
XB-MAML: Learning Expandable Basis Parameters for Effective
Meta-Learning with Wide Task Coverage

Jae-Jun Lee Sung Whan Yoon†

{johnjaejunlee95, shyoon8}@unist.ac.kr
Graduate School of Artificial Intelligence, Ulsan National Institute of Science and Technology (UNIST)

† Corresponding Author

Abstract

Meta-learning, which pursues an effective ini-
tialization model, has emerged as a promising
approach to handling unseen tasks. However,
a limitation remains to be evident when a
meta-learner tries to encompass a wide range
of task distribution, e.g., learning across dis-
tinctive datasets or domains. Recently, a
group of works has attempted to employ mul-
tiple model initializations to cover widely-
ranging tasks, but they are limited in adap-
tively expanding initializations. We intro-
duce XB-MAML, which learns expandable
basis parameters, where they are linearly
combined to form an effective initialization
to a given task. XB-MAML observes the dis-
crepancy between the vector space spanned
by the basis and fine-tuned parameters to
decide whether to expand the basis. Our
method surpasses the existing works in the
multi-domain meta-learning benchmarks and
opens up new chances of meta-learning for
obtaining the diverse inductive bias that can
be combined to stretch toward the effective
initialization for diverse unseen tasks.

1 INTRODUCTION

Humans have the capability to learn unknown or un-
seen tasks without explicit prior learning. When en-
countering unseen data or learning tasks, humans tap
into their meta-knowledge to reason and adapt to the
unfamiliar context, drawing upon connections with
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their past experiences. This innate adaptability in hu-
mans is closely related to the concept of ‘learning to
learn’. In contrast, deep learning algorithms (LeCun
et al. (2015)) aim to replicate the humans’ learning
capability but typically rely on sample-wise likelihood
maximization which leans toward memorizing encoun-
tered data rather than pursuing meta-knowledge. As
a consequence, modern learning frameworks are prone
to fall into critical difficulties, i.e., limited generaliza-
tion across varying environments.

To tackle the long-lasting challenge, the research field
of meta-learning has emerged, drawing inspiration
from humans’ rapid adaptability to unseen environ-
ments by leveraging meta-knowledge across previous
experiences. Specifically, meta-learning aims to effec-
tively solve new tasks by utilizing the commonality
acquired from previous learning tasks. In the domain
of classification, meta-learning can be broadly cate-
gorized into two main groups: Metric-based meth-
ods, encompassing methods such as Matching Net-
work, ProtoNet, TapNet, and TADAM (Vinyals et al.
(2016); Snell et al. (2017); Yoon et al. (2019); Oreshkin
et al. (2018)), and optimization-based methods such
as Model-Agnostic Meta-Learning (MAML), Reptile,
and Meta-SGD (Finn et al. (2017); Nichol et al. (2018);
Li et al. (2017)). Albeit the success of prior works in
improving the adaptability to novel tasks, they often
fail to handle a wide range of tasks across varying do-
mains, or contexts (Triantafillou et al. (2020)).

By recognizing the hardship of capturing the widely-
ranging task distribution through a single meta-
trained model parameter, the concept of employing
multiple meta-trained initializations has gained atten-
tion in recent times. As noticeable trials, TSA-MAML
by Zhou et al. (2021) tries to build clusters of similar
task parameters to employ per-cluster initialization,
and MUSML by Jiang et al. (2022) meta-trains mul-
tiple subspaces that cover a wider range of task pa-
rameters. The prior works with multi-initializations
show obvious limitations in two perspectives: i) The
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number of initializations is predefined before training,
and it is not expandable even if more initializations
are required. ii) Utilization of multiple initializations
is restricted to selecting one of them so that the combi-
natorial way of multi-initialization to enlarge the cov-
erage of task distributions is infeasible.

In this paper, we introduce a multi-initialization ap-
proach called XB-MAML with two distinctive advan-
tages: i) Expandability of initializations and ii) Com-
binatorial usage of multiple initializations to provide a
better initialization for a given task. Specifically, XB-
MAML incrementally incorporates additional initial-
ization to adaptively cover a wider range of tasks, i.e.,
the set of initializations is expandable according to the
given task distribution. Also, each initialization works
as a ‘basis’ in parameter space, where the meta-trained
initializations are linearly combined to form an effec-
tive initialization point for the given task. When the
current set of bases falls short of covering task distri-
bution, XB-MAML adaptively employs an additional
model parameter, which is likened to increasing the
rank of the basis to enable more effective task-specific
adaptation across a wide range of complex tasks. XB-
MAML gradually progresses towards the rank of basis
that excels in task adaptation and attains performance
convergence. Also, XB-MAML covers the parameter
space spanned by the linear combination of the meta-
trained bases so that it provides a widened coverage
of parameters that cannot be obtained by an individ-
ual initialization. XB-MAML offers a novel strategy
to obtain the diverse inductive bias in meta-learning
that can be combined to stretch toward the effective
initialization for diverse unseen tasks.

In extensive experiments, our XB-MAML shows signif-
icant improvements over previous works on the chal-
lenging multi-domain few-shot classification in bench-
marks datasets: Meta-Datasets-ABF/BTAF/CIO.

2 RELATED WORK

2.1 Recent Advances of Meta-Learning

Metric-based Method After the early works of
metric-based meta-learning, e.g., Matching Nets by
Vinyals et al. (2016) and ProtoNets by Snell et al.
(2017), the explicit task-adaptation strategies are
adopted in metric learning: TADAM with conditioned
representation (Oreshkin et al. (2018)), TPN with
graph-based metric computations (Liu et al. (2019b)),
TapNet with task-adaptive projection (Yoon et al.
(2019)). Recently, cross-attention has been shown to
be effective in few-shot learning (Hou et al. (2019)),
and the transformer architecture with in-depth atten-
tion draws substantial gains (Lai et al. (2023)).

Optimization-based Method The optimization-
based approach aims to train an initialization pa-
rameter that is prepared for quick adaptation to the
task parameters via bi-level optimization. Beyond the
pioneering work called MAML (Finn et al. (2017)),
the computation-efficient variants such as Reptile with
the first-order approximation of Hessian (Nichol et al.
(2018)) and iMAML with implicit gradients (Ra-
jeswaran et al. (2019)) have been proposed. As an-
other branch, the probabilistic modeling of the ini-
tialization has been explored, e.g., Bayesian MAML
by Yoon et al. (2018) and PLATIPUS by Finn et al.
(2018). Our XB-MAML is also built on the bi-level op-
timization by MAML and it incorporates extra initial-
ization by sampling from the Gaussian-based modeling
of initializations which is motivated by PLATIPUS.

2.2 Multi-domain Meta-learning

The prior meta-learning works are often limited in
training the multi-domain few-shot tasks (Triantafillou
et al. (2020)). To tackle the issue, MMAML (Vuorio
et al. (2019)) employs modulation networks for task
grouping, adapting with modulated meta-parameters
via gradient updates. HSML (Yao et al. (2019)) clus-
ters feature-represented tasks hierarchically, adjusting
their parameters correspondingly. Another approach,
ARML (Yao et al. (2020)), utilizes prototype-based
relational structures and a meta-knowledge graph to
disseminate information within its components. These
methods primarily focus on task classification or clus-
tering, adapting or selecting tasks within justified
groupings to effectively cover a wide array of task dis-
tributions. XB-MAML does not rely on task clustering
but meta-trains a set of bases that linearly combine to
cover the given task distributions.

2.3 Multi-initialization Approches

A group of recent methods has investigated the uti-
lization of multiple initializations to widen the task
coverage. Here, we analyze two distinctive approaches.

Clustering of Tasks A method called TSA-MAML
(Zhou et al. (2021)) utilizes a pretrained MAML to
perform k-means clustering to group similar tasks and
assign one initialization for each cluster, which is the
per-cluster centroid. Additional episodic learning is
then done to further meta-train the centroid initializa-
tions. This process maps each episode to the closest
initialization, which can reduce the gap between the
initialization and its task-specific model. However, it
raises a crucial concern that TSA-MAML strongly re-
lies on the pretrained MAML which is not tailored
for the multi-initialization setting. Also, an extensive
extra computational burden is required to run the pre-
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Figure 1: Illustration of bi-level optimization with three
initializations {θ(m)}3m=1. (a) TSA-MAML selects one

initialization with the smallest loss. (b) MUSML
separately fine-tunes and meta-updates each

initialization. (c) XB-MAML forms the initialization θ⋆

via linear combination and jointly meta-updates them.

Table 1: Comparisons of multi-initialization meta-learners

Methods

TSA-MAML MUSML XB-MAML
Expandability ✗ ✗ ✓

Use of initial.
in training

Select & update
the best one

Parallelly
use & update

Linear
combination

Use of initial.
in testing

Use the best one Use the best one
Linear

combination

Extra modules
Pretrained
MAML

Subspaces
(FC Layers)

✗

training of MAML. Lastly, for each task, the best ini-
tialization with the smallest loss is selected and meta-
updated so that TSA-MAML is limited to naively par-
titioning the task distribution into clusters.

Learning Subspaces Another noteworthy approach
called MUSML (Jiang et al. (2022)) introduces sub-
space learning and leverages multi-initializations. This
method quickly learns the significance of subspaces,
which consist of simple additional fully connected lay-
ers placed right after the feature extractor, effectively
serving as a classifier. MUSML parallelly fine-tunes
initializations to the given task and meta-updates
them with weighed loss, i.e., a large weight is assigned
for the initialization with a smaller meta-loss. The
process allows multi-initializations to be located prop-
erly for covering the task distribution. As TSA-MAML
does, however, MUSML does not address a combina-
torial usage of multi-initializations.

It is crucial to acknowledge that the aforementioned
methods rely on a predefined number of initializa-
tions. It prohibits the prior methods to expand the
size of initializations even if additional initializations
are required. In contrast, our XB-MAML adaptively
increases initializations if they are needed. We em-
phasize that XB-MAML provides a collaborative way
of multiple initializations by linearly combining them
to build an effective initialization for the given task.
This enables XB-MAML to meta-train the basis of pa-
rameters that are required to further stretch out the
initialization to the near side of task-specific parame-

ters, which has never been anticipated by the related
works. In Figure 1 and Table 1, the key differences of
XB-MAML and the related works are presented.

3 METHOD: XB-MAML

3.1 Preliminaries

Problem Formulation We follow the episode con-
struction for N -way K-shot few-shot classification set-
ting with the support/query protocol (Vinyals et al.
(2016)). Specifically, we sample a batch of tasks
{Ti}Bi=1 = {(Si,Qi) : i = 1, · · · ,B}, where each task
Ti is sampled from the task distribution p(T ). Here,
B is the number of tasks in a batch, and Si and Qi

represent the support and query sets of Ti. To elabo-
rate further, Si andQi consist sets of input-label pairs:
Si = {(xS

i,j , y
S
i,j)}Kj=1 and Qi = {(xQ

i,j , y
Q
i,j)}

Q
j=1, where

Si contains K samples, referred to as the number of
shots, and Q represents the number of query samples.

We introduce additional notations for clarity: f(·; θ)
denotes the output from the model parameterized by
θ ∈ Rd. Also, L(D; θ) = 1

|D|
∑

(x,y)∈D l(f(x; θ), y) is

the averaged loss value for the samples in dataset D
with loss function l(·, ·).

Review of MAML MAML by Finn et al. (2017)
involves bi-level optimization of inner and outer
loop processes. Through repetitive learning {Ti}Bi=1,
MAML optimizes an θ tailored to the bi-level opti-
mization. In the inner loop, initialization θ is rapidly
updated for the task using support set Si. We labeled
the process as Inner-Loop(θ, k), where k is the num-
ber of updates in the inner loop (referring Equation
1). In the equation, we assume one-step fine-tuning
with k = 1 to obtain task parameter ϕi from θ. In the
outer loop, the initialization is meta-updated based on
the loss incurred by processing query set Qi with the
fine-tuned parameter (referring Equation 2).

ϕi ← θ − α∇θL(Si; θ) (1)

θ∗ ← θ − β

B
∇θ

B∑
i=1

L(Qi;ϕi), (2)

where α and β are the learning rates for inner and
outer optimization, respectively. By repeating the in-
ner and outer loop optimization via task batches, the
initialization θ converges to the meta-trained initial-
ization θ∗ which is ready for quickly adapting to a
given novel task.

3.2 Overview of the Proposed Method

Our XB-MAML handles multiple initializations so
that we newly denote the set of initializations, i.e.,
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Θ = {θ(m)}Mm=1, where M is the number of initializa-
tions. Here, we describe our method by letting M as
a variable, but it does not lose generality in present-
ing the methodology. After that, we present the algo-
rithmic way to increase M to incorporate additional
initialization. When focusing on inner and outer op-
timizations of XB-MAML for task Ti, it starts from
computing the loss value by processing the given sup-
port samples with each initialization parameter, i.e.,

{L(m)
i }Mm=1. XB-MAML then prepares a new initial-

ization θ⋆i which is the linear combination of multi-

initializations with coefficients {σ(m)
i }Mm=1 from soft-

max computation of the minus losses {−L(m)
i }Mm=1:

θ⋆i =

M∑
m=1

σ
(m)
i θ(m). (3)

θ⋆ is then further fine-tuned within the support set, as
done by MAML (referring Equation 1), and evaluated
on the query sets. Along with the loss from queries,
we additionally apply a regularization loss Lreg by cal-
culating the dot products between multi-initializations
in order to enforce the orthogonality between initial-
izations:

L(m)
total,i = L(Qi;ϕ

⋆
i ) + L(m)

reg (4)

Finally, θ⋆ is meta-updated in accordance, where the
meta-update chains are further linked to the multi-
initializations so that M initializations are eventually
meta-updated:

θ(m) ← θ(m) − β

B

B∑
i=1

∇θ(m)L(m)
total,i (5)

In Equation 4 and 5, formulas are given per initializa-
tion. Through the iterative process as done by MAML,
XB-MAML meta-trains multiple initializations. The
pseudocode of the process is described in Algorithm 1.
In line 14, Algorithm 2 determines whether we expand
the basis, so let us describe the exact rule for the basis
expansion as follows.

3.3 Expandable Basis Parameters

In this section, we describe how XB-MAML expands
the multi-initializations. For given Θ, each individual
initialization can be regarded as linearly independent
due to the regularization loss so that it forms a basis in
its parameter space. According to the formal definition
of a basis, Θ can construct subspace V ∈ RM×d within
the parameter space with rankM . XB-MAML aims to
utilize the multi-initializations as bases to cover space
V , which is the key process to obtain a wide range of
tasks. Consequently, when task parameters are hard
to be represented on space V , we trigger to increase

Algorithm 1 Training procedures for XB-MAML

Hyperparameter: k: number of inner loop steps,
B: batch size, γ: temperature scaling factor,
η: regularization hyperparameter
Require: p(T ): task distribution,
Require: {Ti}Bi=1, where Ti ∼ p(T )
Parameter: Θ = {θ(m)}Mm=1: Set of initializations

1: Initialize Θ
2: while not done do
3: for i = 1 : B do
4: {L(m)}Mm=1 = {L(Si; θ(m))}Mm=1

5: {σ(m)
i }Mm=1 = exp(−L(m)/γ)∑

(m′) exp(−L(m′)/γ)

6: θ⋆i =
∑M

m=1 σ
(m)
i θ(m)

7: ϕ⋆
i = Inner-Loop(θ⋆, k)

8: end for
9: for m = 1 : M do

10: L(m)
reg = η

M−1

∑
m!=j θ

(m) · (θ(j))⊺

11: {L(m)
total,i}Bi=1 = {L(Qi;ϕ

⋆
i ) + L

(m)
reg }Bi=1

12: θ(m) ← θ(m) − β
B
∑B

i=1∇θ(m)L(m)
total,i

13: end for
14: Apply Algorithm 2
15: end while

Algorithm 2 Expanding basis for XB-MAML

Require: ϕ⋆
i : finetuned parameters

Require I: index of epoch, B: batch size
Hyperparameter: c: threshold

1: Initialize E [I] = 0, count = 0
2: Construct Subspace

V = span
{
θ(1), θ(2), . . . , θ(M)

}
3: for i = 1 : B do
4: ϕ⋆

i,proj : Projection ϕ⋆
i onto subspace V

5: ϵ =
||ϕ⋆

i −ϕ⋆
i,proj ||

2
2

||ϕ⋆
i ||22

6: E [I]+ = ϵ/B
7: end for
8: if E [I] > E [I − 1] then
9: count = count + 1

10: else
11: count = 0
12: end if
13: if count > c then
14: Add initial model ▷ Eq.6
15: end if

the number of initializations. It can be understood as
the expansion of the rank of Θ from M → M + 1.

Condition for Expanding Basis We introduced an
intuitive metric to determine whether increasing the
model parameters is necessary. As shown in Algo-
rithm 2, we first make a subspace V within the set of
basis vectors {θ(m)}Mm=1. After executing the process
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Figure 2: The conceptual illustrations of XB-MAML: (a) outlines the XB-MAML learning process.
(b) illustrates the visual representation of the scenario that XB-MAML expands extra basis.

outlined in lines 3-13 of Algorithm 1, it projects the
fine-tuned parameters ϕ⋆ into its subspace S, which
is represented as ϕ⋆

proj . Following this, we calculate

the ratio between ||ϕ⋆−ϕ⋆
proj ||22 and ||ϕ⋆||22, denoted as

ϵ =
||ϕ⋆−ϕ⋆

proj ||
2
2

||ϕ⋆||22
, which serves as the primary metric for

deciding whether to increase the initial model param-
eters or not. When task parameters ϕ⋆ largely deviate
from space V spanned by the meta-trained initializa-
tions, ϵ increases. It says that XB-MAML should in-
crease the rank of basis to cover the diverged task pa-
rameters. After the sufficient training without adding
extra initialization, there comes a point where ϵ starts
to rise, signifying that the gap between ϕ⋆ and ϕ⋆

proj

becomes more significant than the power of ϕ⋆. This
phenomenon indicates that the projection error gains
prominence. Based on the intuition, when ϵ continues
to increase during the number of episodes, it becomes
necessary to add more initializations. Specifically, for
the current batch at I-th epoch, ϵ values are averaged
across the tasks, i.e., E [I]+ = ϵ/B. When E [I] is larger
than the previous one, i.e., E [I] > E [I−1], we increase
a counter by +1. When the counter reaches a certain
threshold c, it adds extra initialization. Algorithm 2
fully describes the condition for basis expansion.

Way to Expand Basis Instead of naively opting for
a random parameter as an additional initialization, we
employ a particular strategy involving the sampling of
parameters from a probabilistic perspective. We build
a Gaussian distribution with the average of the cur-
rent initializations for mean, and white noise λI, where
λ controls the variance and I ∈ Rd×d is an identity
matrix. We sample additional basis θ(M+1) from the
Gaussian distribution:

θ(M+1) ∼ N (µ, λI), (6)

where µ is the average parameter of Θ. This proba-
bilistic sampling allows XB-MAML to explore stochas-
tic variants of the new initialization. Although the

newly adopted basis is not forced to be orthogonal to
the current bases, we confirm that XB-MAML quickly
tunes the new basis to be orthogonal to search addi-
tional dimension. The overall outline of XB-MAML1

is illustrated at Figure 2.

4 EXPERIMENTS

In this section, we present a comprehensive overview of
experimental settings and results. We start by provid-
ing detailed descriptions of the experimental settings.
Moreover, our observations demonstrate the improve-
ment of our XB-MAML in few-shot classification for
multiple and cross-domain classifications, surpassing
the performance of previous studies. Additional re-
sults, such as single-domain datasets and their cross-
domain classification, or experiments on larger back-
bone, are provided in Appendix C.

4.1 Experimental Settings

Datasets Description We primarily utilized bench-
mark datasets for our experiments of classification,
which have been commonly used in previous works.
Specifically, we employed three multi-domain datasets:
Meta-Datasets-ABF/BTAF/CIO (Yao et al. (2019),
Zhou et al. (2021), Jiang et al. (2022)). In addi-
tion, we also included three experiments on single-
domain datasets: CIFAR-FS, mini -ImageNet, and
tiered -ImageNet (Bertinetto et al. (2019), Ravi and
Larochelle (2017), Ren et al. (2018)). Detail descrip-
tions of each dataset is provided in Appendix A.

Hyperparameters Settings For the learning rates,
we use α = 0.05 and β = 0.0007 for the inner and
outer loop. We conducted training up to 80,000 epochs
across multiple datasets, with a batch size of 2. During

1XB-MAML github code is available at https://
github.com/johnjaejunlee95/XB-MAML

https://github.com/johnjaejunlee95/XB-MAML
https://github.com/johnjaejunlee95/XB-MAML


XB-MAML: Learning Expandable Basis Parameters for Effective Meta-Learning

Table 2: 5-way 5-shot accuracies on Meta-Datasets-ABF with 95% confidence intervals

Methods AIRCRAFT BIRD FUNGI Average

MAML (Finn et al. (2017)) 69.70 ± 0.33 68.36 ± 0.72 53.65 ± 0.93 63.91
ProtoNet (Snell et al. (2017)) 70.07 ± 0.14 71.49 ± 0.25 54.21 ± 0.31 65.26
HSML (Yao et al. (2019)) 68.29 ± 0.56 70.11 ± 0.85 56.28 ± 1.01 64.89
ARML (Yao et al. (2020)) 69.94 ± 0.78 71.55 ± 0.33 53.61 ± 0.89 65.04

TSA-MAML (5 init) (Zhou et al. (2021)) 74.67 ± 0.77 71.06 ± 0.14 55.68 ± 0.27 66.14
MUSML (3 init) (Jiang et al. (2022)) 75.46 ± 0.89 70.01 ± 0.56 50.40 ± 0.75 65.29

XB-MAML (4 init) 74.39 ± 0.38 75.17 ± 0.67 56.85 ± 0.14 68.80

MUSML(3 init) + Transduction 79.23 ± 0.98 76.21 ± 0.77 58.24 ± 0.80 71.22
XB-MAML(4 init) + Transduction 77.62 ± 0.89 77.78 ± 0.39 58.34 ± 0.14 71.24

Table 3: 5-way 5-shot accuracies on Meta-Datasets-BTAF with 95% confidence intervals

Methods BIRD TEXTURE AIRCRAFT FUNGI Average

MAML (Finn et al. (2017)) 67.69 ± 0.89 45.91 ± 0.54 66.93 ± 0.45 50.43 ± 0.80 57.74
ProtoNet (Snell et al. (2017)) 71.97 ± 0.74 47.65 ± 0.49 69.96 ± 0.87 54.49 ± 0.41 60.02
HSML (Yao et al. (2019)) 72.01 ± 0.65 49.00 ± 0.96 70.34 ± 0.68 55.21 ± 0.80 61.64
ARML (Yao et al. (2020)) 71.30 ± 0.44 50.48 ± 0.22 70.44 ± 0.80 56.76 ± 0.56 62.25

TSA-MAML (5 init) (Zhou et al. (2021)) 68.05 ± 0.94 49.61 ± 0.33 73.99 ± 0.46 53.36 ± 0.20 62.25
MUSML (4 init) (Jiang et al. (2022)) 70.84 ± 0.32 49.63 ± 0.98 75.73 ± 0.65 49.74 ± 0.75 61.91

XB-MAML (5 init) 75.49 ± 0.12 50.95 ± 0.93 73.33 ± 0.16 57.15 ± 0.71 64.23

MUSML (4 init) + Transduction 75.32 ± 0.33 52.69 ± 0.15 77.01 ± 0.92 56.67 ± 0.81 65.45
XB-MAML (5 init) + Transduction 75.45 ± 0.90 53.90 ± 0.85 76.11 ± 0.43 58.34 ± 0.93 66.20

Table 4: 5-way 5-shot accuracies on Meta-Datasets-CIO with 95% confidence intervals

Methods CIFAR-FS mini -ImageNet Omniglot Average

MAML (Finn et al. (2017)) 68.72 ± 0.43 59.84 ± 0.97 96.51 ± 0.68 75.02
ProtoNet (Snell et al. (2017)) 69.53 ± 0.72 61.40 ± 0.64 97.67 ± 0.20 76.20
HSML (Yao et al. (2019)) 70.81 ± 0.97 62.45 ± 0.44 96.34 ± 0.11 76.53
ARML (Yao et al. (2020)) 70.40 ± 0.57 62.89 ± 0.48 96.80 ± 0.14 76.70

TSA-MAML (5 init) (Zhou et al. (2021)) 69.35 ± 0.26 61.20 ± 0.20 98.65 ± 0.02 76.40
MUSML (3 init) (Jiang et al. (2022)) 67.97 ± 0.65 59.00 ± 1.64 92.99 ± 0.41 73.41

XB-MAML (6 init) 74.90 ± 0.35 65.63 ± 0.12 98.89 ± 0.09 79.81

MUSML (3 init) + Transduction 75.03 ± 0.38 65.54 ± 0.54 96.84 ± 0.11 79.14
XB-MAML (6 init) + Transduction 76.87 ± 0.73 68.66 ± 0.53 98.41 ± 0.04 81.31

meta-validation/test, we evaluated model performance
on 600 tasks for each dataset in the multiple datasets.
Lastly, to ensure a fair comparison, we reproduced all
compared approaches via PyTorch, including MAML,
ProtoNet, HSML, ARML, TSA-MAML, and MUSML.
Moreover, because some methods used augmentations
while others did not, we opted not to apply augmen-
tations except normalization to all methods, including
ours. Details of the hyperparameter settings are pro-
vided in Appendix B.2.

4.2 Results

Multiple Domain Datasets Classification Tables
2, 3, and 4 demonstrate the outstanding results of XB-
MAML in the 5-way 5-shot classification. This per-

formance gain remains consistent across three multi-
domain datasets: Meta-Datasets-ABF/BTAF/CIO.
The most significant enhancement is observed inMeta-
Datasets-CIO, which surpasses previous methods by
approximately +3%. We also achieve performance
gains of around +2% on remaining datasets.

Transduction Setting Since the original MUSML
(Jiang et al. (2022)) applies a transduction setting
that utilizes both support and query sets for task-
adaptation, we ran experiments in a similar transduc-
tion setting for the comparison, as referenced by TPN
(Liu et al. (2019b)). TPN modifies loss term with ad-
ditional regularization by:

Ltrans = Ltotal +

N∑
i=1

N∑
j=1

W(i,j)||f(xi;ϕ)− f(xj ;ϕ)||22
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where, W(i,j) = exp
(
− 1

2η2 ||fe(xi;ϕ)− fe(xj ;ϕ)||22
)

Here, N = N × Ns + Nq, where N , Ns, and Nq is
the number of ways and the number of samples in the
support and query sets. Additionally, fe(·;ϕ) is the
output from backbone of the model parameterized by
ϕ, yielding feature representation vectors, while η is a
scaling factor fixed at a value of 0.25. As the result,
our method still outperforms MUSML at experiments
in transduction settings.

Cross-domain ClassificationWe also conducted ex-
periments with cross-domain datasets, where a model
is trained on one specific domain and then evaluated
on other unseen domains. The results presented in Ta-
ble 5 reveal a substantial performance improvement,
with a gain of approximately up to +4%. This out-
come validates that XB-MAML effectively generates
effective initial model parameters in unseen domains.
Here, we abbreviated Meta-datasets-ABF/BTAF/CIO
as ABF/BTAF/CIO.

Table 5: 5-way 5-shot cross-domain classification

Methods MAML TSA-MAML MUSML XB-MAML

ABF→BTAF 58.27 58.67 57.96 61.15
ABF→CIO 60.82 62.90 62.35 66.73

BTAF→ABF 63.84 65.79 64.08 68.53
BTAF→CIO 62.69 64.24 62.99 69.82

CIO→ABF 46.38 48.58 48.55 51.60
CIO→BTAF 44.31 46.24 45.89 49.03

5 ANALYSIS

5.1 t-SNE Visualization

t-SNE plots could be one of the effective choices to il-
lustrate the distributions of model parameters. We
illustrate the t-SNE visualization of the fine-tuned
parameters and all initialization parameters across
multiple datasets, particularly focusing on the Meta-
Datasets-ABF experiments. As shown in Figure 3, it
is evident that the initialized model parameters are
well-distributed (depicted by the colored marker ⋆),
while the fine-tuned parameters have been clustered
according to their respective datasets (depicted by the
colored dots). Notably, Figure 3b demonstrates the
alignment of coefficients with the t-SNE visualization
concept. For instance, the coefficient associated with
the AIRCRAFT dataset represents the largest value
in θ(1), and this corresponds to the proximity of θ(1)

to the AIRCRAFT cluster. Furthermore, it is note-
worthy that θ(4) has a comparatively less impact than
the others, but still crucial in adapting to various do-
mains, which is positioned in a way that facilitates
easy adaptation to any domain.

𝜽 𝟏   

𝜽 𝟐

𝜽 𝟑  

𝜽 𝟒  

FUNGI  

BIRD

AIRCRAFT

(a) t-SNE Visualization

𝜽 𝟐 𝜽 𝟑 𝜽 𝟒𝜽 𝟏

(b) Normalized Coefficients σ

Figure 3: Visualization results in Meta-Datasets-ABF. (a)
illustrates a t-SNE plot comparing the finetuned parame-
ters and initial model parameters. (b) represents the aver-
age normalized coefficients σ indicating the impact of each
θ(m) when linearly combined with the datasets.

5.2 Tendency of ϵ

Figure 4 displays the impact of our parameter addition
metric. When the moving average shows a sustained
rise over multiple epochs, we decide to add more ini-
tial model parameters. We selected a threshold c as
500, to monitor the behavior of ϵ for a certain steps.
The sudden rise in ϵ, almost up to 1, is due to the
instability in constructing the subspaces after adding
an initialization. This instability occurs when increas-
ing the number of initializations. However, it rapidly
decreases and converges within a few steps, indicat-
ing that it stabilizes in constructing the basis. After
a few steps of adopting new initializations, ϵ settles
down near to 0, which means that the introduced ini-
tializations are sufficient to cover the task distribution.

Figure 4: ϵ on Meta-Datasets-BTAF

5.3 Singular Value Decomposition

Figure 5 displays the normalized singular values at
each datasets from Singular Value Decomposition
(SVD) of the multi-initializations. All singular val-
ues fall within the range of approximately 0.1 to 0.3.
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These results ensure that no single model parameter
dominates, and most model parameters exhibit simi-
larity, in all datasets. Also, this observation implies
that the majority of model parameters has spanned
effectively in parameter space.
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Figure 5: Normalized singular values of initializations

5.4 Computational Complexity

As our method adaptively increases the number of ini-
tializations, concerns about computational costs may
arise. To address these concerns, we conducted a com-
parative analysis of our approach and two other meth-
ods in terms of computational complexity. We assume
that the computational complexity of the forward and
backward processes is O(n), where n represents the
number of model weight parameters. Additionally,
we assume that the backpropagation during the outer
loop process is O(n2), which includes the Hessian ma-
trix computation. M denotes the number of initial-
izations. As a result, our approach demonstrates effi-
ciency, imposing no substantial computational burden
in comparison to others, as demonstrated in Table 6.

Table 6: Analysis of computational complexity

Methods Inner Loop Outer Loop Total

TSA-MAML O(3n) O(n2) O(n2)
MUSML O(M(n+ 2n′))† O(Mn2)†† O(Mn2)

XB-MAML O((M + 2)n) O(n2) O(n2)

†: n′ is the number of subspace weight parameters in
MUSML (Jiang et al. (2022)).
††: Applied relaxation operation, which can be updated
model parameters simultaneously (Liu et al. (2019a)).

5.5 Ablation Studies

Fixed Number of Model Parameters In the abla-
tion study, we first introduced a variant of XB-MAML
that trains with a fixed number of initialized models,
given the same hyperparameter settings. For instance,
as XB-MAML utilizes 6 initializations in the case of
Meta-Datasets-CIO, we compare it with a variant of
XB-MAML that maintains this number of initializa-
tions at 6 from the beginning of the training. The
results presented in Figure 6 and Table 7 demonstrate
that starting with a single initialized model proves to
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Figure 6: Validation accuracies of XB-MAML and
XB-MAML+fixed

Table 7: Results of XB-MAML and XB-MAML+fixed

Datasets XB-MAML XB-MAML+fixed

ABF (4 init) 68.80 ± 0.47 67.43 ± 0.38
BTAF (5 init) 64.23 ± 0.55 62.19 ± 0.76
CIO (6 init) 79.81 ± 0.23 77.35 ± 0.14

be more efficient than starting with a fixed number of
model. First, Figure 6 illustrates this efficiency, which
is particularly noticeable in the faster convergence
of XB-MAML compared to XB-MAML+fixed. Also,
Table 7 highlights the final outcomes, indicating that
XB-MAML outperforms XB-MAML+fixed with the
latter representing method that starts with a fixed
number of initialized models.

Other Choices to Compute σ When answering
the reason why we choose ‘Softmax of minus-loss’
(exp(−L)) method in computing σ, we opt to use a
simple function that outputs a larger positive σ(m)

when the loss L(m) is small, ensuring normalized σ,
likewise the attention module. This directly makes us
to choose ‘Softmax of minus-loss’. For the ablation
study, we additionally compared our method to other
choices, including ‘Equal coefficient’, where σ(m) =
1/M , ‘Inverse loss coefficient’, where σ(m) = 1/L(m),
and ‘Softmax of minus-loss ×M ’, where M exp(−L),
ensuring that the sum of all values exceeds 1. As the
results in Table 8, our choice is shown to be the best.

Table 8: Results of the various ways to compute σ

1/M 1/L M exp (−L) exp (−L)

ABF 65.32 68.30 64.67 68.80
BTAF 61.57 63.98 61.04 64.23
CIO 76.18 77.34 76.62 79.81
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Sensitivity of c As an ablation on c, which deter-
mines the expansion of bases as described in Algo-
rithm 2, we deviated it from 250 to 1,000. As the
results, shown in Table 9, we found that c = 500 is the
best. This observation suggests that too small value of
c leads to more frequent addition of a new basis, which
hinders sufficient training. Also, too large c could sup-
press the expansion of the basis, which hampers the
ability to cover a wide range of task distribution.

Table 9: Accuracies for various choices of c

c 250 500 750 1000

ABF 67.68 (6 init) 68.80 (4 init) 67.00 (2 init) 64.02 (1 init)
BTAF 63.29 (8 init) 64.23 (5 init) 62.99 (2 init) 58.12 (1 init)
CIO 75.39 (10 init) 79.81 (6 init) 77.91 (4 init) 77.46 (3 init)

Sensitivity of λ As our method relies on Gaus-
sian sampling when adding additional initializations,
the hyperparameter λ plays a crucial role in control-
ling the variance of the resulting Gaussian distribu-
tion. To explore its impact, we conducted the ab-
lation studies with varying values of λ, specifically
λ = {0.005, 0.01, 0.05, 0.1}. As shown in Fig-
ure 7, we provided experimental results on multi-
domain datasets with several choices of λ. These re-
sults clearly show that selecting an appropriate value
for λ is important for achieving better performance.
When λ becomes too large or too small, it adversely
impacts the performance. A large λ introduces high
uncertainty in the sampling process, hindering effec-
tive learning. Conversely, a small λ results in a sam-
pling process that closely samples around the current
initializations, which could disrupt the construction of
an optimal subspace to cover the task distribution. We
use λ = 0.01, which shows the best performance.

𝝀𝝀

Figure 7: Sensitivity of λ

The Effect of Number of Initializations Here, we
analyze the impact of the allowed maximum number
of initializations of XB-MAML. When only 2 initial-

izations are allowed, we stop expanding the initializa-
tions beyond 2. As shown in Table 10, the results
indicate that while performance begins to converge at
4 initializations, further increasing the number of ini-
tializations still enhances performance. This suggests
that having an adequate number of initialized models
is essential. Also, the results confirm that XB-MAML
gradually expands its initializations to reach the opti-
mal rank.

Table 10: Results with the various maximum number of
initializations for Meta-Datasets-CIO

Datasets 1 init 2 init 3init 4 init 5 init 6 init

CIO 75.02 77.76 78.27 79.44 79.38 79.82

The Effect of Lreg As our approach introduces an
additional dot product regularization loss to encourage
orthogonality among the initial model parameters, it
prompts questions about how this regularization loss
influences the span of the set Θ, which acts as a basis,
and overall performance. Table 11 shows that without
Lreg, XB-MAML fails to fully span the initializations
and to enforce orthogonality (as indicated by cosine
similarity), leading to the performance degradation.

Table 11: Results with Lreg for Meta-Datasets-ABF

Loss Accuracy Cosine Similarity†

With Lreg 68.80 ± 0.47 3.95×10−5

Without Lreg 64.32 ± 0.76 7.50× 10−1

†: Averaged cosine similarity between initializations

6 CONCLUSION

We introduce XB-MAML, a novel meta-learning ap-
proach that adaptively increases the number of ini-
tialized models and refines the initialization points
through linear combinations, contributing to more effi-
cient meta-learning. The extensive analysis illustrates
that XB-MAML competently covers complex and di-
verse task distributions, particularly in the context
of multi-domain and cross-domain classification. Fur-
thermore, we enhanced the performance by treating
initialized models as bases, and enforcing orthogonal-
ity among them through regularization loss, resulting
in the improved performance compared to the absence
of such regularization. Finally, our method achieved
state-of-the-art results on multi-domain datasets and
their cross-domain classifications. We hope this work
could provide new perspectives in the research field of
meta-learning when solving diverse unseen tasks.
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XB-MAML: Supplementary Materials

A DATASET DESCRIPTION

A.1 Single-domain Datasets

mini-ImageNet: mini -ImageNet, as introduced by Vinyals et al. (2016), contains 100 classes with 600 images
each, where the images have a size of 84×84×3. It is derived from a subset of the ImageNet dataset (Deng et al.
(2009)). The data split follows the protocols proposed by Ravi and Larochelle (2017), involving 64 classes for
the training split, 16 classes for the validation split, and 20 classes for the test split.

tiered-ImageNet: tiered -ImageNet, first referenced by Ren et al. (2018), is composed of 608 classes distributed
across 34 categories, and the images have a size of 84×84×3, which is derived from ImageNet datasets. Among
these categories, 20 are allocated for training, 6 for validation, and 8 for testing. Each category further contains
a varying number of classes. In total, the training split contains 351 classes with 448,695 images, the validation
split contains 97 classes with 124,261 images, and the test split contains 160 classes with 206,209 images.

CIFAR-FS: CIFAR-FS is originally comprised by Bertinetto et al. (2019). This dataset is constructed by
randomly sampling from CIFAR-100 datasets (Krizhevsky et al. (2010)), and it follows a similar data splitting
strategy as the mini -ImageNet case. The images in CIFAR-FS have a size of 32×32×3 and are divided into
64/16/20 classes for train/validation/test splits, where each class containing 600 images.

A.2 Multiple-domain Datasets

We present three multi-domain datasets for classification, denoted as Meta-Datasets-ABF/BTAF/CIO. The
dataset labels are defined as follows: ‘A’ for Aircraft, ‘B’ for Bird, ‘C’ for CIFAR-FS, ‘F’ for Fungi, ‘I’ for mini -
ImageNet, ‘O’ for Omniglot, and ‘T’ for Texture. All the images in these datasets have been resized to 84×84×3.
Additionally, as following the work by Yao et al. (2019), we have partitioned each of these datasets into 64/12/20
for Train/Validation/Test splits, with the exception of the Omniglot and Texture cases. We provide descriptions
for all datasets except CIFAR-FS and mini -ImageNet, which are covered separately in Section A.1.

Aircraft: The Aircraft dataset, officially published by Maji et al. (2013), consists of images of 102 different
types of aircraft, with 100 images for each type.

Bird: The Bird dataset, proposed by Wah et al. (2011), comprises 200 different bird species and a total of 11,788
images. In alignment with the protocol presented in the work by Yao et al. (2019). We have randomly chosen
100 bird species, each with 60 images.

Fungi: The Fungi dataset contains 1,500 distinct fungi species that has more than 100,000 images, which has
been introduced by beejisbrigit (2018). We filtered out species with fewer than 150 images, following the method
described in Yao et al. (2019). Subsequently, we have randomly selected 100 species, each having 150 images.

Omniglot: The Omniglot dataset proposed by Lake et al. (2015) comprises 20 instances within 1,623 characters
from 50 different alphabets. Specifically, each instance is handwritten by different persons. We have splitted
1623 characters into 792/172/659 for Train/Validation/Test.

Texture: The Texture dataset comprises 5,640 texture images from 47 classes, with each class containing 120
images, which has been provided by Cimpoi et al. (2014). In addition, we split these classes into 30/7/10 for
Train/Validation/Test.
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B MODEL AND HYPERPARAMETER DESCRIPTION

B.1 Model Architecture

We adopt standard Conv-4 backbone (Vinyals et al. (2016); Finn et al. (2017)) with four convolutional blocks
as a feature extractor. Each block comprises 3×3 convolutional layers with 64 filters, 1 stride, 1 padding, along
with a batch normalization layer, ReLU activation functions, and 2×2 max pooling (Conv 3×3 - BatchNorm -
ReLU - MaxPool 2×2). In last, we use a linear classifier that involves adding a fully-connected layer at the end
of the Conv-4 backbone. All implementations follow the framework provided by Torchmeta (Deleu et al. (2019)).
All our experiments were run on a single NVIDIA RTX A5000 or A6000 processor.

B.2 Hyperparameters Settings

We adopt the following hyperparameter settings described in Table 12.

Table 12: Hyperparameter Settings

Settings Single-Domain Datasets Multi-Domain Datasets

Epochs 60,000 80,000
Batch Size (1-shot, 5-shots) 4, 2 4, 2

Inner-Loop Update Steps (Train, Test) 3, 7 3, 7
Inner-Loop Learning Rate (α) 0.03 0.05
Outer-Loop Learning Rate (β)∗ 0.001 0.001

Epoch Threshold (c) 500 500
White Noise (λ) 0.01 0.01

Temperature Scaling (γ) 5 8
Dot Products Regularizer (η) 0.0005 0.001

∗: We decrease β by multiplying 0.8 at every 20,000 epochs.

C ADDITIONAL RESULTS

C.1 Single Datasets Classification

In this section, we present the evaluation results on the single-domain datasets classification, which were excluded
from the main paper due to space limitations. Table 13 showcases the 5-way 5-shot performance of XB-MAML in
single datasets classification, demonstrating notable improvements compared to other approaches, achieving an
improvement of approximately +1%. These results highlights the effectiveness of XB-MAML in handling single-
domain datasets and its outstanding performance in comparison to existing methods, akin to its performance in
multi-domain datasets.

Table 13: 5-way 5-shot Accuracies on single-domain datasets with 95% confidence intervals

Methods CIFAR-FS mini -ImageNet tiered -ImageNet

MAML (Finn et al. (2017)) 72.41 ± 0.28 63.54 ± 0.19 65.58 ± 0.15
ProtoNet (Snell et al. (2017)) 72.48 ± 0.29 66.17 ± 0.15 68.32 ± 0.14
HSML (Yao et al. (2019)) 74.34 ± 0.37 65.11 ± 0.32 67.18 ± 0.45
ARML (Yao et al. (2020)) 74.76 ± 0.56 65.56 ± 0.71 67.77 ± 0.63

TSA-MAML (5 init) (Zhou et al. (2021)) 72.74 ± 0.19 64.29 ± 0.11 66.40 ± 0.24
MUSML (2 init) (Jiang et al. (2022)) 73.09 ± 0.79 64.46 ± 0.32 68.05 ± 0.31

XB-MAML∗ 75.82 ± 0.26 66.69 ± 0.56 68.91 ± 0.38

∗: XB-MAML finally adopts 2 for CIFAR-FS, and 4 initializations for both mini & tiered-ImageNet.
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C.2 Additional Results for Cross-domain Classification

We provide additional results for cross-domain classification, as shown in Table 14. Our method exhibits out-
standing performance compared to other approaches, with consistent improvements of up to approximately +1%.
It confirms that XB-MAML is consistently effective for the various cases of cross-domain settings.

Table 14: 5-way 5-shot accuracies on cross-domain classification

Train Datasets CIFAR-FS mini -ImageNet tiered -ImageNet

Test Datsets mini tiered CIFAR tiered CIFAR mini

MAML (Finn et al. (2017)) 55.97 51.30 59.14 56.52 56.93 57.89
TSA-MAML (Zhou et al. (2021)) 56.43 51.87 60.21 59.34 60.34 61.84
MUSML (Jiang et al. (2022)) 56.79 52.30 60.23 59.69 60.92 61.23

XB-MAML 57.67 53.40 61.58 61.74 61.91 62.01

C.3 Additional Results in Bigger Backbone

Given that previous experiments were conducted exclusively using the Conv-4 backbone, there could be some
concerns that how XB-MAML would work in a larger backbone. Consequently, we also experimented with
ResNet-12, which is also widely utilized as a standard backbone in the meta-learning field. As shown in Table
15, XB-MAML also shows the best performance in the ResNet-12 backbone compared to other methods. In-
terestingly, the number of bases decreased to 2 or 3. We conjecture that it is due to the sufficient number of
parameters already given in the larger backbone that reduces the demands of additional initializations. These
results are based on the average of 3 experimental runs.

Table 15: Multi-domain classification results with the ResNet-12 backbone

MAML TSA-MAML XB-MAML

ABF 67.76 68.28 70.83 (2 init)
BTAF 63.57 65.02 67.60 (2 init)
CIO 82.46 82.74 84.03 (3 init)

D ADDITIONAL ABLATION STUDIES

In the recent investigation of the meta-learning research field, the significance of the feature extractor and classifier
has become more pronounced, prompting an investigation into which one has a greater impact on performance.
ANIL by Raghu et al. (2020) suggests that rapid adaptation of the classifier can only yield performance results
nearly to MAML (Finn et al. (2017)), which encourages the reuse of a single feature representation across tasks.
In contrast, BOIL (Oh et al. (2021)) argues that fine-tuning the feature extractor during the inner loop with
fixed classifiers proves exceptionally effective where it leverages the diversity of feature representations.

Hence, we investigate the efficacy of the feature extractor, i.e., body, and classifier, i.e., head, in the context
of our approach. We divide the analysis into two components: increasing the classifier only and increasing
the feature extractor only. We denote these variants of XB-MAML as XB-MAML-head and XB-MAML-body,
where multi-heads are adopted with a single-body initialization and multi-bodies are adopted with a single-head
initialization, respectively. Here, we itemize the related key questions as follows:

Q1 Is it essential to introduce a number of classifiers to manage a wide range of task distributions?

Q2 Is it required to introduce multiple feature extractors to effectively extract the diverse and complex
representations across domains?

Q3 Is there any synergy of multi-body and multi-head in XB-MAML?
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Table 16: 5-way 5-shot accuracies on XB-MAML and its variants with 95% confidence intervals

Domain Datasets XB-MAML XB-MAML-head XB-MAML-body

Single
CIFAR-FS 75.82 ± 0.26 (2 init) 73.17 ± 0.19 (2 init) 74.02 ± 0.46 (3 init)

mini -ImageNet 66.69 ± 0.56 (4 init) 63.12 ± 0.35 (2 init) 64.12 ± 0.21 (3 init)
tiered -ImageNet 68.91 ± 0.38 (4 init) 67.05 ± 0.26 (2 init) 67.54 ± 0.36 (3 init)

Multi
Meta-Datasets-ABF 68.80 ± 0.49 (4 init) 66.94 ± 0.18 (2 init) 67.84 ± 0.73 (8 init)
Meta-Datasets-BTAF 64.23 ± 0.27 (5 init) 61.24 ± 0.24 (2 init) 63.95 ± 0.49 (8 init)
Meta-Datasets-CIO 79.81 ± 0.11 (6 init) 77.50 ± 0.32 (4 init) 78.34 ± 0.13 (10 init)

Q1 links to the prior understanding of the importance of the classifier part as pointed out by ANIL. On the
other hand, Q2 is related to the observation by BOIL which argues to diversify the feature extractor part via
fine-tuning. Finally, Q3 is for clarifying the synergetic effect of multi-body and multi-head via XB-MAML.

Regarding Q1, our findings based on Table 16 suggest that while incorporating multiple heads, i.e., classifiers,
can indeed yield meaningful gains over MAML (referring to the accuracies in the main paper), too many head
initializations are not required. It is because the classifier primarily comprises fully-connected layers, which are
simple linear models that can be efficiently fine-tuned during the inner loop process with a minimal number of
initializations. However, it seems that we need a few number of head initializations ranging from 2 to 4.

Conversely, when answering to Q2, the feature extractor requires a greater number of initializations compared to
XB-MAML-head, as indicated in Table 16. Given that the feature extractor is responsible for representing feature
distributions, it may require multiple initializations to effectively encompass a broad spectrum of features from
distinctive domains. This aspect highlights that the feature extractor primarily contributes to the construction of
an optimal subspace within the parameter space. Moreover, this is also closely tied to the idea that introducing
diversity in feature representation is more critical than diversifying selection ability.

Going beyond the previous inquiries, let us think of the answer of Q3. We observe that XB-MAML which meta-
trained multi-initializations for both body and head, i.e., an essential aspect of our method, yields the synergetic
gains compared to XB-MAML-body and XB-MAML-head. Moreover, our method reconciles the multi-body
and multi-head cases to find fewer initializations than XB-MAML-body but more than XB-MAML-head. This
observation underscores the synergy between increasing the feature extractor and classifier, facilitating a more
diverse task adaptation within feature representation and classifier ability.
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