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Abstract

Traditional supervised learning aims to learn
an unknown mapping by fitting a function
to a set of input-output pairs with a fixed
dimension. The fitted function is then de-
fined on inputs of the same dimension. How-
ever, in many settings, the unknown mapping
takes inputs in any dimension; examples in-
clude graph parameters defined on graphs of
any size and physics quantities defined on an
arbitrary number of particles. We leverage
a newly-discovered phenomenon in algebraic
topology, called representation stability, to
define equivariant neural networks that can
be trained with data in a fixed dimension
and then extended to accept inputs in any
dimension. Our approach is black-box and
user-friendly, requiring only the network archi-
tecture and the groups for equivariance, and
can be combined with any training procedure.
We provide a simple open-source implemen-
tation of our methods and offer preliminary
numerical experiments.

1 INTRODUCTION

Researchers are often interested in learning mappings
that are defined for inputs of different sizes. We call
such objects “free” as they are dimension-agnostic. Free
objects are pervasive in a range of scientific and en-
gineering fields. For example, in physics, quantities
like electromagnetic fields are defined for any number
of particles. In signal processing, problems such as
deconvolution are well-defined for signals of any length,
while image and text classification tasks are meaningful
regardless of the input size. In mathematics, norms
of vectors and matrices are defined for any dimension;
sorting algorithms handle arrays of any length, and

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

graph parameters, such as the max-cut value, are de-
fined for graphs of any size.

In contrast, most existing supervised learning meth-
ods aim to learn mappings by fitting a parametrized
function f̂ : Rd → Rk to a set of input-output pairs
S = {(X1, y1), . . . , (Xn, yn)} ⊆ Rd × Rk with fixed di-
mensions d and k. Naturally, the function f̂ is only
defined on inputs of dimension d, and a priori cannot
be applied to inputs in other dimensions. Practitioners
use ad-hoc heuristics, such as downsampling, to resize
the dimension of new inputs and match that of the
learned map (Hashemi, 2019). The lack of systematic
methodology for applying learned functions to inputs
of different sizes motivates the main question of this
work:

How can we learn mappings that
accept inputs in any dimension?

We answer this question for mappings that are invariant
or equivariant under the action of groups. Such map-
pings are ubiquitous since many application domains
exhibit symmetry, e.g., physical quantities are equiv-
ariant under translations and rotations because they
only depend on the relative position of particles (Villar
et al., 2021), while graph parameters are equivariant
under permutations because they only depend on the
underlying topology rather than on its labelling (Chan-
drasekaran et al., 2012). We propose to learn such
mappings using free equivariant neural networks. For-
mally, we consider a sequence of neural networks and a
sequence of groups, such that a network at any level in
the sequence is equivariant with respect to the group
at the same level; see Figure 1. We train an equivariant
network with data S in a fixed dimension and leverage
symmetry to extend it to other dimensions.

Core contributions. The question posed above
presents three key challenges. First, how do we en-
code infinite sequences of neural networks, one in each
dimension, using only finitely-many parameters? Doing
so is necessary if we want to learn from a finite amount
of data. Second, how do we ensure that the networks
we learn from data in a fixed dimension generalize well
to higher dimensions? Third, is there a user-friendly
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procedure for learning these networks? We proceed to
tackle these challenges.

Free equivariant neural networks. Equivariance is the
key ingredient in tackling the first challenge. The au-
thors of (Maron et al., 2019) showed that the dimension
of permutation-equivariant linear layers between ten-
sors is independent of the size of the tensors, and gave
free bases for such linear layers. For example, the space
of permutation-equivariant linear layers for graph adja-
cency matrices is 15-dimensional for any n, and its basis
contains the identity, taking a transpose and extracting
the diagonal, among others. The authors of that paper
use this fact to derive finite parameterizations of linear
layers

W = α1A
(n)
1 + · · · + α15A

(n)
15 (1)

where
{

A
(n)
1 , . . . , A

(n)
15

}
is a basis of free equivariant

maps for graphs on n nodes. This parameterization
allows them to instantiate linear layers in any dimen-
sion using only the fifteen parameters αi, which can
be learned from data in a fixed dimension. Our first
contribution is showing that this is not a coincidence
but rather stems from a general, recently-identified phe-
nomenon known as representation stability. We utilize
this phenomenon to show that the dimension of equiv-
ariant linear layers stabilizes for a number of group
actions, including those induced by (signed) permu-
tations, the orthogonal groups O(n), rotations SO(n),
and the Lorentz groups O(1, n). We leverage this ob-
servation to derive finite parametrizations of infinite
sequences of equivariant neural networks.

Generalization across dimensions. The authors
of (Maron et al., 2019) observed that neural networks
obtained using (1) do not always generalize well to
dimensions different from the one used for training.
Intuitively, this is due to overparametrization, as there
are many ways to represent the same function in a fixed
dimension, but not all of them extend correctly to other
dimensions. Our second contribution is to introduce
a compatibility condition relating the mappings in dif-
ferent dimensions, which has a regularization effect that
often leads to better generalization. Formally, it entails
to the commutativity of the diagrams in Figure 1. We
further explain how to impose this condition on the
network architecture.

Computational recipe. The authors of (Maron et al.,
2019) manually found the free basis elements in (1).
However, for more complicated groups and spaces of
linear layers, manually finding a free basis becomes
prohibitive. In a fixed dimension, one can circumvent
this issue using an algorithm proposed in (Finzi et al.,
2021) to compute a basis. For our third contribution,
we extend this basis to any other dimension by solving
a sparse linear system, enabling us to obtain free bases

computationally.

We provide proof-of-concept experiments demonstrat-
ing the ability of our approach to learn functions defined
for any dimension. We emphasize, however, that the
primary contribution of this paper is its conceptual
novelty. To our knowledge, our method is the first
black-box approach for training neural networks that
can handle inputs in any dimension. Instead of cus-
tomizing architectures for specific domains and data
types, as has been done in the prior work discussed
below, our strategy adapts itself to the application
domain by selecting appropriate group actions and
nested sequences of vector spaces. The downside of
the more general approach is that we do not expect it
to outperform application-specific methods. Thus, we
envision our framework serving as an initial step when
approaching novel and poorly understad problems, or
serving as a baseline to evaluate the performance of
application-specific architectures.

Notation. Given two finite-dimensional vector spaces
U and V we use L(V, U) to denote the set of lin-
ear mappings between them. For a group G acting
on both U and V , we denote invariant elements as
UG = {u ∈ U | g · u = u}, and equivariant linear maps
as L(V, U)G =

{
A ∈ L(V, U) | gAg−1 = A

}
. The map

PW : U → U denotes the projection onto a subspace
W ⊆ U . The symbols 1n and In represent the all-ones
vector and the identity in dimension n, respectively.
The symbol R[G] denotes the set of finite linear combi-
nations of elements in G. To avoid cluttering notation,
we use bold font symbols whenever possible to denote
the nth element in a sequence, e.g., the symbol G de-
notes G(n). We add a “+” superscript to denote the
(n + 1)th element, e.g., G(n+1) is denoted by G+.

Outline. The remainder of this section focuses on
related work. Section 2 formally defines free neural
networks. Section 3 introduces a compatibility condi-
tion that ensures good generalization across different
dimensions. In Section 4, we describe our computa-
tional recipe to learn free neural networks from data
in a fixed dimension and extend to other dimensions.
Section 5 provides numerical experiments. We close
the paper in Section 7 with conclusions, limitations,
and future work. We defer several technical details to
the appendix.

1.1 Related work

Equivariant learning. The benefits of equivariant
architectures first became apparent with the success of
convolutional neural networks (CNNs) in computer vi-
sion (Krizhevsky et al., 2017). Since then, equivariance
has been applied to a range of applications. Examples
include DeepSets (Zaheer et al., 2017) and graph neural
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networks (Wu et al., 2021; Maron et al., 2019) using
permutation equivariance to process sets and graphs;
AlphaFold 2 (Jumper et al., 2021) and ARES (Town-
shend et al., 2021) using SE(3)-equivariance for protein
and RNA structure prediction and assessment; steer-
able (Cohen and Welling, 2017) and spherical (Kondor
et al., 2018) CNNs using rotation-equivariance to clas-
sify images; and physics-informed neural networks are
equivariant under the symmetries of the corresponding
physical systems (Karniadakis et al., 2021). Many of
these architectures have been shown to implement a
generalized notion of convolution over the groups at
hand (Kondor and Trivedi, 2018; Cohen and Welling,
2016). Under additional assumptions, equivariant archi-
tectures have been derived using invariant theory to ex-
plicitly parametrize polynomial equivariant maps (Vil-
lar et al., 2021). We refer the reader to (Lim and
Nelson, 2023; Bronstein et al., 2021) for an introduc-
tion to equivariant deep learning.

Dimension-free learning. Certain architectures
processing data of a particular type are defined for
inputs of different sizes. Many architectures processing
graph-based data update the features at each vertex
by applying the same function of the features of the
vertex’s neighbors, hence can be applied to graphs of
any size (Gilmer et al., 2017; Vignac et al., 2020; Wu
et al., 2021). Convolutional neural networks (CNNs)
processing signals and images convolve their inputs
with filters of constant size, hence can also be applied
to inputs of different sizes. Nevertheless, it has been
observed that naïvely applying CNNs to inputs of size
different from that used during training leads to arti-
facts, and several downsampling techniques have been
proposed to resize inputs to a CNN (Hashemi, 2019).
Networks processing natural language embed words as
vectors of the same length but are defined for arbitrar-
ily long sequences of such vectors. Recurrent neural
networks process such sequences one-by-one, using cy-
cles in their architectures to sequentially combine a
new input vector with a function of the previous in-
puts (Mikolov et al., 2011). Recursive neural networks
apply the same weights recursively to pairs of input
vectors to combine them into one, until the entire se-
quence is reduced to one vector (Socher et al., 2011).
Notably, all these architectures must process the input
in particular ways motivated by the specific applica-
tion at hand, whereas we only need to assume that the
network processes its input equivariantly.

Representation stability. Representation stability
considers nested sequences of groups and their repre-
sentation, and implies that such sequences of represen-
tations often stabilize. Specifically, there is a labelling
of the irreducibles of these groups such that the decom-
position of the representations in the sequence contain
the same irreducibles with the same multiplicities. This
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Figure 1: Equivariant free neural networks. We use
bold font to denote the nth element in a sequence; see
Notation in Section 1 for details.

phenomenon has been formalized in (Church and Farb,
2013) and further studied in (Church et al., 2015; Wil-
son, 2014; Gadish, 2017; Sam and Snowden, 2015, 2016,
2017). It has been applied to study free convex sets and
algebraic varieties (Levin and Chandrasekaran, 2023;
Van Le and Römer, 2021; Draisma, 2014; Chiu et al.,
2022; Alexandr et al., 2023), though to our knowledge,
this paper is the first to apply it to equivariant deep
learning. We refer the reader to (Farb, 2014; Wilson,
2018; Sam, 2020) for introductions to this area.

2 FREE NEURAL NETWORKS

In this section, we introduce the concept of free neural
networks, i.e., networks that can be instantiated in
every dimension. To set the stage, let us recall the
classical notion of a neural network (NN). A NN is
a mapping f = fL ◦ . . . ◦ f1 where fi : Vi → Vi+1 is
a composition fi(x) = σi(Wix + bi) of an affine map
x 7→ Wix + bi and an activation map σi : Ui → Vi+1.
This yields a family of mappings parametrized by the
weights Wi ∈ L(Vi, Ui) and biases bi ∈ Ui. In turn,
these parameters are chosen to minimize a prescribed
loss function.

In several settings, we want f to respect symmetries
in its inputs. Formally, we require f to be equivariant
with respect to the action of a group G, i.e., f ◦g = g◦f
for all g ∈ G. A natural way to obtain equivariance is
by ensuring that each building block of f is equivariant,
i.e., Wi ∈ L(Vi, Ui)G, bi ∈ UG

i , and σi is G-equivariant.
NNs satisfying these properties are called equivariant.
Equivariant NNs can be trained by computing a basis
for the space of weights and biases and optimizing over
the coefficients in this basis (Finzi et al., 2021).

In this work, we seek equivariant NNs that extend
to inputs in any dimension. To this end, we consider
sequences {Ui} and {Vi} of nested1 vector spaces Ui ⊆
U+

i and Vi ⊆ V +
i , with actions of a nested sequence

of groups {G}, see Figure 1. For example, we have
inclusions Rn ⊆ Rn+1 by zero-padding on which the
group of permutations on n letters G = Sn acts by

1Formally, we have embeddings V ↪→ V + and U ↪→ U+.
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permuting coordinates. These define a sequence of
NNs whose weights Wi : Vi → Ui and biases bi ∈ Ui

increase in size. The activation functions σ are often
defined for every dimension, as the next section shows.
Thus, we focus here on extending the linear layers.

Free equivariant networks. Because the dimensions
of the space of linear layers L(Ui,Vi) and the vector
spaces Ui usually grow, sequences of general NNs are
not finitely-parameterizable and cannot be learned from
a finite amount of data. The situation radically sim-
plifies when considering equivariant networks since the
dimensions of L(Ui,Vi)G and UG

i often stabilize. This
was previously observed in the context of simple graph
NNs by (Maron et al., 2019), and follows from a general
phenomenon known as representation stability (Church
and Farb, 2013). To illustrate it with a concrete ex-
ample, consider the nested sequence U = V = Rn

with the action of G = Sn as above. Then V G is
one-dimensional and spanned by 1n while L(U ,V )G is
two-dimensional and spanned by In, 1n1⊤

n , which are
basis elements defined for every n. Similarly, (Maron
et al., 2019) obtained explicit free bases for spaces of
invariant tensors.

Interestingly, all the above basis elements project onto
each other, e.g., the orthgonal projection of 1n onto
Rn−1 is 1n−1, and similarly In, 1n1⊤

n project onto
In−1, 1n−11⊤

n−1. Motivated by this observation, we
say that a sequence of equivariant NNs is free if the
weights Wi : Vi → Ui and biases bi ∈ Ui satisfy

Wi = PUi
W+

i

∣∣
Vi

, and bi = PUi
b+

i .

(FreeNN)
For many sequences {Vi}, {Ui}, equation (FreeNN)
uniquely determines W+

i , b+
i from Wi, bi, allowing us

to uniquely extend a network to accept larger inputs.

Representation stability. To understand for which
sequences (FreeNN) allows us to extend, we introduce
some key definitions from the representation stability
literature (Church and Farb, 2013; Church et al., 2015).

Definition 2.1 (Consistent sequences). Fix a sequence
of compact groups G = {G}n∈N such that G ⊆ G+.
The family V = {(V ,φ)}n∈N is a consistent sequence
of G-representations if the following hold true for all n:

(a) (Representations) The set V is an orthogonal
G-representation;

(b) (Equivariant isometries) The map φ : V ↪→ V +

is a G-equivariant isometry.

We will identify V with its image φ(V ) ⊆ V +, and
omit the inclusions φ unless needed. Importantly,
consistent sequences can be combined to form more
complex sequences. In particular, if V = {(V ,φ)}

and U = {(U ,ψ)} are consistent sequences of {G}-
representations, then so are their sum and tensor prod-
uct:
V⊕U = {(V ⊕U ,φ⊕ψ)}, V⊗U = {(V ⊗U ,φ⊗ψ)}.

This follows directly from Definition 2.1. We use V⊕k

(resp. V⊗k) to denote the direct sum (resp., tensor
product) of V taken k times. As a direct by-product of
this observation, we obtain that the sequence of linear
maps L(V,U) = {(L(V ,U),φ⊗ψ)} is consistent since
it is isomorphic to V ⊗ U. The following parameter
controls the complexity of consistent sequences and
ensures that their spaces of invariants are eventually
isomorphic.
Definition 2.2 (Generation degree). A consistent se-
quence {V } is generated in degree d if R[G]V (d) = V
for all n ≥ d. The generation degree is the smallest
such d ∈ N. The sequence is finitely-generated if the
generation degree is finite.

In words, a consistent sequence {V } is generated in
degree d if for all n ≥ d, V is equal to the span of linear
combinations of elements of G applied to V (d). For
instance, if V = Rd with the action of permutations
G = Sn, then its generation degree is one, as any v ∈ V
can be obtained from e1 = (1, 0, . . . , 0) ∈ V (1) ⊆ V via
v =

∑
vi gi ·e1 where gi swaps the the first and ith com-

ponents. The next proposition gives an isomorphism
between spaces of invariants in a finitely-generated con-
sistent sequence. This result was first established in the
representation stability literature, albeit in a different
form. We include proof for completion.
Proposition 2.3 (Isomorphism of invariants). If {V }
is generated in degree d, then the orthogonal projections
PV : (V +)G+ → V G are injective for all n ≥ d, and
isomorphisms for all large n.

Proof. First, the projection PV is G-equivariant be-
cause G acts orthogonally. Second, it maps G+-
invariants in V + to G-invariants in V because G ⊆
G+. Third, we prove injectivity for n ≥ d. Suppose
PV v = 0 for some v ∈ (V +)G+ . For any u ∈ V +,
write u =

∑
i giui where ui ∈ V and gi ∈ G+. We

then have ⟨v, u⟩ = ⟨v,
∑

i ui⟩ = 0 because v is invari-
ant and

∑
i ui ∈ V . Since u ∈ V + was arbitrary, we

conclude that v = 0. The injectivity of PV shows that
dim(V )G ≥ dim(V +)G+ for all n ≥ d, hence the se-
quence of dimensions dim(V )G eventually stabilizes, at
which point the projections become isomorphisms.

Note that (FreeNN) precisely requires W+ and b+

to project to W , b inside the consistent sequences
L(Vi,Ui),Ui, respectively. Thus, Proposition 2.3 im-
plies that for all large n, we can parameterize infinite
sequences of equivariant linear layers with a finite set
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of parameters α1, . . . , αℓ, just as in (1). This result en-
ables us to train free NNs as we describe in Section 4.

Examples. We collect a few crucial examples and
include additional ones in the appendix.

Scalar sequence. The sequence S = {R} together
with φ(x) = x yields a consistent sequence for any
sequence of groups acting trivially, i.e., g · x = x. It
is generated in degree one. By setting the last layer
VL+1 = R in the free NN architecture of Figure 1, we
obtain a sequence of invariant functions f .

Permutation sequences. Let R = {Rn} be the
consistent sequence with zero-padding embeddings
φ(x) = (x⊤, 0)⊤ and the action of the symmetric
group G = Sn by permuting coordinates. Consider
Vk = Uk−1 = R⊗k, which is generated in degree k.
The dimensions of the space of weights and biases for
low-order tensors are eventually

dim L(V1,U1)G = 4, dimUG
1 = 2,

dim L(V2,U2)G = 52, dimUG
2 = 5.

Graph(on) sequences. There are two ways to iden-
tify small graphs with larger ones, namely, appending
isolated vertices and identifying graphs with their
associated graphons. These two embeddings yield
two consistent sequences. For the first embedding,
let V = Sn with the Frobenius inner product and
embeddings φ(X) = blkdiag(X, 0) padding X by a
zero row and zero column. We endow V with the
action of G = Sn by simultaneously permuting rows
and columns (so g · X = gXg⊤ for all g ∈ G and
X ∈ V ). This sequence is generated in degree 2.
For the second embedding, let V = S2n with the
normalized inner product ⟨X, Y ⟩ = 2−2nTr(XY ), em-
beddings φ(X) = X ⊗ 12×2, and the same action
of the symmetric group G = S2n as above. This se-
quence arises in the theory of graphons Lovász (2012),
where adjanceny matrices X are associated with a step
function (the graphon) WX : [0, 1]2 → R in such a way
that X and X ⊗ 12×2 represent the same graphon
and ⟨X, Y ⟩ =

∫
[0,1]2 WX(x, y)WY (x, y) dx dy. The

graphon consistent sequence is generated in degree 2
by (Levin and Chandrasekaran, 2023, Prop. 3.1).

When does stability kick in? Understanding the
exact level at which the projections become isomor-
phisms is important, yet, an exact characterization is
rather technical. Stabilization occurs at the so-called
presentation degree of the sequence, which might be
larger than the generation degree in general. However,
they agree for many relevant examples, such as in the
sequence R⊗k above. We include a formal definition
and a discussion in Appendix B.

3 GENERALIZATION ACROSS
DIMENSIONS AND
COMPATIBILITY

Free NNs often do not generalize correctly to other
dimensions. In Section 5, we provide examples where
a free NN yields excellent test error in its trained di-
mension while exhibiting errors 1010 times worst in
other dimensions. This discrepancy arises due to over-
parametrization, as there are numerous ways to encode
the same function in a fixed dimension, and yet not
every encoding extends seamlessly. In this section, we
propose a regularization strategy that often leads to
better generalization across dimensions.

Specifically, inspired by a similar condition for free
convex sets (Levin and Chandrasekaran, 2023), we
introduce the following compatibility condition.
Definition 3.1 (Compatible networks). A sequence
of maps {f : V → U} is (intersection-) compatible
if f+|V = f . A sequence of equivariant networks
(Figure 1) is compatible if

W+
i |Vi = Wi, b+

i = bi, and σ+
i |Ui = σi.

(CompNN)

Intuitively, this condition ensures that applying a func-
tion in a fixed dimension and then extending to a higher
dimension is equivalent to first extending and then ap-
plying the function. Layer-wise compatibility (CompNN)
guarantees that the sequence of NN {f : V1 → VL+1},
given by Figure 1, is compatible, or equivalently, that
the diagram in that figure commutes. The condition
(CompNN) is strictly stronger than (FreeNN), as compat-
ible NNs are free, but free NNs are not compatible in
general.

Compatibility in the wild. Compatibility is a natu-
ral condition satisfied by sequences of equivariant maps
{f} arising in many problems of interest. Here we list
some examples.

Graph(on) parameters. Graph parameters are func-
tions of graphs (typically of any size) that do not
depend on the labeling of their vertices. In other
words, these are sequences of Sn-invariant functions
{f : Sn → R}. Several graph invariants are also com-
patible with zero-padding, which is equivalent to
adding an isolated vertex. For example, the max-
cut value, the number of triangles, and cycles do not
change if we add an isolated vertex, hence they are
compatible. Other graph invariants only depend on a
graph via its associated graphon, and hence are com-
patible with the embeddings in the graphon sequence
(see example at the end of Section 2). These include
graph homomorphism densities, which play a central
role in extremal combinatorics Lovász (2012).



Eitan Levin, Mateo Díaz

Matrix mappings. Linear algebra operations are of-
ten compatible. For instance, the experiments in
(Maron et al., 2019) aimed to learn the following ma-
trix mappings: X 7→ 1

2 (X+X⊤), X 7→ diag(diag(X)),
X 7→ tr(X), and X 7→ argmax∥v∥=1 ∥Xv∥. All of
these are compatible sequences with the zero-padding
embedding described in Section 2, and Sn-equivariant.

Orthogonal invariance. The papers (Finzi et al., 2021;
Villar et al., 2021) consider the task of learning the
function

f(x1, x2) = sin(∥x1∥) − ∥x2∥3

2 + x⊤
1 x2

∥x1∥∥x2∥
, (2)

defined on (Rn)⊕2 with n = 5 from evaluation data.
This function is O(n)-invariant if we let rotations g act
by (g · x1, g · x2). Embedding (Rn)⊕2 into (Rn+1)⊕2

by zero-padding each vector, we see that {f} is a
compatible sequence of invariant functions.

Orthogonal equivariance. The O(3)-equivariant task
in (Finzi et al., 2021; Villar et al., 2021) consists of
taking as input n = 5 particles in space, given by
their masses and position vectors (mi, xi)n

i=1 ∈ (R ⊕
R3)⊕n, and outputting their moment of inertia matrix
f(mi, xi) =

∑n
i=1 mi(x⊤

i xiI3 − xix
⊤
i ). Embedding

V = (R ⊕ R3)⊕n into V + by zero-padding and letting
U = S3, we see that {f} is a compatible sequence of
maps. Furthermore, let G = Sn × O(3) act on V by
(π, g) · (mi, xi)n

i=1 = (mπ−1(i), gxπ−1(i))n
i=1, and on U

by (π, g) ·X = gXg−1 for (π, g) ∈ G (so permutations
act trivially). Then each f is G-equivariant.

There are many more examples of compatible mappings
in the literature (Levin and Chandrasekaran, 2023).
Therefore, we proceed to study compatible NNs. We
derive conditions ensuring the compatibility of the
linear layers and show that several standard activation
functions are compatible.

Compatible linear layers. Since we only have
data in some finite level n0, we ask when do fixed-
dimensional weights W

(n0)
i extend to a sequence satis-

fying (CompNN). The set of such W
(n0)
i forms a linear

space, and the next theorem characterizes a subspace
of it and enables us to find a basis for that subspace in
Section 4. We defer its proof to Appendix C.
Assumption 1. The sequences V = {V }, U = {U}
are obtained from direct sums and tensor products of
the same sequence V0. The sequence V is generated in
degree dg and presented in degree dp. The mapping
W (n0) ∈ L(V (n0), U (n0))G(n0) at level n0 ≥ dp satisfies

W (n0)(V (m)) ⊆ U (m) for m ≤ dg.

Theorem 3.2. Suppose that the sequences V =
{V }, U = {U} and linear map W (n0) ∈

L(V (n0), U (n0))G(n0) satisfy Assumption 1. Then there
is a unique extension {W } of W (n0) to a sequence of
equivariant linear maps satisfying (CompNN).

Recall that we define the presentation degree in the
appendix. In words, Theorem 3.2 says that if W (n0)

is equivariant and its restrictions to lower-dimensional
subspaces satisfy (CompNN), then it uniquely extends
to higher-dimensional weights satisfying (CompNN). In
Section 4, we use this result to find a basis for such
W (n0), and use it to train compatible equivariant NNs.

Compatible activation functions. The majority
of equivariant nonlinearities proposed in the literature
are compatible, such as the following few examples.

Entrywise activations and permutations. Let σ : R →
R be any nonlinear function. Define σ : (Rn)⊗k →
(Rn)⊗k by applying σ to each entry of a tensor. Then
each σ is G = Sn-equivariant, and {σ} is a com-
patible sequence with respect to the zero-padding
embeddings if and only if σ(0) = 0. On the other
hand, if σ : (S2n)⊗k → (S2n)⊗k is again applied entry-
wise and we use the graphon embedding (see example
at the end of Section 2), then {σ} is a compatible
sequence for any σ.

Bilinear layers. The authors of (Finzi et al., 2021)
map (V ⊗ U) ⊕ V → U by sending (v ⊗ u, v′) 7→
⟨v, v′⟩u, which is equivariant for any group action on
V ,U . This sequence of maps is also compatible.

Gated nonlinearities. The authors of (Weiler et al.,
2018) map V ⊕ R → V by (v, α) 7→ vσ(α) where
σ : R → R is a nonlinearity. These are equivariant
maps for any group acting trivially on the R compo-
nent, and they form a compatible sequence.

4 A COMPUTATIONAL RECIPE
FOR LEARNING FREE NEURAL
NETWORKS

In this section, we describe an algorithm to train free
and compatible NNs. We do so in two stages. First, we
train our NN at a large enough level n0 by finding bases
for the weights and biases at that level and optimizing
over the coefficients in this basis. Second, for any
higher level n > n0, we extend the trained NN at level
n0 by solving linear systems for the higher-dimensional
weights and biases; for any lower level n < n0 we
project the NN using (FreeNN). Throughout, we fix
consistent sequences Vi,Ui and sequences of compatible
equivariant nonlinearities {σi}. We summarize our
procedure in Algorithm 1. In Appendix D, we show that
our procedure provably generates free and compatible
NN.
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Finding bases for free NN. To train free net-
works (FreeNN), we fix n0 exceeding the presentation
degrees of Vi ⊗ Ui and Ui for all i = 1, . . . , L, and find
a basis for equivariant weights and invariant biases
at level n0 using the algorithm of (Finzi et al., 2021).
Specifically, Theorem 1 in (Finzi et al., 2021) states
that b ∈ (U (n0)

i )G(n0) if and only if b satisfies that

B b = 0
(

for all B ∈ B(n0)
i

)
,

(D − I) b = 0
(

for all D ∈ D(n0)
i

)
,

(3)

where B(n0)
i is a basis for the Lie algebra of G(n0) and

D(n0)
i are discrete generators for G(n0), which are finite

sets. Here B and D are represented as matrices acting
on U

(n0)
i . Since equivariant linear maps W : V

(n0)
i →

U
(n0)
i are just the invariants in L(V (n0)

i , U
(n0)
i ), they

constitute the kernel of the analogously-defined set
of equations. Thus, finding a basis for equivariant
weights and invariant biases reduces to finding a ba-
sis for the kernel of a matrix (3), which is typically
large and sparse. This can be tackled either using a
Krylov-subspace method (Finzi et al., 2021) or a sparse
LU decomposition (Gotsman and Toledo, 2008; Kowal,
2006).

Finding bases for Compatible NN. If we rather
want to find basis for layers satisfying (CompNN), we
fix n0 exceeding the presentation degrees of Vi and let
di be its generation degree. For most representations,
(CompNN) implies zero bias, so we focus on the weights.
We find a basis for weights W

(n0)
i satisfying the hy-

potheses of Theorem 3.2 by noting that Assumption 1
holds if and only if W

(n0)
i is G(n0)-equivariant and

satisfies[
P

V
(m)

i

⊗
(

I − P
U

(m)
i

)]
vec

(
W

(n0)
i

)
= 0,

for all m ≤ di, where vec denotes the vectorization of a
matrix by stacking its columns. This characterization
allows us to find a basis for weights by finding a basis
for the kernel of a sparse matrix.

Extending to arbitrary dimensions. For any
n > n0, we extend our trained network at level n0
by finding the unique equivariant weights and biases at
level n projecting onto the trained ones as in (FreeNN).
Formally, we find the unique W

(n)
i and b

(n)
i satisfy-

ing (3) with n0 replaced by n, and[
P

V
(n0)

i

⊗ P
U

(n0)
i

]
vec

(
W

(n)
i

)
= vec

(
W

(n0)
i

)
,

P
U

(n0)
i

b
(n)
i = b

(n0)
i .

(ExtSyst)
This amounts to solving a linear system, which is again
typically sparse. It can be solved via iterative methods,
e.g., stochastic gradient descent or LSQR (Paige and

Algorithm 1 Train a freely-described (resp., compati-
ble) neural network.

Input: Architecture Vi,Ui, group sequence {G},
and training data at level n0.

Stage 1 Find free (resp., compatible) bases of the
linear layers at level n0.

Optimize over the coefficients in the bases
to train the network at level n0.

Stage 2 For any n > n0, solve (ExtSyst) to extend
the trained network to level n.

For any n < n0, project via (FreeNN) to
restrict the trained network to level n.

Saunders, 1982). For any n < n0, we set W
(n)
i and

bi(n) via (FreeNN), which is equivalent to (ExtSyst)
with n and n0 swapped.

5 NUMERICAL EXPERIMENTS

In this section, we use Algorithm 1 to learn some of
the compatible mappings from Section 3. Our imple-
mentation is based on that of (Finzi et al., 2021), and
is available at

https://github.com/mateodd25/free-nets.

For each experiment, we aim to learn a sequence of
mappings {f : V1 → VL+1}. To do so, we fix a level
n0 and randomly generate data {(Xi, f (n0)(Xi))} ⊆
V

(n0)
1 × V

(n0)
L+1 . To fit the data, we consider the archi-

tectures described in the Appendix E and compute
bases for weights and biases as we describe in Section 4.
We then optimize over the coefficients in those bases
using ADAM (Kingma and Ba, 2015) starting from
random initialization. Finally, we extend the trained
network at level n0 to several levels n. We evaluate
our extended network on random test data generated
at each level from the ground-truth sequence of maps.

We consider five examples from Section 3: the
trace f(X) = tr(X), diagonal extraction f(x) =
diag(diag(X)), symmetric projection f(X) = (X +
X⊤)/2, the top right-singular vector f(X) =
argmax∥v∥=1 ∥Xv∥, and the function defined in (2).
The first and last examples are invariant functions;
the rest are equivariant mappings. For the first four
examples, we set G = Sn, and for the last one, we set
G = O(n). We train with 3000 data points generated
randomly and evaluate the test error at each dimension
on 1000 fresh samples.

We use the mean squared error (MSE) as our loss func-
tion for all the experiments except for learning the
top singular vector. For that experiment, we use the

https://github.com/mateodd25/free-nets
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Figure 2: Test errors across dimensions for free and compatible networks. Each experiment is run three times;
the lighter bands show the max and min runs, while the bold line shows the average. For diagonal extraction and
symmetric projection, we measure the average MSE per entry. Vertical gray lines mark the dimension used for
learning.

squared sine loss proposed by (Maron et al., 2019), i.e.,
ℓ(ŷ, y) = 1 − ⟨ŷ, y⟩2/∥ŷ∥2∥y∥2. The resulting errors in
each dimension for both free and compatible NNs are
shown in Figure 2. The test errors at the trained di-
mension are competitive with those obtained in (Maron
et al., 2019; Finzi et al., 2021; Villar et al., 2021) for
learning the same mappings, see Table 1 for comparison.
Moreover, the errors we obtain for higher-dimensional
extensions are competitive with errors obtained in the
literature for NNs trained at those higher dimensions.
For the orthogonally invariant task example, we trained
our compatible NN in 3 dimensions using 3000 data
points and got an error of 2e-2 when extending to 5
dimensions. In contrast, the NN of (Villar et al., 2021),
which is tailored to orhogonal equivariance, achieves
an error of 9e-3 when trained in 5 dimensions on the
same number of points, while the NN of (Finzi et al.,
2021) trained in the same dimension achieves 4e-2.

Due to memory limitations, we set the training level
to n0 = 3 for the orthogonal invariance task, whereas
Algorithm 1 would require n0 = 6 to uniquely extend
free networks2 since the presentation degree of the
linear maps between the hidden layers equal to six —
see Theorem D.1 in the appendix. This highlights
an advantage of imposing compatibility — it allows

2We find the minimum norm solution for the weights
and biases using LSQR (Paige and Saunders, 1982).

Example Ours Previous
trace 3e-8 1e-3 (Maron et al., 2019)
diag 1e-8 7e-6 (Maron et al., 2019)
sym 3e-8 7e-6 (Maron et al., 2019)
svd 4e-4 1.6e-3 (Maron et al., 2019)

orth. 2e-3 1e-2 (Finzi et al., 2021);
5e-4 (Villar et al., 2021)

Table 1: Comparison of errors from the literature

us to uniquely extend a trained network from lower-
dimensional data. Moreover, we see that imposing our
compatibility condition yields substantially lower errors
across dimensions. Remarkably, the test error for free
NNs increases by many orders of magnitude for simple
functions, a phenomenon that was previously noted
by (Maron et al., 2019). This further underscores the
importance of compatibility when generalizing to other
dimensions.

6 LIMITATIONS

Extension to non-compact groups. We assumed
that the group is compact and acts orthogonally so that
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the orthogonal projection PV = φ∗ is G-equivariant,
used for instance in the proof of Proposition 2.3. This
property holds more generally when G is linearly re-
ductive. Thus, our framework extends to non-compact
groups such as the Lorentz group O(3, 1) and so-called
rescaling groups Rn

>0 consisting of diagonal matrices
with strictly positive entries, both of which are impor-
tant to applications of equivariant deep learning to
physics Bogatskiy et al. (2020); Villar et al. (2023).

Some groups arising in applications are not reductive
however, including any group containing translations
such as the group of rigid motions SE(n). This difficulty
can be circumvented in some cases, such as centering
the data when learning an SE(n)-invariant function and
imposing only SO(n)-invariance on the architecture. In
general, however, more work is needed to address the
non-reductive case.

Compatible activation functions and biases.
Our compatibility conditions (CompNN) require the ac-
tivation functions we use to be compatible with our
embeddings relating the different dimensions. For ex-
ample, applying any activation function σ : R → R
entrywise always satisfies (CompNN) for the graphon
embeddings. However, only activations with σ(0) = 0
satisfy (CompNN) for the zero-padding embeddings. On
the one hand, some activation functions used in prac-
tice, such as the sigmoid σ(x) = (1 + e−x)−1, do not
satisfy this condition. Moreover, compatibility requires
the biases to be the same across dimensions, which
implies that the biases must be multiples of the first
canonical basis vector when using the zero-padding
embedding, and a multiple of the all-1’s matrix when
using the graphon embedding. Therefore, compatibil-
ity limits the architectures that we can use. On the
other hand, if the sequence of mappings we are trying
to learn is known in advance to satisfy compatibility,
then it is desirable to use architectures that enforce
compatibility as well. In that case the mapping we
learn also generalizes correctly to other dimensions, as
the numerical experiments in Section 5 demonstrate.

Scalability. We hope to address several limitations
of our approach in future work. First, while our com-
patibility condition improves generalization, it can be
restrictive in certain settings. For example, it often
yields zero bias. It would be interesting to learn the rela-
tion between maps in different dimensions directly from
the data rather than assume it is known in advance.
Second, for examples like the leading eigenvector, the
error increases substantially when extending to higher
dimensions, even if we impose compatibility. It would
be interesting to improve generalization to higher di-
mensions in these examples by imposing additional
compatibility conditions. Third, extending a trained
network to higher dimensions in our examples involved

solving large and sparse systems, which we currently
do not fully exploit. Incorporating sparsity in the tool-
box of (Finzi et al., 2021) will enable training larger
networks.

7 CONCLUSIONS AND FUTURE
WORK

We leveraged representation stability to prove that a
broad family of equivariant NNs extends to higher di-
mensions, which enables us to train an infinite sequence
of NNs using a finite amount of data. Extending net-
works to higher dimensions often results in substantial
test errors. To improve generalization, we introduced a
compatibility condition relating networks across dimen-
sions. We characterized compatibility and developed
an algorithm to train free and compatible NNs. Finally,
we applied our method to several numerical examples
from the literature. In these examples, free NNs trained
without imposing compatibility generalize poorly to
higher dimensions, even when learning simple linear
functions. In contrast, compatible NNs generalize sig-
nificantly better.

As highlighted in Section 6, our current implementa-
tion faces scalability challenges, primarily due to the
inadequate support for GPU-accelerated sparse linear
algebra operations in Python. Notably, there are al-
ready some efforts to close this gap Potapczynski et al.
(2023). Moving forward, we are optimistic about en-
hancing our framework to leverage these advancements
effectively. As we also mentioned in Section 6, the com-
patibility condition constraints the family of functions
one could hope to learn. This presents a compelling
avenue for future research: exploring other regulariza-
tion strategies that lead to good generalization across
dimensions. Moreover, the concepts introduced in this
paper paved the way to studying any-dimensional sta-
tistical learning, raising several natural questions: Can
we bound the generalization error across dimensions?
How do we characterize the notation of statistical com-
plexity for classes of any-dimensional problems? And
how do we approach the formulation of lower bounds
within this context?
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A MORE EXAMPLES OF CONSISTENT SEQUENCES

We let {φ : Rn → Rn+1} denote the sequence of zero-padding embeddings.

Signed permutation sequences. Let Bn (resp. Dn) be the signed permutation group (resp. even-signed
permutation group) in n elements. Consider the sequence of representations V = Rn with the standard action of
permuting and flipping the signs of the coordinates. Then, V = {(V , φ)} is a consistent sequence with generation
and presentation degrees equal to one.

Orthogonal rotation sequences. Let O(n) (resp., SO(n)) be the orthogonal group (resp., special orthogonal
group) in dimension n. Consider the sequence of representations V = Rn with the standard rotation action.
Then, V = {(V , φ)} is again a consistent sequence with generation degree equal to one. Characterizing the
presentation degree is an open question. Yet, numerically, the presentation degree for Sn seems to work well.

Lorentz sequences. Let O(1, n) be the Lorentz group (resp., special orthogonal group) in dimension n + 1.
Again, consider the sequence of representations V = Rn+1 with the natural action of the Lorentz group. Then,
V = {(V , φ)} is once more a consistent sequence with generation degree equal to one.

Tensor products. For any of the above sequences, we can take tensor powers V⊗k = {(V ⊗k,φ⊗k)} to obtain
sequences of tensors. Here φ⊗k zero-pads a n × · · · × n tensor T ∈ (Rn)⊗k to a (n + 1) × · · · × (n + 1) tensor, and
the group acts on rank-1 tensors by g · (x1 ⊗ · · · ⊗ xk) = (gx1) ⊗ · · · ⊗ (gxk) which extends to an action on general
tensors by linearity. For a example, a permutation g ∈ Sn acts on T ∈ (Rn)⊗k by (g · T )i1,...,ik

= Tg(i1),...,g(ik).

Direct sums. For any of the above sequences, we can take direct sums V⊕k = {(V ⊕k,φ⊕k)}. Here φ⊕k

zero-pads each of the k vectors in an element of (Rn)⊕k, and the group acts on each vector in such an element
by g · (x1, . . . , xk) = (g · x1, . . . , g · xk).

B PRESENTATION DEGREE

In this section, we give a definition of the presentation degree. In what follows, we introduce a series of preliminary
definitions. We highlight that the concepts in this section are technical in nature and require a certain familiarity
with abstract algebra. We refer the interested reader to (Levin and Chandrasekaran, 2023, §4.1) for a more
accessible presentation of this material motivated by the problem of extending an equivariant map to a compatible
sequence. For this section, we drop the boldface notation since we need to use additional superscripts.
Definition B.1 (Stabilizing subgroups). If V = {V (n)} is a consistent sequence of {G(n)}-representations, define
its stabilizing subgroups {H(n,d)}d≤n by

H(n,d) = {g ∈ G(n) : g · v = v for all v ∈ V (d)}.

In the context of G(n) = Sn and V (n) = Rn, the subgroup H(n,d) corresponds to the permutations in n elements
that leave fixed the first d components.
Definition B.2 (Modules). Let V and U = {U (n)} be consistent sequences of {G(n)}-representations and let
{H(n,d)} be the stabilizing subgroups of V. Then U is a V-module if U (d) ⊆ (U (n))H(n,d) for all d ≤ n.

Recall that if H ⊆ G is a subgroup and U is an H-representation, the induced representation of U to G is
IndG

HU = R[G]⊗R[H]U . If G ⊆ G′ and H ⊆ H ′ are subgroups satisfying H ′∩G = H and U is an H ′-representation,
we have an inclusion IndG

HU ⊆ IndG′

H′U .
Definition B.3 (Induction and algebraically free sequences). Let V by a consistent sequence of {G(n)}-
representations, and for d ≤ n let H(n,d) ⊆ G(n) be its stabilizing subgroups.

(a) Fix d ∈ N, and a G(d)-representation U (d). Define the V-induction sequence

IndG(d)(U (d)) =
{

IndG(n)

G(d)H(n,d)U
(d)

}
n

,

where the induced representation is taken to be 0 when n < d, and G(d)H(n,d) = {gh : g ∈ G(d), h ∈ H(n,d)}
is the subgroup generated by G(d) and H(n,d) inside G(n). The V-induction sequence is a V-module by
construction.
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(b) A consistent sequence F is an algebraically free V-module if it is a direct sum of V-induction sequences. The
sequence V itself is algebraically free if it is an algebraically free V-module.

Since ghg−1 ∈ H(n,d) for any g ∈ G(d) and h ∈ H(n,d), the subgroup generated by G(d) and H(n,d) inside G(n)

is the set of products G(d)H(n,d). As we have inclusions G(d)H(n,d) ⊆ G(d)H(n+1,d) and G(n) ⊆ G(n+1), and
moreover G(d)H(n+1,d) ∩ G(n) = G(d)H(n,d), we have inclusions IndG(n)

G(d)H(n,d)U (d) ⊆ IndG(n+1)

G(d)H(n+1,d)U (d). This
shows that IndG(d)(U (d)) is indeed a consistent sequence.
Example B.4. Let V = {Rn} with embeddings by zero-padding and the action of G(n) = Sn from Section 2.
Then V = IndG(1)V (1), hence it is algebraically free.

Any consistent sequence is a quotient of an algebraically free one. To formalize this, we first define an appropriate
notion of maps between consistent sequences.
Definition B.5 (Morphisms of sequences). If V = {V (n)} and U = {U (n)} are consistent sequences of {G(n)}-
representations, then a morphism of sequences V → U is a sequence of equivariant linear maps {W (n) ∈
L(V (n), U (n))G(n)} satisfying W (n+1)|V (n) = W (n).

Note that (CompNN) precisely requires the sequences of weights in a compatible NN to define a morphism of
sequences. To write a general consistent sequence V = {V (n)} as a quotient of a free one, suppose V is generated
in degree d. Define the algebraically free V-module F =

⊕d
i=1 IndG(i)(V (i)) = {F (n)} and consider the sequence

of linear maps W (n) : F (n) → V (n) sending g ⊗ v 7→ g · v for each g ⊗ v ∈ IndG(i)(V (i)). It is easy to check that
{W (n)} : F → V is a morphism of sequences and that W (n) is surjective for any n ≥ d, as the image of W (n) is
precisely R[G(n)]V (min{n,d}) = V (n). The sequence of kernels of such a morphism of sequence {W (n)} is also a
consistent sequence.
Proposition B.6. If V = {(V (n),φ)} and U = {U (n)} are consistent sequences and {W (n)} : V → U is a
morphism of sequences, then ker{W (n)} = {(ker W (n),φ)} is a consistent sequence.

Proof. Since W (n) is G(n)-equivariant, its kernel is a G(n)-subrepresentation of V (n). The embeddings φ remain
G(n)-equivariant isometries when restricted to ker W (n).

We are now ready to define the presentation degree.
Definition B.7 (Presentation degree). Let V0 be a consistent sequence of {G(n)}-representations. We say that a
V0-module V is generated in degree d, and presented in degree

k = max{d, r}
if there exists an algebraically free V0-module F generated in degree d and a morphism of sequences {W (n)} : F → V

such that W (n) is surjective for all n and ker{W (n)} is generated in degree r. The presentation degree is the
smallest such k ∈ N.

Note that the presentation degree is always at least as large as the generation degree and that the two are equal
for algebraically free sequences. As stated in Section 2, the projections in Proposition 2.3 become isomorphisms
starting from the presentation degree. The following proof of this fact, usually stated in the representation
stability literature in terms of coinvariants (Church et al., 2015, §3), appeared first in (Levin and Chandrasekaran,
2023).
Proposition B.8. Let V0 be a consistent sequence of {G(n)}-representations and V be a V0-module presented in
degree k. Then, the maps PU(n) : (V (n+1))G(n+1) → (V (n))G(n) are isomorphisms for all n ≥ k.

Proof. As V is presented in degree k, there exists an algebraically free V0-module F = {F (n)} and a surjective
morphism {W (n)} : F → V such that both its kernel K = {K(n)} and F itself are generated in degree k.
Because each map F (n) → V (n) is a G(n)-equivariant surjection with kernel K(n), its restriction to invariants
(F (n))G(n) → (V (n))G(n) is surjective with kernel (K(n))G(n) .

As F is an algebraically free V0-module, there exist integers dj and G(dj)-representations U (dj) satisfying
F =

⊕
j Ind

G(dj )U (dj). Such F has generation degree maxj dj ≤ k. Therefore, letting {H(n,d)} be the stabilizing
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subgroups of V0, we have for n ≥ k(
F (n)

)G(n)

=
⊕

j

(
IndG(n)

G(dj )H(n,dj )(U (dj))
)G(n)

∼=
⊕

j
(U (dj))G(dj )

.

The last isomorphism follows from the fact that for any groups H ⊆ G and any H-representation U , we
have an isomorphism

(
IndG

H(U)
)G ∼= UH given by sending u ∈ UH to

∑k
i=1 gi ⊗ u ∈

(
IndG

H(U)
)G

where

g1 = id, g2, . . . , gk are coset representatives for G/H. Thus, dim (F (n))G(n) is constant for n ≥ k. Moreover, by
Proposition 2.3 and the fact that K and U are generated in degree k, we have dim (K(n))G(n) ≥ dim (K(n+1))G(n+1)

and dim (V (n))G(n) ≥ dim (V (n+1))G(n+1) for all n ≥ k.

By the rank-nullity theorem, we have dim(V (n))G(n) = dim(F (n))G(n) − dim (K(n))G(n) . As dim(F (n))G(n) is
constant while both dim(V (n))G(n) and dim (K(n))G(n) are nonincreasing for n ≥ k, we conclude that they are all
constant for n ≥ k. To conclude, note that PV (n) is injective for all n ≥ k by Proposition 2.3.

C PROOF OF THEOREM 3.2

The following proof first appeared in (Levin and Chandrasekaran, 2023). Since V,U are obtained from direct
sums and tensor products of V0, they are both V0-modules. Let {H(n,d)} be the stabilizing subgroups of V0.
Suppose first that V = F =

⊕
j Ind

G(dj )F (dj) is free. Note that it is generated in degree maxj dj ≤ dg. Let
Wdj = W (n0)|

F (dj ) and fix n ≥ dj . Because U is a V0-module, we have U (dj) ⊆ (U (n))Hn,dj , so we can view U (dj)

as a representation of G(dj)H(n,dj) on which H(n,dj) acts trivially.

In general, if H ⊆ G is a subgroup, if V, U are H-representations, and if W ∈ L(V, U)H , we can define
Ind(W ) : IndG

HV → IndG
HU by sending g ⊗v 7→ g ⊗Wv for g ∈ G and v ∈ V . Also, if V ⊆ U and V is furthermore

a G-representation, then there is an equivariant map IndG
HV → U sending g⊗v 7→ g ·v. As Wdj (F (dj)) ⊆ U (dj) and

is G(dj)H(n,dj)-equivariant, we can combine the above two maps to obtain the following equivariant composition

W
(n)
j : IndG(n)

G(dj )H(n,dj )F
(dj) Ind(Wdj

)
−−−−−−→ IndG(n)

G(dj )H(n,dj )U
(dj)

g⊗u 7→g·u−−−−−−→ U (n).

Note that W
(n0)
j = W (n0)|Ind

G
(dj )

H
(n0,dj ) (F (dj )), since W

(n0)
j (g ⊗ f) = g · W (n0)f for all g ∈ G(n) and f ∈ F (dj).

Also, {W
(n)
j } defines a morphism IndGdj

(F (dj)) → U. Therefore, the desired extension of W (n0) to a morphism
of sequences {W (n)} is given by W (n) =

⊕
j W

(n)
j : V (n) → U (n).

Now suppose F is an algebraically free V-module as above with a surjection F → V whose kernel K = {K(n)} is
generated in degree dp. Define the composition

W̃ (n0) : F (n0) → V (n0) W (n0)

−−−−→ U (n0),

which satisfies W̃ (n0)(F (j)) ⊆ U (j) for all j ≤ dg by assumption and W̃ (n0)(K(n0)) = 0 by its definition. By the
previous paragraph, it extends to a morphism {W̃ (n) : F (n) → U (n)}. Because K is generated in degree dp and
n0 ≥ dp, we have K(n) = R[G(n)]K(n0). Because W̃ (n) is equivariant, we have W̃ (n)(K(n)) = 0. Therefore, W̃ (n)

can be factored as F (n) → F (n)/K(n) = V (n) W (n)

−−−→ U (n), where the maps W (n) in this factorization give the
desired extension of W (n0) to a morphism V → U.

D CORRECTNESS OF THE COMPUTATIONAL RECIPE

In this section, we prove the correctness of Algorithm 1. That is, if n0 is set to be large enough, then the algorithm
will generate the unique free (or compatible) extension of the network learned at level n0. It is useful to use the
notation dp(V) to denote the presentation degree of the sequence V.
Theorem D.1. Consider a neural network architecture with consistent sequences V1,U1, . . . ,VLUL, and VL+1



Eitan Levin, Mateo Díaz

Experiment Architecture
Input Hidden Output

Trace V⊗2 2V + 2V⊗2 S

Diagonal extraction V⊗2 4V + 4V⊗2 V⊗2

Symmetric projection V⊗2 4V + 4V⊗2 V⊗2

Top singular vector V⊗2 25S + 10V + 2V⊗2 + V⊗3 V

Orthogonal invariance 2V 25S + 10V + 2V⊗2 + V⊗3 S

Table 2: Architectures used for the numerical examples. Recall that S = {R} is the scalar sequence endowed with
the trivial action g · v = v.

and consistent activation functions σ1, . . . ,σL as described Figure 1. Assume we run Algorithm 1 to learn a
neural network at level n0. Then, the following two hold.

(Free) If n0 ≥ maxi dp(Vi ⊗ Ui) and n0 ≥ maxi dp(Ui), then, Algorithm 1 extends the trained network at level
n0 to a unique free neural network.

(Compatible) If n0 ≥ maxi dp(Vi) and n0 ≥ maxi dp(Ui), then, Algorithm 1 extends the trained network at
level n0 to a unique compatible neural network.

Proof. We start by proving the second statement. This is a simple corollary of Theorem 3.2. Note that once n0 is
bigger than the presentation degrees of Vi and Ui, then, by Theorem 3.2, there is a unique extension of the weights
and biases satisfying CompNN, which corresponds to the unique solution of (ExtSyst). The first statement follows
by an analogous argument by substituting Theorem 3.2 with Proposition B.8. This completes the proof.

E DETAILED DESCRIPTION OF THE NUMERICAL EXPERIMENTS

In this section, we elaborate on the implementation details of the numerical experiments. The code and instructions
to reproduce the experiments can be found in https://github.com/mateodd25/free-nets. All experiments
were run on a 2021 Macbook Air M1 with 16GB of RAM.

Initilization. We initialize the weights and biases at random with small i.i.d Gaussian entries N(0, 1/100).

Data generation. The datasets
{(

Xi, f (n)(Xi)
)}

for both training and testing (in every dimension) are generated
as i.i.d. standard Gaussian samples with the appropriate size.

Architecture. For all the experiments, we use three layers, i.e., two hidden layers. All the sequences we take are
sums and tensors products of the base sequence V = {Rd}. The activation functions are a composition of the form

h (bilinear(x) + x)
where bilinear (Finzi et al., 2021) is described in Section 3 and h changes depending on the group; for the
permutation group, h applies entry-wise ReLU for the permutation group, while for the orthogonal group, it
applies a gated nonlinearity (Weiler et al., 2018) — also described in Section 3.

We chose the smallest hidden layer size that yielded competitive results in order to control the size of the linear
systems we employ for extending the networks. The top singular vector and orthogonal invariant examples
required a larger architecture, so we only extended them to smaller dimensions. The architecture for each example
are summarized in Table 2.

https://github.com/mateodd25/free-nets
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