
Minimax Optimal Density Estimation Using a Shallow Generative
Model with a One-Dimensional Latent Variable

Hyeok Kyu Kwon Minwoo Chae∗

Department of Industrial and Management Engineering
Pohang University of Science and Technology
∗Correspondence to: mchae@postech.ac.kr

Abstract

A deep generative model yields an implicit es-
timator for the unknown distribution or den-
sity function of the observation. This paper
investigates some statistical properties of the
implicit density estimator pursued by VAE-
type methods from a nonparametric density
estimation framework. More specifically, we
obtain convergence rates of the VAE-type
density estimator under the assumption that
the underlying true density function belongs
to a locally Hölder class. Remarkably, a
near minimax optimal rate with respect to
the Hellinger metric can be achieved by the
simplest network architecture, a shallow gen-
erative model with a one-dimensional latent
variable.

1 INTRODUCTION

Suppose we have observations X1, . . . ,Xn that are
i.i.d. copies of a d-dimensional random vector X fol-
lowing the distribution P0, with the density function
p0. Developing nonparametric estimators for p0 has
been a crucial task in unsupervised learning, and var-
ious methods and related theories are available in the
literature (Hastie et al., 2009; Tsybakov, 2008; Giné
and Nickl, 2016). In recent years, deep generative
models have shown remarkable success in modeling
high-dimensional data, such as images and videos. Al-
though classical density estimation methods provide
direct estimators for p0, deep generative model ap-
proaches can be seen as indirect estimation methods
for p0 because they only generate samples from the
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estimated distributions. Despite indirect estimation
methods, deep generative models are very useful in
many applications, including image and language gen-
eration problems.

In our view, popularly used deep generative mod-
els can be categorized into two approaches based on
their data-generating procedures. The first approach
involves constructing an estimator ĝ for a function
g : Rd0 → Rd, commonly referred to as the gener-
ator. Then, a sample Z is drawn from a known d0-
dimensional distribution such as the standard normal
or uniform, and ĝ(Z) is treated as a sample from the
estimated distribution. Thus, the distribution (or den-
sity) of ĝ(Z) serves as an indirect estimator for P0

(or p0). Variational autoencoders (VAE) (Kingma and
Welling, 2014; Rezende et al., 2014), normalizing flows
(NF) (Dinh et al., 2015; Rezende and Mohamed, 2015)
and generative adversarial networks (GAN) (Goodfel-
low et al., 2014; Arjovsky et al., 2017; Mroueh et al.,
2018; Li et al., 2017) are important examples.

The second approach involves estimating the score
function, which is the gradient of the log density.
Once an estimator of the score function is obtained,
one can generate samples using score-based Markov
chain Monte Carlo algorithms such as Hamiltonian
and Langevin Monte Carlo (Neal, 2011). Hence, the
limit distribution of the Markov chain can be under-
stood as an indirect estimator of P0. The idea of
score function estimation was originally suggested in
Hyvärinen (2005) and further developed in Vincent
(2011); Song and Ermon (2019); Song et al. (2020).
The score function estimation problem is closely re-
lated to the denoising diffusion model (Sohl-Dickstein
et al., 2015; Ho et al., 2020), and it has achieved state-
of-the-art performance in many applications (Song
et al., 2021).

Despite the tremendous success of deep genera-
tive models, their theoretical understanding remains
largely unexplored. This paper focuses on studying
the statistical theory for some generative model ap-
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proaches. Specifically, we investigate the convergence
rate of an implicit density estimator from a generative
model. This estimator is the target estimator pur-
sued by VAE approaches. Although it is empirically
known in the literature that NF, GAN and score-based
methods tend to outperform VAE, it deserves to study
convergence rates of VAE type estimators because the-
oretical study provides a lot of valuable insights.

Under the assumption that the true density p0 belongs
to a locally β-Hölder class, we prove that the estima-
tor achieves the minimax optimal rate n−β/(d+2β) up
to a logarithmic factor with respect to the Hellinger
metric. Remarkably, we show that the optimal rate
can be achieved by the simplest ReLU (Glorot et al.,
2011) network architecture consisting of a shallow net-
work with a one-dimensional latent variable. Thus,
even simple generative models can lead to optimal den-
sity estimators. The proof of the main theorem re-
lies on the well-known result from the nonparametric
Bayesian literature that a smooth density with a suit-
ably decaying tail can efficiently be approximated by
a finite mixture of normal distributions (Ghosal and
van der Vaart, 2001, 2007; Kruijer et al., 2010; Shen
et al., 2013). The key is to find a tight upper bound
for the number of support points of the mixing mea-
sure, which depends on the dimension and smoothness
of the density. We also provide an alternative proof
under additional assumptions, which offers important
insights and suggests an extension to structured den-
sity estimation. This proof relies on the existence of a
sufficiently regular generator for which Caffarelli’s reg-
ularity theory of optimal transport (Caffarelli, 1990;
Villani, 2008) provides sufficient conditions.

There are several articles that investigate the conver-
gence rates of implicit density estimators from deep
generative models, with a focus on GAN-based ap-
proaches. Liang (2021) and Singh et al. (2018) proved
that a GAN-type estimator achieves the minimax opti-
mal rate with respect to the Sobolev integral probabil-
ity metric (IPM) (Müller, 1997). The generalization to
Besov IPMs can be found in Uppal et al. (2019). Be-
lomestny et al. (2021) considered a vanilla GAN and
obtained minimax optimal rates with respect to the
Jensen–Shannon divergence. Note that all these re-
sults guarantee the optimal rate with respect to the
total variation distance for sufficiently regular p0. We
would also like to mention earlier works Pati et al.
(2011) and Kundu and Dunson (2014). Rather than
parametrizing generators by neural networks, they
considered Gaussian process priors and obtained op-
timal posterior convergence rates. Recently, diffusion
models have also been considered in the context of
implicit density estimation, and Oko et al. (2023) ob-
tained the minimax optimal rates with respect to the

total variation and Wasserstein distances.

Statistical theories for deep generative models beyond
the nonparametric density estimation framework are
also available in the literature, allowing for the possi-
bility that P0 is singular with respect to the Lebesgue
measure. In this case, the parameter of interest is a
distribution rather than a density. Various metrics
have been considered to evaluate the performance of
estimation, including the Sinkhorn divergence (Luise
et al., 2020), Wasserstein metric (Chae et al., 2023;
Chae, 2022) and general IPMs (Schreuder et al., 2021;
Huang et al., 2021; Tang and Yang, 2023, 2024). These
papers employ low-dimensional structures to explain
how deep generative models can overcome the curse
of dimensionality. For example, Chae et al. (2023)
and Chae (2022) considered a composite structure on
the generator, while Tang and Yang (2023) assumed a
manifold structure on the support of P0 and derived
the minimax optimal rate.

The VAE-type estimator studied in this paper is ana-
lyzed in Chae et al. (2023) under the assumption that
P0 is concentrated around a low-dimensional structure.
Although the rate in Chae et al. (2023) is not optimal,
it is not significantly slower than the optimal rate, as
discussed in Chae (2022). In contrast, the result in
this paper guarantees that a VAE-type estimator is
(nearly) optimal when P0 has a smooth density. Com-
bining these two results shows that, with carefully cho-
sen network architectures, a VAE-type estimator can
achieve a fast convergence rate regardless of the sin-
gularity of P0. This highlights the adaptive nature
of deep generative models to the structure of the un-
known distribution.

The remainder of this paper is organized as follows.
In the following subsection, we provide notations and
definitions. Section 2 introduces basic set-up and deep
generative models. The main results concerning the
convergence rate of VAE-type estimators are given in
Section 3. An alternative proof and extensions to the
structured density estimation are given in Section 4.
Numerical results with a toy example and concluding
remarks follow in Section 5 and 6, respectively. Techni-
cal proofs are provided in the supplementary material.

1.1 Notations and Definitions

A boldface is used to denote vectors. For x ∈ Rd and
1 ≤ p ≤ ∞, let ∥x∥p be the ℓp-norm of x. For a set A ⊂
Rd1 and a vector-valued function g = (g1, . . . , gd2)

T :
A→ Rd2 , let

∥g∥p =

(∫
A

d2∑
i=1

|gi(z)|pdz

)1/p

for p ∈ [1,∞),
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and ∥g∥∞ = supz∈Amax(|g1(z)|, . . . , |gd2(z)|). Let
ϕσ,d be the density function of the multivariate nor-
mal distribution N (0d, σ

2Id), where 0d and Id are d-
dimensional zero vector and identity matrix, respec-
tively. For simplicity, we often denote ϕσ,d as ϕσ when
the dimension is obvious from the contexts. Let ϕσ ∗P
be the convolution of P and N (0d, σ

2Id), that is,

(ϕσ ∗ P )(x) =
∫
ϕσ(x− y)dP (y).

The Dirac measure at x is denoted as δx(·). For two
probability density functions p and q, the Kullback–
Leibler (KL) divergence and Hellinger metric are de-
noted as

K(p, q) =

∫
p(x) log

(
p(x)

q(x)

)
dx and

dH(p, q) =

(∫ {√
p(x)−

√
q(x)

}2

dx

)1/2

,

respectively. For a (pseudo-)metric space (P, ρ) and
δ > 0, let N(δ,P, ρ) and N[](δ,P, ρ) be the covering
and bracketing numbers with respect to ρ, respectively.
We refer to van der Vaart and Wellner (1996) for de-
tails about these definitions. The notation a ≲ b im-
plies that a is less than or equal to Cb, where C is
some constant that is not important in the given con-
text. Similarly, a ≍ b indicates that a ≲ b and b ≲ a.
Finally, the notation C = C(A1, . . . , Ak) means that
the constant C depends solely on A1, . . . , Ak.

2 A LIKELIHOOD APPROACH TO
DEEP GENERATIVE MODELS

This section presents a likelihood approach for deep
generative models commonly used in practice. As pre-
viously mentioned, this method involves an estimator
employed by VAE-type methods, which will henceforth
be referred to as a VAE-type estimator.

Our goal is to construct an estimator ĝ of the generator
g : Rd0 → Rd so that the distribution of ĝ(Z) serves
as an estimator of P0, where Z is a d0-dimensional
random vector following a known distribution. In par-
ticular, we aim to model g using neural networks.
Throughout this paper, we assume that Z is a stan-
dard uniform variable on [0, 1]d0 . While likelihood-
based approaches are a natural choice for construct-
ing an estimator ĝ, deriving the likelihood for g(Z)
is difficult, and even the density of g(Z) may not ex-
ist. Flow-based methods directly utilize the density
of g(Z), but this approach can limit the flexibility in
designing network architectures.

To overcome this difficulty, a VAE-type method em-
ploys an additional random vector and model X as

X = g(Z)+ ϵ. Here, ϵ is independent of Z and follows
the normal distribution N (0d, σ

2Id). Then, X always
allows the Lebesgue density

pg,σ(x) =

∫
[0,1]d0

ϕσ (x− g(z)) dz (2.1)

provided that σ > 0. Hence, one can obtain a max-
imum likelihood estimator by maximizing the log-
likelihood function (g, σ) 7→

∑n
i=1 log pg,σ(Xi) over

G × [σmin, σmax], where G is a class of functions from
[0, 1]d0 to Rd and 0 < σmin ≤ σmax < ∞. Formally,
for a class P of probability density functions and a se-
quence (ηn) of nonnegative real numbers, an estimator
p̂ ∈ P is called an ηn-sieve MLE over P if

1

n

n∑
i=1

log p̂(Xi) ≥ sup
p∈P

1

n

n∑
i=1

log p(Xi)− ηn.

Note that P, often called a sieve (Geman and Hwang,
1982), is allowed to depend on the sample size, and ηn
can be understood as the optimization error. When
P consists of densities of the form (2.1) with g
parametrized by deep neural networks, several algo-
rithms approximating a sieve MLE have been sug-
gested in the literature (Kingma and Welling, 2014;
Rezende et al., 2014; Burda et al., 2016; Dieng and
Paisley, 2019; Kim et al., 2020).

To be more specific, for a positive integer m and a
vector b = (b1, . . . , bm)T ∈ Rm, let ρb(·) : Rm → Rm
be the ReLU activation function defined as

ρb(x) = (max{x1 − b1, 0}, . . . ,max{xm − bm, 0})T

for x = (x1, . . . , xm)T. For L ∈ N, F,M > 0 and
d = (d0, . . . , dL+1) ∈ NL+2 with dL+1 = d, let G =
G(L,F,d,M) be the class of functions g : [0, 1]d0 → Rd
of the form

g(z) =WLρbL
· · ·W1ρb1W0z

with Wi ∈ Rdi+1×di , bi ∈ Rdi , ∥g∥∞ ≤ F and

max
0≤i≤L+1

{max (∥Wi∥∞, ∥bi∥∞)} ≤M,

where b0 = 0d0 and ∥Wi∥∞ is the entrywise maximum
norm.

In Section 3, we analyze the convergence rate of an
ηn-sieve MLE over

P =
{
pg,σ : g ∈ G(L,F,d,M), σ ∈ [σmin, σmax]

}
with L = 1 and d = (1, d1, d). That is, the dimen-
sion of the latent variable Z is 1, and the generator
is parametrized by a shallow network with d1 hidden
units. Note that parameters such as (F, d1,M, σmin)
are allowed to depend on the sample size.
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3 MAIN RESULTS

This section presents the main results of the paper.
We first outline the assumptions on the true density p0.
Specifically, we will assume that p0 belongs to a locally
Hölder class with a suitably decaying tail. This class
of density functions has been studied in Shen et al.
(2013) to analyze the convergence rate of the posterior
distribution in a Dirichlet process mixture model. A
slight improvement has been made in Chapter 9 of
Ghosal and van der Vaart (2017).

3.1 Assumptions on True Density Function

For a multi-index k = (k1, . . . , kd)
T ∈ (Z≥0)

d,
denote Dk the mixed partial derivative operator
∂k./∂xk11 · · · ∂xkdd , where k. =

∑d
j=1 kj . For any β >

0, τ0 ≥ 0 and non-negative function L : Rd → R, let
Cβ,L,τ0(A) be the class of every real-valued function
f on A ⊆ Rd such that supx∈A |Dkf(x)| < ∞ for
k. ≤ ⌊β⌋, and

|(Dkf)(x+ y)− (Dkf)(x)| ≤ L(x)eτ0∥y∥
2
2∥y∥β−⌊β⌋

2

for k. = ⌊β⌋,x ∈ A and y ∈ {z : x + z ∈ A}, where
⌊β⌋ denotes the largest integer strictly smaller than β.

We will assume that p0 ∈ Cβ,L,τ0(Rd) for some β, τ0
and L. We also make the following two technical as-
sumptions on the tail of p0.

(Tail 1) For any k ∈ (Z≥0)
d with k. ≤ ⌊β⌋,

E

( L(X)

p0(X)

)2

+

(
|Dkp0(X)|
p0(X)

) 2β
k.

 <∞,

where E denotes the expectation with respect to P0.

(Tail 2) There exist τ1, τ2, τ3 > 0 such that p0(x) ≤
τ1 exp(−τ2∥x∥τ32 ) for all x ∈ Rd.

The above assumptions, in particular the tail assump-
tions, are satisfied by a large class of densities. For ex-
ample, suppose that p0 is the d-dimensional standard
normal density. Then, for any k ∈ (Z≥0)

d, we have
Dkp0(x) ≲ (1 + ∥x∥1)k.p0(x) because the standard
normal density ϕ satisfies ϕ′(x) = −xϕ(x). Therefore,

|(Dkp0)(x+ y)− (Dkp0)(x)|

=

∣∣∣∣yT ∫ 1

0

∇(Dkp0)(x+ ty)dt

∣∣∣∣
≲ ∥y∥2 sup

t∈[0,1]

[
(1 + ∥x+ ty∥1)k.+1p0(x+ ty)

]
≲ ∥y∥2(1 + ∥x∥1 + ∥y∥1)k.+1e

∥y∥22
2α − ∥x∥22

2(1+α)

for every α > 0, where the last inequality holds be-
cause ∥x + ty∥22 ≥ ∥x∥22/(1 + α) − ∥y∥22/α for all t ∈
[0, 1]. Hence, for any β > 0, if we take α = 1/2, τ0 > 1

and L(x) = c(∥x∥⌊β⌋+1
1 +1)e−∥x∥2

2/3 for a large enough
constant c = c(β, d, τ0), then p0 ∈ Cβ,L,τ0(Rd) and
two tail conditions are satisfied with τ1 = (2π)−d/2,
τ2 = 1/2 and τ3 = 2.

As another example, suppose that p0 is the d-fold
product density of the Laplace distribution, that is,
p0(x) = 2−de−∥x∥1 . Simple calculation yields that

|p0(x+ y)− p0(x)| = 2−de−∥x∥1

∣∣∣1− e−∥x+y∥1+∥x∥1

∣∣∣
≤ 2−d∥y∥1e−∥x∥1

for x,y ∈ Rd, where the inequality holds because
1 − e−x ≤ x for all x ∈ R. Since ∥y∥1 ≤

√
d∥y∥2,

p0 belongs to C1,L,0(Rd) with L(x) =
√
d2−de−∥x∥1 .

Furthermore, two tail conditions are satisfied with
τ1 = 2−d, τ2 = 1 and τ3 = 1 because ∥x∥2 ≤ ∥x∥1.

3.2 Convergence Rate of a Sieve MLE

Under the assumptions stated in Section 3.1, it has
been proven in Shen et al. (2013) (and Chapter 9 of
Ghosal and van der Vaart (2017)) that the posterior
distribution, which is based on the Dirichlet location
mixture of normal prior with a Gaussian base measure
and an inverse Wishart prior on the covariance matrix
parameter, contracts to p0 with a minimax rate up to a
logarithmic factor. An important technique used is to
approximate p0 by a finite mixture of normal distribu-
tions. The following lemma summarizes the result, and
its proof can be easily derived from Lemmas 9.11 and
9.12 of Ghosal and van der Vaart (2017). Hereafter,
C = C(all) means that C is a constant depending only
on d, β, L and τj ’s.

Lemma 3.1. For any density function p0 ∈
Cβ,L,τ0(Rd) satisfying assumptions (Tail 1) and
(Tail 2), and small enough σ > 0, there
exists a discrete probability measure H(·) =∑N
i=1 w

(i)δx(i)(·) supported within a compact set Eσ =
[−C{log(1/σ)}τ3 , C{log(1/σ)}τ3 ]d such that

dH(p0, ϕσ ∗H) ≲ σβ {log(1/σ)}d/4

and N ≲ σ−d{log(1/σ)}τ3d+d, where C = C(all).

The approximation error improves as the smoothness
of the density p0 increases, according to Lemma 3.1.
This lemma has been used in Shen et al. (2013) to con-
struct a sieve with metric entropy suitably bounded.
We utilize it to approximate p0 by a density of the
form (2.1) with g a shallow ReLU network. Theorem
3.1 below is our main result.
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Theorem 3.1. Suppose that p0 ∈ Cβ,L,τ0(Rd) and as-
sumptions (Tail 1) and (Tail 2) are satisfied. Then,

there exists a constant C̃0 = C̃0(all) such that for ev-

ery constant C̃ ≥ C̃0, an ηn-sieve MLE p̂ over

P =
{
pg,σ : g ∈ G(1, F,d,M), σ ∈ [σmin, σmax]

}
,

with d = (1, d1, d), σmin = n−1/(2β+d), σmax = 1 and

F = C̃ (log n)
τ3 , d1 =

⌊
C̃n

d
2β+d (log n)

τ3d+d
⌋
,

M = C̃n
2β+2d+3

2β+d ,

satisfies

P0

(
dH(p0, p̂) > ϵn

)
≤ 5 exp

(
−Anϵ2n

)
+ n−1 log n

for every n ≥ C̃1, where C̃1 = C̃1(all, C̃), C̃2 =

C̃2(all, C̃), ηn = ϵ2n/48,

ϵn = C̃2n
− β

2β+d (log n)
2τ3d+2τ3+2d+1

2

and A > 0 is an absolute constant.

The statement of Theorem 3.1 has strong restrictions
on the model parameters due to our attempt to mini-
mize unimportant constants. However, it can be in-
ferred from the proof that the parameters can be
chosen more flexibly. For instance, one can choose
σmin = n−c1 for a constant c1 > 1/(2β+d), σmax = c2
for a constant c2 ≥ 1, F = nc3 for a constant c3 > 0,
andM = nc4 for a constant c4 > (2β+2d+3)/(2β+d).
The key is to control the order of d1, which determines
the approximation and estimation errors for the den-
sity estimation.

The proof of Theorem 3.1 involves several technical
details and is provided in the supplementary material.
Here, we provide an overview of the key ideas behind
the proof. For convenience, we use the informal nota-
tion a ≲log b to indicate that a is less than or equal to b
up to a poly-logarithmic factor, such as log n, | log σ|d,
and | log ϵn|τ3 . Similarly, we use the notation ≍log.

To establish a convergence rate for the sieve MLE
over the class P, we rely on the general theory devel-
oped in Wong and Shen (1995), specifically Theorem
4. In essence, Theorem 4 states that a sieve MLE can
achieve a suitable convergence rate if the KL diver-
gence between the true density p0 and the class P is
small enough and the bracket entropy of P is suitably
bounded. More specifically, if

inf
p∈P

K(p0, p) ≲log ϵ
2
n and

logN[](ϵn,P, dH) ≲log nϵ
2
n,

(3.1)

then a sieve MLE over P attains a convergence rate
of ϵn with respect to the Hellinger metric. Note that

each inequality is used to bound the approximation
and estimation errors. Since K(p0, p) ≍log d

2
H(p0, p)

under a mild integrability condition (see Theorem 5 of
Wong and Shen (1995) and Lemma B.2 of Ghosal and
van der Vaart (2017)), the first inequality in (3.1) can
be replaced by infp∈P dH(p0, p) ≲log ϵn.

If we take σ ≍ n−1/(2β+d) in Lemma 3.1, we have

dH(p0, ϕσ ∗H) ≲log ϵn and N ≲log nϵ
2
n,

where H(·) =
∑N
i=1 w

(i)δx(i)(·) is the discrete measure
in Lemma 3.1. Therefore, it suffices to show that the
density function ϕσ ∗ H can be approximated by the
class P of shallow ReLU network functions, with an
approximation error of ϵn with respect to the Hellinger
metric and bracket entropy of nϵ2n. For this purpose,
we construct a ReLU network function g : [0, 1] → Rd
so that the distribution of g(Z) is sufficiently close to
the discrete measureH, where Z is a standard uniform
random variable.

The main idea of constructing such a g is illustrated
in Figure 1. We first define g̃(z) =

∑N
i=1 x

(i)1Ji(z) for
consecutive intervals J1, . . . , JN that partition the unit
interval [0, 1], where µ(Ji) = w(i), and µ denotes the
Lebesgue measure. It is easy to see that H equals the
distribution of g̃(Z). Next, we approximate each sum-
mand x(i)1Ji(·), which is a constant function on the
interval Ji, with a piecewise linear function, or equiva-
lently, a shallow ReLU network. Since g̃ is the sum of
N indicator functions, the number of hidden units re-
quired for the shallow ReLU approximation is of order
O(N). Therefore, by defining P as in Theorem 3.1, we
can achieve the first inequality of (3.1). Since the num-
ber d1 of hidden units is of order O(N) ≲log O(nϵ2n),
the log of the ϵn-covering number of the shallow net-
work class G(1, F,d,M) with respect to the uniform
norm ∥ · ∥∞ is also of order O(N) up to a logarith-
mic factor. This leads to the bracket entropy bound
in (3.1), completing the proof of Theorem 3.1.

It is worth noting that while Theorem 3.1 is limited to
the ReLU activation function, other choices of activa-
tion functions are possible. From the previous sketch
of the proof, we can see that the primary role of neu-
ral networks is to approximate the indicator function
1Ji(·). As ReLU networks are piecewise linear, they
can easily approximate 1Ji(·) as in Figure 1-(b). Al-
though not as straightforward as the ReLU activa-
tion function, it is possible for other activation func-
tions to approximate 1Ji(·). In particular, Lemma 4 of
Imaizumi and Fukumizu (2022) shows that commonly
used activation functions such as Sigmoid, LeakyReLU
(Maas et al., 2013), SoftPlus (Dugas et al., 2000), and
Swish (Ramachandran et al., 2017) can also approxi-
mate 1Ji(·) well. Thus, these activation functions can
replace the ReLU in Theorem 3.1.
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(a) ϕσ ∗H = pg̃,σ for some g̃ (b) Approximation of g̃ by a ReLU network g

Figure 1: (a) A finite mixture ϕσ ∗H can be represented as Pg̃,σ for some function g̃ : [0, 1] → Rd. (b) If g̃ is a
sum of N indicator functions, it can be approximated by a shallow ReLU network function with O(N) units.

An important implication of Theorem 3.1 is that the
minimax optimal rate for nonparametric density esti-
mation can be achieved by the simplest network ar-
chitecture. While some mathematical properties of
shallow networks have been studied in the literature,
most of them focus on the approximation properties
of network functions. It is well-known that shallow
networks have universal approximation capability (Cy-
benko, 1989). Furthermore, Mhaskar (1996) obtained
nearly optimal numbers of hidden units to approx-
imate a smooth function with the sigmoidal activa-
tion function. Although Mhaskar (1996) did not con-
sider a statistical problem, the approximation theory
might lead to optimal convergence rates for statistical
problems, such as nonparametric regression. Recently,
Yang and Zhou (2023) proved that shallow networks
with ReLU activation function can lead to an optimal
rate in nonparametric regression. To the best of our
knowledge, the mathematical and statistical proper-
ties of shallow generative models, particularly those
with a one-dimensional latent variable, have not been
studied in the literature.

4 AN ALTERNATIVE PROOF AND
STRUCTURED DENSITY
ESTIMATION

In this section, we present an alternative approach
to obtain the convergence rate in Theorem 3.1 using
deep generative models rather than shallow networks.
While this alternative approach requires additional as-
sumptions, it sheds light on potential extensions to

structured density estimation and provides valuable
insights. Moreover, our investigation has revealed a
potential limitation of VAE-type estimators for struc-
tured density estimation.

In addition to the β-regularity of p0, we assume the
existence of a (β + 1)-regular function g0 : Z → Rd
such that P0 is the distribution of g0(Z), where Z fol-
lows a known distribution supported on Z ⊂ Rd. The
regularity theory of optimal transport by Caffarelli
(1990) provides a sufficient condition for the existence
of (β+1)-regular g0 under the assumption that p0 is β-
regular. See Theorem 12.50 of Villani (2008) for a gen-
eral and rigorous statement, and Cordero-Erausquin
and Figalli (2019) for state-of-the-art results. These
statements involve several intricate notions from the
Monge-Ampère equation, so we also refer to Lemma
10 of Chae et al. (2023) for readers who are not fa-
miliar with these notions. Note that the existence of
a (β + 1)-regular g0 has been assumed in Belomestny
et al. (2021) to prove that the vanilla GAN achieves
the minimax rate n−β/(2β+d) for nonparametric den-
sity estimation.

For τ > 0, the global Hölder class Cβ(A; τ) is de-
fined as the class of function f ∈ Cβ,τ,0(A) satisfying
supx∈A |Dkf(x)| ≤ τ for k. ≤ ⌊β⌋. For a vector valued
function, we denote f ∈ Cβ(A; τ) if each component of
f belongs to Cβ(A; τ). Now, we specify additional as-
sumptions used for the alternative approach.

(Support) There exists a constant τ4 > 0 such that
{x : p0(x) > 0} ⊂ [−τ4, τ4]d.



Hyeok Kyu Kwon, Minwoo Chae∗

(Generator) There exists a constant τ5 ≥ 1 such
that P0 is the distribution of g0(Z) for some g0 ∈
Cβ+1([0, 1]d; τ5), where Z is a uniform random vector
on [0, 1]d.

We will also assume that β ≤ 2 for technical reasons
described below. Although it is unclear whether it
is possible to achieve the minimax rate to the case
β > 2, the case β ≤ 2 is sufficient to discuss the bene-
fit of the alternative approach and structured density
estimation. Under these additional assumptions, we
consider a sieve MLE p̂ over P = {pg,σ : g ∈ G},
where G = G(L,F,d,M, s), the set of functions g ∈
G(L,F,d,M) with the number of nonzero network pa-
rameters bounded by s.

Theorem 4.1. Suppose that p0 ∈ Cβ,L,τ0(Rd) with
β ≤ 2 and assumptions (Tail 1), (Support) and (Gen-
erator) are satisfied. Then, there exists a constant

C̃0 = C̃0(d, β, τ4, τ5) such that for every constant C̃ ≥
C̃0, an ηn-sieve MLE p̂ over

P =
{
pg,σ : g ∈ G(L,F,d,M, s), σ ∈ [σmin, σmax]

}
with d = (d, d1, . . . , d1, d) ∈ NL+2, σmin =
n−1/(2β+d), σmax = 1 and

L = ⌊C̃ log n⌋, F = C̃, d1 = ⌊C̃n
d

2β+d ⌋,

M = 1, s = C̃n
d

2β+d log n,

satisfies

P0

(
dH(p0, p̂) > ϵn

)
≤ 5 exp

(
−Anϵ2n

)
+ n−1

for every n ≥ C̃1, where C̃1 = C̃1(all, C̃), C̃2 =

C̃2(all, C̃), ηn = ϵ2n/48,

ϵn = C̃2n
− β

2β+d log n

and A > 0 is an absolute constant.

Theorem 4.1 is a special case of Theorem 4.2. Here,
we only provide an overview of the key ideas behind
the proof. By the well-known approximation prop-
erty of deep neural networks (Schmidt-Hieber, 2020;
Ohn and Kim, 2019; Yarotsky, 2017; Telgarsky, 2016),
there exists a network function g ∈ G such that
∥g0 − g∥∞ ≲log s−(β+1)/d. Combining this with a
convolution approximation dH(p0, ϕσ ∗ P0) ≲ σβ (see
Lemma B.1 and Chapter 4 of Giné and Nickl (2016))
and Lemma A.2 in the supplementary materials leads
to an approximation error bound

inf
p∈P

dH(p0, p) ≲log σ
β +

s−(β+1)/d

σ
.

The δ-entropy of G with respect to the uniform met-
ric is of order O(s log(1/δ)) up to a logarithmic fac-
tor, which provides a similar bound on the bracket-
ing entropy of P. By choosing s ≍log n

d/(2β+d) and
σ ≍ n−1/(2β+d), the general approach of Wong and
Shen (1995), see also (3.1), leads to the Hellinger con-
vergence rate of ϵn ≍log n

−β/(2β+d).

Note that dH(p0, ϕσ ∗ P0) ≲ σβ does not hold for β >
2. For an extension to β > 2, more technical details
should be involved as in Kruijer et al. (2010) and Shen
et al. (2013). We leave this as future work.

Although the alternative approach requires additional
assumptions, it can be used to develop a statistical the-
ory that explains the benefits of deep generative mod-
els compared to shallow ones. Specifically, we consider
structured density estimation, where the structure of a
density is imposed through the generator. We assume
that in addition to the regularity assumptions on p0
and g0, g0 has a composite structure of the form

g0 = hq ◦ hq−1 ◦ · · · ◦ h1 ◦ h0 (4.1)

with hi = (hi1, . . . , hivi+1)
T : [ai, bi]

vi →
[ai+1, bi+1]

vi+1 . Here, v0 = vq+1 = d and ti is the max-
imal number of variables on which each component of
hi depends. For any q ∈ Z≥0,v = (v0, . . . , vq+1)

T ∈
Nq+2, t = (t0, . . . , tq)

T ∈ Nq+1,β = (β0, . . . , βq)
T ∈

(R>0)
q+1 and τ > 0, let F(q,v, t,β,K) be the class of

every real-valued functions of the form (4.1) satisfying
hij ∈ Cβi([ai, bi]

ti ; τ) and max(|ai|, |bi|) ≤ τ . Let

i∗ = argmax
i∈{0,...,q}

ti
βi
, β∗ = βi∗ and t∗ = ti∗ .

Then, the assumption can be represented as follows.

(Structured generator) P0 is the distribution of g0(Z)
for some g0 ∈ F(q,v, t,β, τ6), with mini βi > 1, where
Z is a uniform random vector on [0, 1]d.

This composite structure has been previously studied
in the context of nonparametric regression by Schmidt-
Hieber (2020) and Bauer and Kohler (2019) to ex-
plain the benefits of deep neural networks. In the
context of deep generative models, Chae et al. (2023)
and Chae (2022) have used this structure to impose a
low-dimensional structure on singular distribution es-
timation problems.

Similarly, we consider this composite structure on the
generator for nonparametric structured density esti-
mation. The general approach of Wong and Shen
(1995) can still be used to obtain a convergence rate.

Theorem 4.2. Suppose that p0 ∈ Cβ,L,τ0(Rd) and as-
sumptions (Tail 1), (Support) and (Structured gener-

ator) are satisfied. Let β̃ = min(β, 2). Then, there
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exists a constant C̃0 = C̃0(β, τ4, q,v, t,β, τ6) such that

for every constant C̃ ≥ C̃0, an ηn-sieve MLE p̂ over

P =
{
pg,σ : g ∈ G(L,F,d,M, s), σ ∈ [σmin, σmax]

}
with d = (d, d1, . . . , d1, d) ∈ NL+2, σmin =

n
− β∗

t∗(β̃+1)+2β̃β∗ , σmax = 1 and

L = ⌊C̃ log n⌋, F = C̃, d1 = ⌊C̃n
t∗(β̃+1)

2β̃β∗+t∗(β̃+1) ⌋,

M = 1, s = C̃n
t∗(β̃+1)

2β̃β∗+t∗(β̃+1) (log n),

satisfies

P0

(
dH(p0, p̂) > ϵn

)
≤ 5 exp

(
−Anϵ2n

)
+ n−1

for every n ≥ C̃1, where C̃1 = C̃1(all, q,v, t,β, C̃),

C̃2 = C̃2(all, q,v, t,β, C̃), ηn = ϵ2n/48,

ϵn = C̃2n
− β̃β∗

2β̃β∗+t∗(β̃+1) (log n)

and A > 0 is an absolute constant.

Note that Theorem 4.1 is a special case of Theorem
4.2 with q = 0, t∗ = d, β∗ = β + 1 and τ5 = τ6.
Roughly speaking, a class G of deep neural networks
with s nonzero parameters can approximate g0 with
an approximation error of s−β∗/t∗ . Also, the δ-bracket
entropy of P = {pg,σ : g ∈ G} can be bounded by
s log(1/δ) up to a logarithmic factor on σ. Hence, the
general approach leads to the convergence rate ϵn ≍log

σβ̃ + s−β∗/t∗/σ +
√
s/n. By taking

s ≍ n
t∗(β̃+1)

t∗(β̃+1)+2β̃β∗ and σ ≍ s
− β∗

t∗(β̃+1) ,

we obtain the Hellinger rate of

ϵn ≍log n
− β̃β∗

2β̃β∗+t∗(β̃+1) .

Note that the rate depends on the dimension only
through t∗, which might be much smaller than d. Ad-
ditionally, it depends on both β and β∗, where β rep-
resents the smoothness of p0 and β∗ is the smoothness
of the worst component functions of g0.

The structured density estimation described above has
not been studied in the literature; thus, the minimax
optimal rate is unknown. It is worth noting that since
we only need to estimate the generator g0, it seems
undesirable for the convergence rate to depend on β,
the smoothness of p0. However, with a VAE-type esti-
mator considered in the present paper, the dependence
on β appears to be inevitable due to the convolution
approximation error dH(p0, ϕσ∗P0) ≲ σβ . The NF ap-
proach could be a promising alternative for obtaining
the optimal rate because it directly utilizes the density
of g(Z). It is empirically known that NF outperforms
VAE in many applications; therefore, in the future,
it will be worth studying the convergence rate of NF
approaches in structured density estimation.

5 NUMERICAL EXPERIMENTS

In this section, we conduct small numerical experi-
ments to assess the actual performance of a shallow
generative model with a one-dimensional latent vari-
able. Data are generated from a two-component Gaus-
sian mixture with d = 2. More specifically, the true
density is defined as p0(·) = 0.5ϕ(· −m)+ 0.5ϕ(·+m)
with m = (1.3, 1.3)T. We consider a shallow ReLU
network function gθ parameterized by θ with 50 hid-
den units. Since the likelihood function pgθ,σ of the
form (2.1) is computationally intractable, we approx-
imate it using two approaches, Monte Carlo integra-
tion and auto-encoding variational Bayes (AEVB) al-
gorithm (Kingma and Welling, 2014; Rezende et al.,
2014).

For the Monte Carlo method, the log-likelihood is ap-
proximated as

L̂MC(θ, σ;x) = log

(
1

m

m∑
i=1

ϕσ(x− gθ(Zi))

)
,

where Z1, . . . , Zm are standard uniform random vari-
ables. Then, one can obtain an implicit estimator p̂
by maximizing

∑n
i=1 L̂MC(θ, σ;Xi), which will be re-

ferred to as VAE-MC.

Alternatively, one can maximize a lower bound of
the log-likelihood using variational methods (Jordan
et al., 1999). Define the variational density z 7→
qψ(z|x) as the density ofN (µψ(x), σ

2
ψ(x)), where µψ(·)

and 2 log σψ(·) are parameterized by neural networks,
specifically as shallow ReLU networks with 50 hidden
units for the experiments. For each iteration, define

L̂AEVB,i(θ, σ, ψ;Xi) = log

(
pθ,σ(Xi, Zi)

qψ(Zi|Xi)

)
,

where Zi is a sample from qψ(·|Xi), pθ,σ(x, z) =
ϕσ(x − gθ(Φ(z)))ϕ(z) and Φ is the cumulative dis-
tribution function of the standard Gaussian distri-
bution. Then, one can obtain p̂ by maximizing∑n
i=1 L̂AEVB,i(θ, σ, ψ;Xi), which will be referred to as

VAE-AEVB.

Both L̂MC and L̂AEVB are maximized using the Adam
optimization algorithm (Kingma and Ba, 2015) with
a mini-batch of size 20. The learning rate is fixed at
2×10−4 for 1000 epochs and m = 105 is used for L̂MC.

To evaluate the estimation performance, the squared
Hellinger distance d2H(p̂, p0) is computed for VAE-MC,
VAE-AEVB and the Gaussian kernel density estima-
tor (KDE). Silvermann’s method is used to estimate
the bandwidth parameter in KDE, implemented in
Scikit-learn (Pedregosa et al., 2011). Note that the
numerical integration implemented in SciPy (Virtanen
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(a) d2H(p̂, p0) for KDE and VAE-type methods (b) Training log-likelihood values

Figure 2: The means and standard deviations of the squared Hellinger distances and training log-likelihood
values. All results are based on 50 repetitions.

et al., 2020) is applied to compute the Hellinger dis-
tances. The results with varying sample sizes are de-
picted in Figure 2-(a). While VAE-MC performs com-
parably to KDE, VAE-AEVB performs significantly
worse than KDE. This discrepancy is mainly due to
the highly non-convex nature of the objective func-
tion used in the AEVB algorithm, leading to the fail-
ure of the SGD-based algorithm to maximize the log-
likelihood. (Note that the number of parameters in
the VAE-AEVB objective is about twice as great as
in the VAE-MC objective.) To confirm this, we ob-
tained network parameters with a high likelihood value
using a brute-force method, which relies on the un-
known structure of p0. The brute-force method sets
σ = 1 and defines a piecewise linear function gθ(·)
that closely approximates the sum of two indicator
functions m{1[0,0.5)(·) − 1[0.5,1](·)}, as shown in Fig-
ure 1-(b). Specifically, gθ is constructed as shallow
ReLU networks with 8 hidden units as in (A.8), with
κ = 10−5. Figure 2-(b) compares the training log-
likelihood values of the VAE-type methods and brute-
force method, confirming the failure of the SGD-based
algorithm in maximizing the log-likelihood value.

6 CONCLUSIONS

The VAE is an important class of inferential meth-
ods for deep generative models, but it is widely known
that other methods, such as GAN, NF, and score-
based methods, often outperform VAE in various ap-
plications. However, our paper shows that even the
VAE with the simplest network architecture can pro-
duce a nearly optimal estimator in the nonparametric
density estimation framework. This finding highlights
the importance of considering further structures of the
density or distribution being estimated to explain the
superior performance of deep generative models over
classical nonparametric methods.

We suggest that the composite structure on the gen-
erator, as discussed in Section 4, could be a promising
structural assumption to investigate in future studies
of density or distribution estimation problems. Such
studies could lead to a better understanding of the
benefits of deep generative models over classical non-
parametric methods, and potentially inspire the de-
velopment of even more powerful and efficient deep
generative models.
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A PROOF OF THEOREM 3.1

We first state and prove several lemmas needed for proving Theorem 3.1.

Lemma A.1. Let p0 ∈ Cβ,L,τ0(Rd) be a probability density function satisfying assumptions (Tail 1) and (Tail
2). Then, there exist positive constants C1 = C1(all), C2 = C2(all), C3 = C3(all), C4 = C4(all) and a probability
measure H0 supported within [−aσ, aσ]d such that dH(p0, ϕσ ∗ H0) ≤ C2σ

β and 1 − P0([−aσ, aσ]d) ≤ C3σ
4β+8

for every σ ∈ (0,min(C1, 1)), where aσ = C4 {log(1/σ)}τ3 .

Proof. This is a re-statement of Lemma 9.11 in Ghosal and van der Vaart (2017) except for the assertion
1− P0([−aσ, aσ]d) ≤ C3σ

4β+8, which can be easily derived from the proof of Lemma 9.11.

Lemma A.2. For any functions f ,g : [0, 1]d0 → Rd and σ > 0,

d2H(pf ,σ, pg,σ) ≤
∥f − g∥22

8σ2
.

Proof. Note that pf ,σ(x) =
∫
[0,1]d0

ϕσ(x− f(z))dz and pg,σ(x) =
∫
[0,1]d0

ϕσ(x− g(z))dz. We can rewrite squared

Hellinger distance as

d2H(pf ,σ, pg,σ)

=

∫ {
pf ,σ(x) + pg,σ(x)− 2

√
pf ,σ(x)

√
pg,σ(x)

}
dx

=

∫ [∫
[0,1]d0

{
ϕσ(x− f(z)) + ϕσ(x− g(z))

}
dz− 2

√
pf ,σ(x)

√
pg,σ(x)

]
dx.

Hölder’s inequality implies that∫
[0,1]d0

√
ϕσ(x− f(z))

√
ϕσ(x− g(z))dz ≤

√
pf ,σ(x)

√
pg,σ(x).

Hence,

d2H(pf ,σ, pg,σ)

≤
∫ ∫

[0,1]d0

{
ϕσ(x− f(z)) + ϕσ(x− g(z))− 2

√
ϕσ(x− f(z))

√
ϕσ(x− g(z))

}
dzdx

=

∫ ∫
[0,1]d0

{√
ϕσ(x− f(z))−

√
ϕσ(x− g(z))

}2

dzdx

=

∫
[0,1]d0

d2H
(
ϕσ(· − f(z)), ϕσ(· − g(z))

)
dz,

where the last equality holds by Fubini’s theorem. The squared Hellinger distance between N (µ1,Σ1) and
N (µ2,Σ2) is known as

1− det (Σ1)
1/4

det (Σ2)
1/4

det
(
Σ1+Σ2

2

)1/2 exp

{
−1

8
(µ1 − µ2)

T

(
Σ1 +Σ2

2

)−1

(µ1 − µ2)

}
.

Using that, we have

d2H(pf ,σ, pg,σ)≤
∫
[0,1]d0

{
1− exp

(
−∥f(z)− g(z)∥22

8σ2

)}
dz

≤ ∥f − g∥22
8σ2

since 1− exp(−x) ≤ x for all x ∈ R.
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Corollary A.1. Define p : Rd → R as p(x) =
∑n
i=1 w

(i)ϕσ(x−x(i)) with
∑n
i=1 w

(i) = 1, w(i) > 0, and x(i) ∈ Rd
for each i. For 0 < w′ ≤ w(1) and x′ ∈ Rd, define p′ : Rd → R as p′(x) = w′ϕσ(x − x′) + (w(1) − w′)ϕσ(x −
x(1)) +

∑n
i=2 w

(i)ϕσ(x− x(i)). Then,

d2H(p, p′) ≤ w′ ∥x′ − x(1)∥22
8σ2

≤ w′ ∥x′∥22 + ∥x(1)∥22
4σ2

.

Proof. Let q(0) = 0 and q(i) = q(i−1) + w(i) for i ∈ {1, . . . , n}. Consider functions g,g′ : [0, 1] → Rd such that
g(0) = x(1),g′(0) = x′,

g(z) =

n∑
i=1

x(i)1(q(i−1),q(i)](z) and

g′(z) = x′1(q(0),w′](z) + x(1)1(w′,q(1)](z) +

n∑
i=2

x(i)1(q(i−1),q(i)](z).

Then, pg,σ = p and pg′,σ = p′. By Lemma A.2,

d2H(p, p′) ≤ ∥g − g′∥22
8σ2

= w′ ∥x′ − x(1)∥22
8σ2

.

Since ∥x′ − x(1)∥22 ≤ 2∥x′∥22 + 2∥x(1)∥22, we obtain the results.

The proof of Lemma A.3 below is almost the same as that of Lemma 1 in Chae et al. (2023), which is limited to
a fixed F .

Lemma A.3. Suppose that 0 < σmin ≤ 1/
√
2, σmax ≥ 1 and F ≥ 1. Let G be a class of functions from [0, 1]d0

to Rd such that ∥g∥∞ ≤ F for every g ∈ G. Let P = {pg,σ : g ∈ G, σ ∈ [σmin, σmax]}. Then, there exist positive
constants C5 = C5(d), C6 = C6(d) and C7 = C7(d) such that

logN[](δ,P, dH)≤ logN

 C5δ
4σd+2

min

Fσ2d
max

[
{log(σmax/σmin)}d + F 2d

] ,G, ∥ · ∥∞


+ log

C6σ
2d+1
max

[
{log(σmax/σmin)}d + F 2d

]
δ4σd+1

min


for 0 < δ ≤ C7.

Proof. For g1,g2 ∈ G and σ ∈ [σmin, σmax] with ∥g1 − g2∥∞ ≤ η1, we have

pg1,σ(x)− pg2,σ(x)

=

∫
[0,1]d0

ϕσ(x− g1(z))

{
1− ϕσ(x− g2(z))

ϕσ(x− g1(z))

}
dz

=

∫
[0,1]d0

ϕσ(x− g1(z))

{
1− exp

(
−∥x− g2(z)∥22 − ∥x− g1(z)∥22

2σ2

)}
dz

≤
∫
[0,1]d0

ϕσ(x− g1(z))

{
∥x− g2(z)∥22 − ∥x− g1(z)∥22

2σ2

}
dz

=

∫
[0,1]d0

ϕσ(x− g1(z))

[
∥g2(z)∥22 − ∥g1(z)∥22 − 2xT {g2(z)− g1(z)}

2σ2

]
dz.

For g1(z) = ({g1(z)}1 , . . . , {g1(z)}d) and g2(z) = ({g2(z)}1 , . . . , {g1(z)}d), note that ∥g2(z)∥22 − ∥g1(z)∥22 =∑d
i=1 {g2(z)}2i −{g2(z)}2i ≤ 2Fdη1. Also, it holds that |xT(g2(z)−g1(z))| ≤ ∥x∥2∥g2(z)−g1(z)∥2 ≤ ∥x∥2

√
dη1.

Simple calculation yields that ∥x∥2 ≤ ∥x− g1(z)∥2 + ∥g1(z)∥2 ≤ 1 + ∥x− g1(z)∥22 + F
√
d. Combining with the
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last display, we have

pg1,σ(x)− pg2,σ(x)

≤
∫
[0,1]d0

ϕσ(x− g1(z))

(
2Fdη1 + 2

√
dη1 + 2

√
dη1∥x− g1(z)∥22 + 2Fdη1
2σ2

)
dz

≤ η1

∫
[0,1]d0

ϕσ(x− g1(z))

(
2Fd+

√
d

σ2
+

√
d∥x− g1(z)∥22

σ2

)
dz

= η1(2πσ
2)−d/2

∫
[0,1]d0

exp

(
−∥x− g1(z)∥22

2σ2

)(
2Fd+

√
d

σ2
+

√
d∥x− g1(z)∥22

σ2

)
dz

≤ η1(2πσ
2)−d/2

(
2Fd+

√
d

σ2
+

2
√
d

e

)
,

where the last inequality holds because for any t > 0, e−t ≤ 1 and te−t ≤ 1/e. Then, there exists a positive
constant D1 = D1(d) where the last display is further bounded by η1D1σ

−d−2
min F for every F ≥ 1 and 0 < σmin ≤√

e.
Also, for σ1, σ2 ∈ [σmin, σmax] and g ∈ G with |σ1 − σ2| ≤ η2, we have

pg,σ1
(x)− pg,σ2

(x)

=

∫
[0,1]d0

ϕσ1
(x− g(z))

[
1− exp

{
−∥x− g(z)∥22

2

(
1

σ2
2

− 1

σ2
1

)
+ d log

σ1
σ2

}]
dz

≤
∫
[0,1]d0

ϕσ1
(x− g(z))

{
∥x− g(z)∥22

2

(
1

σ2
2

− 1

σ2
1

)
− d log

σ1
σ2

}
dz.

Simple calculation yields that |σ−2
2 − σ−2

1 | ≤ σ−2
1 σ−2

2 (σ1 + σ2)η2 and | log(σ2/σ1)| ≤ η2/min(σ1, σ2). Combining
with the last display, we have

pg,σ1
(x)− pg,σ2

(x)

≤ η2

∫
[0,1]d0

ϕσ1
(x− g(z))

{
(σ1 + σ2)∥x− g(z)∥22

2σ2
1σ

2
2

+
d

min(σ1, σ2)

}
dz

= η2(2πσ
2
1)

−d/2
∫
[0,1]d0

exp

(
−∥x− g(z)∥22

2σ2
1

){
(σ1 + σ2)∥x− g(z)∥22

2σ2
1σ

2
2

+
d

min(σ1, σ2)

}
dz

≤ η2(2πσ
2
1)

−d/2
{
σ1 + σ2
eσ2

2

+
d

min(σ1, σ2)

}
.

Then, there exist a positive constant D2 = D2(d) where the last display is further bounded by η2D2σ
−d−1
min .

Given 0 < ϵ < 1, set η1 = ϵ/(4D1σ
−d−2
min F ) and η2 = ϵ/(4D2σ

−d−1
min ). Suppose {g1, . . . ,gN1} be η1-covering set

of G and {σ1, . . . , σN2
} be η2-covering set of [σmin, σmax]. Then, {pgi,σj

: i ∈ {1, . . . , N1}, j ∈ {1, . . . , N2}} forms
an ϵ/2-covering set of (P, ∥ · ∥∞) for every F ≥ 1 and 0 < σmin ≤ 1 ≤ σmax. Define lij and uij as

lij(x) = max
{
pgi,σj (x)− ϵ/2, 0

}
and uij(x) = min

{
pgi,σj (x) + ϵ/2, H(x)

}
for each (i, j), where H(x) = supp∈P p(x). Note that

H(x)≤ (2πσ2
min)

−d/2 sup
∥y∥∞≤F

exp

(
−∥x− y∥22

2σ2
max

)

≤ (2πσ2
min)

−d/2 exp

(
−∥x∥22 − 2dF 2

4σ2
max

)
=

(√
2σmax

σmin

)d
exp

(
dF 2

2σ2
max

)
ϕ√2σmax

(x),

where the last inequality holds because ∥x−y∥22 ≥ ∥x∥22/2−∥y∥22 ≥ ∥x∥22/2−dF 2 for ∥y∥∞ ≤ F . For any t > 0,



Hyeok Kyu Kwon, Minwoo Chae∗

Gaussin tail bound implies that
∫
∥x∥∞>t

ϕ√2σmax
(x)dx ≤ de−t

2/(4σ2
max). Since σmax ≥ 1, we have that

∫
∥x∥∞>B

H(x)dx≤

(√
2σmax

σmin

)d
exp

(
dF 2

2

)∫
∥x∥∞>B

ϕ√2σmax
(x)dx

≤ d

(√
2σmax

σmin

)d
exp

(
dF 2

2
− B2

4σ2
max

)
= ϵ

where

B = 2σmax

(
log

1

ϵ
+ d log

σmax

σmin
+
d

2
log 2 +

dF 2

2
+ log d

)1/2

.

Hence,

∥uij − lij∥1 =
∫
Rd

{uij(x)− lij(x)} dx

≤
∫
∥x∥∞≤B

ϵ dx+

∫
∥x∥∞>B

H(x)dx ≤
{
(2B)d + 1

}
ϵ.

Define δ =
√
ϵ{(2B)d + 1}. Since d2H(uij , lij) ≤ ∥uij − lij∥1, we have

N[](δ,P, dH) ≤ N[](δ
2,P, ∥ · ∥1) ≤ N1N2 ≤ σmax − σmin

η2
N(η1,G, ∥ · ∥∞)

for every F ≥ 1 and 0 < σmin ≤ 1 ≤ σmax.
There exists a positive constant D3 = D3(d) such that for 0 < σmin ≤ 1/

√
2 and 1 ≤ σmax,

δ2 = ϵ(2dBd + 1)≤ ϵD3σ
d
max

[{
log

(
1

ϵ

)}d/2
+

{
log

(
σmax

σmin

)}d/2
+ F d

]

Since ϵ ≤ ϵ{log(1/ϵ)}d/2 ≤
√
ϵ for ϵ < ϵ1, where ϵ1 = ϵ1(d) < 1 is a constant, we have

δ2 ≤
√
ϵD3σ

d
max

[{
log

(
σmax

σmin

)}d/2
+ F d

]
.

Hence,

η1 = ϵ
σd+2
min

4D1F
≥ σd+2

min δ
4

4D1FD2
3σ

2d
max

[
{log(σmax/σmin)}d/2 + F d

]2
≥ D4δ

4σd+2
min

Fσ2d
max

[
{log(σmax/σmin)}d + F 2d

]
and

η2 = ϵ
σd+1
min

4D2
≥ σd+1

min δ
4

4D2D2
3σ

2d
max

[
{log(σmax/σmin)}d/2 + F d

]2
≥ D5δ

4σd+1
min

σ2d
max

[
{log(σmax/σmin)}d + F 2d

]
for D4 = D4(d), D5 = D5(d) and 0 < δ ≤ D6 < 1, where D6 = D6(d). The assertion follows by re-defining
constants.

The proof of Lemma A.4 below is a straightforward extension of Lemma 5 in Schmidt-Hieber (2020), which can
only be applied to the case of M = 1.
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Lemma A.4. For any δ > 0 and d = (1, d1, d), we have

logN(δ,G(1,∞,d,M), ∥ · ∥∞) ≤ d1(d+ 2) log

(
8M2d1
δ

)
.

Proof. Let z 7→ g(z) = W2ρbW1z and z 7→ g′(z) = W ′
2ρb′W ′

1z with g,g′ ∈ G(1,∞,d,M). Given ϵ > 0, assume
that all parameter values of g and g′ are at most ϵ away from each other. Then,

∥g(z)− g′(z)∥∞ ≤ ∥W2ρbW1z −W2ρb′W ′
1z∥∞ + ∥W2ρb′W ′

1z −W ′
2ρb′W ′

1z∥∞
= ∥W2(ρbW1z − ρb′W ′

1z)∥∞ + ∥(W2 −W ′
2)ρb′W ′

1z∥∞
≤Md1∥ρbW1z − ρb′W ′

1z∥∞ + ϵd1∥ρb′W ′
1z∥∞,

where the last inequlaity holds because for any matrix W ∈ Rd×d1 and x ∈ Rd1 , we have ∥Wx∥∞ ≤
d1∥W∥∞∥x∥∞. It holds that ∥ρbW1z − ρb′W ′

1z∥∞ ≤ ∥(W1 − W ′
1)z∥∞ + ∥b − b′∥∞ and ∥ρb′W ′

1z∥∞ ≤
∥W ′

1z∥∞ + ∥b′∥∞. Combining with the last diplay, we have

∥g(z)− g′(z)∥∞ ≤Md1 {∥(W1 −W ′
1)z∥∞ + ∥b− b′∥∞}+ ϵd1 {∥W ′

1z∥∞ + ∥b′∥∞}
≤ ϵMd1 (∥z∥∞ + 1) + ϵMd1 (∥z∥∞ + 1)

= 2ϵMd1 (∥z∥∞ + 1)

≤ 4ϵMd1.

Note that the total number of parameters in g is equal to d1(d+ 2). Define δ = 4ϵMd1. Then,

N (δ,G(1,∞,d,M), ∥ · ∥∞)≤N
(
ϵ, [−M,M ]

d1(d+2)
, ∥ · ∥∞

)
≤
(
2M

ϵ

)d1(d+2)

=

(
8M2d1
δ

)d1(d+2)

.

The assertion follows by taking a logarithm.

Proof of Theorem 3.1. We will apply Theorem 4 of Wong and Shen (1995) with α = 0+. Let c1, . . . , c4 be the
same positive constants defined in Theorem 1 of Wong and Shen (1995). These constants can be chosen, for
example, as c1 = 1/24, c2 = 2/26001, c3 = 10 and c4 = (2/3)5/2/512. By Theorem 4 of Wong and Shen (1995),
it suffices to prove that ∫ √

2ϵn

ϵ2n/2
8

√
logN[](δ/c3,P, dH) dδ ≤ c4

√
nϵ2n

and there exist g∗ ∈ G(1, F,d,M) and σ∗ ∈ [σmin, σmax] satisfying∫
log

(
p0(x)

pg∗,σ∗(x)

)
dP0(x) <

1

4
c1ϵ

2
n (A.1)∫ {

log

(
p0(x)

pg∗,σ∗(x)

)}2

dP0(x) <
1

4
c1ϵ

2
n log n, (A.2)

for every n ≥ C̃1, where C̃1 and C̃2 are large enough constants and ϵn is defined as in Theorem 3.1.

To derive (A.1) and (A.2), we firstly approximate p0 by Gaussian mixture densities and then construct ReLU
networks to approximate the mixing measure. Techniques approximating p0 by Gaussian mixtures are originally
developed by Shen et al. (2013) and slightly refined in Ghosal and van der Vaart (2017).

Let C1, . . . , C4 be constants in Lemma A.1 and aσ = C4 {log(1/σ)}τ3 . Let σ ∈ [σmin, σmax] be small enough as
described below. By Lemma A.1, if σ ≤ min(C1, 1), there exists a probability measure H0 supported within
[−aσ, aσ]d such that

dH(p0, ϕσ ∗H0) ≤ C4σ
β . (A.3)
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If, furthermore, σ is small enough so that aσ/σ ≥ 1, then Lemma 9.12 of Ghosal and van der Vaart (2017)
implies that there exist positive constants D1 = D1(d, β), D2 = D2(d, β) and discrete probability measure

H̃0(·) =
∑N0

t=1 w
(t)δx(t)(·), where δx(·) denotes the Dirac measure at x, supported inside [−aσ, aσ]d such that

N0 ≤ D1a
d
σσ

−d {log(1/σ)}d = D1C
d
4σ

−d {log(1/σ)}τ3d+d

and
dH(ϕσ ∗H0, ϕσ ∗ H̃0) ≤ ∥ϕσ ∗H0 − ϕσ ∗ H̃0∥1/21 ≤ D2σ

β {log(1/σ)}d/4 . (A.4)

Moreover, H̃0 can be constructed so that x(1), . . . ,x(N0) are distinct, w(t) > 0 and{
x(1), . . . ,x(N0)

}
⊆
{
(n1, . . . , nd)σ

2β+1 : ni ∈ Z, i = 1, . . . , d
}
∩ [−aσ, aσ]d . (A.5)

Without loss of generality, we may assume that w(1) ≥ · · · ≥ w(N0). Let

N1 =
∣∣∣{t : w(t) ≥ σ2β+2d+2, t = 1, . . . , N0

}∣∣∣ ,
where | · | denotes the cardinality. If σ is small enough, we have 1 ≤ N1 ≤ N0. Let H̃1(·) = w(+)δx(1)(·) +∑N1

t=2 w
(t)δx(t)(·) where w(+) = w(1) +

∑
t>N1

w(t). Corollary A.1 implies that

dH(ϕσ ∗ H̃0, ϕσ ∗ H̃1) ≤
√
d

2
(N0 −N1)aσσ

β+d

≤
√
d

2
aσN0σ

β+d ≤
√
d

2
D1C

d+1
4 σβ {log(1/σ)}τ3d+τ3+d .

(A.6)

For t = 1, . . . , N1, let Ut be the intersection of [−aσ, aσ]d and x(t) + B(σ2β+1/3), the ℓ2-ball with the radius
σ2β+1/3 centered on x(t). Since x(1), . . . ,x(N1) are on grids (A.5), U1, . . . , UN1 are mutually disjoint. One can
extend {U1, . . . , UN1

} to {U1, . . . , UN2
} so that the latter forms a partition of [−aσ, aσ]d and the ℓ2-diameter of

Ut is at most σ for all t ≤ N2. Since

N
(σ
2
, [−aσ, aσ]d, ∥ · ∥2

)
≤ N

(
σ

2
√
d
, [−aσ, aσ]d, ∥ · ∥∞

)
≤

(
4
√
daσ
σ

)d
,

one may construct a partition so that N2 ≤ N1 + (4
√
daσ/σ)

d. Hence,

N2 ≤ N1 + (4
√
daσ/σ)

d ≤ N0 + (4
√
daσ/σ)

d ≤ D3σ
−d {log(1/σ)}τ3d+d ,

where D3 = D3(C4, D1). Define x̃(t) as x̃(t) = x(t) for t ≤ N1 and choose x̃(t) ∈ Ut for N1 < t ≤ N2. Let

H̃2(·) =
∑N2

t=1 w̃
(t)δx̃(t)(·) where w̃(1) = w(+)−(N2−N1)σ

2β+2d+2, w̃(t) = w(t) for 1 < t ≤ N1 and w̃
(t) = σ2β+2d+2

for N1 < t ≤ N2. Since w(+) ≥ w(1) ≥ N−1
0 ≳ σd{log(1/σ)}−τ3d−d and N2 ≲ σ−d {log(1/σ)}τ3d+d, we have

w̃(1) ≥ σ2β+2d+2 for small enough σ. Corollary A.1 implies that

dH(ϕσ ∗ H̃1, ϕσ ∗ H̃2) ≤
√
d

2
(N2 −N1)aσσ

β+d

<

√
d

2
aσN2σ

β+d ≤
√
d

2
D3C4σ

β {log(1/σ)}τ3d+τ3+d .
(A.7)

Consider function g̃ = (g̃1, . . . , g̃d) : [0, 1] → [−aσ, aσ]d such that

g̃(0) = x̃(1) and g̃(z) =

N2∑
t=1

x̃(t)1(q(t−1),q(t)](z),

where q(0) = 0 and q(t) =
∑t
s=1 w̃

(s) for t ≤ N2. Then, ϕσ ∗ H̃2 = pg̃,σ. Note that g̃i : [0, 1] → [−aσ, aσ] is a step

function with g̃i(0) = x̃
(1)
i and g̃i(z) =

∑N2

t=1 x̃
(t)
i 1(q(t−1),q(t)](z). Define g∗

(t)
i ∈ G(1, aσ, (1, 4, 1), κ−1) as

g∗
(t)
i (z) = x̃

(t)
i

[
max

{
0,

1

κ

(
z − q(t−1)

)}
−max

{
0,

1

κ

(
z −

(
q(t−1) + κ

))}
−max

{
0,

1

κ

(
z −

(
q(t) − κ

))}
+max

{
0,

1

κ

(
z − q(t)

)}]
,

(A.8)
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Figure 3: Step function approximation with ReLU network

which approximates x̃
(t)
i 1(q(t−1),q(t)](·) as described in Figure 3, where κ = σ2β+2d+3/2 and we have κ−1 ≥ aσ

for small enough σ. Define g∗i ∈ G(1, aσ, (1, 4N2, 1), κ
−1) as g∗i(z) =

∑N2

t=1 g∗
(t)
i (z) for each i ∈ {1, . . . , d} and

define

g∗ ∈ G
(
aσ, (1, 4N2, d), κ

−1
)

as g∗(z) = (g∗1(z), . . . , g∗d(z)) .

Then,

∥g̃ − g∗∥22 =
∫
[0,1]

d∑
i=1

{g̃i(z)− g∗i(z)}
2
dz

=

∫
[0,1]

d∑
i=1

[
N2∑
t=1

{
x̃
(t)
i 1(q(t−1),q(t)](z)− g∗

(t)
i (z)

}]2
dz

=

∫
[0,1]

d∑
i=1

N2∑
t=1

{
x̃
(t)
i 1(q(t−1),q(t)](z)− g∗

(t)
i (z)

}2

dz

= 2

d∑
i=1

N2∑
t=1

∫
[0,κ]

(
x̃
(t)
i − x̃

(t)
i

κ
z

)2

dz

=
2

3

d∑
i=1

N2∑
t=1

κ
{
x̃
(t)
i

}2

≤ 2

3
dN2κa

2
σ.

Combining with Lemma A.2, we have

dH(ϕσ ∗ H̃2, pg∗,σ) = dH(pg̃,σ, pg∗,σ)

≤ ∥g̃ − g∗∥2
2
√
2σ

=

√
dN2κaσ

2
√
3σ

≤ D4σ
2β+d+1

2 {log(1/σ)}
τ3d+2τ3+d

2 ,
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where D4 =
√
dD3C4/(2

√
6). Combining (A.3), (A.4), (A.6) and (A.7) with the last display, we have

dH(p0, pg∗,σ)≤C4σ
β +D2σ

β {log(1/σ)}
d
4 +

√
d

2
D1C

d+1
4 σβ {log(1/σ)}τ3d+τ3+d

+

√
d

2
D3C4σ

β {log(1/σ)}τ3d+τ3+d +D4σ
2β+d+1

2 {log(1/σ)}
τ3d+2τ3+d

2

≤D5σ
β {log(1/σ)}τ3d+τ3+d ,

where D5 = C4 +D2 +
√
d/2D1C

d+1
4 +

√
d/2D3C4 +D4.

For any x ∈ [−aσ, aσ]d, there exists s ∈ {1, . . . , N2} such that x ∈ Us. Since x̃(s) ∈ Us and ∥x̃(s) − x∥2 ≤ σ, we
have

pg∗,σ(x) ≥
∫
{∥x−g∗(z)∥2≤σ}

ϕσ(x− g∗(z))dz

= (2π)−
d
2

∫
{∥x−g∗(z)∥2≤σ}

σ−d exp

(
−∥x− g∗(z)∥22

2σ2

)
dz

≥ (2π)−
d
2 σ−d

∫
{x̃(s)=g∗(z)}

e−
1
2 dz = (2π)−

d
2 e−

1
2σ−d(w̃(s) − 2κ)

> D6σ
2β+d+2,

(A.9)

where the last inequality holds because mint w̃
(t) ≥ σ2β+2d+2 and D6 = (2π)−d/2e−1/2/2 . For any x ∈ Rd with

∥x∥∞ > aσ, we have

pg∗,σ(x) = (2π)−
d
2 σ−d

∫
∥g∗(z)∥∞≤aσ

exp

(
−∥x− g∗(z)∥22

2σ2

)
dz

≥ (2π)−
d
2 σ−d exp

(
−2d∥x∥22

σ2

)
,

where the last inequality holds because ∥x − g∗(z)∥22 ≤ 2∥x∥22 + 2∥g∗(z)∥22 ≤ 2∥x∥22 + 2d∥g∗(z)∥2∞ ≤ 4d∥x∥22.
Combining with (Tail 2) assumption, it follows that p0(x)/pg∗,σ(x) ≤ τ1(2π)

d/2σd exp
(
2d∥x∥22/σ2

)
. Hence,

log

(
p0(x)

pg∗,σ(x)

)
≤ D7 +

2d∥x∥22
σ2

,

where D7 = log τ1 + d log(2π)/2.

Assumption (Tail 2) and (A.9) implies that pg∗,σ(x)/p0(x) > λ for all x ∈ [−aσ, aσ]d, where λ = D6σ
2β+d+2/τ1.

It follows that {x : pg∗,σ(x)/p0(x) ≤ λ,x ∈ Rd} ⊆ {x : ∥x∥∞ > aσ,x ∈ Rd}. Hence,∫
{

pg∗,σ(x)

p0(x)
≤λ

}
{
log

(
p0(x)

pg∗,σ(x)

)}2

dP0(x)

≤
∫
{∥x∥∞>aσ}

{
log

(
p0(x)

pg∗,σ(x)

)}2

dP0(x)

≤ 2

∫
{∥x∥∞>aσ}

(
D2

7 +
4d2∥x∥42
σ4

)
dP0(x)

≤ 2D2
7

{
1− P0

(
[−aσ, aσ]d

)}
+

8d2

σ4

∫
{∥x∥∞>aσ}

∥x∥42 dP0(x)

≤ 2D2
7

{
1− P0

(
[−aσ, aσ]d

)}
+

8d2

σ4

{
E
[
∥X∥82

]}1/2 {
1− P0

(
[−aσ, aσ]d

)}1/2

≤ D8σ
2β ,

where D8 = D8(C3, C4, D7, τ1, τ2, τ3) and the last inequality holds by Lemma A.1 and (Tail 2) assumption. Since
λ is sufficiently small for small enough σ, Lemma B.2 of Ghosal and van der Vaart (2017) implies that there
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exist positive constants D9 = D9(D6, d, β, τ1) and D10 = D10(D5, D8, D9) such that∫
log

(
p0(x)

pg∗,σ(x)

)2

dP0(x)

≤ d2H(p0, pg∗,σ)
[
12 + 2{log(1/λ)}2

]
+ 8

∫
{

pg∗,σ(x)

p0(x)
≤λ

}
{
log

(
p0(x)

pg∗,σ(x)

)}2

dP0(x)

≤ D9d
2
H(p0, pg∗,σ) {log(1/σ)}

2
+ 8D8σ

2β

≤ D10σ
2β {log(1/σ)}2τ3d+2τ3+2d+2

and ∫
log

(
p0(x)

pg∗,σ(x)

)
dP0(x)

≤ d2H(p0, pg∗,σ) [1 + 2 log(1/λ)] + 2

∫
{

pg∗,σ(x)

p0(x)
≤λ

} log

(
p0(x)

pg∗,σ(x)

)
dP0(x)

≤ D9d
2
H(p0, pg∗,σ) log(1/σ) + 2

∫
{

pg∗,σ(x)

p0(x)
≤λ

}
{
log

(
p0(x)

pg∗,σ(x)

)}2

dP0(x)

≤ D9d
2
H(p0, pg∗,σ) log(1/σ) + 2D8σ

2β

≤ D10σ
2β {log(1/σ)}2τ3d+2τ3+2d+1

.

For σ∗ ≍ n−1/(2β+d) with σ∗ ∈ [σmin, σmax], if n is large enough, we have∫
log

(
p0(x)

pg∗,σ∗(x)

)
dP0(x) ≤ D11n

− 2β
2β+d (log n)

2τ3d+2τ3+2d+1
and (A.10)∫

log

(
p0(x)

pg∗,σ(x)

)2

dP0(x) ≤ D11n
− 2β

2β+d (log n)
2τ3d+2τ3+2d+2

, (A.11)

where D11 = D10/(2β + d)2τ3d+2τ3+2d+2.

Let C5, . . . , C7 be constants in Lemma A.3. Then, there exists a positive constant D12 = D12(all) such that for
every δ ≤ C7 and large enough n,

logN[](δ,P, dH) ≤ logN
(
C5D12δ

4n−
d+3
2β+d ,G, ∥ · ∥∞

)
+ log

(
C6D12n

d+2
2β+d

δ4

)
.

Combining with Lemma A.4, we have

logN[](δ,P, dH) ≤ D13n
d

2β+d (log n)τ3d+d {log n+ log(1/δ)} ,

where D13 = D13(all). Note that for every ϵ ≤ min(c3C7/
√
2, 1/e), we have∫ √

2ϵ

ϵ2/28

√
logN[](δ/c3,P, dH) dδ

≤
√
2ϵ
√
D13nd/(2β+d)(log n)τ3d+d{log n+ log(c328/ϵ2)}

≤ D14n
d

4β+2d (log n)
τ3d+d

2 ϵ {log n+ log(1/ϵ)}
1
2 ,

where D14 = D14(D13, d, β). Therefore, for all large enough n, the last display holds with ϵ = ϵn and is further
bounded by c4

√
nϵ2n, where

ϵn = D15n
− β

2β+d (log n)
2τ3d+2τ3+2d+1

2

and D15 = D15(D11, D14, d, β, τ3) is a large enough constant. If D15 is chosen so that D15 > 4D11/c1, (A.10)
and (A.11) is further bounded by c1ϵ

2
n/4 and c1ϵ

2
n log n/4, respectively. By re-defining constants, the proof is

complete.
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B PROOF OF THEOREM 4.2

In addition to Section A, we state and prove lemmas needed for proving Theorem 4.2.

Lemma B.1. Let p0 ∈ Cβ,L,τ0(Rd) be a probability density function satisfying an assumption (Tail 1).
Then, there exist a positive constant C8 = C8(d, β, L) such that dH(p0, ϕσ ∗ P0) ≤ C8σ

min(β,2) for every
σ ∈ (0,min(1/

√
4τ0, 1)].

Proof. For any x,y ∈ Rd, Taylor’s theorem for multivariate functions yields that

p0(x− y)− p0(x) =
∑

1≤k.≤⌊β⌋

(−y)k(Dkp0)(x)

k!
+
∑

k.=⌊β⌋

(−y)k
{
(Dkp0)(x− ty)− (Dkp0)(x)

}
k!

for a suitable t ∈ [0, 1], where (−y)k =
∏d
i=1(−yi)ki and k! =

∏d
i=1 ki!. Let mk =

∏d
i=1mki and mki =∫

ϕ(y)ykidy, where mki denote the ki-th moment of standard normal distribution on R. In particular, mki = 0
if ki is an odd number. Since

∫
ϕσ(y)y

kdy = mkσ
k. and combining with the last display, we have

(ϕσ ∗ P0)(x)− p0(x) =

∫
Rd

ϕσ(y) {p0(x− y)− p0(x)} dy

=
∑

1≤k.≤⌊β⌋

(−σ)k.mk(D
kp0)(x)

k!
+
∑

k.=⌊β⌋

∫
Rd

ϕσ(y)(−y)k
{
(Dkp0)(x− ty)− (Dkp0)(x)

}
k!

dy

≤
∑

1≤k.≤⌊β⌋

σk.mk

∣∣(Dkp0)(x)
∣∣

k!
+
∑

k.=⌊β⌋

L(x)

k!

∫
Rd

eτ0∥y∥
2
2ϕσ(y)|y|k∥y∥β−⌊β⌋

2 dy,

where |y|k =
∏d
i=1 |yi|ki and the last inequality holds by the definition of Cβ,L,τ0(Rd). Note that eτ0∥y∥

2
2ϕσ(y) ≤

2d/2ϕ√2σ(y) because τ0 ≤ 1/(4σ2). Also, it follows that |y|k∥y∥β−⌊β⌋
2 ≤

∑d
i=1 |yi|β−⌊β⌋∏d

j=1 |yj |kj and∫
ϕ√2σ(y)|y|k∥y∥

β−⌊β⌋
2 dy ≤ (

√
2σ)βd(m2⌊β⌋+2)

d for k. = ⌊β⌋. Since mk = 0 for k. = 1 and combining with the
last display, it follows that

|(ϕσ ∗ P0)(x)− p0(x)| ≤ D1σ
min(β,2)

 ∑
2≤k.≤⌊β⌋

∣∣(Dkp0)(x)
∣∣+ L(x)

 ,

where D1 = D1(d, β). Hence,

d2H(p0, ϕσ ∗ P0) =

∫
Rd

{
p0(x)− (ϕσ ∗ P0)(x)√
p0(x) +

√
(ϕσ ∗ P0)(x)

}2

dx

≤ D2
1σ

2min(β,2)

∫
Rd


(
L(x)

p0(x)

)2

+
∑

2≤k.≤⌊β⌋

(
|(Dkp0)(x)|

p0(x)

)2
dP0(x)

≤ D2σ
2min(β,2),

where D2 = D2(D1, β, L) and the last inequality holds by the assumption (Tail 1). The assertion follows by
re-defining constants.

Proof of Theorem 4.2. The proof follows a similar approach to that of Theorem 3.1. We will apply Theorem 4
of Wong and Shen (1995) with α = 0+. Let c1, . . . , c4 be the same positive constants defined in Theorem 1 of
Wong and Shen (1995). These constants can be chosen, for example, as c1 = 1/24, c2 = 2/26001, c3 = 10 and
c4 = (2/3)5/2/512. By Theorem 4 of Wong and Shen (1995), it suffices to prove that∫ √

2ϵn

ϵ2n/2
8

√
logN[](δ/c3,P, dH) dδ ≤ c4

√
nϵ2n
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and there exist g∗ ∈ G(L,F,d,M, s) and σ∗ ∈ [σmin, σmax] satisfying∫
log

(
p0(x)

pg∗,σ∗(x)

)
dP0(x)<

1

4
c1ϵ

2
n∫ {

log

(
p0(x)

pg∗,σ∗(x)

)}2

dP0(x)<
1

4
c1ϵ

2
n,

for every n ≥ C̃1, where C̃1 and C̃2 are large enough constants and ϵn is defined as in Theorem 4.2.

Let C8 be a constant in Lemma B.1 and σ ∈ [σmin, σmax] be small enough as described below. Combining Lemma
B.1 and Lemma A.2, if σ ≤ min(1/

√
4τ0, 1), we have

dH(p0, pg,σ) ≤ dH(p0, ϕσ ∗ P0) + dH(pg0,σ, pg,σ) ≤ C8σ
β̃ +

∥g0 − g∥2
2
√
2σ

(B.1)

for any function g : [0, 1]d → Rd, where the first inequality holds because ϕσ ∗ P0 = pg0,σ. Lemma 5 of

Chae et al. (2023) implies that there exist a constant D1 = D1(β, q,v, t,β, τ6) satisfying ∥g0 − g∗∥∞ ≤ σβ̃+1

for some g∗ ∈ G
(
L̃,∞, d̃, 1, s̃

)
, where L̃ = ⌊D1 log(1/σ)⌋, d̃ = (d, d̃1, . . . , d̃1, d) with d̃1 = ⌊D1σ

− (β̃+1)t∗
β∗ ⌋ and

s̃ = D1σ
− (β̃+1)t∗

β∗ log(1/σ). Since ∥g∗∥∞ ≤ ∥g∗ − g0∥∞ + ∥g0∥∞ and ∥g0∥∞ ≤ τ4 by (Support) assumption, it
follows that

∥g0 − g∗∥∞ ≤ σβ̃+1 for some g∗ ∈ G
(
L̃, F̃ , d̃, 1, s̃

)
, (B.2)

where F̃ = τ4 + 1.

Combining (B.1) and (B.2), we have

dH(p0, pg∗,σ) ≤ (C8 +
√
d/8)σβ̃ , (B.3)

where the inequality holds because ∥g0 − g∥2 ≤
√
d∥g0 − g∥∞.

Assumption (Structured generator) implies that for any x̃ ∈ Rd with p0(x̃) > 0, there exists z̃ ∈ [0, 1]d, such
that x̃ = g0(z̃). Note that z̃ does not need to be unique. For any z ∈ [0, 1]d, simple calculation yields that
∥x̃−g∗(z)∥2 ≤ ∥x̃−g0(z)∥2+ ∥g0(z)−g∗(z)∥2 ≤

√
d∥g0(z̃)−g0(z)∥∞+

√
d∥g0−g∗∥∞. Combining with (B.2),

we have {
z ∈ [0, 1]d : ∥g0(z̃)− g0(z)∥∞ ≤ σ

}
⊆
{
z ∈ [0, 1]d : ∥x̃− g∗(z)∥2 ≤

√
d(σ + σβ̃+1)

}
⊆
{
z ∈ [0, 1]d : ∥x̃− g∗(z)∥2 ≤ 2

√
dσ
}
.

Note that g0 = hq ◦ . . . ◦ h0 and hi = (hi1, . . . , hivi+1)
T : [ai, bi]

vi → [ai, bi]
vi+1 . Since hij ∈ Cβi([ai, bi]

ti ; τ6) and

∥Dkhij∥∞ ≤ τ6 for k. = 1, it follows that for any z
(i)
1 , z

(i)
2 ∈ [ai, bi]

vi , ∥hi(z(i)1 ) − hi(z
(i)
2 )∥∞ ≤ τ6∥z(i)1 − z

(i)
2 ∥∞.

Then, simple calculation yields that ∥g0(z
(0)
1 ) − g0(z

(0)
2 )∥∞ ≤ τ6

q+1∥z(0)1 − z
(0)
2 ∥∞. Combining with the last

display, we have {
z ∈ [0, 1]d : ∥z̃− z∥∞ ≤ τ6

−(q+1)σ
}

⊆
{
z ∈ [0, 1]d : ∥g0(z̃)− g0(z)∥∞ ≤ σ

}
⊆
{
z ∈ [0, 1]d : ∥x̃− g∗(z)∥2 ≤ 2

√
dσ
}
.

Hence,

pg∗,σ(x̃) ≥
∫
{∥x̃−g∗(z)∥2≤2

√
dσ}

ϕσ(x̃− g∗(z))dz

= (2π)−
d
2

∫
{∥x̃−g∗(z)∥2≤2

√
dσ}

σ−d exp

(
−∥x̃− g∗(z)∥22

2σ2

)
dz

≥ (2π)−
d
2 σ−de−2d

∫
{∥x̃−g∗(z)∥2≤2

√
dσ}

dz

≥ (2π)−
d
2 σ−de−2d

∫
{∥z̃−z∥∞≤τ6−(q+1)σ}

dz ≥ D2,
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where D2 = (2π)−
d
2 e−2dτ6

−d(q+1) and σ is small enough so that τ6
−(q+1)σ ≤ 1/2. Since ∥p0∥∞ < ∞, we

have pg∗,σ(x)/p0(x) > λ for any x with p0(x) > 0, where λ = 2−1 min{D2∥p0∥−1
∞ , 0.4}. Then, it follows that

{x : pg∗,σ(x) ≤ λp0(x), p0(x) ≥ 0} ⊆ {x : p0(x) = 0,x ∈ Rd}. Lemma B.2 of Ghosal and van der Vaart (2017)
and (B.3) implies that∫

log

(
p0(x)

pg∗,σ(x)

)2

dP0(x)

≤ d2H(p0, pg∗,σ)
[
12 + 2{log(1/λ)}2

]
+ 8

∫
{

pg∗,σ(x)

p0(x)
≤λ

}
{
log

(
p0(x)

pg∗,σ(x)

)}2

dP0(x)

= D3σ
2β̃

and ∫
log

(
p0(x)

pg∗,σ(x)

)
dP0(x)

≤ d2H(p0, pg∗,σ) [1 + 2 log(1/λ)] + 2

∫
{

pg∗,σ(x)

p0(x)
≤λ

} log

(
p0(x)

pg∗,σ(x)

)
dP0(x)

≤ D3σ
2β̃ ,

where D3 = (C8 +
√
d/8)

[
12 + 2{log(1/λ)}2

]
.

For σ∗ ≍ n
− β∗

t∗(β̃+1)+2β̃β∗ with σ∗ ∈ [σmin, σmax], if n is large enough, we have∫
log

(
p0(x)

pg∗,σ∗(x)

)
dP0(x) ≤ D3n

− 2β̃β∗
2β̃β∗+t∗(β̃+1) and (B.4)∫

log

(
p0(x)

pg∗,σ(x)

)2

dP0(x) ≤ D3n
− 2β̃β∗

2β̃β∗+t∗(β̃+1) . (B.5)

Let C5, . . . , C7 be constants in Lemma A.3. Then, for every δ ≤ C7 and large enough n so that
σminF [{log(1/σmin)}d + F 2d] ≤ 1, we have

logN[](δ,P, dH) ≤ logN

(
C5δ

4n
− β∗(d+3)

t∗(β̃+1)+2β̃β∗ ,G, ∥ · ∥∞
)
+ log

C6n
β∗(d+2)

t∗(β̃+1)+2β̃β∗

δ4

 .

Lemma 5 of Schmidt-Hieber (2020) implies that there exists a constant D4 = D4(d, β, τ4, q,v, t,β, τ6) such that

logN[](δ,P, dH) ≤ D4n
t∗(β̃+1)

2β̃β∗+t∗(β̃+1)
{
(log n)2 + log(1/δ)

}
.

Note that for every ϵ ≤ min(c3C7/
√
2, 1/e), we have∫ √
2ϵ

ϵ2/28

√
logN[](δ/c3,P, dH) dδ

≤
√
2ϵ

√
D4n

t∗(β̃+1)

2β̃β∗+t∗(β̃+1) {(log n)2 + log(c328/ϵ2)}

≤ D5n
t∗(β̃+1)

4β̃β∗+2t∗(β̃+1) ϵ
{
(log n)2 + log(1/ϵ)

} 1
2 ,

where D5 = D5(D4, d, β, q,v, t,β). Therefore, for all large enough n, the last display holds with ϵ = ϵn and is
further bounded by c4

√
nϵ2n, where

ϵn = D6n
− β̃β∗

2β̃β∗+t∗(β̃+1) (log n)

and D6 = D6(D3, D5, d, β, q,v, t,β) is a large enough constant. If D6 is chosen so that D6 > 4D3/c1, (B.4) and
(B.5) are further bounded by c1ϵ

2
n/4. By re-defining constants, the proof is complete.
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