
Approximate Bayesian Class-Conditional Models under Continuous
Representation Shift

Thomas L. Lee Amos Storkey
School of Informatics

University of Edinburgh
T.L.Lee-1@sms.ed.ac.uk

School of Informatics
University of Edinburgh
a.storkey@ed.ac.uk

Abstract

For models consisting of a classifier in some
representation space, learning online from a
non-stationary data stream often necessitates
changes in the representation. So, the ques-
tion arises of what is the best way to adapt
the classifier to shifts in representation. Cur-
rent methods only slowly change the classi-
fier to representation shift, introducing noise
into learning as the classifier is misaligned to
the representation. We propose DeepCCG,
an empirical Bayesian approach to solve this
problem. DeepCCG works by updating the
posterior of a class conditional Gaussian clas-
sifier such that the classifier adapts in one
step to representation shift. The use of a class
conditional Gaussian classifier also enables
DeepCCG to use a log conditional marginal
likelihood loss to update the representation.
To perform the update to the classifier and
representation, DeepCCG maintains a fixed
number of examples in memory and so a key
part of DeepCCG is selecting what examples
to store, choosing the subset that minimises
the KL divergence between the true posterior
and the posterior induced by the subset. We
explore the behaviour of DeepCCG in online
continual learning (CL), demonstrating that
it performs well against a spectrum of online
CL methods and that it reduces the change
in performance due to representation shift.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 INTRODUCTION

Currently a large open problem in machine learning is
how to update complex neural network models online
from a non-stationary data stream (Farquhar and Gal,
2018; Antoniou et al., 2020). Methods for solving this
problem can be seen as a composition of an encoder
and classifier—assuming we are looking at classifica-
tion. The encoder maps data instances to a repre-
sentation and the classifier given a data instance in
representation space assigns a class to it. One of the
difficulties encountered is representation shift where
when updating on new data the representation of old
data shifts. To reduce this problem current methods
try to minimise representation shift, often by regular-
ising updates using previous data stored in memory
(Delange et al., 2021; van de Ven and Tolias, 2019).
However, most methods still use a standard classifier
(a fully connected layer, then a softmax) when learn-
ing, which when trained normally only slowly adapts
to representation shift. This means that in the mean-
time the classifier and representation are missaglined,
introducing noise into learning and so potentially mak-
ing the representation forget more information about
previous data than needed (see analysis of representa-
tion shift in Section 5.1).

In this paper we propose a clean way to adapt a classi-
fier in one step to representation shift, preventing the
misalignment of the classifier and representation. To
do this we propose a new method DeepCCG which
leverages a Bayesian class-conditional Gaussian model
for classification. The use of such a classifier has three
main effects. First, the posterior of the parameters
of the class-conditional model can be recomputed in
one step to adjust to representation shift. This means
that the classifier and the shifted representation will
be better aligned, removing the potential for the repre-
sentation to unnecessarily change to better fit the out-
dated classifier. Second, the use of a Bayesian class-
conditional Gaussian classifier, allows for the use of
a conditional marginal likelihood for optimizing the

Approximate Bayesian Class-Conditional Models under Continuous Representation Shift

DeepCCG

Standard
CL method

Slow adaptation
to representation
shift

New Data

Update
Representation

Fast adaptation to
representation
shift

Representation Space

Figure 1: Diagram showing that when updating a model on new data current online continual learning methods
only slowly adapt the classifier, i.e. decision boundary in representation space, to representation shift. On
the other hand, DeepCCG quickly adapts the decision boundary, improving learning as the classifier is better
matched to the current representation. This is illustrated in the diagram as for DeepCCG the decision boundary
is adjusted in a single update such that the shifted representations, which are pointed to by arrows, all remain
in the correct regions while for standard CL methods this is not the case.

parameters of the embedding function. This ensures
that the representation learnt is well matched to the
classifier. Third, a fixed subset of data is chosen to
track representation shift, by selecting the subset that
best recreates the posterior distribution. This method
for selecting samples is shown to be robust to gen-
eral kinds of representation shift (see Section 4) and
is required for DeepCCG to perform well (see ablation
study in Section 5.1).

To examine the behaviour of DeepCCG we look at
the online continual learning (CL) setting (Chaudhry
et al., 2019a; Aljundi et al., 2019b). This is a common
setting where a learner sees a non-stationary stream
of batches of data. The results of our experiments
show that DeepCCG performed best out of all methods
tested, highlighting the benefit of quickly adapting to
representation shift.

The main contributions of this work are:

• A method DeepCCG, which by learning the clas-
sifier in a tractable Bayesian manner adapts to
representation shift in one step and performs best
in our online CL experiments.

• Use of a log conditional marginal likelihood loss
term to fit the embedding function, which reduces
representation shift and aligns the representation
to the class-conditional Gaussian model.

• A new method to select what examples to store
in memory, by minimising the KL-divergence be-
tween the true posterior and the one induced by
the subset of data to be stored in memory.

2 RELATED WORK

There are three main paradigms for solving online CL
problems: regularisation, parameter-isolation and re-
play (Delange et al., 2021). Our work is most closely
related to Replay methods which aim to solve CL
problems by storing a subset of previously seen ex-
amples, which are then trained on alongside new in-
coming data. Replay methods have been shown to
have competitive if not the best performance across
many settings (van de Ven and Tolias, 2019; Wu et al.,
2022; Mirzadeh et al., 2020). The standard replay
method is experience replay (ER) (Chaudhry et al.,
2020, 2019b; Aljundi et al., 2019a), which in the on-
line setting looked at in this work, selects examples to
store using reservoir sampling (Vitter, 1985), we call
this variant ER-reservoir (Chaudhry et al., 2020). One
of the main questions to be answered by a replay-based
approach is how to select what examples to store in
memory. While reservoir sampling has been shown to
be very effective (Wiewel and Yang, 2021) there have
been other methods proposed for sample selection, for
example ones which use information-theoretic criteria
(Wiewel and Yang, 2021) and others maximising the
diversity of the gradients of stored examples (Aljundi
et al., 2019b). There has also been a Bayesian method
proposed to select samples called InfoGS (Sun et al.,
2022), which is somewhat similar to our method but
only uses the probability model to select samples, not
for prediction or training. Additionally, their exists
methods to select what examples to replay at each
update step (Aljundi et al., 2019a; Shim et al., 2021)
which are complementary/orthogonal to this work.

Thomas L. Lee, Amos Storkey

There has been considerable work on using Bayesian
methods in CL (Kessler et al., 2023; Ebrahimi et al.,
2020; Kurle et al., 2020; Lyu et al., 2023), perhaps in-
spired by the fact that true online Bayesian inference
cannot suffer from catastrophic forgetting (Nguyen
et al., 2018). Bayesian perspectives have mainly been
used for regularisation based methods, where a pop-
ular approach is to use variational inference (Nguyen
et al., 2018; Farquhar and Gal, 2019; Zeno et al., 2018).
These variational inference methods focus on the of-
fline CL setting where a learner has access to all of
the data of a task at the same time and, in previous
work, are often limited to being used in conjunction
with small neural networks, mainly due to the need
to sample multiple networks when calculating the loss
(Henning et al., 2021; Nguyen et al., 2018). Therefore,
these methods are not suited to the settings we con-
sider in this paper. Bayesian methods have also been
used in generative replay based approaches, where in-
stead of storing and replaying real samples they use
generated pseudo-samples (Rao et al., 2019). Genera-
tive replay methods focus on the offline scenario, where
it is possible to iterate over the whole of a task’s data
to fit a generator, while we look at the more realistic
online scenario in this work. Finally, when it comes
to replay with real examples, there has been relatively
little work on using Bayesian methods, which we aim
to help to fill in by proposing DeepCCG.

A closely related work to DeepCCG is iCaRL (Re-
buffi et al., 2017). It is similar because both methods
use a class-conditional Gaussian classifier. However,
iCaRL only uses a class-conditional Gaussian classi-
fier at test time, using a per-class sigmoid classifier in
training. Therefore, iCaRL does not solve the prob-
lem we set out to address, that of quickly adapting
to representation shift in training, as its classifier in
training is similar to other standard CL algorithms
and only slowly adapts to representation shift. We
also note that while iCaRL’s sample selection mech-
anism is different from DeepCCGs, it can be seen to
approximate the same general objective—selecting the
subset which best recreates the mean of the whole
data, in representation space. Therefore, our princi-
pled Bayesian derivation of DeepCCG’s sample selec-
tion mechanism can be applied to iCaRL’s giving it
a theoretical grounding, which is not looked at in the
iCaRL paper. Another similar approach to DeepCCG
is ProtoCL (Kessler et al., 2023), which appeared after
DeepCCG’s initial release. It is similar in that it uses
a class-conditional Gaussian classifier but the learning
of the classifier and representation is different and Pro-
toCL uses random sampling to select what examples
to store in memory, which for DeepCCG is shown to
have bad performance (see Table 2).

3 ONLINE CL

This work uses the Online CL setting to study how
to deal with representation shift; where a learner sees
a non-stationary data stream consisting of batches of
data. Specifically, we consider here classification prob-
lems. Let X denote a shared data space, and C de-
notes the set of all classes being considered. Addition-
ally, let t ∈ T denote a particular task. A task t is
a data generator which generates data such that each
each example consists of a data instance x ∈ X and
associated label y ∈ Ct. Also, Ct ⊆ C are the subset
of classes which all the data generated by task t must
belong to.

During training, the learner receives a temporal se-
quence of data batches with their task identifiers,
((Bj , tBj)|j = 1, 2, . . . , N). Each batch Bj consists
of a set of examples drawn from the same task. The
task identifier tBj

denotes what task that is, effectively
indicating the classes which a data instance x of that
task can belong to. The learner trains on each batch
in turn and after training on a batch it must discard
all the data it does not store in a fixed-size memory
buffer M . Also, the learner never revisits the same
batch again.

At test time, we consider two evaluation scenarios,
task-incremental and class-incremental learning. For
both scenarios the learnt model is evaluated on an un-
seen test set from all the classes seen during train-
ing. For task-incremental learning the learner is pro-
vided with task identifiers for each test data instance
and without in class-incremental learning. This exper-
imental setup is commonly used in the continual learn-
ing literature (Chaudhry et al., 2019a). Additionally,
we provide a reference table of terms used in online
CL and defined in this section in Appendix C.

4 DEEP CLASS-CONDITIONAL
GAUSSIANS

We propose an empirical Bayesian method DeepCCG,
which can adapt quickly to representation shift. Deep-
CCG consists of three main parts. Firstly, a Bayesian
class-conditional Gaussian classifier is used on top of
a neural network embedding function. The classifier
is fit by recomputing its posterior whenever there is
a shift in representation; which only requires a sin-
gle forward pass through the neural network embed-
ding function. Secondly, by using a class-conditional
Gaussian classifier we can learn the embedding func-
tion using a log conditional marginal likelihood loss.
The loss is derived from and uses the learnt classifier
in an end-to-end manner and aims to fit a represen-
tation that best allows for the classifier to discrimi-

Approximate Bayesian Class-Conditional Models under Continuous Representation Shift

𝐵

𝑀 /𝑅

𝑀

𝑓

𝑅
Data Stream

𝒩(|𝑦,𝑀 /𝑅)
𝑓

Figure 2: Diagram of DeepCCG’s training routine. At time j the learner is given a sample of data Bj and has
a memory of stored datapoints Mj . The memory is randomly split into replay data Rj and the rest Mj/Rj .
Learning happens by taking a gradient step on the parameters of the embedding function ϕ using a log conditional
marginal likelihood function over Bj and Rj , where Mj/Rj is used to induce a posterior over the means of the
per-class Gaussians and so define the conditional marginal likelihood function used. Therefore, training aims to
move the data points into per-class clusters, by drawing the embedded examples of Bj and Rj towards their own
class means and away from the other class means, as shown by the coloured arrows in the figure.

nate between classes. Additionally, by conditioning
the marginal likelihood on some stored data, the loss
aims to minimise the representation shift of previously
seen classes. Finally, DeepCCG uses a new method
based on minimising information loss to select a sub-
set of examples to store in memory, these examples
are needed when updating both the classifier and the
embedding function, to model and reduce representa-
tion shift. The sample selection mechanism is shown
to be robust to certain kinds of representation shift.
These three parts are described in detail below and
additionally a pseudocode description of the learning
of DeepCCG is presented in Algorithm 1.

Probabilistic Classifier We use a Bayesian class-
conditional Gaussian model as the classifier for Deep-
CCG. This model is defined as follows. Let Z denote a
representation space and assume that we have a neural
network embedding function fϕ : X → Z. We define a
class-conditional Gaussian model in the representation
space Z,

y|t ∼ Cat(Ct, (1/|Ct|)1) (1)

z|y ∼ N (µy, I) (2)

µy ∼ N (0,V0), (3)

where t is a given task identifier, z = fϕ(x), {µy|y ∈
C} are the parameters of the classifier being the per-
class means in Z and Cat(Ct, (1/|Ct|)1) is the uniform
categorical distribution over the classes of task t. We
choose V0 = aI, where in practice we take a → ∞. We
do not specify a model where the covariance matrix is
also a parameter as we learn the embedding function,
hence the case of a global shared covariance is implic-

Algorithm 1 DeepCCG update step at time j

input Bj (training batch), tBj (task identifier for batch),
Mj (current memory), fϕj

(embedding function)

Update class-conditional Gaussian classifier and
embedding function:
Rj = UniformSample(Mj)
Calculate posterior of class-conditional Gaussian classi-
fier: p(µc|Mj/Rj) for each class c, using Eq. 7
Calculate log(p(y|z = fϕj

(x), t(x,y),Mj/Rj)), for each

(x, y) ∈ Bj∪Rj , using Eq. 8 and posteriors p(µc|Mj/Rj)
Update embedding function: ϕj+1 = ϕj +
η∇ϕ

∑
(x,y)∈Bj∪Rj

log(p(y|z = fϕj
(x), t(x,y),Mj/Rj))

Update memory buffer:
for each class c in Mj do

initialise β
for 1 to B do

β ← β + η∇βL(β;Bj,c,Mj,c), where
L(β;Bj,c,Mj,c) is defined in Eq. 12

end for
Set Mj+1 to be the set of examples, including their

task identifiers, with the m largest values in β
end for

itly covered through learning a linear remapping to a
fixed covariance, meaning we do not lose flexibility by
assuming fixed covariances. Also, we assume the la-
bels are conditionally independent given the task, the
per-class means {µc|c ∈ C} and the data instances
(each an element of X) and that z is independent of
the task given its class y.

The classifier is defined as the posterior predictive dis-
tribution of the model, i.e. p(y|z = fϕ(x), tx, D) given
the data instance x, its task identifier tx and some

Thomas L. Lee, Amos Storkey

previously seen data D. The posterior predictive dis-
tribution can be calculated by using the equivalence,

p(y|z = fϕ(x), tx, D) =∫
p(y|z = fϕ(x), tx,θ = {µc|c ∈ C})p(θ|D)dθ, (4)

where

p(y|z = fϕ(x), tx,θ = {µc|c ∈ C}) =
p(z|y,µy)p(y|tx)∑
c∈C p(z|c,µc)p(c|tx)

, (5)

and p(θ|D) is the product over the posteriors p(µc|D)
for each class, where

p(µc|D) = p(µc|DZ
c) (6)

= N
(
µy;D

Z
c ,

1

|Dz
c |
I

)
. (7)

DZ
c = {fϕ(x)|(x, y) ∈ D ∧ y = c} are the representa-

tions of the data instances in D of class c and we use
the notation S to denote the mean of the elements of
a set S. The integral in Eq. 4 can be computed, giving
a closed form expression for the classifier output (see
Appendix A for the full derivation)

p(y|z = fϕ(x), tx, D) =

N
(
z;DZ

y , (1 +
1

|DZ
y |)I

)
∑

c∈Ctx
N
(
z;DZ

y , (1 +
1

|DZ
y |)I

) . (8)

This shows that the classifier gives the probability of x
belonging to a class y by how close its representation
z = fϕ(x) is to the class mean DZ

y and by how many
examples DeepCCG has already seen of a class, i.e.
|DZ

y |.

To fit the classifier, DeepCCG only needs to compute
the posterior of the per-class means. This is because
this posterior can be used to create the posterior pre-
dictive distribution of any data instance. The pos-
terior is tractable and easy to compute, as shown in
Eq. 7. This is due to our choice of model which is
the main reason we use this model along with its
good performance when used on top of neural net-
work embeddings (Ostapenko et al., 2022; Hayes and
Kanan, 2020). If fϕ is fixed, so there is no represen-
tation shift, we can update the posterior of the per-
class means on seeing batch Bj and its task identi-
fier tBj

by simply using Bayes rule, calculating the
posterior p({µc|c ∈ C}|Bj , B<j), where B<j is the
union of the batches seen before Bj . However, in
our setting, we need to update fϕ continually and
so there is representation shift, which changes the

value of p({µc|c ∈ C}|Bj , B<j). We cannot recom-
pute p({µc|c ∈ C}|Bj , B<j) as we are unable to store
all the previously seen examples. Therefore, DeepCCG
stores in memory a buffer of representative examples
M and their task identifiers with which we can com-
pute an approximate posterior p({µc|c ∈ C}|M) af-
ter a change in fϕ. It is important to note that we
can compute this posterior using a single forward pass
through fϕ and so we can adapt the classifier in one
step to representation shift, improving learning as the
classifier and representation are never misaligned.

Learning the Embedding DeepCCG uses a novel
log conditional marginal likelihood loss term update
the embedding function. The log conditional marginal
likelihood loss is given by the Bayesian classifier and
uses the classifier so that the loss fits a representa-
tion which enables the classifier to best separate the
classes. At time j, in response to the arrival of batch
Bj , with task identifier tBj

, and having the memory
buffer Mj , DeepCCG takes the following steps to up-
date the current embbeding function fϕj

(shown in
Figure 2). First, it selects a random set Rj ⊂ Mj ,
of size r, from the memory buffer to replay. Then it
calculates the output of the classifier for each exam-
ple (x, y) ∈ Bj ∪ Rj in the current batch and replay
set. The classifier output is the probability of the class
being y for x given by the posterior predictive distri-
bution p(y|z = fϕj

(x), t(x,y),Mj/Rj), where we con-
dition on the rest of the stored examples Mj/Rj and
t(x,y) is the task identifier for the example. The poste-
rior predictive distributions are calculated using Eq. 8
(where in this case D = Mj/Rj). Then the posterior
predictive distributions are used as individual log con-
ditional marginal likelihood terms. This leads to the
embedding update rule:

ϕj+1 = ϕj+

η∇ϕ

∑
(x,y)∈Bj∪Rj

log(p(y|z = fϕj
(x), t(x,y),Mj/Rj)).

(9)

DeepCCG conditions the marginal likelihood on some
stored data instead of using, as standard, only the
marginal likelihood. The reason for this is that con-
ditioning the likelihood on some examples Mj/Rj

stabilises the output of the classifier and hence the
loss term used. This is because by conditioning the
marginal likelihood on Mj/Rj , the posterior Deep-
CCG averages over is more informative than using the
unconditioned prior, having some belief of where the
position of embedded data instances should be and so
provides a better signal to fit the embedding function.
Additionally by replaying the examples Rj , treating
them like new data, the loss leverages a new type of
replay, where performing replay is widely known to

Approximate Bayesian Class-Conditional Models under Continuous Representation Shift

be effective at minimising unnecessary representation
shift (Wu et al., 2022).

Sample Selection A key component to DeepCCG
is how to select samples to store in the memory buffer.
We focus on ensuring the least amount of information
is lost about the position of the per-class means of
the class-conditional Gaussian classifier, after a shift
in representation. Hence, because all the information
available to inform the value of the classifiers per-class
mean parameters is encapsulated in the full posterior
over the seen data, we target storing a set of examples
that best recreate that posterior, preventing as much
information loss as possible. Therefore, to perform
sample selection we minimise the KL divergence be-
tween two posterior distributions: the posterior over
parameters induced by the new memory being opti-
mized, and the posterior induced by the current batch
and the old memory. We keep the number of exam-
ples in memory for each class balanced, so minimising
the KL divergence is equivalent to minimising each
per-class KL divergence. Therefore, we select the new
memory for each class using

Mj+1,y = argmin
M ′

y

(KL(p(µy|Bj,y,Mj,y)∥p(µy|M ′
y)))

= argmin
M ′

y

(∥BZ
j,y ∪MZ

j,y −M ′Z
y ∥22), (10)

where M ′
y ⊆ Bj,y∪Mj,y, Mj+1,y is the new memory to

be selected for class y, Mj,y is the current memory for
class y and Bj,y is the set of examples of class y in the
current batch. Eq. 10 shows that DeepCCG selects the
data to store such that they have as close to the same
mean as the old memory plus current batch as possible.
Importantly, this sample selection mechanism is robust
to representation shift, when modeled as an additive
i.i.d. change in representation. This is because, given
the shifted representations z∗ = z + ϵz, where z ∈
DZ ∪MZ and ϵz are i.i.d. sampled from an arbitrary
distribution with bounded mean and variance, we have
that (proved in Appendix B):

E[KL(p(µy|DZ∗

j,y ,M
Z∗

j,y)∥p(µy|M ′Z∗

y)))] =

∥BZ
j,y ∪MZ

j,y −M ′Z
y ∥22 + ν(

1

|M ′Z
y |

− 1

|BZ
j,y ∪MZ

j,y|
),

(11)

where the expectation is taken over the additive shift
terms ϵ, ν is the sum over the per-dimension variances
of the shift distribution, DZ∗

j,y = {z∗ = z+ϵz|z ∈ DZ
j,y}

and MZ∗
j,y is defined likewise. Therefore, in expecta-

tion, the examples selected to be stored in memory af-
ter a shift in representation are still the best examples
to store in memory, in terms of preserving posterior
information. Hence, our sample selection mechanism
is robust to this type of representation shift.

Performing the minimization in Eq. 10 is computa-
tionally hard, so we utilise a relaxation of the problem
using lasso (Hastie et al., 2009), whereby our method
selects the new memory by assigning to each embed-
ded input zi a zero-to-one weight βi and performing
gradient decent on the loss

L(β;Bj,y,Mj,y) = λ∥β∥1+∥∥∥∥∥BZ
j,y ∪MZ

j,y −
1

∥β∥1

∑
i|(xi,yi)∈
Bj,y∪Mj,y

βizi

∥∥∥∥∥
2

2

. (12)

Then, after termination, our method selects the m ex-
amples with the largest weights in β to be the exam-
ples stored in memory, where they are stored along
with their task identifiers.

5 EXPERIMENTS

Benchmarks In our experiments we look at task
and class incremental learning in both the disjoint
tasks and shifting window settings. Furthermore,
we consider three different datasets: CIFAR-100
(Krizhevsky, 2009), MiniImageNet (Vinyals et al.,
2016) and CIFAR-10 (Krizhevsky, 2009), where both
CIFAR-100 and MiniImageNet contain 100 classes,
while CIFAR-10 contains 10 classes. For disjoint tasks,
we split data evenly across a certain number of tasks
while assigning all examples with a particular class to
only one task—this is often called the ‘split tasks’ set-
ting in previous work (Delange et al., 2021; Chaudhry
et al., 2019a). We split CIFAR-10 into 5 tasks where
there are 2 classes per task and for CIFAR-100 and
MiniImageNet we split the dataset into 20 tasks with
5 classes per task. In the alternative shifting window
setting, we split the datasets up into tasks by fixing
an ordering of the classes c1, . . . , ck and construct the
ith task by selecting a set of examples from classes
ci, . . . , ci+l, where l is the window length. No two tasks
contain the same example and each task has the same
number of examples per-class. For CIFAR-10 we use
a window length of 2 and for CIFAR-100 and Mini-
ImageNet we use a window length of 5. The shift-
ing window setting is somewhat like the blurry task
setting considered in other work (Bang et al., 2021),
where they have in common that there is class overlap
between tasks. However, in the shifting window set-
ting there is also temporal locality between the classes
seen. Additionally, for all experiments we train with
500 examples per-class.

We evaluate the methods using a standard metric for
CL, average accuracy (Chaudhry et al., 2019a). The
average accuracy of a method is the mean accuracy on
a reserved set of test data across all tasks after training
on all tasks.

Thomas L. Lee, Amos Storkey

Table 1: Results of task-incremental and class-incremental learning experiments on CIFAR-10, CIFAR-100 and
MiniImageNet, where SW and DT stand for the shifting window and disjoint tasks settings, respectively. We
report mean average accuracy with their standard errors across three independent runs. The results show that
DeepCCG performs the best out of the methods tested.

CIFAR-10 CIFAR-100 MiniImageNet

Scenario Method SW DT SW DT SW DT

Task-Inc.

EWC 58.68±1.88 63.33±0.87 36.65±1.07 42.39±0.79 32.42±1.13 29.57±0.69

PackNet 69.29±2.27 66.97±1.47 40.21±0.96 50.28±0.58 34.15±1.28 37.86±1.71

ER-reservoir 70.44±0.81 66.71±0.90 54.05±0.63 58.31±1.08 41.04±1.54 40.29±1.08

A-GEM 57.63±2.16 57.28±2.61 29.01±1.45 39.00±0.75 26.97±1.26 30.08±1.86

EntropySS 67.93±0.63 64.96±0.91 51.80±0.70 56.75±0.81 40.03±0.61 41.12±0.51

GSS 71.55±1.45 67.30±1.27 48.20±0.33 49.92±0.50 37.91±0.49 38.77±0.98

ER-ACE 71.01±0.81 68.94±0.24 52.65±0.09 54.57±0.61 40.06±0.56 39.42±0.20

DER++ 70.86±1.24 67.79±0.84 53.92±1.05 57.08±0.79 41.22±0.35 41.95±1.19

ESMER 71.00±0.67 65.13±1.92 53.58±0.21 56.90±0.21 41.09±0.93 42.46±0.58

iCaRL 63.53±0.12 67.98±0.90 31.77±0.33 35.99±0.55 30.96±0.75 30.47±1.29

DeepCCG (ours) 74.65±2.00 69.29±0.89 56.62±0.29 60.46±0.24 42.18±0.45 43.04±0.64

SGD 63.21±2.09 63.58±0.31 35.63±1.27 42.50±1.40 33.23±0.67 31.61±0.70

Multi-Task (UB) 96.20±0.69 73.37±1.82 90.42±1.87 59.76±0.49 89.81±0.25 48.46±1.21

Class-Inc.

EWC 14.36±1.64 13.85±2.17 3.77±0.39 4.51±0.19 2.73±0.21 2.84±0.19

ER-reservoir 18.96±1.18 16.29±0.75 7.76±0.91 7.19±0.56 5.93±1.05 5.15±0.22

A-GEM 11.98±0.82 14.88±0.52 1.92±0.04 3.01±0.13 1.21±0.16 1.83±0.04

EntropySS 8.93±1.11 15.69±0.78 5.85±0.47 7.87±0.71 2.93±0.45 5.63±0.40

GSS 16.11±1.23 17.61±0.30 6.34±0.20 5.18±0.44 4.52±0.25 4.84±0.16

ER-ACE 23.76±1.61 20.77±1.55 13.51±0.34 14.72±0.32 8.78±0.48 8.29±0.33

DER++ 18.81±1.17 15.37±1.42 9.53±0.35 7.74±0.17 6.19±0.19 5.78±0.10

ESMER 17.07±0.89 17.88±0.80 9.04±0.55 7.93±0.14 6.45±0.15 5.77±0.12

iCaRL 19.48±0.63 19.96±0.80 4.39±0.12 5.02±0.19 3.31±0.11 3.34±0.04

DeepCCG (ours) 26.87±0.47 24.27±0.44 18.00±0.72 17.32±0.27 11.71±0.39 11.88±0.71

SGD 13.59±1.76 13.76±1.22 4.09±0.14 3.93±0.29 1.28±0.06 2.14±0.22

Multi-Task (UB) 40.57±2.33 40.57±2.33 20.22±0.42 20.22±0.42 12.41±0.69 12.41±0.69

Methods We compare DeepCCG to representative
methods of the main paradigms of CL. For regulari-
sation methods we compare against a fixed memory
variant of EWC (Huszár, 2018; Kirkpatrick et al.,
2017); for parameter-isolation methods we compare
to PackNet (Mallya and Lazebnik, 2018), but only in
the task-incremental setting as it requires task iden-
tifiers at test time. For replay methods, which in-
cludes DeepCCG, we compare against ER-Reservoir
(Chaudhry et al., 2020), A-GEM (Chaudhry et al.,
2019a), EntropySS (Wiewel and Yang, 2021), GSS
(Aljundi et al., 2019b), ER-ACE (Caccia et al., 2021),
DER++ (Buzzega et al., 2020), ESMER (Sarfraz
et al., 2023) and iCaRL (Rebuffi et al., 2017). A de-
scription of each method compared against is given
in Appendix D and we note here that EntropySS and
GSS are memory sample selection strategies for ER.
When training, all methods are given task identifiers
which state what classes are in a task. Task identi-

fiers are also given at test time in the task-incremental
scenario while in class-incremental learning the task-
identifier at test time is treated as stating a data
instance can belong to any class. We also compare
against two baselines: SGD which is when learning is
performed using SGD with no modification and Multi-
Task which is an upper bound and is when we learn
the base neural network offline—with task identifiers
for the task-incremental experiments and without for
the class-incremental experiments. All methods use
the same embedding network for all experiments which
is a ResNet18 with six times fewer filters and Instance
Normalisation (Ulyanov et al., 2016) instead of Batch
Normalisation layers (Ioffe and Szegedy, 2015), which
is similar to other work (Mirzadeh et al., 2020; Fara-
jtabar et al., 2019). A batch size of 10 is used through-
out, with all replay methods having a replay size of 10.
A memory size of 10 examples per-class is used for the
task-incremental setting, and 30 for the harder class-

Approximate Bayesian Class-Conditional Models under Continuous Representation Shift

incremental setting. Further experimental details are
provided in Appendix E.

5.1 Results

In the task-incremental experiments, we see from
Table 1 that DeepCCG performs the best out of
the methods compared. For example, DeepCCG
on CIFAR-100 achieves mean average accuracies of
56.62% and 60.46% for the shifting window and dis-
joint tasks settings, respectively, which are 2.57% and
2.15% better than any other method. The next best
performing methods are ER-reservoir, ER-ACE, ES-
MER and DER++, which all achieve a second best
performance in one of the dataset and setting combi-
nation. However there is not one single method that
consistently performs second best across all datasets
and settings. Overall, DeepCCG had an average per-
formance improvement of 1.62% over the other meth-
ods in the task-incremental experiments. Therefore,
our experiments show that DeepCCG performs well in
task-incremental learning where it is hard to get large
performance improvements (Prabhu et al., 2020).

For the experiments on class-incremental learning, we
see that DeepCCG performs well, outperforming the
other methods. The results of the class-incremental
experiments are shown in Table 1 and displays for in-
stance that DeepCCG on CIFAR-100 achieves 4.49%
and 2.6% better than any other method, for the shift-
ing window and disjoint tasks settings, respectively.
Overall, DeepCCG across all datasets and settings
in class-incremental learning has an average perfor-
mance improvement of 3.37%, which shows that the
method performs well and with the results on task-
incremental learning shows that DeepCCG is effective
in both scenarios. The next best method was ER-
ACE which was consistently the second best method
in the class-incremental experiments. Also, it is inter-
esting to note that DeepCCG performs better, in terms
of performance improvement over the other methods,
in the class-incremental experiments than the task-
incremental experiments, achieving an average per-
formance improvement of 1.62% in task-incremental
learning and 3.37% in class incremental learning. This
finding is surprising as in DeepCCG there is no inter-
action between the mean parameters of classes which
do not appear together in a training task. Therefore,
these non-interacting mean parameters could be close
together, harming performance in class-incremental
learning, but this does not seem to be the case in prac-
tice and improving upon this is a direction for future
work.

The results on the shifting window setting show that
current methods do not exploit the increased task over-
lap in the setting and hence do not utilize the increased

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Representation Shift

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ac
cu

ra
cy

 C
ha

ng
e

DeepCCG
ER-reservoir
DER++
ER-ACE

Figure 3: Binned scatter plot showing for the Mini-
ImageNet task-incremental disjoint-tasks setting the
change in accuracy against the mean change in repre-
sentation after learning on a batch for the test data of
the first task. The plot shows that for a given shift in
representation the accuracy of DeepCCG changes the
least.

ability to transfer knowledge between tasks. This is
shown in the results as the performance of the meth-
ods are very similar between the shifting window and
disjoint tasks settings; while, in the task-incremental
experiments, the difference between the multi-task up-
per bound’s performance and the methods is much
larger in the shifting window setting than that for the
disjoint tasks setting.1 This suggests that in settings
of increased task overlap, where between-task knowl-
edge transfer is more beneficial, current methods do
not achieve accuracies near to that which is possible.

Analysis of Representation Shift As part of our
experiments we assess how well DeepCCG’s classi-
fier update adapts to representation shift compared to
other methods, showing that DeepCCG’s performance
is more stable with respect to representation shift. To
measure representation shift, after learning on the first
task and for each incoming batch of data, we recorded
the mean distance over the first task’s test data be-
tween its representation before and after updating on
the incoming batch. Additionally, we measure the
change in accuracy on first task’s test data before and
after updating the method on the incoming batch. We
present these results for task-incremental learning on
MiniImageNet in Figure 3, displaying some of the best
performing methods from our experiments. We also
recorded results for other well performing methods but
as they do not affect the conclusion of the experiment
we do not include them in the figure to aid clarity; in-
stead they are shown in Appendix F.2. Figure 3 shows

1For class-incremental experiments the upper bound
does not use task identifiers so is identical for the shift-
ing window and disjoint tasks settings.

Thomas L. Lee, Amos Storkey

Table 2: Results of performing an ablation on DeepCCG in the task-incremental learning scenario. We report
the mean average accuracy with their standard errors across three independent runs. The results show that all
components of DeepCCG are required for it to perform well.

CIFAR-10 CIFAR-100 MiniImageNet

Method SW DT SW DT SW DT

ER-reservoir 70.44±0.81 66.71±0.90 54.05±0.63 58.31±1.08 41.04±1.54 40.29±1.08

DeepCCG-reservoir 66.63±1.47 63.97±1.06 49.95±0.743 54.76±0.08 38.76±0.65 38.14±0.10

DeepCCG-standardHead 69.54±1.10 63.99±0.41 44.05±0.264 49.66±0.45 33.35±1.78 36.76±0.48

DeepCCG 74.65±2.00 69.29±0.89 56.62±0.29 60.46±0.24 42.18±0.45 43.04±0.64

that for the same amount of representation shift Deep-
CCG’s accuracy changes less than the other methods,
as its line of best fit is nearest to the horizontal axis
and is the least steep. This demonstrates that the clas-
sifier of DeepCCG is more robust and better adapts
to representation shift, validating DeepCCGs use of a
Bayesian classifier which in one step adapts to repre-
sentation shift.

Ablation Study One way to view DeepCCG is as
a relative of ER-reservoir, where the methods differ in
the sample section mechanism used and the type and
learning of the probabilistic classifier and embedding
function. Therefore, to analyse DeepCCG, we perform
an ablation, creating two adaptations of our method,
DeepCCG-reservoir and DeepCCG-standardHead, by
changing components of DeepCCG to what they are
in ER-reservoir. DeepCCG-reservoir is when we se-
lect examples to store in memory using reservoir sam-
pling. DeepCCG-standardHead is when we replace
the class-conditional Gaussian model with a standard
output head (a fully connected layer, then a softmax)
and learn the embedding function using the standard
ER loss, while still using DeepCCG’s sample selection
method. The results for the ablation are presented in
Table 2 and show that both DeepCCG-reservoir and
DeepCCG-standardHead perform much worse than
DeepCCG. Therefore, we have shown that all of Deep-
CCG’s novel components are needed in conjunction for
DeepCCG to perform well. We also perform an abla-
tion on the size of memory in Appendix F.1, where
we show that DeepCCG performs the best over all the
memory sizes tested on.

6 CONCLUSIONS

In this work we have demonstrated that using an em-
pirical Bayesian procedure, DeepCCG, for online con-
tinual learning (CL) is a promising approach. The
key idea of DeepCCG is to adapt the classifier in one
step to representation shift, by using a Bayesian class-
conditional Gaussian classifier. The correct use of such
a classifier means that there is never a misalignment

between the classifier and representation. Therefore,
the training signal is less noisy than when there is mis-
alignment, which happens when using previous meth-
ods. This was demonstrated in our experiments on
online CL, where we show that DeepCCG is more ro-
bust to representation shift and outperforms a range
of online CL methods.

Acknowledgements

This work was kindly supported by ARM and EPSRC
through an iCASE PhD scholarship.

References

Aljundi, R., Caccia, L., Belilovsky, E., Caccia, M.,
Lin, M., Charlin, L., and Tuytelaars, T. (2019a).
Online Continual Learning with Maximal Interfered
Retrieval. In Proceedings of the 33rd Conference on
the Advances in Neural Information Processing Sys-
tems, pages 11849–11860.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y.
(2019b). Gradient Based Sample Selection for On-
line Continual Learning. In Proceedings of the 33rd
Conference on the Advances in Neural Information
Processing Systems, pages 11816–11825.

Antoniou, A., Patacchiola, M., Ochal, M., and Storkey,
A. (2020). Defining Benchmarks for Continual Few-
shot Learning. arXiv preprint arXiv:2004.11967.

Bang, J., Kim, H., Yoo, Y., Ha, J.-W., and Choi, J.
(2021). Rainbow Memory: Continual Learning with
a Memory of Diverse Samples. In Proceedings of the
2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8218–8227.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and
Calderara, S. (2020). Dark Experience for General
Continual Learning: a Strong, Simple Baseline. Pro-
ceedings of the 33rd Conference on the Advances in
Neural Information Processing Systems, 33:15920–
15930.

Caccia, L., Aljundi, R., Asadi, N., Tuytelaars, T.,
Pineau, J., and Belilovsky, E. (2021). New Insights

Approximate Bayesian Class-Conditional Models under Continuous Representation Shift

on Reducing Abrupt Representation Change in On-
line Continual Learning. In Proceedings of the 10th
International Conference on Learning Representa-
tions.

Chaudhry, A., Khan, N., Dokania, P., and Torr, P.
(2020). Continual Learning in Low-rank Orthogonal
Subspaces. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H., editors, of the 34th
Conference on the Advances in Neural Information
Processing Systems, volume 33, pages 9900–9911.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elho-
seiny, M. (2019a). Efficient Lifelong Learning with
A-GEM. In Proceedings of the 7th International
Conference on Learning Representations.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajan-
than, T., Dokania, P. K., Torr, P. H., and Ranzato,
M. (2019b). On Tiny Episodic Memories in Contin-
ual Learning. arXiv preprint arXiv:1902.10486.

Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia,
X., Leonardis, A., Slabaugh, G., and Tuytelaars, T.
(2021). A Continual Learning Survey: Defying For-
getting in Classification Tasks. IEEE Transactions
on Pattern Analysis and Machine Intelligence.

Ebrahimi, S., Elhoseiny, M., Darrell, T., and
Rohrbach, M. (2020). Uncertainty-guided Contin-
ual Learning with Bayesian Neural Networks. In
Proceedings of the 8th International Conference on
Learning Representations.

Farajtabar, M., Azizan, N., Mott, A., and Li, A.
(2019). Orthogonal Gradient Descent for Continual
Learning. arXiv preprint arXiv:1910.07104.

Farquhar, S. and Gal, Y. (2018). Towards Robust
Evaluations of Continual Learning. arXiv preprint
arXiv:1805.09733.

Farquhar, S. and Gal, Y. (2019). A Unifying
Bayesian View of Continual Learning. arXiv
preprint arXiv:1902.06494.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009).
The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, 2nd edition.

Hayes, T. L. and Kanan, C. (2020). Lifelong ma-
chine learning with deep streaming linear discrim-
inant analysis. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion workshops, pages 220–221.

Henning, C., Cervera, M., D' Angelo, F., von Oswald,
J., Traber, R., Ehret, B., Kobayashi, S., Grewe,
B. F., and Sacramento, J. a. (2021). Posterior Meta-
Replay for Continual Learning. In Proceedings of the
35th conference on the Advances in Neural Informa-
tion Processing Systems, pages 14135–14149.

Huszár, F. (2018). Note on the Quadratic Penal-
ties in Elastic Weight Consolidation. Proceedings of
the National Academy of Sciences, 115(11):E2496–
E2497.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization:
Accelerating Deep Network Training by Reducing
Internal Covariate Shift. In Proceedings of the 32nd
International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Re-
search, pages 448–456.

Kessler, S., Cobb, A., Rudner, T. G., Zohren, S., and
Roberts, S. J. (2023). On Sequential Bayesian In-
ference for Continual Learning. Entropy, 25(6):884.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness,
J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., et al. (2017).
Overcoming Catastrophic Forgetting in Neural Net-
works. Proceedings of the national academy of sci-
ences, 114(13):3521–3526.

Krizhevsky, A. (2009). Learning Multiple Layers of
Features from Tiny Images. Preprint.

Kurle, R., Cseke, B., Klushyn, A., van der Smagt,
P., and Günnemann, S. (2020). Continual Learning
with Bayesian Neural Networks for Non-Stationary
Data. In Proceedings of the 8th International Con-
ference on Learning Representations.

Lotfi, S., Izmailov, P., Benton, G., Goldblum, M., and
Wilson, A. G. (2022). Bayesian Model Selection,
the Marginal Likelihood, and Generalization. arXiv
preprint arXiv:2202.11678.

Lyu, Y., Wang, L., Zhang, X., Sun, Z., Su, H., Zhu,
J., and Jing, L. (2023). Overcoming Recency Bias
of Normalization Statistics in Continual Learning:
Balance and Adaptation. In Proceedings of the
Thirty-seventh Conference on Neural Information
Processing Systems.

Mallya, A. and Lazebnik, S. (2018). PackNet: Adding
Multiple Tasks to a Single Network by Iterative
Pruning. In Proceedings of the 2018 IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 7765–7773.

Mirzadeh, S. I., Farajtabar, M., Pascanu, R., and
Ghasemzadeh, H. (2020). Understanding the Role of
Training Regimes in Continual Learning. In Proceed-
ings of the 33rd conference on the Advances in Neu-
ral Information Processing Systems, pages 7308–
7320.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E.
(2018). Variational Continual Learning. In Interna-
tional Conference on Learning Representations.

Ostapenko, O., Lesort, T., Rodŕıguez, P., Arefin,
M. R., Douillard, A., Rish, I., and Charlin, L.

Thomas L. Lee, Amos Storkey

(2022). Foundational models for continual learning:
An empirical study of latent replay. arXiv preprint
arXiv:2205.00329.

Prabhu, A., Torr, P. H., and Dokania, P. K. (2020).
GDumb: A Simple Approach that Questions our
Progress in Continual Learning. In Procceding of
the 16th European Conference on Computer Vision,
pages 524–540.

Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y. W.,
and Hadsell, R. (2019). Continual Unsupervised
Representation Learning. In Proceedings of the 33rd
Conference on the Advances in Neural Information
Processing Systems.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lam-
pert, C. H. (2017). ICARL: Incremental Classifier
and Representation Learning. In Proceedings of the
IEEE conference on Computer Vision and Pattern
Recognition, pages 2001–2010.

Sarfraz, F., Arani, E., and Zonooz, B. (2023). Error
Sensitivity Modulation based Experience Replay:
Mitigating Abrupt Representation Drift in Contin-
ual Learning. In Proceedings of the Eleventh Inter-
national Conference on Learning Representations.

Shim, D., Mai, Z., Jeong, J., Sanner, S., Kim, H., and
Jang, J. (2021). Online Class-Incremental Continual
Learning with Adversarial Shapley Value. In Pro-
ceedings of the 35th AAAI Conference on Artificial
Intelligence.

Sun, S., Calandriello, D., Hu, H., Li, A., and Titsias,
M. (2022). Information-Theoretic Online Memory
Selection for Continual Learning. In Proceedings of
the 10th International Conference on Learning Rep-
resentations.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016).
Instance Normalization: the Missing Ingredient for
Fast Stylization. arXiv preprint arXiv:1607.08022.

van de Ven, G. M. and Tolias, A. S. (2019). Three
Scenarios for Continual Learning. arXiv preprint
arXiv:1904.07734.

Vinyals, O., Blundell, C., Lillicrap, T., and Wierstra,
D. (2016). Matching Networks for One Shot Learn-
ing. In Proceedings of the 30th Conference on the
Advances in neural information processing systems.

Vitter, J. S. (1985). Random Sampling with a Reser-
voir. ACM Transactions on Mathematical Software,
11(1):37–57.

Wiewel, F. and Yang, B. (2021). Entropy-Based Sam-
ple Selection for Online Continual Learning. In
Proceedings of the 28th European Signal Processing
Conference, pages 1477–1481.

Wu, T., Caccia, M., Li, Z., Li, Y.-F., Qi, G., and
Haffari, G. (2022). Pretrained Language Models

in Continual Learning: A Comparative Study. In
Proceedings of the 10th International Conference on
Learning Representations.

Zeno, C., Golan, I., Hoffer, E., and Soudry, D. (2018).
Task Agnostic Continual Learning Using Online
Variational Bayes. arXiv preprint arXiv:1803.10123.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes

(b) Complete proofs of all theoretical results. Yes

(c) Clear explanations of any assumptions. Yes

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes, all experiments were
run using a single NVIDIA GeForce GTX
1050 GPU

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Yes

(b) The license information of the assets, if ap-
plicable. Yes

Approximate Bayesian Class-Conditional Models under Continuous Representation Shift

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Yes

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Applica-
ble

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable

Thomas L. Lee, Amos Storkey

Appendices

A DETAILS OF LEARNING THE EMBEDDING FUNCTION

For DeepCCG, at time j, to compute the update to the embedding function fϕj
, when given a batch Bj and a

corresponding memory Mj , we proceed using the following steps. Firstly, we randomly sample Rj ⊂ Mj of size
r from memory. Then using only the other examples in memory, Mj/Rj , we compute the posterior density for
each class mean— µc, with c ∈ C:

p(µc|Mj/Rj) = p(µc|MZ
j,c/R

Z
j) (13)

= N
(
µy;M

Z
j,c/R

Z
j ,

1

m− r
I

)
, (14)

where MZ
j,c = {fϕj

(x)|(x, y) ∈ Mj ∧ y = c} are the embeddings of points in the memory buffer with class y. RZ
j

is defined likewise and we use the notation S to denote the mean of the elements of a set S. Then we compute
the posterior distribution of the embedded inputs z ∈ BZ

j ∪RZ
j for each class c ∈ C utilizing

p(z|c,Mj/Rj) = p(z|c,MZ
j,c/R

Z
j) (15)

=

∫
p(z|c,µc)p(µc|MZ

j,c/R
Z
j)dµc (16)

= N
(
z;MZ

j,c/R
Z
j , (1 +

1

m− r
)I

)
. (17)

Next, we compute the posterior predictive for each example (x, y) ∈ Bj ∪Rj with a task identifier t(x,y), which
is known for examples in the current batch and is stored by our method for examples stored in memory, and
where z = fϕj

(x) using

p(y|z, t(x,y),Mj/Rj) =
p(z|y,MZ

j,y/R
Z
j)p(y|t(x,y))∑

c∈C p(z|Y = c,MZ
j,c/R

Z
j)p(Y = c|t(x,y))

(18)

=
p(z|y,MZ

j,y/R
Z
j)∑

c∈Ct(x,y)
p(z|Y = c,MZ

j,c/R
Z
j)

(19)

Finally, we update the embedding function by performing a gradient step using the formula

ϕj+1 = ϕj + η∇ϕ

∑
(x,y)∈Bj∪Rj

log(p(y|z = fϕj
(x), t(x,y),Mj/Rj)), (20)

which can be seen as a per-example log conditional marginal likelihood (Lotfi et al., 2022).

By using Eq. 17 and 19, the closed form of the posterior predictive distribution for a example (x, y) with task
identifier t(x,y) and where z = fϕj

(x) is

p(y|z, t(x,y),Mj/Rj) =
p(z|y,MZ

j,y/R
Z
j)∑

c∈Ct(x,y)
p(z|Y = c,MZ

j,c/R
Z
j)

(21)

=
N
(
z;MZ

j,y/R
Z
j , (1 +

1
m−r)I

)
∑

c∈Ct(x,y)
N
(
z;MZ

j,c/R
Z
j , (1 +

1
m−r)I

) (22)

Approximate Bayesian Class-Conditional Models under Continuous Representation Shift

B PROOF OF ROBUSTNESS OF SAMPLE SELECTION MECHANISM TO
i.i.d. REPRESENTATION SHIFT

We show that given a shift in representation that DeepCCG’s sample selection mechanism maintains the property
in expectation that is minimises the KL-Divergence between the posterior over the currently accessible data and
the posterior induced by the examples selected to be store in memory. The proof is as follows: Let Z be the
representation space and assume we are given a batch BZ

j,y and memory MZ
j,y of data points in Z for a given

class y. We define the representations shift as z∗ = z + ϵz where z ∈ BZ
j,y ∪MZ

j,y and ϵz is i.i.d. sampled from
an arbitrary distribution with bounded mean and variance (i.e., E[ϵz] < ∞ and Var (ϵz) < ∞)). Furthermore,
define ηz = ϵz − E[ϵz], hence it is ϵ shifted to have zero mean. Additionally, let BZ∗

j,y = {z∗ = z + ϵz|z ∈ BZ
j,y}

and define MZ∗

j,y and M ′Z∗

y likewise. Therefore we have that,

E[KL(p(µy|DZ∗

j,y ,M
Z∗

j,y)∥p(µy|M ′Z∗

y)))] = E[∥BZ∗
j,y ∪MZ∗

j,y −M ′Z∗
y ∥22] (23)

= E[∥ 1

|BZ∗
j,y ∪MZ∗

j,y |
∑

z∗∈BZ∗
j,y∪MZ∗

j,y

z∗ − 1

|M ′Z∗
y |

∑
z∗∈M ′Z∗

y

z∗∥22] (24)

=

d∑
k=0

E[(
1

|BZ∗
j,y ∪MZ∗

j,y |
∑

z∗∈BZ∗
j,y∪MZ∗

j,y

z∗k − 1

|M ′Z∗
y |

∑
z∗∈M ′Z∗

y

z∗k)
2] (25)

=

d∑
k=0

E[(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

(zk + E[ϵz,k] + ηz,k)−
1

|M ′Z
y |

∑
z∈M ′Z

y

(zk + E[ϵz,k] + ηz,k))
2] (26)

=

d∑
k=0

E[(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

(zk + ηz,k)−
1

|M ′Z
y |

∑
z∈M ′Z

y

(zk + ηz,k) (27)

+ (
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

E[ϵz,k]−
1

|M ′Z
y |

∑
z∈M ′Z

y

E[ϵz,k]))2] (28)

=

d∑
k=0

E[(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

(zk + ηz,k)−
1

|M ′Z
y |

∑
z∈M ′Z

y

(zk + ηz,k))
2] (as ϵz,k are i.i.d.) (29)

=

d∑
k=0

E[(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

zk − 1

|M ′Z
y |

∑
z∈M ′Z

y

zk (30)

+
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

ηz,k − 1

|M ′Z
y |

∑
z∈M ′Z

y

ηz,k)
2] (31)

=

d∑
k=0

E[(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

zk − 1

|M ′Z
y |

∑
z∈M ′Z

y

zk)
2] (32)

+ 2E[(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

zk − 1

|M ′Z
y |

∑
z∈M ′Z

y

zk)(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

ηz,k − 1

|M ′Z
y |

∑
z∈M ′Z

y

ηz,k)] (33)

+ E[(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

ηz,k − 1

|M ′Z
y |

∑
z∈M ′Z

y

ηz,k)
2] (34)

=

d∑
k=0

(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

zk − 1

|M ′Z
y |

∑
z∈M ′Z

y

zk)
2 (35)

+

d∑
k=0

E[(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

ηz,k − 1

|M ′Z
y |

∑
z∈M ′Z

y

ηz,k)
2] (as E[ηz,k] = 0) (36)

Thomas L. Lee, Amos Storkey

= ∥BZ
j,y ∪MZ

j,y −M ′Z
y ∥22 +

d∑
k=0

E[(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

ηz,k)
2] + E[(

1

|M ′Z
y |

∑
z∈M ′Z

y

ηz,k)
2] (37)

− 2E[(
1

|BZ
j,y ∪MZ

j,y|
∑

z∈BZ
j,y∪MZ

j,y

ηz,k)(
1

|M ′Z
y |

∑
z∈M ′Z

y

ηz,k)]

 (38)

= ∥BZ
j,y ∪MZ

j,y −M ′Z
y ∥22 +

d∑
k=0

(
Var (ϵk)

|BZ
j,y ∪MZ

j,y|
+

Var (ϵk)

|M ′Z
y |

(39)

− 2

|BZ
j,y ∪MZ

j,y||M ′Z
y |

∑
z∈BZ

j,y∪MZ
j,y

∑
z′∈M ′Z

y

E[ηz,kηz′,k]

 (using formula for variance of means) (40)

= ∥BZ
j,y ∪MZ

j,y −M ′Z
y ∥22 + (

1

|BZ
j,y ∪MZ

j,y|
+

1

|M ′Z
y |

)

d∑
k=0

Var (ϵk) (41)

− 2

|BZ
j,y ∪MZ

j,y||M ′Z
y |

d∑
k=0

∑
z∈M ′Z

y

E[η2z,k] (42)

= ∥BZ
j,y ∪MZ

j,y −M ′Z
y ∥22 + (

1

|BZ
j,y ∪MZ

j,y|
+

1

|M ′Z
y |

)

d∑
k=0

Var (ϵk)−
2

|BZ
j,y ∪MZ

j,y|

d∑
k=0

Var (ϵk) (43)

= ∥BZ
j,y ∪MZ

j,y −M ′Z
y ∥22 + (

1

|M ′Z
y |

− 1

|BZ
j,y ∪MZ

j,y|
)

d∑
k=0

Var (ϵk) (44)

which completes the proof and where in the main paper we define ν =
∑d

k=0 Var (ϵk).

C TABLE OF CONTINUAL LEARNING TERMINOLOGY

Table 3: Definition of continual learning terms used in the text.

Term Definition

Online continual learning A continual learning setup where the learner sees the data batch by batch
and cannot revisit previous batches. Each batch is generated by a task
t ∈ T , and when training the learner is told what task that is.

Task A task t ∈ T is a data generator, which generates data (i.e. data instances
x ∈ X and labels y ∈ C) from a given subset of the classes Ct ⊆ C.

Task identifier States for some example (x, y) (or batch of examples) what task it was
generated from.

Disjoint tasks setting A setting where no two tasks generate data from the same class. In other
words for any two task t and t′ we have that Ct ∩ Ct′ = ∅.

Shifting window setting A setting where we fix an ordering of the classes c1, . . . , ck and define the
ith task to generate data from the classes ci, . . . , ci+l, where l is a free
parameter of setting called the window length.

Task-incremental learning A scenario where at test time the learner has access to the task identifiers
of the data instances in the test set.

Class-incremental learning A scenario where at test time the learner does not have access to task
identifiers and so classifies across all tasks/classes seen.

Approximate Bayesian Class-Conditional Models under Continuous Representation Shift

D DESCRIPTION OF METHODS USED FOR COMPARISON

In our experiements we compared DeepCCG to the following continual learning methods: EWC (Huszár, 2018;
Kirkpatrick et al., 2017), PackNet (Mallya and Lazebnik, 2018), ER-Reservoir (Chaudhry et al., 2020), A-GEM
(Chaudhry et al., 2019a), EntropySS (Wiewel and Yang, 2021), GSS (Aljundi et al., 2019b), ER-ACE (Caccia
et al., 2021), DER++ (Buzzega et al., 2020), ESMER (Sarfraz et al., 2023) and iCaRL (Rebuffi et al., 2017).
Below we give a short description of each method.

EWC is a parameter regularisation approach which uses an l2 regulariser to ensure the parameters do not
move to far away from the weighted average of the parameters fitted for the previous tasks. Additionally,
this l2 regulariser is weighted using the Fisher information of the fitted parameters on previous tasks.

PackNet is a parameter isolation method which freezes a certain proportion of the filters/nodes after
learning on a task. This means that for future tasks learning takes place only on the remaining part of the
neural network which is not frozen, preventing the forgetting of the subnetworks used for the previous tasks.
To select which filters are frozen for a task PackNet uses a filter pruning method.

ER-Reservoir is the standard replay method. It stores previously seen examples in a replay buffer and
in training “replays” a random batch of the stored examples by training on them along side the examples
of the current batch in the data stream. Also, it selects what examples to store in memory using reservoir
sampling (Vitter, 1985).

A-GEM is a replay method which prevents the average loss on examples stored in the memory buffer from
increasing. This is achieved by projecting the proposed weight update vector (i.e. the gradient of the loss
w.r.t. the weights), such that the above constraint is satisfied while minimally changing the update vector.

EntropySS replaces the sample selection method of ER-Reservoir with one which chooses which examples
to store in memory by trying to ensure the entropy of the stored examples is maximised.

GSS replaces the sample selection method of ER-Reservoir with one which chooses which examples to store
in memory by maximising the variance of gradient values of the loss for the stored examples.

ER-ACE is a replay method which uses pseudo task-identifiers such that previous tasks are seen to be
merged into a single task.

DER++ is a replay method which in addition to using standard replay adds another regularisation term
which prevents the logits of previous examples straying from the values they took when they were given to
the network for the first time.

ESMER is a replay method which uses knowledge distillation to an exponentially moving average of the
network to regularise updates.

iCaRL is a replay method which uses a distillation regulariser and per-class sigmoids when learning. Ad-
ditionally, at test time it uses a nearest means classifier, using the examples stored in memory to form the
per-class means. Importantly, we use the adaptation of iCaRL given in Buzzega et al. (2020), such that it
can be used in task incremental learning.

E ADDITIONAL EXPERIMENTAL DETAILS

2In addition to the experimental details mentioned in the main body of the paper, there are a few more details
to mention. First, for methods with hyperparameters we performed a grid search using the same experimental
set up as the real experiments and 10% of the training data as validation data. This led to the selection of
the hyperparameters of EWC and PackNet shown in Tables 4 and 5. For DER++ and ESMER we tune the
hyperparams on CIFAR-100 and then use the same hyperparams across all datasets. The hyperparameters
selected for DER++ were α = 0.5 and β = 1.0; and for ESMER were αEMA = 0.999, αl = 0.99, β = 2.5,
γ = 0.2 and r = 0.7. Second, we use the same learning rate of 0.1 and the standard gradient decent optimiser

2Code for DeepCCG is available at https://github.com/Tlee43/DeepCCG.

https://github.com/Tlee43/DeepCCG

Thomas L. Lee, Amos Storkey

for all methods. These were chosen by looking at the commonly selected values in previous work (Mirzadeh
et al., 2020) and were shown to be performative for all methods tested. Third, for the multi-task upper bound
we train using two epochs in the task-incremental scenario and three epochs in the class-incremental scenario, to
more fairly upper bound the performance of the methods. Last, as ESMER stores both an exponential moving
average of the model and examples in memory, we ensure it uses roughly the same amount of memory as other
methods by reducing the number of examples it stores. This means that for experiments on CIFAR-100 and
MiniImageNet we reduce ESMER’s memory size by 400 examples (the rough number of examples that take up
the same space as a copy of the model) and we do not reduce the memory size for CIFAR-10 as it is already less
than 400 examples.

Table 4: Values selected for the hyperparameters of EWC and PackNet in the task-incremental learning ex-
periments, which are the regularisation coefficient and the percentage of available filters to be used per task,
respectively. SW stands for shifting window and DT stands for disjoint tasks.

CIFAR-10 CIFAR-100 MiniImageNet

Method SW DT SW DT SW DT

EWC 1 6 6 6 2 9
PackNet 0.3 0.3 0.1 0.1 0.05 0.2

Table 5: Values selected for the hyperparameters of EWC in the class-incremental learning experiments, which
is the regularisation coefficient. SW stands for shifting window and DT stands for disjoint tasks.

CIFAR-10 CIFAR-100 MiniImageNet

Method SW DT SW DT SW DT

EWC 1 1 6 1 6 1

F ADDITIONAL RESULTS

F.1 Results on Using Different Memory Sizes

Table 6: Results of experiments looking at the effect of memory buffer size m for the replay methods tested,
using the shifting window setting on CIFAR-100 in task-incremental learning scenario. We report mean average
accuracy with their standard errors across three independent runs.

Method m=750 m=1000 m=1250

ER-reservoir 53.17±0.656 54.05±0.626 55.22±0.592

A-GEM 27.18±1.091 29.01±1.449 27.87±0.172

EntropySS 50.52±0.725 51.80±0.700 53.34±0.372

GSS 47.15±0.766 48.20±0.332 46.18±0.341

DeepCCG (ours) 53.42±0.460 56.62±0.288 57.98±0.514

One additional useful experiment is looking at the relationship between performance and the size of memory used
for DeepCCG. Therefore, in Table 6 we show the performance of DeepCCG and other replay methods compared
against with varying memory size. Table 6 shows that when the memory size is increased to m = 1250, DeepCCG
has an improvement in average accuracy relative to other methods, as it achieves 2.76% better than any other
method for m = 1250, while for m = 1000 it achieves 2.57% better than any other method, a 0.19% improvement.
When the memory size is decreased to m = 750, we see that DeepCCG’s performance drops more than other
methods as it is only 0.25% better than other methods in this case. Therefore, our experiments show that
compared to other replay methods DeepCCG’s performance increases the most when m increases and that for
small buffer sizes DeepCCG performs less well, potentially due to the fact that the examples in the memory
buffer are used to infer the posterior over the means of the per-class Gaussians and so the method needs a given

Approximate Bayesian Class-Conditional Models under Continuous Representation Shift

amount of examples to specify the means well. We also note that in our experiments the performance ranking
of the methods does not change with m.

F.2 Additional Representation Shift Results

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Representation Shift

0

1

2

3

4

5

Ac
cu

ra
cy

 C
ha

ng
e

DeepCCG
ER-reservoir
GSS
EntropySS
DER++
ER-ACE

Figure 4: Binned scatter plot showing for the MiniImageNet disjoint tasks setting the change in accuracy against
the mean change in representation after learning on a batch for the test data of the first task.

	INTRODUCTION
	RELATED WORK
	ONLINE CL
	DEEP CLASS-CONDITIONAL GAUSSIANS
	EXPERIMENTS
	Results

	CONCLUSIONS
	DETAILS OF LEARNING THE EMBEDDING FUNCTION
	PROOF OF ROBUSTNESS OF SAMPLE SELECTION MECHANISM TO i.i.d. REPRESENTATION SHIFT
	TABLE OF CONTINUAL LEARNING TERMINOLOGY
	DESCRIPTION OF METHODS USED FOR COMPARISON
	ADDITIONAL EXPERIMENTAL DETAILS
	ADDITIONAL RESULTS
	Results on Using Different Memory Sizes
	Additional Representation Shift Results

