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Abstract

Group distributional robustness optimization
methods (GDRO) learn models that guar-
antee performance across a broad set of de-
mographics. GDRO is often framed as a
minimax game where an adversary proposes
data distributions under which the model per-
forms poorly; importance weights are used
to mimic the adversarial distribution on fi-
nite samples. Prior work has show that
applying GDRO with interpolating classi-
fiers requires strong regularization to gen-
eralize to unseen data. Moreover, these
classifiers are not responsive to importance
weights in the asymptotic training regime.
In this work we propose Bi-level GDRO, a
provably convergent formulation that decou-
ples the adversary’s and model learner’s ob-
jective and improves generalization guaran-
tees. To address non-responsiveness of im-
portance weights, we combine Bi-level GDRO
with a learner that optimizes a temperature-
scaled loss that can provably trade off per-
formance between demographics, even on in-
terpolating classifiers. We experimentally
demonstrate the effectiveness of our proposed
method on learning minimax classifiers on
a variety of datasets. Code is available at
github.com/MartinBertran/BiLevelGDRO.

1 Introduction

Deep neural networks have proven to be effective
tools for classification in practice, achieving high av-
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erage accuracy. Recent works [Hashimoto et al., 2018,
Sagawa et al., 2019] have focused on producing mod-
els that are robust to distribution shifts, providing
classifiers that perform well on a variety of demo-
graphics (sub-groups), regardless of how likely they are
to appear on the training dataset [Diana et al., 2020,
Martinez et al., 2020, Yang et al., 2023]. This is com-
monly done via importance weighting which modi-
fies the relative importance of the training samples
as a function of their demographic of origin. Impor-
tance weighting produces unbiased (albeit potentially
high-variance) estimators of the loss over a candidate
test distribution from samples drawn from a different
training distribution; it allows for simple and robust
minimax optimization algorithms, since the weights
can be computed based on the train and test demo-
graphic priors, and can be adjusted with a variety
of training algorithms, e.g., projected gradient as-
cent (PGA), multiplicative weight updates (MWU)
[Chen et al., 2017, Diana et al., 2020].

One common objective to address distribution shifts
is to formulate the problem as a minimax optimiza-
tion game between the model learner and an adver-
sary [Chen et al., 2017]. In this setting, the model
learner attempts to minimize the error over a data
distribution proposed by the adversary. The adver-
sary in turn proposes data distributions within a set
distance of the original training distribution to maxi-
mize the model’s error; these distributions are realized
with importance weights placed on each sample (or
groups of samples in settings where demographics are
known at training time). While this formulation is
theoretically well grounded, it can suffer from two prob-
lems. One being the significant generalization errors
for both the model learner and the adversary when
training in the offline setting [Sagawa et al., 2019],
and the other being a lack of responsiveness of the
learned model to the importance weights themselves
[Byrd and Lipton, 2019, Wang et al., 2021]. Some
works have tackled the generalization issue by using
regularization tuning on the model learner to produce
best results [Sagawa et al., 2019].
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Recent works [Zhou et al., 2022] make use of bi-level
optimization to treat the model parameters as depen-
dent variables of the importance weights, and differen-
tiate through the learning process, leading to better
generalization errors. We extend their results to min-
imax group fairness1 as a Bi-level GDRO objective,
with an adversary that makes use of out of sample data
to reduce the bias of the group errors estimators. Our
formulation does not require differentiation through
the learning process, while possessing theoretical gen-
eralization guarantees that depend on the adversary’s,
rather than the learner’s, model complexity; the im-
provement of this approach is validated empirically.

Recent evidence suggests that overparametrized
neural networks, able to achieve zero-error over
the training set, are not responsive to impor-
tance weights asymptotically 2[Byrd and Lipton, 2019,
Xu et al., 2021]. The works in [Xu et al., 2021,
Soudry et al., 2018, Nacson et al., 2019b], shows that
(non-zero) importance weight coefficients are asymptoti-
cally ignored, with classifiers converging to max-margin
solutions. These observations hold true for exponen-
tial tailed functions, which include both crossentropy
and logistic regression losses. We modify our proposed
Bi-level GDRO formulation to instead use a tempered
loss on the learner, where the margin of each group
is affected by the adversarial distribution. The result-
ing method improves worst group performance in the
asymptotic training regime.

Main contributions. This work tackles generaliza-
tion and lack of responsiveness to importance weights
in the context of minimax group fairness/group distri-
butional robustness. Representative results are shown
in Figure 1. Our main contributions are the following:

• We improve generalization, and provide generaliza-
tion bounds, by leveraging the bi-level formulation
of group DRO (Bi-level GDRO), partially relaxing
the error objective, and decoupling the adversary
and model learner’s datasets. We additionally pro-
pose a provably-convergent algorithm to solve our
proposed bi-level optimization problem.

• We leverage the flexibility of the Bi-level GDRO
formulation and replace the learner’s base loss
function with a tempered loss (TempLoss). This
modification for exponentially-tailed losses (includ-
ing cross-entropy) is asymptotically responsive to
importance weights. TempLoss has an alternative

1Here we refer to group distributional robustness and
minimax group fairness interchangeably.

2Here, asymptotically refers to the limiting behaviour of
stochastic gradient descent (SGD) given an infinite number
of training iterations over a finite dataset.

(a) Adult (b) Waterbirds

Figure 1: Evolution of worst group test error across
training epochs on the Adult and Waterbird datasets
[Becker and Kohavi, 1996, Sagawa et al., 2019]; devi-
ations computed over 5 splits. We compare ERM;
GDRO (adversary uses training group losses to update
group priors); our proposed Bi-level GDRO, were the
adversary uses the error on a held-out dataset to update
group priors; and Bi-level TempLoss GDRO, where the
learner additionally minimizes our proposed TempLoss.
Bi-level GDRO outperforms regular GDRO, especially
over the last training epochs. The TempLoss modifica-
tion on the learner’s objective further improves perfor-
mance. Results are consistent across several datasets
as shown in Section 5.

interpretation as a weighted max-margin classi-
fier in the Support Vector Machine (SVM) setting
for separable data. We show that the Bi-level
TempLoss GDRO objective can be optimized via
MWU while keeping its convergence guarantees.

• We experimentally compare our proposed ap-
proach against standard worst-case group opti-
mization using importance weighting with cross-
entropy losses, as well as the recently proposed
polynomial-tailed loss [Wang et al., 2021] and vec-
tor scaled loss [Kini et al., 2021].

2 Problem Setting

Consider the supervised classification scenario where
we have input features X ∈ X and target variable
Y ∈ Y. In the GDRO setting we also assume the
existence of a set of groups (i.e., demographics), rep-
resented by variable G ∈ G, that define a set of condi-
tional distributions on the input and target variables
X,Y |G ∼ PX,Y |G, ∀G ∈ G. The objective of GDRO
[Hashimoto et al., 2018] is to learn a score function
f : X → R|Y|,3 from some function family F that

3To simplify future notation, we take the unnormalized
logits or scores to be the output of our model.
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minimizes the error of predicting label Y from input
X over the worst possible group distribution Q. The
distribution Q lies within some predefined set of group
distributions Q ∈ Q ⊆ PG , where PG represents the set
of all possible distributions over G,

min
f∈F

max
Q∈Q

EPX,Y |GQG
[ϵ(f(X), Y )]. (1)

Here, ϵ(f(X), Y ) = 1[argmaxy∈Y{fy(X)} ̸= Y ] is the
error function. We note QG = PrG∼Q(G),4 as the
probability of the group random variable G under Q.

One challenge of this formulation is optimizing over
possible group distributions Q. We assume we are given
access to data with groups G distributed according to
a prior PG ∈ PG , and make use of importance weights
QG

PG
to solve Eq.(1). The resulting equation becomes

min
f∈F

max
Q∈Q

EPX,Y,G
[
QG

PG
ϵ(f(X), Y )]. (2)

We focus on the setting where the set of groups G
is discrete and known at training time. In this con-
text, one family of adversarial distributions of inter-
est is Qγ = {Q ∈ PG : Qg ≥ γg, ∀g ∈ G}, where
γ = {γg}g∈G represents the minimum likelihood of
each group. This is equivalent to minimizing a linear
trade-off between the worst (unconstrained) group dis-
tribution and the γ-weighted group error (i.e., relaxed
minimax group objective [Diana et al., 2020]).

In practice, we are given access to a training dataset of
i.i.d. samples Dtr = {(xi, yi, gi)}ni=1 ∼ P⊗n

X,Y,G, we
denote the set of samples from group g as Dtr

g =
{(xi, yi) ∈ Dtr : gi = g}. The expectation operator in
Eq.(2) can be replaced by its empirical estimate

EDtr [
QG

PG
ϵ(f(X), Y )] :=

∑
i∈[Dtr]

Qgi

|Dtr
gi |

ϵ(f(xi), yi). (3)

Where necessary, the non-differentiability of the error
function w.r.t. the classifier function f is addressed
by using a surrogate loss function ℓ : R|Y| × Y → R to
supplant the error loss (e.g., cross-entropy loss with a
softmax non-linearity).5

In the standard offline setting (Figure 2) the empirical
estimate of the minimax objective in Eq.(2) is obtained
by repeatedly solving its maximin lower bound, as well
as replacing the error objective with the surrogate loss
function ℓ. Here, we present its bi-level formulation,

max
Q∈Qγ

∑
g∈G QgEDtr

g
[ℓ(f∗(X), Y )],

s.t. f∗ = argmin
f∈F

EDtr [QG

PG
ℓ(f(X), Y )].

(4)

4We use Qg to denote PrG∼Q(G = g).
5ℓ(f(x), y) = − log(efy(x)/

∑
i∈Y efi(x)).

The maximin objective in Eq.(4) can be solved
using multiplicative weight updates on the ad-
versary (or other no-regret algorithms), com-
bined with approximate best response on the
model learner [Chen et al., 2017, Sagawa et al., 2019,
Diana et al., 2020]. In this scenario, at each optimiza-
tion round t an adversary updates its worst group
distribution Qt ∈ ∆|G−1| based on the sequence of em-
pirical group loss estimates incurred by the preceding
models f0, . . . , f t−1 using the training dataset. Then,
the learner proposes a new model f t by (approximately)
optimizing the empirical weighted loss on the training
samples as in Eq.(3). The game is played for a total of
T rounds. Regardless of the model learner’s strategy,
the adversary is guaranteed to asymptotically discover
the best response (in hindsight) to the model learner’s
approach [Roughgarden, 2016].

There are two key issues that arise from solving the
maximin problem in Eq.(4) on finite samples. Both
of these problems are especially prevalent when the
function family F is able of to achieve zero classification
error in the training dataset. We summarize the issues
and proposed solutions next.

P1. Poor generalization of the adversarial prior
Q due to over-fitting. Ideally, the methods used to
learn the adversarial prior Q should rely on unbiased
estimates of the group-conditional expected error of
the model. For offline learning, where samples are seen
by both the model learner and the adversary several
times, these estimates tend to be biased, potentially
underestimating group risk, and may not accurately
reflect which groups are in need of remedial attention
during training. We re-frame the minimax optimization
problem using a bi-level formulation to decouple the
adversary’s and model learner’s objectives; this enables
us to improve on the empirical generalization of our
models, and to directly learn importance weights based
on unbiased error estimates instead of training losses.
Section 3 shows that our proposed approach converges
under mild conditions and give theoretical bounds on
generalization error for this framework.

P2. Importance weights are asymptotically ig-
nored in the 0-training-error training regime.
SGD on exponential-tailed losses such as cross-entropy
or Brier score can produce models with 0 train-
ing error [Sagawa et al., 2019, Byrd and Lipton, 2019,
Xu et al., 2021, Nacson et al., 2019b]. Since this limit
is independent of the importance weights, it means
that standard linearly-weighted losses are asymptoti-
cally ineffective on perfectly separable training datasets.
This is especially relevant in settings like ours where
linear weights are an integral part to minimax opti-
mization. Here, we propose that the learner optimizes
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Figure 2: Diagram showing the standard offline ap-
proach and the proposed Bi-level offline approach for
the GDRO objective. Differences marked in red. In
the standard offline approach both the adversary and
learner update their corresponding objectives by opti-
mizing the weighted group conditional surrogate loss ℓ
over the same empirical dataset Dtr. In the proposed
Bi-level GDRO approach the adversary directly opti-
mizes the weighted group conditional error estimated
using a dataset Da that is independent of the one used
by the learner. The learner optimizes a differentiable
loss L that can take the adversarial group distribution
Q as an additional input.

its model using a tempered loss (TempLoss), which
modifies exponential tailed losses (e.g., cross entropy)
by the incorporation of a multiplicative term on the
sample margins that is active on correctly classified
samples and responds to the importance weights or
group adversarial priors. We present and analyze the
properties of the proposed TempLoss in Section 3.4.

In Section 5 we show that the proposed Bi-level GDRO
method, and its integration with a learner that mini-
mizes the proposed tempered loss (Bi-level TempLoss
GDRO), significantly improves worst group perfor-
mance in the asymptotic training regime. These results
do not rely on additional ad-hoc regularization tech-
niques such as early stopping or weights regularization.

3 Methodology

3.1 Addressing minimax learning

To address the minimax objective in Eq 1 we propose
the Bi-level GDRO objective which consists of the
following changes: First, the adversary and the learner
have access to independent datasets drawn from the
same distribution. We use Da ∼ P⊗na

X,Y,G to denote
the adversary dataset, and keep Dtr for the learner.
Second, the adversary’s objective is not replaced by
a surrogate loss; it can rely on the group-conditional
error estimates obtained with its independent dataset
Da. Finally, we consider a generalized loss objective for
the learner L : R|Y|×Y×R+ → R that incorporates an
additional optional input. This enables us to optionally
incorporate the adversarial prior into the loss function
which may prove to be a better surrogate to the original
objective of minimizing the weighted group error loss.
For example, our proposed TempLoss, described in
Section 3.4, tempers the sample margins of the output
based on the group prior to better control the error in
the overparametrized regime. The proposed Bi-level
GDRO objective is

max
Q∈Qγ

∑
g∈G

QgEDa
g
[ϵ(f(X), Y )],

s.t.f = argmin
f∈F

EDtr [QG

PG
L(f(X), Y,QG)].

(5)

To optimize our Bi-level GDRO objective, we propose
Algorithm 1 where the adversary uses a MWU solver
and the model learner uses α−approximate best re-
sponse, defined in the following section. Next, we
show the convergence guarantees of the proposed ap-
proach and the generalization benefits of the indepen-
dent dataset for the adversary.

3.2 Convergence

To prove the convergence of our approach, shown in
Algorithm 1, we first consider the following definition.
Definition 3.1. M(Q) is an α−approximate
oracle solver for the objective function∑

g∈G QgEDa
g
[ϵ(f(X), Y )] if it produces a candi-

date function f̂ = M(Q) such that

∑
g∈G

QgEDa
g
[ϵ(f̂(X), Y )] ≤

αmin
f∈F

∑
g∈G

QgEDa
g
[ϵ(f(X), Y )].

(6)

We note that M(Q) is an approximate solver of the ad-
versary’s objective function. To instantiate this solver,
we make the following assumption.
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Assumption 3.2. Loss L is such that the solution to
argmin

f∈F
EDtr [QG

PG
L(f(X), Y,QG)] is an α-approximate

solution to
∑

g∈G QgEDa
g
[ϵ(f(X), Y )].

That is, we assume the surrogate loss function in the
inner loop of Eq.(5), computed over a separate dataset
Dtr, produces high quality solutions to the empiri-
cal error objective for a fixed adversarial distribution
Q. In these conditions, we can extend the results in
[Chen et al., 2017] to show that Algorithm 1 can be
used to compute an α−approximate solution to our
target optimization problem, as shown in Theorem 3.3.

Algorithm 1 Bi-level GDRO MWU Solver
Require: adversary set Da, constraintQγ , parameters
T , η,
α-approximate stochastic oracle M(Q) : PG → F for
the objective

∑
g∈G Qgϵg(f), where

ϵg(f) := EDa
g
[ϵ(f(X), Y )].

Also, let M(Q) be independent of Da.
for t = 1, . . . , T do
Q̂t ∝ exp{η

∑
t′∈[t] ϵg(f

t)}g∈G ,
Qt ← Q̂t(1− ||γ||11) + γ
ft ←M(Qt),

end for

output {f1, . . . , fT }

Theorem 3.3. Algorithm 1 with η =

√
2

log |G|
T

(1−||γ||11)
com-

putes a uniform distribution over solutions PF =
U[{f1,...,fT }] such that

max
Q∈Qγ

Ef∼PF

∑
g∈G

Qgϵg(f)

≤ αmin
f∈F

max
Q∈Qγ

∑
g∈G

Qgϵg(f) +
√

2 log |G|
T .

(7)

Further, for any η > 0, the solution to Algorithm 1
satisfies

max
Q∈Qγ

Ef∼PF

∑
g∈G

Qgϵg(f)

≤ α(1 + η)min
f∈F

max
Q∈Qγ

∑
g∈G

Qgϵg(f) +
log |G|
ηT .

(8)

The MWU rule is a no-regret algorithm and guarantees
near-optimal performance of the adversary regardless
of the model learner’s response strategy. The theorem
states that an approximate solution to the current
adversary’s strategy is sufficient to approximately solve
the empirical instantiation of Eq.(2). This gives us a
convergent, finite-sample solution to our objective of
interest. All proofs are provided in Appendix A. To

avoid needing to maintain T classifiers at inference time,
we follow [Chen et al., 2017] and [Sagawa et al., 2019]
where the deployed model is the final classifier. In
our experiments, this approach does not significantly
impact performance. In the next section, we explore
the generalization properties of this approach to out-
of-sample data.

3.3 Generalization

Algorithm 1 requires our α-approximate solver M(Q) to
be independent of Da. This is not a necessary condition
for the convergence results shown in Theorem 3.3, but
is of high importance in practice since we wish to ensure
the performance of our model f not just on a finite set
Da but on out-of-sample data (x, y, g) ∼ PX,Y |GQ.

To motivate why we chose to decouple the model
learner’s and the adversary’s datasets, we derive a
finite sample generalization result for Algorithm 1 us-
ing a similar reasoning as in [Zhou et al., 2022]. We
observe that the model learner’s proposed classifier f is
independent of Da given a prior Q. We can obtain the
following generalization bound with standard uniform
convergence analysis on Da.

Theorem 3.4. Let n̄ = min
g∈G
|Da

g |. Further assume

the set of priors Qγ contains |Qγ | discrete choices.
Let {f1, . . . , fT } be the output of Algorithm 1 and let
PF = U[{f1,...,fT }] denote the uniform probability over
the classifiers. With probability at least 1− δ

max
Q∈Qγ

E
f∼PF

EPX,Y |GQG
[ϵ(f(X), Y )] ≤

max
Q∈Qγ

E
f∼PF

∑
g QgEDa

g
[ϵ(f(X), Y )]

+

√
T log |Qγ |+log

|G|
δ

2n̄ .

(9)

Additionally, with probability at least 1− δ

max
Q∈Qγ

EPX,Y |GQG
[ϵ(fT (X), Y )] ≤

max
Q∈Qγ

∑
g QgEDa

g
[ϵ(fT (X), Y )] +

√
log

|Qγ ||G|
δ

2n̄ .

(10)

This shows the generalization properties of our classifier
on the worst-case distribution on unseen data. These
results depend on the complexity of the adversarial
prior set |Qγ | instead of the (potentially much larger)
model complexity |F|, as well as the number of samples
in the least represented group in Da.

The above theorem does not exploit the fact that the
classifiers f t generated by Algorithm 1 are only weakly
dependent on Da through Qt, and Qt is only dependent
on Da through a handful of statistics ϵg(f

t′), t′ ∈ [t−
1], g ∈ G. This is not the case if the adversary reuses
Dtr. If we assume Da to be fully independent of the
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classifier sequence (e.g., assume a fresh Da is drawn
after each round), then we can state a much stronger
generalization result.
Theorem 3.5. Consider the online version of Algo-
rithm 1 where Da is re-sampled at each round and
n̄ = min

g∈G
|Da

g |. Let PF = U[{f1,...,fT }] denote the uni-

form probability over the output classifiers. With prob-
ability at least 1− δ

max
Q∈Qγ

E
f∼PF

EPX,Y |GQG
[ϵ(f(X), Y )] ≤

max
Q∈Qγ

E
f∼PF

∑
g QgEDa

g
[ϵ(f(X), Y )] +

√
log

|G|
δ

2n̄ .

(11)

In this scenario, the generalization error as seen from
the adversary is independent of both the adversary’s
and model’s complexities. Appendix B.2 shows empiri-
cally that the expected error computed from Da tracks
true out-of-sample error much better than training er-
ror, supporting this idea that Da is ‘nearly independent’
of the learned classifier.

3.4 Addressing importance weights and losses
in the 0 training error scenario.

Consider the standard surrogate loss relaxation of
the classifier f = argminf∈F EDtr [QG

PG
ℓ(f(X), Y )].

As described in P2, the minimizer f may be in-
sensitive to the adversarial prior for high capacity
networks able to achieve 0 error on the training
set Dtr [Sagawa et al., 2019, Byrd and Lipton, 2019,
Xu et al., 2021, Nacson et al., 2019b].

Here we derive a modification of the surrogate loss func-
tion ℓ(f(x), y) that explicitly incorporates the group
prior information, L(f(x), y, q) as denoted in Figure 2.
We then give conditions under which this loss function
addresses the problems identified in P2. For theo-
retical reasons, we derive our results in the classifica-
tion scenario for univariate loss functions of the form
ℓ : R→ R+ based on the margin score u, and later dis-
cuss necessary conditions on this loss function ℓ. One
motivating example of such a univariate loss function
that will satisfy all our desiderata is crossentropy loss
over a softmax nonlinearity, in which case we can write

CE(f(x), y) = log(1 + e−u),

u(f(x), y) = fy(x)− log
∑

y′ ̸=y e
fy′ (x).

(12)

We propose the following weight-dependent transfor-
mation to the sample margin

v(u, q) :=

{
u if u < 0,

u[1− s(u)(1− q−1)] if u ≥ 0,
(13)

where q is the weight placed by the adversarial prior
on the sample (q = Q(g)), and s(u) = 1 − e−τu

for any value τ > 0. Essentially, this modification
smoothly transitions between the standard margin func-
tion u(f(x), y) and a margin function u(f(x),y)

q . We
denote the resulting loss function from the mapping
ℓ(v(u(f(x), y), q)) as L(f(x), y, q) or L(u, q) for short.

Proposition 3.8 shows that this tempered loss L has in-
teresting properties when the base loss ℓ is exponential-
tailed and smooth, and L is also monotonically in-
creasing w.r.t. q for u ≥ 0. We extend the work in
[Soudry et al., 2018] and show that we can control the
resulting classifier even in the 0-error regime, converg-
ing to weighted max-margin solutions that depend on
the weighting parameter q. The supporting definitions
and assumptions are presented next.

Figure 3: Decision boundary of an SGD-trained lin-
ear classifier using TempLoss on separable data, for
different values of Q0. Negative (blue, y = 0) samples
are given temperature scaling Q0, while positive (red,
y = 1) samples use scaling 1−Q0. The decision bound-
ary responds to the temperature parameter Q0, unlike
importance weighting on the base exponential loss.

Definition 3.6. [Soudry et al., 2018] A function
−ℓ′(u) has a tight exponential tail if there exists positive
constants c, a, µ+, µ−, u+, and u− such that

∀u > u+ : −ℓ′(u) ≤ c(1 + e−µ+u)e−au,
∀u > u− : −ℓ′(u) ≥ c(1− e−µ−u)e−au.

(14)

Assumption 3.7. l(u) is positive, differentiable,
β-smooth, monotonically decreasing to zero, with
lim

u→−∞
−l′(u) ̸=0 and−l′(u) has a tight exponential tail.

Proposition 3.8. For any loss function ℓ(u) satisfy-
ing Assumption 3.7 with smoothness parameter β, the
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tempered loss L(u, q) also satisfies 3.7 with smoothness
parameter β for any parameter q ∈ (0, 1]. It addition-
ally satisfies dqL(u;q)

dq > 0 ∀q ∈ (0, 1].

The condition dqL(u;q)
dq > 0 ensures that an increase in

the weight placed on a given sample or group increases
the relative importance of the sample w.r.t. f . We show
that this is sufficient to modify the solution to the inner
loop objective in Eq.(5) for a simple linear classifier
over a separable (potentially non-linear) representation
function in Proposition 3.9. Figure 3 shows the results
of using TempLoss instead of logistic regression on a
linear SGD-trained model on synthetic data.

Proposition 3.9. Given a binary classification dataset
D = {(xi, yi, gi)}ni=1 ∈ X×{−1, 1}×G, a fixed represen-
tation ϕ : X → Rd such that ∃θ ∈ Rd : yiθ

Tϕ(xi) ≥ 0
∀i = 1, ..., n (data is linearly separable under ϕ), and a
group distribution Q. Then, the limit of the gradient
descent iterates of the linear classifier fθ(x) = θTϕ(x)
for the inner loop objective in Eq.(5) with base loss ℓ(u)
satisfying Assumption 3.7 is

lim
t→∞

θt

||θt||2 → θ̂
||θ̂||2

,

θ̂ := arg min
θ∈Rd

||θ||22
s.t. {yiθTϕ(xi) ≥ Qgi}ni=1.

(15)

This extends the results in [Soudry et al., 2018,
Nacson et al., 2019b] to our tempered weighted loss.
Similar results hold for multi-class classification. Here
we show that SGD on the proposed loss leads to a
weighted max-margin solution with sample margins
proportional to the weighting coefficients QG.

Since our temperature-scaled loss modifies minimum
classification margins per group on linearly separable
data, we can establish perturbation robustness guaran-
tees that depend on Q, as shown in Proposition 3.9.

Proposition 3.10. In the setting of Proposition 3.9,
where the representation function ϕ is M−Lipschitz,
the solution is guaranteed to asymptotically satisfy

min
x̄

yiθ
Tϕ(x̄) ≥ 0 ∀ (xi, yi, gi) ∈ D,

s.t. ||x̄− xi||22 ≤
Q(gi)

2

||θ̂(Q)||22
1
M .

(16)
That is, the model is robust to ℓ2 input perturbations
at least up to Q(gi)

2

||θ̂||22
1
M on its training samples.

4 Related Work

GDRO [Sagawa et al., 2019] and similar approaches
such as Minimax Group Fairness [Martinez et al., 2020,
Diana et al., 2020] minimize worst-group loss. How-
ever, when applied to neural networks, these methods

rely on strong ad-hoc regularization techniques to be
responsive to sample re-weighting and learn a model
that generalizes to unseen data [Sagawa et al., 2019,
Byrd and Lipton, 2019]. This is in part due to the im-
plicit bias of SGD for exponential tailed losses, where
an interpolating family of models converges to the max
margin classifier as discussed in [Nacson et al., 2019a,
Xu et al., 2021].

Prior work has attempted to change the asymptotic
behaviour of the learned classifier by modifying the
cross-entropy loss. Several works have proposed to
introduce correction terms to the logits of the classifier
[Cao et al., 2019, Menon et al., 2020, Ye et al., 2020,
Kini et al., 2021, Narasimhan and Menon, 2021,
Lu et al., 2022]. In particular [Kini et al., 2021]
proposed VS-loss, which integrates the mentioned
approaches into a single loss function that applies
additive and multiplicative correction terms to
the logits. [Wang et al., 2021] proposed to apply
importance weights to polynomial-tailed losses, which
are asymptotically responsive to importance weights,
but lack the interpretability of max-margin solutions.
VS-loss [Kini et al., 2021] and the loss proposed by
[Lu et al., 2022] are the most closely related to our
TempLoss with the difference that we explicitly
formalize the connection with the adversarial weights
in the GDRO setting, and thus do not require to make
any prior assumptions on which group will be most
disadvantaged. Moreover, in comparison with VS-loss,
we do not require any burn-in phase or separate
(additive) corrections.

The work by [Zhou et al., 2022] proposed a Bi-level for-
mulation for importance weight learning in the context
of out of distribution learning. Their proposed frame-
work directly maps the space of importance weights
into the model parameter space and decouples the im-
portance weight updates from the model optimization
objective. Their work minimizes a risk metric on a
validation set by learning the sample-level importance
weights in the training sets for weighted ERM (and
treating the resulting classifier’s parameters as a depen-
dent variable). As such, their method requires second
order differentiation of the risk metric w.r.t. the model
parameters, and each importance weight in the training
set. Our Bi-level GDRO formulation fully decouples
this dependency by instead learning group weights on
the adversary’s dataset. This, coupled with the mini-
max objective, enables the use of a convergent no-regret
approach to learn the adversarial weights.

The work in [Cotter et al., 2019] analyzed a con-
strained optimization problem as a two-player game
where each player has its own dataset. They showed
that this approach significantly improved the con-
strained violation on out-of-sample data. The work by
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[Sagawa et al., 2020] analyzes how over-parametrized
models can hurt generalization on minority groups
when spurious correlations and noisy features are
present in the data, even when the average test er-
ror is improved. They provide a theoretical analysis
based on a synthetic linear logistic regression that we
adapt in the context of our approach in Appendix D.
For an extended discussion on related work, see Ap-
pendix C, where we additionally motivate our choice
of baselines for experimental comparisons.

5 Experiments and Results

We empirically evaluate the capabilities of our pro-
posed Bi-Level approach with TempLoss, solved via
Algorithm 1, at addressing distributional robustness
on the over-parameterized classification setting. We
compare our approach against empirical risk minimiza-
tion (ERM), standard GDRO (with cross-entropy loss),
VS-loss, and poly-tailed loss, as well as their Bi-level
counterparts. We run our experiments on three im-
age classification datasets, and 2 tabular classification
datasets which we describe next.

5.1 Datasets and methods

We ran image classification experiments on a pretrained
ResNet architecture [He et al., 2016], and tabular data
classification over a fully connected network. In all
scenarios, we used a small weight decay penalty (10−4).
We used Waterbirds [Sagawa et al., 2019] (2 targets,
4 groups), CIFAR-10 [Krizhevsky et al., 2009] (10 tar-
gets, 10 groups) and HAM-10K [Tschandl et al., 2018]
(7 targets, 7 groups) as our image classification datasets;
and UCI ADULT [Dua et al., 2017] (2 targets, 8
groups) and German Credit [Hofmann, 1994] (2 tar-
gets, 8 groups) as our tabular datasets. In all sce-
narios, the group variable G also includes the tar-
get variable Y . Further details on datasets, archi-
tecture, train-validation-test splitting, and training
hyper-parameters for all methods are found on Ap-
pendix B.1. For all methods except ERM, we run a
single epoch of training of the importance weighted
function (i.e., M(Q) in Algorithm 1) between adver-
sarial prior updates, as it is standard in the literature
[Diana et al., 2020, Sagawa et al., 2019].

5.2 Worst group error generalization

Figure 1 and Figure 4 in Appendix B.2 show the evo-
lution of the worst group error on the test split across
training epochs for ERM, GDRO, Bi-level GDRO (Al-
gorithm 1 with learner minimizing standard cross en-
tropy), and Bi-level Temploss GDRO. We observe
that the Bi-level strategy considerably improves out-of-

Table 1: Weighted error results for each dataset and
method as a function of γ. γ = 0 corresponds to worst
group error objective, while γ = 1 corresponds to ERM.
Deviations computed over 5 splits. The best results
are consistently achieved for methods updating the
importance weight with the held-out validation set as
here proposed.

Weighted error
Dataset Method γ = 0.0 γ = 0.1 γ = 0.2 γ = 0.5

Waterbirds ERM 33.8±0.3 30.7±0.3 27.6±0.2 18.2±0.2
GDRO 33.2±0.5 30.1±0.7 27.2±0.7 18.7±0.2
GDRO Polytail 36.3±0.3 33.5±0.4 30.6±0.1 21.2±0.1
GDRO VS-loss 39.9±0.2 36.1±0.2 32.6±0.2 21.9±0.2
Bi-level GDRO 16.5±0.8 24.9±0.3 23.6±0.4 17.1±0.2
Bi-level Polytail 15.2±0.6 22.0±0.1 20.1±0.1 15.3±0.1
Bi-level VS-loss 10.3±0.1 23.1±1.4 21.4±0.7 13.8±0.2
Bi-level TempLoss 10.1±0.3 18.8±1.3 17.5±0.4 16.5±0.3

CIFAR10 ERM 29.0±0.8 27.6±0.7 26.2±0.7 21.9±0.5
GDRO 25.5±0.2 24.2±0.3 23.1±0.9 20.1±0.3
GDRO Polytail 26.2±0.2 25.3±0.5 24.4±0.4 20.9±0.3
GDRO VS-loss 25.2±0.9 23.9±0.6 22.9±0.8 20.1±0.4
Bi-level GDRO 21.8±0.7 21.1±0.9 20.8±1.0 19.3±0.9
Bi-level Polytail 22.7±0.8 21.7±0.6 21.4±0.3 20.1±0.1
Bi-level VS-loss 21.8±1.3 21.2±0.9 21.0±1.0 19.8±0.7
Bi-level TempLoss 21.9±1.1 21.±0.9 21.2±1.2 19.3±0.8

UCI Adult ERM 44.1±0.9 41.1±0.8 38.1±0.7 29.2±0.4
GDRO 24.6±1.6 24.6±2.1 24.4±2.4 22.0±1.4
GDRO Polytail 23.8±0.4 23.7±1.2 23.3±1.3 22.2±1.5
GDRO VS-loss 39.4±2.2 41.1±2.6 43.5±0.7 38.3±1.3
Bi-level GDRO 23.6±1.4 23.2±1.6 22.6±1.0 23.8±3.5
Bi-level Polytail 25.6±0.4 25.4±0.2 24.1±0.6 23.9±3.2
Bi-level VS-loss 24.8±1.7 24.6±2.1 25.0±2.4 30.9±4.7
Bi-level TempLoss 22.8±0.6 23.2±1.0 23.4±0.8 23.1±2.1

HAM10K ERM 16.1±7.4 14.7±6.7 13.3±6.0 9.2±3.8
GDRO 9.0±0.6 8.7±0.5 8.7±1.0 7.3±0.3
GDRO Polytail 8.7±0.4 7.4±0.7 7.3±0.8 6.9±0.7
GDRO VS-loss 23.0±1.6 22.8±0.3 21.2±0.1 13.1±0.1
Bi-level GDRO 7.3±0.2 6.8±0.1 6.5±0.1 5.4±0.2
Bi-level Polytail 8.0±0.1 6.8±0.1 6.5±0.1 5.3±0.1
Bi-level VS-loss 17.0±5.2 11.8±0.4 15.5±2.7 7.2±0.9
Bi-level TempLoss 7.1±0.5 6.8±0.1 5.6±0.8 5.4±0.2

German ERM 100.0±0.0 92.8±0.1 85.5±0.2 63.8±0.5
GDRO 83.3±23.6 78.2±21.2 66.5±19.9 54.3±12.6
GDRO Polytail 83.3±23.6 78.3±21.0 73.2±18.3 57.6±10.6
GDRO VS-loss 100.0±0.0 92.8±0.2 85.7±0.4 64.3±0.3
Bi-level GDRO 68.3±22.5 64.6±20.4 61.0±18.3 49.0±13.3
Bi-level Polytail 68.3±22.5 64.9±20.3 60.0±19.2 49.2±13.0
Bi-level VS-loss 61.0±20.0 59.6±15.9 59.1±15.0 57.4±8.8
Bi-level TempLoss 63.8±21.0 60.8±18.9 57.8±16.9 47.9±11.40

sample worst group error across all iterations. Further,
using TempLoss instead of cross-entropy often yields
meaningful improvements, and it is never worse than
the standard cross-entropy objective.

5.3 Relaxed minimax fairness

Weighted errors as a function of γ6 are shown in Table
1. We observe that the Bi-level variation of any base
algorithm and loss combination (GDRO, VS-loss, Poly-
tailed) significantly improves on the standard objective
where the adversary’s objective uses the same loss func-
tion and dataset as the learner. We compare results
for various values of relaxed group fairness, where the
user wants to achieve some γ-trade-off between worst
case and average performance (with γ = 0 being the
worst group loss/error objective and γ = 1 being ERM).
This is achieved by setting the adversary’s constraint

6γ× average error +(1− γ)× worst group error
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to Qγ = {Q ∈ PG : Qg ≥ γPg, ∀g ∈ G} in Algorithm
1. Moreover, the proposed Bi-level TempLoss GDRO
method compares favorably with the Bi-level version
of other approaches such as VS-loss and poly-loss; es-
pecially for unbalanced datasets.

6 Conclusions and Limitations

Here we discussed the use of a bi-level formulation
of minimax fairness to improve generalization in the
offline setting. We proposed a simple, provably conver-
gent algorithm to solve this bi-level formulation and
empirically showed it is capable of improving general-
ization for a variety of loss functions and datasets. We
additionally discussed the lack of responsiveness to im-
portance weighting exhibited by interpolating classifiers
with exponential-tailed losses in the context of mini-
max robustness. We proposed a temperature-scaled
exponential loss that provably converges to weighted-
max-margin classifiers on separable training data, and
discussed connections with robustness. The combi-
nation of our proposed TempLoss with our Bi-level
formulation is able to effectively improve results for the
relaxed minimax objective without requiring a-prior
assumptions of the disadvantaged groups or additional
ad-hoc regularization.
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A Proofs

A.1 Proof of Theorem 3.3

Theorem 3.3 Algorithm 1 with η =

√
2

log |G|
T

(1−||ε||11)
computes a uniform distribution over solutions PF = U[{f1,...,fT }]

such that
max
Q∈Qγ

Ef∼PF

∑
g∈G

Qgϵg(f) ≤ αmin
f∈F

max
Q∈Qγ

∑
g∈G

Qgϵg(f) +
√

2 log |G|
T (17)

Further, for any η > 0, the solution to Algorithm 1 satisfies

max
Q∈Qγ

Ef∼PF

∑
g∈G

Qgϵg(f) ≤ α(1 + η)min
f∈F

max
Q∈Qγ

∑
g∈G

Qgϵg(f) +
log |G|
ηT (18)

Proof. We first observe we can rewrite the outer level of the bi-level objective in Eq.(5) as

max
Q∈Qγ

∑
g∈G

Qgϵg(f) = max
Q̂∈∆G−1

∑
g∈G

Q̂g(1− |γ|11)ϵg(f) +
∑
g′∈G

γg′ϵg′(f). (19)

And that we can map any distribution Q̂ ∈ ∆G−1 to its corresponding distribution Q = Q̂(1− |γ|11) + γ,Q ∈ Qγ .
We similarly note that the α−approximate solver M(Q) for the objective

∑
g∈G

Qgϵg(f) is also an α−approximate

solver M̂(Q̂) for the objective
∑
g∈G

Q̂g(1− |γ|11)ϵg(f) +
∑
g′∈G

γg′ϵg′(f)

With this, it suffices to use Theorem 1 in [Chen et al., 2017] to see that the following update is convergent

Q̂t ∝ exp{η′(1− |γ|11)
∑

t′∈[t] ϵg(f
t) + η′

∑
t′∈[t]

∑
g′∈G

γg′ϵg′(f t)}g∈G ,

∝ exp{η′(1− |γ|11)
∑

t′∈[t] ϵg(f
t)}g∈G ,

ft ← M̂(Q̂t),

←M((1− |γ|11)Q̂t + γ).

(20)

Where we observe that the bias term η′
∑
g′∈G

γg′ϵg′(f t) is independent of g and can thus be factored out of the

update, and we identify the term η = η′(1− |γ|11) for our stated result.

Theorem: 3.4 Let n̄ = min
g∈G
|Da

g |. Further assume the set of priors Qγ contains |Qγ | discrete choices. Let

{f1, . . . , fT } be the output of Algorithm 1 and let PF = U[{f1,...,fT }] denote the uniform probability over the
classifiers. With probability at least 1− δ

max
Q∈Qγ

E
f∼PF

EPX,Y |GQG
[ϵ(f(X), Y )] ≤ max

Q∈Qγ

E
f∼PF

∑
g QgEDa

g
[ϵ(f(X), Y )] +

√
T log |Qγ |+log

|G|
δ )

2n̄ . (21)

Additionally, with probability at least 1− δ

max
Q∈Qγ

EPX,Y |GQG
[ϵ(fT (X), Y )] ≤ max

Q∈Qγ

∑
g QgEDa

g
[ϵ(fT (X), Y )] +

√
log

|Qγ ||G|
δ

2n̄ . (22)

Proof. We observe that all intermediary outputs of Algorithm 1 f t = M(Qt) are implicit functions in Q ∈ Qγ,
as such, there are |Qγ | such functions, and |Qγ | choose T with repetition ways to get the distribution PF , that is,
there are C̄|Qγ |,T ≤ |Qγ |T such distributions in PF .

From this observation, we can use the Hoeffding and union bound (Corollary 2.2 in [Wainwright, 2019]) to state
that, with probability at least 1− δ/G

EPX,Y |G=g E
f∼PF

[ϵ(f(X), Y )] ≤ EDa
g

E
f∼PF

[ϵ(f(X), Y )] +

√
T log |Qγ |+log G

δ

2|Da
g |

,

≤ EDa
g

E
f∼PF

[ϵ(f(X), Y )] +

√
T log |Qγ |+log G

δ

2n̄ .
(23)
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Where the second inequality follows from the definition of n̄ = min
g∈G
|Da

g |. Taking the union bound across all G

groups, we observe that the following bound holds with probability at least 1− δ

max
Q∈Qγ

E
f∼PF

EPX,Y |GQG
[ϵ(f(X), Y )] ≤ max

Q∈Qγ

E
f∼PF

∑
g Q̂gEDa

g
[ϵ(f(X), Y )] +

√
T log |Qγ |+log G

δ

2n̄ . (24)

The bound for just the final classifier fT is derived identically by supplanting T log |Qγ | by log |Qγ |. For it, we
can state that with probability at least 1− δ

max
Q∈Qγ

EPX,Y |GQG
[ϵ(fT (X), Y )] ≤ max

Q∈Qγ

∑
g Q̂gEDa

g
[ϵ(fT (X), Y )] +

√
log |Qγ |+log G

δ

2n̄ . (25)

Theorem 3.5 Consider the online version of Algorithm 1 where Da is re-sampled at each round and n̄ = min
g∈G
|Da

g |.
Let PF = U[{f1,...,fT }] denote the uniform probability over the output classifiers. With probability at least 1− δ

max
Q∈Qγ

E
f∼PF

EPX,Y |GQG
[ϵ(f(X), Y )] ≤

max
Q∈Qγ

E
f∼PF

∑
g QgEDa

g
[ϵ(f(X), Y )] +

√
log

|G|
δ

2n̄ .
(26)

Proof. In this scenario the samples of Da
g on round T + 1 are independent of the resulting distribution

PF = U[{f1,...,fT }]. Therefore, the error samples ϵi = E
f∼PF

ϵ(f(xi, yi));xi, yi ∈ Da
g are also i.i.d.. Using the

bounded differences inequality, we get, with probability at least 1− δ/G

max
Q∈Qγ

E
f∼PF

EPX,Y |GQG
[ϵ(f(X), Y )] ≤ max

Q∈Qγ

E
f∼PF

∑
g QgEDa

g
[ϵ(f(X), Y )] +

√
log

|G|
δ

2|Da
g |
. (27)

Where the main difference w.r.t. the previous result is that we no longer need to apply a union bound over all
possible distributions PF since we can guarantee independence of the error samples themselves. The rest of the
proof proceeds identically to the preceding proof.

Proposition 3.8 For any loss function ℓ(u) satisfying Assumption 3.7 with smoothness parameter β, the
tempered loss L(u, q) also satisfies 3.7 with smoothness parameter β for any parameter q ∈ (0, 1]. It additionally
satisfies dqL(u;q)

dq > 0 ∀q ∈ (0, 1].

Proof. We first verify that L(u, q) satisfies Assumption 3.7. We observe that L(u, q) > 0∀u; this is trivial for
u < 0, since ℓ(u) itself satisfies Assumption 3.7, for u ≥ 0, we additionally observe

L(u, q) = ℓ(u[1− s(u)(1− q−1)])

= ℓ(u[ 1q + q−1
q e−τu]),

1
q + q−1

q e−τu ≥ 0 ∀q > 0.
(28)

We now check the derivatives w.r.t. margin u:

dL(u, q)

du
=

{
ℓ′(u), u < 0,

ℓ′(u[ 1q + q−1
q e−τu]) 1+(q−1)e−τu(1−τu)

q , u ≥ 0,
. (29)

We now verify that dL(u,q)
du < 0. For u < 0 this is immediate; for u ≥ 0 we additionally observe that, for q ∈ (0, 1]

1 + (1− q)e−τu(τu− 1) = τu(1− q)e−τu︸ ︷︷ ︸
>0

+1− e−τu︸ ︷︷ ︸
>0

+ e−τuq︸ ︷︷ ︸
>0

> 0,
(30)
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since τ > 0 and u > 0.

To check for β-smoothness, we immediately observe that L(u, q) is continuous and differentiable for u ≠ 0; for the
special case u = 0, we have

lim
u→γ−

L(u, q) = lim
u→γ+

L(u, q) = ℓ(γ),

lim
u→γ−

dL(u,q)
du = lim

u→γ+

dL(u,q)
du = ℓ′(γ).

(31)

To compute the Lipschitz constant of L′(u, q), we observe that |L′(u, q)| ≤ β,∀u < 0, and likewise |L′(u, q)| ≤
βmaxu>0

|1+e−τu(q−1)(1−τu)|
q ∀u < γ = β, thus L(u, q) is β-smooth.

The limits in Assumption 3.7 are easily verifiable from the base properties of ℓ(u):

lim
u→∞

L(u, q) = lim
u→∞

ℓ(uq ) = 0,

lim
u→∞

L′(u, q) = lim
u→∞

1
q ℓ

′(uq ) = 0,

lim
u→−∞

L(u, q) = lim
u→∞

ℓ(u) ̸= 0.

(32)

The last property of Assumption 3.7 we need to verify is if −L′(u, q) has a tight exponential tail. This is
immediately verifiable since −ℓ′(u) has a tight exponential tail, and lim

u→∞
L′(u, q) = 1

q ℓ
′(uq ).

Lastly, we verify that dL(u,q)
dq > 0 ∀q ∈ (0, 1], u ≥ 0, that is

dL(u, q)

dq
=

{
0, u < 0,

ℓ′(uq [(q − 1)e−τu + 1])[ uq2 (e
−τu − 1)], u ≥ 0.

(33)

To complete the proof, we observe that

ℓ′(u−γ
q [(q − 1)e−τu + 1] + γ) < 0,

u
q2 (e

−τu − 1) < 0,
(34)

which proves dL(u,q)
dq > 0 as required.

Proposition 3.9 Given a binary classification dataset D = {(xi, yi, gi)}ni=1 ∈ X × {−1, 1} × G, a fixed
representation ϕ : X → Rd such that ∃θ ∈ Rd : yiθ

Tϕ(xi) ≥ 0 ∀i = 1, ..., n (data is linearly separable under ϕ),
and a group distribution Q. Then, the limit of the gradient descent iterates of the linear classifier fθ(x) = θTϕ(x)
for the inner loop objective in Eq.(5) with base loss ℓ(u) satisfying Assumption 3.7 is

lim
t→∞

θt

||θt||2 → θ̂
||θ̂||2

,

θ̂ := arg min
θ∈Rd

||θ||22
s.t. {yiθTϕ(xi) ≥ Qgi}ni=1.

(35)

Proof. Let x′
i = ϕ(xi)

Qgi
be the scaled, embedded i-th sample; we can build an equivalent dataset D′ =

{(ϕ(xi)
Qgi

, yi)}ni=1 = {x′
i, yi)}ni=1. The dataset D′ is also linearly separable since Qg ∈ (0, 1]∀g ∈ G. Consider the

dataset loss

L(θ,Q) =

N∑
i=1

Qgi

pgi
L(yiθ

tϕ(xi);Qgi). (36)

Following Proposition 3.9, we can use Lemma 1 in [Soudry et al., 2018] to state that the gradient descent iterates
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of L(θ,Q), θ(t) satisfy
lim
t→∞

L(θ(t), q) = 0,

lim
t→∞

||θ(t)||22 =∞,

lim
t→∞

yiθ
t(t)ϕ(xi) =∞,

lim
t→∞

yiθ
t(t)ϕ(xi)

Qgi
=∞.

(37)

From the preceding observations, it suffices to analyze the behaviour of L(u, q) in the u >> 0 regime without
loss of generality (L(u, q) ≃ ℓ(uq )). In this regime, the composite loss L(u, q) satisfies assumptions 1 through
4 in [Soudry et al., 2018] and we can thus follow the same reasoning as in Theorem 2 there (where constant
multiplicative factors outside of the loss function like Qgi/pgi that are independent of the score u can be safely
ignored) to state

θt = θ̂ log(
η

B

t

K
) + r(t) + θ̃, (38)

where B,K are the batch size and number of batches in dataset D′ respectively, η < 2maxg
Qg

pg
β−1σ−2

max(ϕ(X)) is

the SGD learning rate, and θ̂ is the max-margin solution

θ̂ : argmin ||θ||22,
s.t. yiθ

Tx′
i ≥ 1, ∀i ∈ [n]

= argmin ||θ||22,
s.t. yiθ

Tϕ(xi) ≥ Qgi , ∀i ∈ [n].

(39)

Additionally,
θ̃ : ηe−θ̃T x′

n = αn
pgn

qgn
∀n ∈ S, (40)

with S the support set of (x′
i, yi) and αn its support coefficients. The residual vector r(t) has a bounded norm,

which implies that

lim
t→∞

θt

||θt||
→ θ̂. (41)

Proposition 3.10 In the setting of Proposition 3.9, where the representation function ϕ is M−Lipschitz, the
solution is guaranteed to asymptotically satisfy

min
x̄

yiθ
Tϕ(x̄) ≥ 0 ∀ (xi, yi, gi) ∈ D,

s.t. ||x̄− xi||22 ≤
Q(gi)

2

||θ̂(Q)||22
1
M .

(42)

That is, the model is robust to ℓ2 input perturbations at least up to Q(gi)
2

||θ̂||22
1
M on its training samples.

Proof. First we examine the following simplified problem

min
ϕ̄

yiθ
T ϕ̄,

s.t. ||ϕ̄− ϕi||22 ≤ C2,
(43)

with the corresponding Lagrangian

min
ϕ̄

max
ξ≥0

yiθ
T ϕ̄+ ξ

2 (||ϕ̄− ϕi||22 − C2), (44)

By setting the derivative w.r.t. ϕ̄ of the Lagrangian to 0, we obtain
∂L
∂ξ = θ + ξ(ϕ̄− ϕi),

= 0,
ϕ̄ = ϕi − yi

θ
ξ .

(45)
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The constraint needs to be active for the module of ϕ̄ to be finite, therefore, we solve for the constraint
||ϕ̄− ϕi||22 = C2 and recover

||ϕ̄− ϕi||22 = C2

||θ||22
ξ2 = C2,

ϕ̄ = ϕi − yi
C

||θ||2 θ.

(46)

Plugging this back into the value of yiθT ϕ̄ we recover

yiθ
T ϕ̄ = yiθ

Tϕi − C||θ||2,
limt→∞

yiθ
T
t ϕ̄

||θt||2 = limt→∞ yi
θT
t

||θ||2ϕi − C

= yi
θ̂T

||θ̂||2
ϕi − C

≥ Qgi

||θ̂||2
− C

≥ 0 if C ≤ Qgi

||θ̂||2
.

(47)

Here we added the time dependency on parameter θt and additionally used Proposition 3.9 to state that
θ

||θ||2 −−−→t→∞
θ̂

||θ̂||2
. To finalize the proof, we observe that if ||x− xi||22 ≤

Q2
gi

||θ̂||22
1
M , then ||ϕ(x)− ϕ(xi)||22 ≤

Q2
gi

||θ̂||22
, and

therefore yiθ
Tϕ(x) ≥ 0.

B Extended Experiments and Results

B.1 Experimental Details

B.1.1 Datasets

We used the following image classification datasets

Waterbirds [Sagawa et al., 2019] Based on the CUB dataset [Wah et al., 2011], this dataset contains photographs
of birds, classified as waterbirds if they belong to either the seabird or waterfowl category, otherwise, the birds are
labeled as landbirds, this is used as the target label of the classifier. The background images have been artificially
replaced, and all images have a randomized background belonging to water backgrounds or land background,
with 95% of waterbirds placed on water backgrounds, and 95% of landbirds placed on land backgrounds. The
combination of these background categories and the target attribute constitute our 4 demographic groups.

CIFAR-10. [Krizhevsky et al., 2009] Based on the TinyImages dataset [Wah et al., 2011], this dataset contains
10 different classes, which are used as both labels and groups.

HAM-10K. [Tschandl et al., 2018] Contains more than 10k dermatoscopic images from 7 classes of skin lesions;
with lesion frequencies varying between 67% and 1.1%. This is a highly unbalanced classification problem and we
use the type of skin lesion as the target variable and group.

For tabular data classification we used

UCI ADULT [Dua et al., 2017] is a tabular dataset with census information of more than 26k individuals. The
goal is to predict if an individual has low or high income (above 50K). We consider 8 groups corresponding to the
product of (binarized) ethnicity, gender and income (target variable).

German Credit [Hofmann, 1994] is a tabular dataset containing information of 1k individuals that requested a
bank credit. The goal is to predict if an individual has good or bad credit risk. We consider 8 groups corresponding
to the product of personal status (married, non-married), binary gender and credit risk (binary target variable).

B.1.2 Methods

All image classification experiments are conducted over a ImageNet pretrained ResNet32 architecture
[He et al., 2016] as in [Sagawa et al., 2019]. In all cases we do not rely on hyper-parameter tuning to select
regularization strength and instead use a standard 10−4 ℓ2 weight decay penalty. We used a sgd optimizer with
momentum 0.9 and learning rate 10−2 or 10−3 (we chose the one with best performance in validation). We
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implemented a linear warmup scheduler for the first 5 epochs starting at 0.1 of the base learning rate followed by
a step decay of 0.1 every 1/3 of the total number of epochs. We used random crop and horizontal flip for image
augmentations.

For the tabular datasets we used a two hidden layer MLP of 512x512. In all cases categorical variables were
converted to one-hot encoding. We used same training setting and scheduler as in the image classification tasks
except the learning rate which was set to 10−4. Details are summarized in Table 2.

Table 2: Experimental hyperparameters

Dataset Input Size Classifier Epochs/Batch Optimizer (sgd + momentum=0.9) Scheduler

Waterbirds 128x128x3 Resnet32 pretrained 300/128 lr=1e-2, ℓ2-weight decay=1e-4 Linear warmup + Step decay
HAM10K 128x128x3 Resnet32 pretrained 300/128 lr=1e-3, ℓ2-weight decay=1e-4 Linear warmup + Step decay
CIFAR10 32x32x3 Resnet32 pretrained 300/128 lr=1e-3, ℓ2-weight decay=1e-4 Linear warmup + Step decay
UCI Adult 84 MLP 512x512 500/128 lr=1e-4, ℓ2-weight decay=1e-4 Linear warmup + Step decay
German Credit 37 MLP 512x512 500/128 lr=1e-4, ℓ2-weight decay=1e-4 Linear warmup + Step decay

For GDRO and Bi-level GDRO approaches we explored the following range of values for the MWU parameter
η ∈ {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} and selected those with the more stable behaviour based on CE loss.
For VS and Polytail losses we used the loss parameters that suggested in the respective works. A summary of
these is available in Table 3. In all cases an adversary update (MWU with parameter η on the group priors) was
performed after an epoch of SGD. Algorithm 1 and subsequent theory results make use of all T classifiers; to deal
with this cumbersome requirement in practice, we follow [Chen et al., 2017] and [Sagawa et al., 2019] (GDRO)
where the deployed model is the final classifier. For each dataset we performed 5 experiments where we changed
the random seed affecting the model initialization, data sampling and dataset split. If the dataset provided test
partition the random seed only affected the validation and train split.

Table 3: Best set of parameters for each method.

Method η Loss Parameters

GDRO 0.1 -
GDRO VSLoss 0.1 VSLoss: γ = 0.3 (Section B.1 in [Kini et al., 2021])
GDRO Polytail 0.1 Polytail: α=1, β = 1 (Section 5 in [Wang et al., 2021])
Bi-level GDRO (All) 0.01/0.05 Waterbird/0.0005 German CE, VS, Polytail params same as GDRO

TempLoss implementation and parameters. We make the following simplifications for a simple and
efficient implementation of the (cross-entropy) TempLoss. First, we observe that limτ→∞ s(u) = limτ→∞ 1 −

e−τu = 1 ∀u > 0. Taking τ = ∞ in Eq.(13) we get v(u, q)

{
u if u ≤ 0,
u
q if u > 0,

. Additionally, we observe that

u(f(x),y)
q = 1

q [fy(x)− fȳ(x)− log
∑

y′ ̸=y e
fy′ (x)−fȳ(x)] ≃ u( f(x)q , y), where ȳ = argmaxy′ ̸=y fy′(x). With this, we

can simply approximate the cross-entropy TempLoss function as

L(u, q) =

{
ℓ(f(x), y) if ℓ(f(x), y) ≤ ℓ(u = 0),

ℓ( f(x)q , y) if o.w.,
(48)

B.2 Additional Results
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(a) CIFAR10 (b) HAM10K (c) German

Figure 4: Evolution of worst group test error across training epochs on the CIFAR10, HAM10K and German
datasets; deviations computed over 5 splits. We compare ERM; GDRO (adversary uses training group losses
to update group priors); our proposed Bi-level GDRO, were the adversary uses the error on a held-out dataset
to update group priors; and Bi-level TempLoss GDRO, where the learner additionally minimizes our proposed
TempLoss. Bi-level GDRO outperforms regular GDRO, especially over the last training epochs. The TempLoss
modification on the learner’s objective further improves performance. Results are consistent across several datasets
as shown in Section 5.
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(a) Train group errors, Adult dataset (b) Test group errors, UCI Adult (c) Validation group errors, UCI Adult

(d) Train group errors, CIFAR10 (e) Test group errors, CIFAR10 (f) Validation group errors, CIFAR10

(g) Train group errors, Waterbirds (h) Test group errors, Waterbirds (i) Validation group errors, Waterbirds

Figure 5: Evolution of all group errors on Adult, CIFAR10, and Waterbirds datasets across training epochs for
one training run of Bi-level TempLoss GDRO. Train errors do not accurately reflect out-of-sample (test) errors for
all groups. However, we observe validation errors to accurately track this out-of-sample error, in spite of their use
as part of the adversarial update in Algorithm 1. This empirical result supports the idea of ‘near-independence’
of the validation errors, and motivate our choice to decouple training and adversarial datasets in our Bi-level
formulation.
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C Related Work

Minimax Baselines

GDRO [Sagawa et al., 2019] and similar approaches such as Minimax Group Fairness [Martinez et al., 2020,
Diana et al., 2020] minimize the worst-group loss. However, when applied to neural networks, these methods
rely on strong regularization techniques to provide good generalization on unseen data [Sagawa et al., 2019].
Just train twice by [Liu et al., 2021] is a two-stage algorithm that involves ERM followed by a second round of
training with a weighted objective where the wrongly classified samples are up-weighted with the same coefficient.
JTT faces the same challenges mentioned in our work, it relies on strong l2 regularization and early stopping to
avoid empty error set, see their Section 4. The work by [Zhou et al., 2022] proposed a Bi-level formulation for
importance weight learning in the context of out of distribution learning. Their proposed framework directly
maps the space of importance weights into the model parameter space.

GDRO [Sagawa et al., 2019], [Martinez et al., 2020] and [Diana et al., 2020] share the minimax objective as well
as implementation similarities ([Sagawa et al., 2019] and [Diana et al., 2020] use MWU as a potential adversarial
update, [Martinez et al., 2020] uses a different projection to update the group priors), differing primarily on the
assumptions made on the learner (e.g., [Diana et al., 2020] implementation uses logistic regression). Therefore,
we considered that either method gives a representative view of the existing baselines, and GDRO was suitable
for our experiments on neural networks since it already integrates gradient descent on the learner model updates.

The MWU algorithm (as implemented in [Sagawa et al., 2019, Diana et al., 2020]) comes with no regret guarantees
independently of the learner’s specific optimization strategy, and minimax guarantees as long as the learner
achieves an α-approximate solution. Other Bi-level approaches such as [Blondel et al., 2022] or [Zhou et al., 2022]
require the explicit or implicit differentiation of the model parameters w.r.t. the group priors Q in the inner loop
which can be challenging for large models. These may require the outer level objective to be differentiable which
for our purposes would imply the use of a surrogate loss for the adversary’s objective instead of the current error
objective.

Importance Weights on Interpolating Classifiers.

Several works have empirically shown that neural networks trained with SGD tend to be non-responsive to sample
re-weighting in the asymptotic training regime [Sagawa et al., 2019, Byrd and Lipton, 2019, Xu et al., 2021], and
proven for linear classifiers on linearly separable representation functions of the data. For the SGD-trained linear
classifiers, [Nacson et al., 2019b] proved that the classifier converges towards a scaled max-margin solution, with
[Xu et al., 2021] showing this to be true for neural networks trained with importance weights.

Prior work has attempted to characterize and change the asymptotic behaviour of the learned classifier with a
variety of approaches. The work in [Buet-Golfouse, 2021] analyzed dataset conditions under which the classifier
may fail to exhibit this max-margin behaviour. In [Wang et al., 2021], importance weights are applied to
polynomial-tailed losses, which are asymptotically responsive to importance weights, but lack the interpretability
of the max-margin finite sample solution and require the use of loss functions that are not directly related to
standard statistical objectives such as minimal-entropy prediction. The work in [Cao et al., 2019] proposes the use
of an additive term on the margin of the correct label to affect the effective per-label margin of the final classifier.
The margin-additive correction term is applied after a predefined burn-in phase for numerical stability, and is
computed based on the number of samples per label, which limits its use for minimax optimization. Authors in
[Menon et al., 2020] propose a similar approach where a weighted label prior is added to the softmax crossentropy
loss, increasing margins on low frequency labels. However, additive corrections to the classifier’s output logits do
not modify the exponential tail behaviour and must be combined with regularization techniques to be effective.

Additionally, the work in [Ye et al., 2020] identifies the need for multiplicative, rather than additive, modifications
to the learned margins. The authors in [Kini et al., 2021] show that the multiplicative margins may be unstable
during early training, before a good classification baseline is established so incorporate both additive and
multiplicative correction terms to the logits in what they call the VS loss. Like with the preceding works, the
margin corrections are decided a-priori and are not connected to the importance weights, both additive and
multiplicative weights are maintained per label and group. [Narasimhan and Menon, 2021] proposes a loss with
calibration guarantees based on logit adjustment. However, this method directly adjusts the per-label prior, but
is not immediately clear how this can be extended to incorporate generic group adversarial priors in setting where
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the groups do not match the classification labels. In settings where the groups match the classes, this loss can be
used as the inner loop objective in our Bi-level GDRO formulation. The loss proposed by [Lu et al., 2022] shares
similarities with our TempLoss and VS-loss. The main differences with our work are the absence of importance
weighting, tempering being present for all samples - not just misclassified ones - and the tempering parameters are
not learned like ours to optimize minimax error but instead are fixed based on the relative group priors present in
the training dataset.

In our work, we smoothly interpolate between unmodified margins, and multiplicative-weighted margins on
samples that are already well classified, which greatly simplifies the training procedure since no burn-in phase is
needed, and only per-group weights are needed. We are also able to learn the correct weighting procedure to
produce minimax-optimal classifiers within a set of target distributions. The work by [Kini et al., 2021], which
proposes the VS loss is the most closely related to our definition with the difference that we explicitly formalize
the connection with the adversarial weights in the GDRO setting, and thus do not require to make any prior
assumptions on which group will be most disadvantaged. Moreover, our adaptation does not require any burn-in
phase or separate (additive) corrections.

D Analysis of Convergence and Generalization in the Over-parametrized Regime

Here we extend the analysis of over-parametrization and memorization proposed in [Sagawa et al., 2020] in the
context of our proposed Bi-level TempLoss objective.

The analysis consists of the following steps. We first describe a simple data generation process with binary
labels and two groups that allows for even a linear model to memorize and over-fit to the training set; this data
generation process has a single (core) feature that allows accurate prediction of the target label for both groups,
and will further have a confounding (spurious) attribute that can greatly assist in the classification of samples
from the majority groups while being detrimental to the minority group. Then, we show that a (linear) model
trained with TempLoss with a fixed adversarial prior Q can be analyzed in terms of the max margin solution. In
this setting we analyze two solutions, one that uses the core feature and generalizes well to both groups, and one
that uses the spurious feature and memorization of the minority groups during training to produce a model that
only has good test performance on the majority group. We compare the relative norms of these solutions as a
function of the adversarial prior Q to show that TempLoss can steer the model towards one or the other solution.
Finally we show that the adversary in Bilevel TempLoss has accurate group error estimates and therefore can
learn the correct prior Q to maximize worst group accuracy.

Data Generation. Consider the following binary classification scenario where y = {−1, 1} is the target label
a = {−1, 1} is a spurious attribute, and the input features x are described by the following data generation
process:

y ∼ Rademacher(0.5),
a | y ∼ y × Rademacher(ρ),

xcore | y ∼ N (y, σ2
core),

xspu | a ∼ N (a, σ2
spu),

xnoise ∼ N (0,
σ2
noise
N IN ),

x = [xcore, xspu, xnoise].

(49)

That is, the target labels y are equally likely to be −1 or 1, and the spurious attribute a takes the same value
as y with probability ρ. The input features x ∈ RN+2 include a single feature xcore that relates to the target
variable y, a spurious feature xspu that can be used to predict a but not y, and several entries of uncorrelated
noise. This dataset is characterized by two groups, the majority group (maj) satisfies y = a, while the minority
group (min) satisfies y = −a.

For the purposes of the analysis, we assume we have access to a training dataset with n samples n = nmaj +nmin,
where nmaj denotes samples from the majority group (y = a) and nmin denotes the converse. We additionally
assume σ2

spu) is small with σ2
spu) < σ2

core), and N ≫ n, in this scenario, the training dataset is linearly separable
with high probability (a model can “memorize” a training point via its noise component).
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Model Learning. We therefore analyze a linear model (ϕTx) trained with TempLoss for a given (adversarial)
prior Q over the majority and minority groups, this setting satisfies the conditions of Proposition 3.9, that is to
say, for a given (adversarial) prior Q over the majority and minority groups, the resulting model parameters can
be characterized by the (weighted) max margin solution

lim
t→∞

θt

||θt||2 → θ̂
||θ̂||2

,

θ̂ := arg min
θ∈R(N+2)

||θ||22
s.t. {yiθTxi) ≥ Qgi}ni=1.

(50)

Max Margin Cost and Error Comparison. We focus on the analysis of the max margin solution θ̂. Following
the analysis in [Sagawa et al., 2020], we decompose θ̂ = [θ̂core, θ̂spu, θ̂noise]

Note that the test error for a linear model parametrized by θ̂ for both groups can be computed as

σ2
θ := (θ̂core)2σ2

core + (θ̂spu)2σ2
spu + ||θ̂noise||2σ2

noise,

yθTx|a, y ∼ N (θ̂core + ayθ̂spu;σ2
θ),

P r[yθTx ≤ 0 | y = a] = ϕ(− θ̂core+θ̂spu√
σ2
θ

),

P r[yθTx ≤ 0 | y ̸= a] = ϕ(− θ̂core−θ̂spu√
σ2
θ

),

(51)

where ϕ denotes the cdf operator of a standard distribution. This formalizes the notion that positive values
of θ̂core benefit classification for both groups, while positive values of θ̂spu benefit the majority group at the
detriment of the minority group. Therefore, it is straightforward to observe that the solution that minimizes
worst group error must satisfy θ̂spu = 0.

We continue the analysis by noting that the representer theorem allows us to express θ̂noise as

θ̂noise =
∑
i∈[n]

αix
noise
i . (52)

This decomposition has a few interesting consequences, since we assume N to be large, we have ||xnoise
i ||22 = σ2

noise
with high probability, and since we also assume N ≫ n then with high probability any two noise samples in the
training dataset satisfy < xnoise

i , xnoise
j >= 0 (i.e., the noise components of the samples are orthogonal). This

implies both of the following

||θ̂noise||22 = σ2
noise

∑
i∈[n] α

2
i ,

(θ̂noise)Txnoise
i = σ2

noiseαi.
(53)

In other words, we can increase the margin of any sample xi by setting αi to be sufficiently high without affecting
the prediction in any other training sample w.h.p., and the (norm) cost of memorizing sample i with strength αi

(and margin increase αiσ
2
noise) is αiσ

2
noise.

Now consider the following sets of solutions

Θuse-spu := {θ : θ is a separator, θcore = 0},
Θuse-core {θ : θ is a separator, θspu = 0}. (54)

Where we take similar definitions to [Sagawa et al., 2020] but here ‘separator’ indicates a solution that linearly
separates each data point with margin at least Qgi

To compare the norms of these two types of solutions, we extend propositions 1 and 2 in [Sagawa et al., 2020] to
the setting of weighted margin norms. We provide the proof sketch similar to [Sagawa et al., 2020] and note that
the full proof is a straightforward (but lengthy) adaptation of theirs. For convenience we denote Qmaj as the
(adversarial) prior of the majority group (y = a) and Qmin = 1−Qmaj the prior of the minority group (y ̸= a)



Natalia Martinez Gil†, Martin Bertran†∗, Guillermo Sapiro

Proposition Under mild conditions (see Theorem 1 [Sagawa et al., 2020]) there exists a (weighted) separator
θuse-spu ∈ Θuse-spu and constant γ1 > 0, η > 0 such that

||θuse-spu||22 ≤ (γ1Qmaj)
2 + nmin

σ2
noise

(Qmin + ηγ1Qmaj),

||θuse-spu||22 ≤ (γ1Qmin)
2 +

nmaj
σ2
noise

(Qmaj + ηγ1Qmin),
(55)

Proof sketch For simplicity, we focus on the first inequality. Since σ2
spu is small, w.h.p there exists some constant

γ1 such by setting θspu
use-spu = γ1, the majority points have a margin > 1, therefore, by setting θspu

use-spu = γ1Qmaj
all majority samples satisfy their margin condition. However, for the minority training points, the attribute a
is anti-correlated with the label, and w.h.p. there exists some constant η that depends on σ2

spu such that the
decrease in the margin due to θspu

use-spu = γ1Qmaj is at most −ηγ1Qmaj w.h.p.. To satisfy the margin condition on
minority samples, it suffices to set αi = yi

Qmin+ηQmaj
σ2
noise

and the bound on the norm follows.

The second inequality can be similarly derived for a different set of constants γ′
1, η

′ by considering a similar
scenario where θspu = −γ′

1 and the majority samples are the ones being memorized (this is potentially a viable
solution for very low values of Qmaj). The proof can be concluded by taking maximums over the two sets of
constants.

Proposition Under mild conditions (see Theorem 1 [Sagawa et al., 2020]) there exists a (weighted) separator
θuse-core ∈ Θuse-core and constant γ3 > 0 such that

||θuse-core||22 ≥ γ3
n

σ2
noise

max{Qmaj, Qmin} (56)

Proof sketch This is a direct application of Proposition 3 from [Sagawa et al., 2020] which states that there
exists a parameter θ∗ with norm ||θ∗||22 ≤ γ3

n
σ2
noise

s.t. θspu
∗ = 0 and the margin of each training sample is > 1.

The key insight of this proof is that there is a constant fraction of samples s.t. xcorey ≤ 1 (i.e., the core feature is
noisy enough that some samples are misclassified by it), therefore, this fraction of samples needs to be memorized
to linearly separate the training set.

Depending on the problem parameters, there are scenarios in which carefully chosen values of Qmin, Qmax yield
||θuse-core||22 ≤ ||θuse-spu||22. Therefore, a model trained with the correct adversarial prior on TempLoss will be able
to achieve the optimal minimax error rates across groups.

Adversary Convergence and Error Estimates. The convergence of Algorithm 1 was already shown in
general in Theorem 3.4. Here, we simply observe that the adversary’s error estimates on its held-out dataset are
fully unaffected by memorization, since any sample x that is part of the adversary’s, but not the model learner’s,
dataset, satisfies θTx = θcorexcore + θspuxspu w.h.p. (since the adversary’s samples are orthogonal to the model
learner’s samples w.h.p).

Therefore, the adversary’s samples satisfy

Pr[yθTx ≤ 0 | y = a] = ϕ(− θ̂core+θ̂spu√
σ2
θ

),

P r[yθTx ≤ 0 | y ̸= a] = ϕ(− θ̂core−θ̂spu√
σ2
θ

),
(57)

and would therefore correctly modify the prior Q until minimax error is achieved.
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