt, a) for

any policy π and reward model f , which is the only obvious estimator we could think off for Rf (π). Also let us use

IPS estimaton for policy evaluation (the same argument works for DR), R̂m+1(π) :=
1

|Sm,ho|
∑

t∈Sm,ho

π(at|xt)rt(at)
pm(at|xt)

.
19 Note that the value of the maximization problem in (72) is equal to max(L1, L2), where {Li|i ∈ [2]} are defined
as follows:

L1 := max
π∈Πj

R̂m+1,f (π)− R̂m+1(π)−
(1 + θi,j)γm
αγm+1,i

R̂egm+1,f̂m
(π)

L2 := max
π∈Πj

R̂m+1(π)− R̂m+1,f (π)−
(1 + θi,j)γm
αγm+1,i

R̂egm+1,f̂m
(π).

(73)

Substituting value of these estimators for L1 and L2, we get:

L1 = max
π∈Πj

∑
t∈Sm,ho

1

|Sm,ho|

(
f(xt, π(xt))−

π(at|xt)rt(at)

pm(at|xt)
− (1 + θi,j)γm

αγm+1,i
(f̂m(xt, πf̂m

(xt))− f̂m(xt, π(xt)))

)

L2 = max
π∈Πj

∑
t∈Sm,ho

1

|Sm,ho|

(
π(at|xt)rt(at)

pm(at|xt)
− f(xt, π(xt))−

(1 + θi,j)γm
αγm+1,i

(f̂m(xt, πf̂m
(xt))− f̂m(xt, π(xt)))

)
.

(74)

18Note that ϵ is zero when Fj ’s are convex or well-specified.
19Up to constant factors, IPS estimators give us the best rates in Oracle Assumption 3 with finite classes. These

estimators are also used in several contextual bandit papers (e.g., Agarwal et al., 2014).
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Clearly, both L1 and L2 are cost-sensitive classification problems (see Krishnamurthy et al., 2017, for problem
definition).20 Hence we propose an approach to implement Oracle Assumption 4.

H.3 General Estimation Rates

Recall that Mod-IGW uses estimation rates ξi defined in Oracle Assumption 1. Apart from Appendix F (bounding
time to detect misspecification), our analysis allows for more flexible rates and does not rely on Assumptions 2
and 3. Hence, Mod-IGW can be used with more general rates and settings. In particular, we weaken the need for
ξi’s to share the same rate in n. We now describe the rates that allows for the rest of our analysis to go through
(except Appendix F).

These more general rates can be described by two fairly benign conditions. First, we require ξi to be a
non-increasing function of n. In particular, we require:21

For all i ∈ [M ′] and ζ ∈ (0, 1), ξi(n, ζ) is non-increasing in n. (75)

The second condition helps us simplify notation. At a high-level, it requires larger classes indices to correspond
to more complex classes and have slower estimation rates:22

For all i ∈ [M ′] and ζ ∈ (0, 1),
ξi(n, ζ)

ξi−1(n, ζ)
is non-increasing in n and is ≥ 1, (76)

where we define ξ0(n, ζ) := ln(1/ζ)/n, which is the estimation rate for estimating the mean of a one-dimensional
bounded random variable.23

20In both, we need to find a policy (classifier) that maps contexts to arms (classes), incurring a score (cost) for each
decision such that the total score (cost) is maximized (minimized).

21We require the first condition to ensure that γm,i is non-decreasing in m.
22We use the second condition to ensure that γm,j/γm,i is greater than or equal to one and is non-decreasing in m for

j ≤ i. We only require this condition to simplify notation and our results can easily be generalized.
23In general, estimation rates are never faster than ξ0. So, this is not a strong condition to have and helps simplify

notation when stating guarantees for some misspecification tests.
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