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Abstract

In this work, we study the personalized fed-
erated X -armed bandit problem, where the
heterogeneous local objectives of the clients
are optimized simultaneously in the feder-
ated learning paradigm. We propose the
PF-PNE algorithm with a unique double elim-
ination strategy, which safely eliminates the
non-optimal regions while encouraging feder-
ated collaboration through biased but effec-
tive evaluations of the local objectives. The
proposed PF-PNE algorithm is able to op-
timize local objectives with arbitrary levels
of heterogeneity, and its limited communica-
tions protects the confidentiality of the client-
wise reward data. Our theoretical analy-
sis shows the benefit of the proposed algo-
rithm over single-client algorithms. Experi-
mentally, PF-PNE outperforms multiple base-
lines on both synthetic and real life datasets.

1 INTRODUCTION

Federated bandit is a novel research area that com-
bines sequential decision-making with federated learn-
ing, addressing data heterogeneity and privacy pro-
tection concerns for trustworthy machine learning
[McMahan et al., 2017, Shi and Shen, 2021a, Zhu et al.,
2021]. Unlike traditional bandit models that focus
solely on the exploration-exploitation tradeoff, feder-
ated bandit also considers the implications of mod-
ern data privacy concerns. Federated learning involves
data from non-i.i.d. distributions, making collabora-
tions between clients essential for accurate inferences
for the global model. However, due to the concerns of
communication cost and user privacy, these collabora-
tions must be limited, and direct local data transmis-
sion is avoided. To make accurate decisions, clients
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must coordinate their exploration and exploitation,
utilizing minimal communication among them.

Most existing federated bandit research has mainly fo-
cused on finite arms (i.e., multi-armed bandit) or lin-
ear contextual bandits, where the expected reward is
a linear function of the chosen contextual vector [Shi
and Shen, 2021a, Shi et al., 2021b, Huang et al., 2021,
Dubey and Pentland, 2020]. Some recent works on
neural bandits have extended the results to nonlinear
reward functions Zhang et al. [2020], Dai et al. [2023].
However, more complicated problems such as dynamic
pricing and hyper-parameter optimization require so-
lutions for domains with infinite or even uncountable
cardinality, posing challenges to the current federated
bandit algorithms’ applicability in real-world scenar-
ios. For example, when deploying base stations for dif-
ferent locations, several hyper-parameters need to be
tuned for the best performance of the base stations.
The hyper-parameters are often chosen from a fixed
domain, e.g., a hypercube in Rd. The best set of hyper-
parameters for different locations could be different,
but the performance of a fixed set of hyper-parameters
should be similar for locations that are close to each
other, thus encouraging federated learning.

Several kernelized bandit algorithms are proposed to
address such problems with nonlinear rewards and in-
finite arm domains [Chowdhury and Gopalan, 2017,
Li et al., 2022a]. However, these works are based on
very different assumptions from ours and have rela-
tively high computational costs. The only work closely
related to our research is Li et al. [2022b]. However,
they only consider optimizing the cumulative regret on
the global objective, which refers to the average of all
the client-wise local objectives and thus the best point
“on average”. In our paper, we aim to optimize all the
local objectives at the same time so that each client
locates its own optimum. This is much more challeng-
ing but beneficial to real applications. We compare
our work with some of the existing works in Table 1.

We highlight our major contributions as follows.

• Personalized federated X -armed bandit. We
propose the personalized federated X -armed ban-
dit problem, where different clients optimize their



Personalized Federated X -armed Bandit

Table 1: Comparison of the average regret upper bounds, the communication cost for sufficiently large T and the
other properties. Columns: “Commun. rounds” refer to the number of communication rounds. “Personalized”
refers to whether the local objectives or the global objectives are optimized. Rows: Centralized results are
adapted from the single-client X -armed bandit algorithms such as HOO [Bubeck et al., 2011] and HCT [Azar et al.,
2014] by assuming that the server makes all the decisions with access to all client-wise information. Fed-PNE is
a federated X -armed bandit algorithm that optimizes the global regret and is thus not personalized. Therefore,
the comparisons with these two algorithms are not completely fair. Notations: M denotes the total number of
clients; T denotes the time horizon; for simplicity of comparison, we assume that all objectives f1, f2, · · · , fM , f
share the same the near-optimality dimension denoted by d (in Definition 1).; dnew ≤ d is the optimality-difference
dimension (in Definition 2).

Bandit algorithms Average Regret Commun. rounds Personalized

HOO (Bubeck et al. [2011]) Õ
(
T

d+1
d+2

)
N.A. ✓

BLiN (Feng et al. [2021]) Õ
(
T

d+1
d+2

)
N.A. ✓

Centralized∗ Õ
(
M− 1

d+2T
d+1
d+2

)
O(MT ) ✗

Fed-PNE∗ (Li et al. [2022b]) Õ
(
M− 1

d+2T
d+1
d+2

)
Õ(M log T ) ✗

PF-PNE (this work) Õ
(
M− 1

d+2T
d+1
d+2 + T

dmew+1
dnew+2

)
Õ(M log T ) ✓

own local objectives defined on a domain X . The
new problem is much more challenging than prior
research due to the heterogeneity of the local ob-
jectives and the limited communication.

• PF-PNE algorithm and double elimination. We
propose the first algorithm, PF-PNE to solve the
personalized federated X -armed bandit problem.
The algorithm incorporates a novel double elim-
ination strategy which guarantees that the non-
optimal regions are only eliminated after thorough
checks. The first round of elimination removes po-
tential non-optimal regions and the second round of
elimination uses biased evaluations, obtained from
sever-client communications, to avoid redundant
evaluations and unnecessary costs.

• Theoretical analysis and empirical evidence.
Theoretically, we prove that the proposed algo-

rithm enjoys a Õ
(
M

dmin+1

dmin+2T
dmin+1

dmin+2 +MT
dnew+1
dnew+2

)
regret bound (where dmin and dnew are defined in
Definitions 1 and 2). When the local objectives are
similar, dnew is very small, yielding smaller average
regret than single client algorithms. Moreover, the
algorithm only requires limited communications in
total, which greatly protects user data confiden-
tiality. Empirically, we provide evidence to sup-
port our theoretical claims on both synthetic ob-
jectives and real-life datasets. PF-PNE outperforms
existing centralized and federated bandit algorithm
baselines.

2 PRELIMINARIES

In this section, we discuss the concepts, notations and
assumptions used in this paper, most of which follow
those used in Li et al. [2022b]. For an integer N ∈ N,
[N ] is used to represent the set of positive integers
no larger than N , i.e., {1, 2, · · · , N}. For a set A,
|A| denotes the number of elements in A. For a real
number a ∈ R, we use ⌈a⌉ and ⌊a⌋ to represent the
smallest integer larger than a, and the largest integer
smaller than a respectively. Throughout this paper,
we use the subscript notation to represent the client
(local) side definitions, e.g., the local objective fm and
the local near-optimality dimension dm. We use the
overline notation to represent the server (global) side
definitions, e.g., the global objective f and the global
near-optimality dimension d. In big-O notations, we
use Õ(·) to hide the logarithmic terms, i.e., for two

functions a(n), b(n), a(n) = Õ(b(n)) represents that
a(n)/b(n) ≤ logk(n),∀n > 0 for some k > 0.

2.1 Problem Setting

We denote the available measurable space of arms as
X . In accordance with the practical applications, we
formulate the problem setting as follows: we assume
that in total M ∈ N clients want to collaboratively
solve their problems, and thus M local objectives are
available, denoted by {fm}Mm=1, all defined on the same
space X and bounded by [0, 1]. These local objectives
could be non-convex, non-differentiable and even non-
continuous. With a limited budget T , each client can
only evaluate its own local objective once per round
by choosing an arm xm,t ∈ X at each round t ∈ [T ]
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and then observes a noisy feedback rm,t ∈ [0, 1] defined
as rm,t := fm(xm,t) + ϵm,t, where ϵm,t is a zero-mean
and bounded random noise independent from previous
evaluations and other clients’ evaluations.

Similar to the prior federated bandit works such as
Shi and Shen [2021a], Huang et al. [2021], Li et al.
[2022b], we assume that a central server exists and it
is able to communicate with the clients in every round.
To protect user privacy and confidentiality, the cen-
tral server can only share summary statistics of the
rewards (e.g., the empirical mean and variance) from
different clients. The original rewards of each evalua-
tion should be kept confidential. The clients are not
allowed to communicate with each other and we as-
sume that the server and all the clients are completely
synchronized [McMahan et al., 2017, Shi and Shen,
2021a]. Note that the number of clients M could be
very large and thus incurring very high communication
costs when the clients choose to communicate with the
server. Therefore, we need to take into consideration
such costs in the algorithm design and the analysis.
This work aims to design an algorithm, that adapts
to the heterogeneity among local objectives, such that
collaborative search helps when the local objectives are
similar.

2.2 Performance Measure

In the setting of Li et al. [2022b], the clients are re-
quired to jointly solve for the global maximizer, i.e.,
the objective is to find the point x that maximizes the
global objective, f(x) := 1

M

∑M
m=1 fm(x). However, as

we have mentioned in the examples in Section 1, very
often the global maximizer is not the best option for
every client and the clients would want to maximize
their own benefit by finding the maximizer of their
local objectives. Therefore, instead of the global re-
gret defined in Li et al. [2022b] where the performance
of the clients is measured on the global objective, we
want to minimize the expectation of the local cumula-
tive regret, defined as follows

R(T ) =

T∑
t=1

M∑
m=1

f∗
m −

T∑
t=1

M∑
m=1

fm(xm,t)

where f∗
m denotes the optimal value of fm on X and

similar notation is used for f . In order to find their
own optimum, the clients can only utilize the noisy
evaluations rm,t of their own local objective functions
fm, and the information communicated with the cen-
tral server. Moreover, it is expected that some assump-
tions on the similarity between the local objectives and
the global objective are necessary so that the commu-
nications are useful. Otherwise, the local objectives
could be completely different and collaboration among

the clients would be meaningless. We will discuss our
assumption in Section 2.4.

2.3 Hierarchical Partitioning

Similar to the existing works on X -armed bandit
[e.g., Azar et al., 2014, Shang et al., 2019, Bartlett
et al., 2019, Li et al., 2022b], our algorithms rely on
the recursively-defined hierarchical partitioning P :=
{Ph,i}h,i of the parameter space X . The hierarchical
partition discretizes the space X into several nodes on
each layer by the following relationship:

P0,1 := X , Ph,i :=

k−1⋃
j=0

Ph+1,ki−j ,

where for every node Ph,i inside the partition, h and i
represent its depth and index respectively. For each
h ≥ 0, i > 0, {Ph+1,ki−j}k−1

j=0 are disjoint children
nodes of the node Ph,i and k is the number of children
for one node. The union of all the nodes on each depth
h equals the parameter set X . The partition is settled
and shared with all the clients and the central server
before the federated learning process because the par-
tition is deterministic and contains no information of
the reward evaluations.

2.4 Assumptions

We first present the assumptions that are also observed
in prior X -armed bandit works [Bubeck et al., 2011,
Azar et al., 2014, Grill et al., 2015, Li et al., 2022b].

Assumption 1. (Dissimilarity Function) The
space X is equipped with a dissimilarity function ℓ :
X 2 7→ R such that ℓ(x, x′) ≥ 0,∀(x, x′) ∈ X 2 and
ℓ(x, x) = 0

We will assume that Assumption 1 is satisfied through-
out this work. Given the dissimilarity function ℓ, the
diameter of a set A ⊂ X is defined as diam (A) =
supx,y∈A ℓ(x, y). The open ball of radius r and with
center c is then defined as B(c, r) = {x ∈ X : ℓ(x, c) ≤
r}. We now introduce the local smoothness assump-
tions.

Assumption 2. (Local Smoothness) We assume
that there exist constants ν1, ν2 > 0, and 0 < ρ < 1
such that for all nodes Ph,i,Ph,j ∈ P on depth h,

• diam (Ph,i) ≤ ν1ρ
h

• ∃x◦
h,i ∈ Ph,i s.t. Bh,i:=B

(
x◦
h,i, ν2ρ

h
)
⊂ Ph,i

• Bh,i ∩ Bh,j = ∅ for all 1 ≤ i < j ≤ kh.

• For any objective f ∈ {f1, f2, · · · , fM}
⋃
{f}, it

satisfies that for all x, y ∈ X , we have

f∗ − f(y) ≤ f∗ − f(x) + max {f∗ − f(x), ℓ(x, y)}
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Remark 2.1. In other words, we assume that all the
local objectives as well as the global objective satisfy
the smoothness property. Similar to the existing works
on the X -armed bandit problem, our proposed algo-
rithm PF-PNE does not need the dissimilarity function
ℓ as an explicit input. Only the smoothness constants
ν1, ρ are used in the objective [Bubeck et al., 2011,
Azar et al., 2014]. As mentioned by Bubeck et al.
[2011], Grill et al. [2015], Li et al. [2022b], most reg-
ular functions satisfy Assumption 2 on the standard
equal-sized partition with accessible ν1 and ρ.

Next, we present the additional assumption(s) on the
similarity among the local objectives for the benefit of
federated learning.

Assumption 3. (Difference in Optimal Values).
The global optimal value and the local optimal values
are bounded by some (known) constant ∆, i.e., ∀m ∈
[M ], the following property is satisfied

|f∗ − f∗
m| ≤ ∆

Remark 2.2. Assumption 3 is very weak since we
only want an upper bound on the difference in the
optimal values of f

∗
and all the f∗

m. Note that all
the objectives are bounded, therefore we always have
∆ ≤ 1. However, setting a very large ∆ would ba-
sically mean that we have no prior knowledge of the
similarity between the local objectives and they can
be very different.

Assumption 4. (Near-optimal Similarity). Let ∆
be the upper bound on the difference in local and global
optimum in Assumption 3. At any ϵ-near-optimal
point of the global objective f , the local objective is
at least (ωϵ+∆)-near-optimal for some ω ≥ 1, i.e., if

x ∈ X , ϵ > 0 satisfies f
∗ − f(x) ≤ ϵ, then

f∗
m − fm(x) ≤ ∆+ ωϵ,∀m ∈ [M ]

Remark 2.3. Note that Assumption 4 is also mild be-
cause we only require near-optimal points in the global
objective to be near-optimal on local objectives, with
the optimality difference thresholded by the number
∆ and the factor ω. Such an assumption also makes
sense in real life. For example, when we tune hyper-
parameters on machine learning models, if one set of
hyper-parameters achieves 0.8 reward (e.g., accuracy)
globally on average, then we should expect that the re-
ward for the same set of hyper-parameters on the local
objectives is not too bad, say, less than 0.7. Compared
with assumptions that require everywhere similarity,
e.g., |f(x) − fm(x)| ≤ ϵ for every x ∈ X and some
small ϵ > 0, Assumption 4 is obviously much weaker.

3 ALGORITHM AND ANALYSIS

Challenges. The personalized federated X -armed
bandit problem encounters several new challenges.
First of all, instead of optimizing the global objective
as in Shi and Shen [2021a], Li et al. [2022b], the al-
gorithms need to optimize all the local objectives of
the clients at the same time, which is obviously much
harder. Besides, we have no assumptions on the differ-
ence between the local objectives except for Assump-
tion 4. Therefore, the algorithm needs to adapt to the
heterogeneity in the local objectives, i.e., more collab-
orations should be encouraged when they are similar,
and reckless collaborations should be prevented when
they are different. Last but not least, the federated
learning setting implies that only limited information,
e.g., summary statistics such as the empirical average
of the rewards, can be shared across the clients within
limited communication rounds.

We first introduce a naive but insightful idea to solve
the personalized federated X -armed bandit problem,
which inspires our final algorithm. The approach is
quite straightforward: we can ask the clients to col-
laboratively eliminate some regions of the domain X ,
and narrow the search region of the local optimums
down to a smaller subdomain. The clients can then
continue the learning process by restricting their do-
main to the small subdomain instead of the original
X . For example, if the original parameter domain is
X = [0, 1], the clients could first collaboratively learn
the “near-optimal” subdomain that is good for every
client, say X ′ = [0.5, 0.6], i.e., fm(x) − f∗

m is small
for every m on X ′. Then the clients can individually
finetune the subdomain to find their local optimums.
However, such an approach suffers from the problem
of which region could be safely eliminated, since the
local objectives could be very different on the non-
near-optimal regions of f (and thus not breaking As-
sumption 4). On one hand, if the optimum of any
client is eliminated in the collaborative learning pro-
cess, then linear regret will be induced. On the other
hand, if we can only eliminate a small part from X ,
then the collaboration between the clients will simply
be ineffective.

3.1 The PF-PNE Algorithm

Algorithm Details and Double Elimination.
Based on the above preliminary idea and its potential
issues, we propose the new Personalized-Federated-
Phased-Node-Elimination (PF-PNE) algorithm that
has a unique double-elimination strategy so that col-
laboration among the clients are encouraged while
no nodes would be readily removed without careful
checks. The algorithm details are shown in Algo-
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Algorithm 1 PF-PNE: server

1: Input: k-nary partition P, smoothness parame-
ters ν1, ρ, transition layer H0

2: Initialize K1 = {(0, 1)}, h = 0
3: while not reaching the time horizon T do
4: Update h = h+ 1
5: if h < H0 then
6: Receive local estimates {µ̂m,h,i}m∈[M ],(h,i)∈Kp

from all the clients
7: for every (h, i) ∈ Kh do
8: Calculate the global mean estimate µh,i =

1
M

∑M
m=1 µ̂m,h,i

9: end for
10: Compute (h, ip) = argmax(h,i)∈Kh µh,i

11: Compute Eh =
{
(h, i) ∈ Kh |

µh,i + bh,i + ν1ρ
h < µh,ip − bh,ip

}
12: Update Kh = Kh\Eh

13: Broadcast the new set Kh and the statistics
{µh,i, bh,i}(h,i)∈Kh to every client m.

14: Compute Kh+1 = {(h+ 1, ki− j) |
(h, i) ∈ (Kh), j ∈ [0, k − 1] ∩ N

}
15: end if
16: end while

rithms 2, 3, and 1. In these algorithms, we have
indexed the nodes using their depths and indices
(h, i). Tm,h,i denotes the numbers of pulled sam-
ples on the m-th local objective in h, ith node and

bm,h,i = c
√

log(c1T/δ)
Tm,h,i

is the corresponding confidence

bound. Th,i =
∑M

m=1 Tm,h,i and bh,i is the confidence
bound defined similarly with respect to the global ob-
jective. The details of all notations can be found in
Appendix A.

Each client maintains two sets of “active” nodes at
each depth, Kh and Kh

m, i.e., they are the sets of nodes
that we believe potentially contains the global opti-
mum and the local optimum respectively. Kh is the
set of global active nodes and controlled by the server,
the algorithm tries to explore the global object f over
the region Kh collaboratively by all clients. Kh

m is the
set of local active nodes and controlled by the client,
the algorithm tries to explore the local objective fm
over the region Kh

m\Kh locally by the m-th client. At
each depth h, Kh ⊆ Kh

m. Similarly, the server and
the clients also maintain two sets of nodes Eh, Eh

m to
be eliminated/removed from Kh and Kh

m respectively.
Each node is pulled/evaluated either globally or lo-
cally for at least τh :=

⌈
c2ν−2

1 log(c1T/δ)ρ
−2h
⌉
times

for an accurate estimation of the reward, where c is an
absolute constant and δ is the confidence parameter.

The algorithm consists of two stages, while each stage
has several phases. The depth H0 for transitioning be-

Algorithm 2 PF-PNE: m-th client

1: Input: k-nary partition P, smoothness parame-
ters ν1, ρ, transition layer H0

2: Initialize h = 0, H0 := argminh∈N
(
ν1ρ

h ≤ ∆
)
,

K0
m =the first broadcast Kh from the server.

3: if h < H0 then
4: while not reaching the time horizon T do
5: for each (h, i) ∈ Kh sequentially do
6: Pull the node ⌈ τh

M ⌉ times and receive re-
wards {rm,h,i,t}

7: end for
8: Calculate µ̂m,h,i =

1
Tm,h,i

∑
t rm,h,i,t for every

(h, i) ∈ Kh

9: Send the local estimates {µ̂m,h,i}(h,i)∈Kh to
the server

10: Receive new Kh and {µh,i, bh,i}(h,i)∈Kh

11: Update µ̂m,h,i = µh,i, bm,h,i = bh,i for every

node (h, i) ∈ Kh

12: Compute Kh+1 = {(h+ 1, ki− j) |
(h, i) ∈ Kh, j ∈ [0, k − 1] ∩ N

}
13: Update h = h+ 1
14: end while
15: else
16: Set Kh = ∅ for all h > H0

17: Run PE(P, ν1, ρ)
18: end if

tween the two stages is H0 := argminh∈N
(
νρh ≤ ∆

)
,

or equivalently H0 = ⌈logρ(∆/ν)⌉. This implies that
when we have control over the optimality difference ∆,
we can optimize the local objectives jointly, and when
the control is lost, the clients should find their local
optimums separately.

• In the first stage, collaboration among the clients is
encouraged to accelerate the learning process. At
each depth h starting from the root K0 = (0, 1),
the server sends the new Kh to the clients. The
clients evaluate the nodes and send their average
rewards µ̂m,h,i back to the server. The server will
then compute the global average µh,i, select the
best node Ph,ip (in terms of the µ·,· value), and

determine the set of nodes Eh to be eliminated by
using the elimination criterion µh,i + bh,i + ν1ρ

h <

µh,ip − bh,ip . The updated set Kh and the global
average rewards of the nodes inside the set are then
communicated to the clients. For nodes still inside
Kh, their local statistics µ̂m,h,i, bm,h,i are replaced
by the global ones µh,i, bh,i

• In the second stage, the server terminates the col-
laboration and the clients initiate the Personalized
Elimination (PE) algorithm. Starting again from
the root, they evaluate the nodes that are in the
set Kh

m \ Kh until at least τh local samples are ob-
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tained, including the nodes that are eliminated in
the first stage (Eh). They will then find the best
node in Kh

m and determine the set of bad nodes
Eh
m with a similar elimination criterion as the first

stage. For all the nodes inside Eh
m, they can now be

safely removed because they have been eliminated
twice, ergo double elimination, once from Kh and
once from Kh

m. At the same time, Kh will be pro-
tected from elimination and no further exploration
is needed for the nodes in this set.

Algorithm 3 PE: m-th client

1: Input: partition P, smoothness parameters ν1, ρ
2: Initialize h = 0, K0

m = {(0, 1)}.
3: while not reaching the time horizon T do
4: while Tm,h,i < τh for any (h, i) ∈ Kh

m\Kh do
5: Pull the node and receive reward rm,h,i,t

6: end while
7: Calculate µ̂m,h,i = 1

Tm,h,i

∑
t rm,h,i,t for every

(h, i) ∈ Kh
m\Kh

8: Compute (h, ipm) = argmax(h,i)∈Kh
m
µ̂m,h,i

9: Compute Eh
m =

{
(h, i) ∈ Kh

m\Kh |
µ̂m,h,i + bm,h,i + ν1ρ

h < µ̂h,ipm − bh,ipm
}

10: Compute Kh+1
m = {(h+ 1, ki− j) |

(h, i) ∈ (Kh
m \ Eh

m), j ∈ [0, k − 1] ∩ N
}

11: Update h = h+ 1
12: end while

Remark 3.1. In Algorithm 2 and 3 for client m,
“pulling a node Ph,i” refers to evaluating the local
objective fm at a particular point x ∈ Ph,i in or-
der to obtain the reward. Note that we assume lo-
cal smoothness on all the objectives (Assumption 2),
therefore whether we randomly choose the evaluation
point inside the node for each evaluation, or use one
pre-determined point for all nodes does not affect the
final regret bound. For simplicity, we choose the latter
design in our analysis and our experiments. Similar re-
sults are observed in [Bubeck et al., 2011, Azar et al.,
2014, Li et al., 2022b].

Algorithm Uniqueness. The uniqueness of the de-
sign in PF-PNE is four-fold:

• (Collaboration). At each depth h, the number
of samples needed for the nodes in Kh is reduced
by the collaboration between the clients, and thus
making the per-client cumulative regret smaller
than single-client algorithms on these nodes.

• (Double Elimination). The double-elimination
strategy guarantees that the nodes are safely elim-
inated so that the optimum of any local objective
will not be directly removed, and thus protecting
the cumulative regret from being linear (See The-
orem 3.1 and Remark 3.2).

• (Biased Evaluation Helps). In the second stage,
the clients will utilize the global average reward and
confidence bound information on Kh in the first
stage to perform the second elimination process.
No further exploration or eliminations will be per-
formed on those nodes. On one hand, this strategy
essentially reduces the sampling cost for the nodes
in Kh for every client. On the other hand, despite
that the global average µh,i of the rewards is a bi-
ased evaluation of the local objective fm at node
Ph,i, we could still use it to substitute the local av-
erage µ̂m,h,i. As we show in the analysis, the size of
the bias is under control and the biased evaluations
are still helpful.

• (Limited Communications) Based on our de-
sign and the choice of the stage transitioning cri-
terion, the communication cost is always limited,
both in terms of rounds and information, which
makes sure that no frequent communications be-
tween the server and the clients are needed.

3.2 Theoretical Analysis

In order to analyze the cumulative regret of the pro-
posed algorithm, we introduce the definition of the
near-optimality dimension, which is a common nota-
tion in the existing literature that measures the num-
ber of near-optimal regions and thus the difficulty of
the problem [Bubeck et al., 2011, Azar et al., 2014,
Shang et al., 2019, Li et al., 2022a].

Definition 1. (Near-optimality Dimension) Let
ϵh > 0 and ϵ′h > 0 be two functions of h, for any subset
of ϵh-optimal nodes for the function f , Xf,ϵh = {x ∈
X : f∗−f(x) ≤ ϵh}, there exists a constant C such that
Nf (ϵh, ϵ

′
h) ≤ C(ϵ′h)

−d,∀h ≥ 0, where d := df (ϵh, ϵ
′
h)

is the near-optimality dimension of the function f and
Nf (ϵh, ϵ

′
h) is the ϵ

′
h-cover number of the set Xf,ϵh w.r.t.

the dissimilarity ℓ.

Using the above near-optimality dimension defini-
tion, we denote dm = dfm(12νρh, ρh) for every
m ∈ [M ] and d = df (6νρ

h, ρh) . Define dmax =
max{d1, d2, · · · , dM} and dmin = min{d1, d2, · · · , dM}.
Now we provide the general upper bound using near-
optimality dimension, on the cumulative regret of the
proposed PF-PNE algorithm as follows.

Theorem 3.1. Suppose that all the local objectives
f1, f2 · · · , fM and the global objective f all satisfy As-
sumptions 2, 3. Setting δ = 1/M in Algorithm 2, 3,
and 1, the expected cumulative regret of the PF-PNE

algorithm satisfies

E[R(T )] = Õ
(
M

d+1

d+2T
d+1

d+2 +MT
dmax+1
dmax+2

)
The number of communication rounds of PF-PNE scales
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as min{C1M log 1
∆ , C2(M logMT )}, where C1, C2 are

two absolute constants.

Remark 3.2. We relegate the proof of the above the-
orem to Appendix B. We emphasize that since we only
use Assumption 3 without any requirements on the size
of ∆, the regret upper bound in Theorem 3.1 displays
a preliminary and natural result.

The regret bound consists of two terms

• The first term Õ
(
M

d+1

d+2T
d+1

d+2

)
comes from the

first stage of elimination in PF-PNE, which might
continue for a large number of rounds if ∆ is very
small. In that case, the federated learning process
could be viewed as M clients optimizing f jointly,
and thus the regret is related to the near-optimality
dimension d of f .

• The second term Õ
(
MT

dmax+1
dmax+2

)
comes from the

second round of elimination in PF-PNE. When ∆ is
large, e.g., ∆ = 1, it implies that we have almost
no prior beliefs on the difference between the local
and global optimum values. In that case, the local
objectives could be very different and we can only
bound the cumulative regret asymptotically by the
objective with the largest near-optimality dimen-
sion, or equivalently, the hardest local objective.

Note that both two terms are sublinear with respect
to T , it means that PF-PNE is always capable of find-
ing the optimums of the local objective, regardless of
whether the prior knowledge of ∆ is small or large.
Therefore, we claim that PF-PNE “always works”.

In order to analyze the regret more tightly, we intro-
duce the following new notation dnew to measure the
difference in local and global optimal nodes, and thus
the size of Kh

m \ Kh. This set Kh
m \ Kh is, in the worst

case, Ω(ρ−dmh) at each depth h, such as when we ter-
minate the first stage early with large ∆ and Kh is
simply empty, but it should be much smaller when the
objectives are similar. Moreover, we need to assume a
reasonably small ∆ for PF-PNE to outperform single-
client algorithms.

Definition 2. (Optimality-Difference Dimen-
sion) Using the same notations as in Definition 1,
the optimality-difference dimension is defined to be the
smallest number dnew ≥ 0 such that Nfm(12νρh, νρh)\
Nf (6νρ

h, ρh) ≤ C0ρ
−dnewh,∀m ∈ [M ].

Remark 3.3. First of all, the above definition could
be defined with respect to each client, but asymp-
totically we would care about the largest one across
all the clients. Based on the definition of optimality-
difference dimension, we know that dnew ≤ dmax and
it is a tighter measure of the number of local near-
optimal nodes that are non-optimal globally. Using

the definition, we provide the following corollary as a
tighter upper bound on the cumulative regret.

Corollary 3.1. Suppose that all the assumptions in
Theorem 3.1 and Assumption 4 are satisfied, and dnew
is the optimality-difference dimension as in Definition

2. Assume that ∆ ≤ C3(logMT/T )
1

max{dmin,dnew}+2 ,
where C3 is an absolute constant, the expected cumu-
lative regret of the PF-PNE algorithm satisfies

E[R(T )] = Õ
(
M

dmin+1

dmin+2T
dmin+1

dmin+2 +MT
dnew+1
dnew+2

)
Remark 3.4. When the local objectives are similar
and most local near-optimal nodes are also globally
near-optimal, then dnew ≪ dmin and the above re-
gret bound will be dominated by the first term. It
means that on average, the client-wise regret is of or-

der Õ
(
M

− 1
dmin+2T

dmin+1

dmin+2

)
, then the cumulative re-

gret will be smaller than running the X -armed bandit
algorithms (e.g., Azar et al. [2014], Li et al. [2023b])
separately on the clients. Similar to the arguments in
Remark 3.2, when the local objectives are different,
dnew will be almost the same as dmax and running the
PF-PNE algorithm will be asymptotically the same as
running the X -armed bandit algorithms. Therefore,
the proposed PF-PNE algorithm adapts to the hetero-
geneity of the local objectives.

Remark 3.5. (Communication Cost) The number
of communication rounds in PF-PNE is always bounded
by the minimum between a constant that depends on
∆ in Assumption 3 and a term that depends on T
logarithmically.

• When ∆ > 0 is slightly large (e.g., 0.1) and T is
sufficiently large, the communication cost is always
bounded by a constant C1M log 1

∆ . The bound
makes sense intuitively because as long as the local
objectives are different, we should ask the clients
to find their local optimums by themselves and fur-
ther communications become futile at some point
in the learning process. Therefore, both the num-
ber of communication rounds and the amount of
information communicated will be bounded.

• If ∆ is a very small number, or even the ex-
treme case 0, and the term C2(M logMT ) domi-
nates the communication cost, it means that the
PF-PNE algorithm will degenerate to almost the
same as Fed-PNE in Li et al. [2022b], because the
second stage will not be activated and the second
round of elimination will never be executed. In this
case, the communication cost would be the same
as Fed-PNE. Li et al. [2022b] have proved that the
amount of information transferred would be of
order Õ(M log T ∨ MT

d
d+2 ), which is still sublin-
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(a) Garland (1D) (b) Himmelblau (2D) (c) Rastrigin (10D) (d) Landmine

Figure 1: Cumulative regret of different algorithms on the synthetic functions and the real-life datasets. Unlim-
ited communications are allowed for centralized algorithms. FNUCB runs much slower compared with the other
algorithms due to the training of neural nets. The other four algorithms take similar time to finish.

ear. Such a communication cost is proven to be
unavoidable [Li et al., 2022b].

The extreme case ∆ = 0 could happen only if the
local objectives have the same optimum at the same
point. In all our experiments, we observe that the
communication cost is always bounded.

4 EXPERIMENTS

In this section, we provide the empirical evaluations of
the proposed PF-PNE algorithm on both synthetic and
real-world objectives. We compare PF-PNE with HCT

[Azar et al., 2014], Fed1-UCB [Shi and Shen, 2021a],
FN-UCB [Dai et al., 2023] and Fed-PNE [Li et al., 2022b].
The curves in the figures are averaged over 10 indepen-
dent runs of each algorithm with the shaded regions
representing 1 standard deviation error bar. Addi-
tional experimental details and algorithm implemen-
tations can be found in Appendix C.

Remark 4.1. For HCT, we run the algorithm on the
M local objectives and then plot the average local re-
gret across all the objectives with no communications.
For the other federated algorithms, we also plot the
average cumulative regret across the clients. Such a
comparison is fair since we essentially compare the
single-client algorithms with the federated algorithms
on their average performance across multiple clients.

Synthetic Objectives. We first conduct exper-
iments on three synthetic objectives, Garland, Him-
melblau, and Rastrigin, with the parameter domains
X to be [0, 1], [−5, 5]2, and [−1, 1]10 respectively. We
apply random shifts to the original synthetic func-
tions to create the local objectives. The shifts are
zero-mean normal random variables and are applied
to every dimension of the objective. The average cu-
mulative regrets of different algorithms are provided in
Figure 1(a), 1(b), and 1(c). As can be observed in the
figures, PF-PNE has the smallest averaged cumulative
regret. The performance of Fed-PNE largely depends
on the similarity between the local objectives and the

global objective because it is designed to optimize the
global objective. When they are very different, e.g., on
Garland and Rastrigin, the performance of Fed-PNE,
although better than its competitors, is far from sat-
isfactory.

Landmine Detection. The landmine dataset [Liu
et al., 2007] consists of multiple landmine fields with
different locations of the landmine extracted from
radar images. For each client, we randomly assign
one of the landmine fields to the client. We feder-
atedly tune the hyper-parameters of support vector
machines with the RBF kernel parameter chosen from
[0.01, 10] and the L2 regularization parameter chosen
from [10−4, 10]. The local objectives are the AUC-
ROC scores of the support vector machine evaluated
on the local landmine fields. We provide the aver-
age cumulative regret of different algorithms in Figure
1(d). As shown in the figure, our algorithm achieves
the smallest regret.

5 DISCUSSIONS AND
CONCLUSIONS

In this work, we study the personalized federated X -
armed bandit problem and propose the first algorithm
for such problems. The proposed PF-PNE algorithm
utilizes the hierarchical partition and the idea of dou-
ble elimination to help the clients locate their own op-
timums. PF-PNE is unique in its adaptivity to the het-
erogeneity of the local objectives and its little commu-
nication cost for the federated learning process. Sev-
eral interesting future directions are also inspired by
our work. For example, is our similarity measure ∆
the best assumption to quantify the difference between
the local objectives, or is there an even weaker/ more
useful assumption for personalized federated X -armed
bandit? Besides, PF-PNE still needs the smoothness
parameters and the prior knowledge on the bound ∆
as part of the input, and it would be interesting to
explore parameter-free algorithms in our setting.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] See Section 2

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] See Section 3

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes] See Section 2 and
3

(b) Complete proofs of all theoretical results.
[Yes] See Appendix.

(c) Clear explanations of any assumptions. [Yes]
See Section 3

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes] See Section 4 and Appendix C

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
See Section 4 and Appendix C

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] See Section 4 and Ap-
pendix C

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes] See Section 4 and Ap-
pendix C

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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Appendix to “Personalized Federated X -armed Bandit”

A NOTATIONS AND USEFUL LEMMAS

A.1 Notations

Here we list all the notations used in the proof of our cumulative regret bound:

• Lt denotes all the nodes in the exploration tree at time t

• T h
m: The time steps of client m spent on layer h.

• Kh: The set of pre-eliminated nodes in the server on layer h.

• Eh: The set of nodes to be eliminated in the server on layer h.

• Kh
m: The set of pre-eliminated nodes in the client m on layer h.

• Eh
m: The set of nodes to be eliminated in the client m on layer h.

• Kh
: The set of post-eliminated nodes from the server at depth h, i.e., Kh

= Kh \ Eh.

• Kh

m: The set of post-eliminated nodes from the client m at depth h, i.e., Kh

m =
(
Kh

m \ Kh
)
\ Eh

m.

• (h, ip): the depth and the index of the node Ph,ip chosen by the server on layer h from Kh.

• (h, i∗): the depth and the index of the node Ph,i∗ that contains (one of) the maximizer x∗ of the global
objective f on depth h.

• (h, i∗m): the depth and the index of the node Ph,i∗m
that contains (one of) the maximizer x∗

m of the local
objective fm on depth h.

• Th,i: the number of times the node Ph,i is sampled globally, i.e., Th,i =
∑M

m=1 Tm,h,i.

• Tm,h,i: the number of times the node Ph,i is sampled from client m.

• bh,i = c
√

log(c1T/δ)
Th,i

: confidence bound for the node (h, i) on the global objective

• bm,h,i = c
√

log(c1T/δ)
Tm,h,i

: confidence bound for the node (h, i) on the m-th lobal objective

• Ht: the maximum depth reached by the algorithms at time t

• τh: the minimum required number of samples needed for a node on depth h, defined below.

The threshold for every depth. The number of times τh needed for the statistical error (the UCB term) of
every node on depth h to be better than the optimization error is the solution to

ν1ρ
h ≈ c

√
log(c1T/δ)

τh
, (1)

which is equivalent as the following choice of the threshold

c2

ν21
ρ−2h ≤ τh =

⌈
c2 log(c1T/δ)

ν21
ρ−2h

⌉
≤ 2

c2 log(c1T/δ)

ν21
ρ−2h. (2)

Notably, this choice of the threshold is the same as the threshold value in the HCT algorithm [Azar et al., 2014].
In other words, we design our algorithm so that the samples are from different clients uniformly and thus the
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estimators are unbiased, and at the same time we minimize the unspent budget due to such distribution. There
is still some (manageable) unspent budget due to the floor operation in the computation of tm,h,i. However
because of the expansion criterion (line 5-6) in Fed-PNE, we are able to travel to very deep layers inside the
partition very fast when there are a lot of clients, and thus Fed-PNE is faster than single-client X -armed bandit
algorithms.

A.2 Supporting Lemmas

Lemma A.1. (Hoeffding’s Inequality) Let X1, . . . , Xn be independent random variables such that ai ≤ Xi ≤
bi almost surely. Consider the sum of these random variables, Sn = X1 + · · ·+Xn. Then for all t > 0, we have

P (|Sn − E [Sn]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 (bi − ai)
2

)
.

Here E [Sn] is the expected value of Sn.

Lemma A.2. (High Probability Event) At each time t, define the “good” events E1
t , E

2
t as

E1
t =

{
∀h′ ≤ Ht,∀(h, i) ∈ Kh′

,∀Th,i ∈ [MT ], |f(xh,i)− µh,i| ≤ c

√
log(c1T/δ)

Th,i

}

E2
t =

{
∀h′ ≤ Ht,∀m ∈ [M ],∀(h, i) ∈ Kh′

m \ Kh′
,∀Tm,h,i ∈ [MT ], |fm(xh,i)− µ̂m,h,i| ≤ c

√
log(c1T/δ)

Tm,h,i

} (3)

where the right hand sides in thee two events are the confidence bound bh,i and bm,h,i respectively for the node
Ph,i and c ≥ 2, c1 ≥ (2M2)1/8 are two constants. Define the event Et = E1

t

⋂
E2

t , then for any fixed round t, we
have P(Et) ≥ 1− 2δ/T 6

Proof. For the first event E1
t , by utilizing the results of Lemma B.2 in Li et al. [2022b] and the Hoeffding’s

Inequality, we know that

P

∣∣∣∣∣∣
∑

m∈[M ]

∑
t∈[tm,h,i]

rm,h,i,t −
∑

m∈[M ]

tm,h,ifm(xh,i)

∣∣∣∣∣∣ ≥ x

 ≤ 2 exp

(
− 2x2

Th,i

)
. (4)

Therefore by the union bound, the probability of the compliment event E1c
t can be bounded as

P
(
E1c

t

)
≤
∑

h′∈Ht

∑
(h,i)∈Kh′

MT∑
Th,i=1

P
(
|f(xh,i)− µh,i| > bh,i

)
≤
∑

h′∈Ht

∑
(h,i)∈Kh′

2MT exp

(
− 2Th,ib

2
h,i

)

= 2MT exp

(
− 2c2 log(c1T/δ)

)( ∑
h′∈Ht

|Kh′
|

)
≤ 2MT 2

(
δ

c1T

)2c2

≤ δ

T 6
.

(5)

For the second event E2
t , similarly we have the probability of the compliment event bounded as

P
(
E2c

t

)
≤

M∑
m=1

∑
h′∈Ht

∑
(h,i)∈Kh′

m

MT∑
Tm,h,i=1

P
(
|fm(xh,i)− µ̂m,h,i| > bm,h,i

)

≤
M∑

m=1

∑
h′∈Ht

∑
(h,i)∈Kh′

m

2MT exp

(
− 2Tm,h,ib

2
m,sh,i

)

= 2M2T exp

(
− 2c2 log(c1T/δ)

)( ∑
h′∈Ht

|Kh′

m |

)
≤ 2M2T 2

(
δ

c1T

)2c2

≤ δ

T 6
.

(6)

Finally by the union bound, we know that

P (Et) = 1− P (Ec
t ) = 1− P

(
E1c

t

⋃
E2c

t

)
≥ 1− P

(
E1c

t

)
− P

(
E2c

t

)
≥ 1− 2δ/T 6 (7)

□
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Lemma A.3. (Optimality in Global Objective, Lemma A.4 in Li et al. [2022b]). For any client m,
under the high probability event Et at time t ∈ T h+1

m , the representative point xh,i of every un-eliminated node

Ph,i at the previous depth, i.e., (h, i) ∈ Kh
, is at least 6ν1ρ

h-optimal, that is

f
∗ − f(xh,i) ≤ 6ν1ρ

h,∀(h, i) ∈ Kh
. (8)

Proof. The proof is provided for completeness. Under the high probability event Et, we have the following

inequality for every node Ph,i such that (h, i) ∈ Kh

|f(xh,i)− µh,i| ≤ bh,i = c

√
log(c1T/δ)

Th,i
. (9)

Therefore the following set of inequalities hold

f(xh,i) + ν1ρ
h + 2bh,i ≥ µh,i + ν1ρ

h + bh,i ≥ µh,ip − bh,ip ≥ µh,i∗ − bh,ip

≥ f(xh,i∗)− bh,i∗ − bh,ip ≥ f
∗ − ν1ρ

h − bh,i∗ − bh,ip ,
(10)

where the second inequality holds because Ph,i is not eliminated. The third inequality holds because of the
elimination criterion in Algorithm 1, and the last one follows from the weak lipchitzness assumption (Assumption
2). In conclusion, we have the following upper bound on the regret

f
∗ − f(xh,i) ≤ 2ν1ρ

h + 2bh,i + bh,i∗ + bh,ip ≤ 6ν1ρ
h (11)

where the last inequality holds because we sample each node enough number of times (Th,i larger than the
threshold τh) so that bh,i ≤ ν1ρ

h and thus bh,i, bh,i∗ , bh,ip are all smaller than ν1ρ
h. □

Lemma A.4. (Optimality in Local Objective) For any client m, under the high probability event Et at
time t ∈ T h+1

m , the representative point xh,i of every un-eliminated node Ph,i at the previous depth h, i.e.,

(h, i) ∈ Kh

m\Kh
, is at least (11ν1ρ

h +∆)-optimal, that is

f∗
m − fm(xh,i) ≤ 11ν1ρ

h +∆,∀(h, i) ∈ Kh

m\Kh
(12)

Proof. If (h, i∗m) ∈ Kh

m\Kh
, i.e., the node that contains the local optimum at depth h, is in the set Kh

m\Kh
,

then we have the following inequalities

fm(xh,i) + ν1ρ
h + 2bm,h,i ≥ µ̂m,h,i + ν1ρ

h + bm,h,i ≥ µ̂m,h,ipm − bm,h,ipm ≥ µ̂m,h,i∗m
− bm,h,ipm

≥ fm(xh,i∗m
)− bm,h,i∗m

− bm,h,ipm ≥ f∗
m − ν1ρ

h − bm,h,i∗m
− bm,h,ipm ,

(13)

Therefore we know that the following bound holds

f∗
m − fm(xh,i) ≤ 2ν1ρ

h + bm,h,i∗m
+ bm,h,ipm + 2bm,h,i ≤ 6ν1ρ

h (14)

where the last inequality is because bm,h,i∗m
, bm,h,ipm , bm,h,i are all smaller than ν1ρ

h. On the other hand, if

(h, i∗m) ∈ Kh
, i.e., the node that contains the local optimum at depth h, is inside Kh

, then we have the following
inequalities

fm(xh,i) + ν1ρ
h + 2bm,h,i ≥ µ̂m,h,i + ν1ρ

h + bm,h,i ≥ µ̂m,h,ipm − bm,h,ipm ≥ µ̂m,h,i∗m
− bm,h,ipm

= µh,i∗m
− bm,h,ipm ≥ f(xh,i∗m

)− bh,i∗m − bm,h,ipm ≥ f
∗ − 6ν1ρ

h − bh,i∗m − bm,h,ipm

(15)

where the equality is because we have µ̂m,h,i∗m
= µh,i∗m

and bm,h,i∗m
= bh,i∗m in Algorithm 2. The last inequality

is from Lemma A.3, because (h, i∗m) ∈ Kh
and thus it is uneliminated. Now we know that

f∗
m − fm(xh,i) ≤ f∗

m − f
∗
+ f

∗ − fm(xh,i) ≤ ∆+ f
∗ − fm(xh,i)

≤ ∆+ 7ν1ρ
h + bm,h,i∗m

+ bm,h,ipm + 2bm,h,i ≤ 11ν1ρ
h +∆

(16)

□

Lemma A.5. (Lemma 3 in Bubeck et al. [2011]) For a node Ph,i, define f∗
h,i = supx∈Ph,i

f(x) to be the

maximum of the function on that region. Suppose that f∗ − f∗
h,i ≤ cν1ρ

h for some c ≥ 0, then all x in Ph,i are

max{2c, c+ 1}ν1ρh-optimal.
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B MAIN PROOFS

In this section, we provide the proofs of the main theorem (Theorem 3.1) in this paper.

Proof. Let Et be the high probability event in Lemma A.2. Let IEt denote whether the event Et is true, i.e.,
IEt = 1 if Et is true and 0 otherwise. We first decompose the regret into two terms

R(T ) =

M∑
m=1

T∑
t=1

(f∗
m − f(xm,t)) =

M∑
m=1

T∑
t=1

(f∗
m − f(xm,t)) IEt

+

M∑
m=1

T∑
t=1

(f∗
m − f(xm,t)) IEc

t

= R(T )E +R(T )E
c

.

(17)

For the second term, note that we can bound its expectation as follows

E
[
R(T )E

c
]
= E

[
M∑

m=1

T∑
t=1

(f∗
m − f(xm,t)) IEc

t

]
≤

M∑
m=1

T∑
t=1

P (Ec
t ) ≤

M∑
m=1

T∑
t=1

(2δ/T 6) =
2Mδ

T 5
. (18)

where the second inequality follows from Lemma A.2. Now we bound the first term R(T )E in the decomposition
under the event Et. Let H be a constant depth to be decided later, we know that the term R(T )E can be written
into the following form

R(T )E =

M∑
m=1

T∑
t=1

(f∗
m − fm(xm,t)) IEt

≤
M∑

m=1

H∑
h=1

∑
(h,i)∈Kh

(f∗
m − fm(xh,i))

⌈ τh
M

⌉
︸ ︷︷ ︸

(a)

+

M∑
m=1

H∑
h=1

∑
(h,i)∈Kh

m\Kh

(f∗
m − fm(xh,i)) τh︸ ︷︷ ︸

(b)

+

M∑
m=1

T∑
t=1

∑
ht>H

(f∗
m − fm(xht,it))︸ ︷︷ ︸

(c)

(19)

At every depth h > 0, for the globally un-eliminated nodes at the previous depth, i.e., for any Ph−1,j such that

(h− 1, j) ∈ Kh−1
, by Lemma A.3, we have

f
∗ − f(xh−1,j) ≤ 6ν1ρ

h−1. (20)

By setting ∆ = ν1ρ
H−1 (to be explicitly defined later), for the locally un-eliminated nodes at the previous depth,

i.e., for any Ph−1,j such that (h− 1, j) ∈ Kh−1

m \ Kh−1
, by Lemma A.4, we have the following inequality

f∗
m − fm(xh−1,j) ≤ (11ν1ρ

h−1 +∆) (21)

By Lemma A.5 and Assumption 4, since the set Kh is created by expanding Kh−1
, for the representative point

xh,i of the node Ph,i such that (h, i) ∈ Kh, we have the following upper bound on the suboptimality gap at the
point xh,i when h ≤ H0.

f∗
m − f(xh,i) ≤ f

∗ − f(xh,i) + ∆ ≤ (12ν1ρ
h−1 +∆) ≤ 13ν1ρ

h−1 (22)

Similarly by Lemma A.5, since the set Kh
m is created by expanding Kh−1

m , therefore for the representative point
xh,i of the node Ph,i such that (h, i) ∈ Kh

m \Kh, we have the following upper bound on the suboptimality gap at
the point xh,i when h ≤ H0.

f∗
m − fm(xh,i) ≤ 24ν1ρ

h−1. (23)
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• In the case when H ≤ H0, we know that for term (a) in Eqn. (19), we have

(a) ≤
H∑

h=1

⌈ τh
M

⌉ ∑
(h,i)∈Kh

M∑
m=1

(f∗
m − fm(xh,i)) ≤

H∑
h=1

⌈ τh
M

⌉ ∑
(h,i)∈Kh

M∑
m=1

(
f∗
m − f(xh,i)

)
≤

H∑
h>0

13Mν1ρ
h−1 max

{
1,

4c2 log(c1T/δ)

Mν21
ρ−2h

}
k|Kh−1|

≤
∑

0<h≤h0

13kCMν1ρ
h−1|Kh−1|+ 52kc2C log(c1T/δ)

ν1ρ2

H∑
h=1

ρ−2h|Kh−1|

≤
∑

0<h≤h0

13kCMν1(ρ
h−1)−(d−1) +

52kc2C log(c1T/δ)

ν1ρ2

H∑
h=1

(ρh−1)−(d+1)

≤
∑

0<h≤h0

13kCMν1(ρ
h−1)−(d−1) +

52kc2C log(c1T/δ)

ν1ρ2(ρ−(d+1) − 1)
ρ−H(d+1)

(24)

where h0 = ⌊ 1
2 logρ−1

Mν2
1

4c2 ⌋. For the term (b), we have the following inequality

(b) ≤
M∑

m=1

H∑
h=1

∑
(h,i)∈Kh

m\Kh

(f∗
m − fm(xh,i)) τh ≤

M∑
m=1

H∑
h=1

∑
(h,i)∈Kh

m\Kh

48c2 log(c1T/δ)

ν1ρ2
ρ−(h−1)

≤
M∑

m=1

H∑
h=1

48c2 log(c1T/δ)

ν1ρ2
ρ−(h−1)k|Kh−1

m | ≤ 48kc2C log(c1T/δ)

ν1ρ2

H−1∑
h=0

Mρ−h(dmax+1)

=
48kc2C log(c1T/δ)

ν1ρ2(ρ−(dmax+1) − 1)
Mρ−H(dmax+1)

(25)

For term (c), it could be bounded by

(c) ≤
T∑

t=1

24Mν1ρ
H ≤ 24Mν1ρ

HT (26)

Therefore if we combine the bounds on the three terms (a), (b), and (c), in Eqns. (24), (25), (26), we have
the following inequality

R(T )E ≤ (a) + (b) + (c)

≤ C0 +
52kc2C log(c1T/δ)

ν1ρ2(ρ−(d+1) − 1)
ρ−H(d+1) +

48kc2C log(c1T/δ)

ν1ρ2(ρ−(dmax+1) − 1)
Mρ−H(dmax+1) + 24ν1ρ

HMT

≤ C0 + 2max

{
52kc2C log(c1T/δ)

ν1ρ2(ρ−(d+1) − 1)
ρ−H(d+1),

48kc2C log(c1T/δ)

ν1ρ2(ρ−(dmax+1) − 1)
Mρ−H(dmax+1)

}
+ 24ν1ρ

HMT

≤ C0 + C1 max

{
M

d+1

d+2T
d+1

d+2 (log(MT ))
d+1

d+2 ,MT
dmax+1
dmax+2 (log(MT ))

dmax+1
dmax+2

}
(27)

where C0 is a constant, C1 = (2+ 2 log c1)max

{(
52kc2C(24ν1)

(d+1)

ν1ρ2(ρ−(d+1)−1)

) 1
d+2

,
(

48kc2C(24ν1)
(dmax+1)

ν1ρ2(ρ−(dmax+1)−1)

) 1
dmax+2

}
and

the last inequality is by balancing the size of the dominating terms using H. Now combining all the above

bounds on R(T )E and R(T )E
c

, we know that the regret is of order Õ
(
M

d+1

d+2T
d+1

d+2 +MT
dmax+1
dmax+2

)
.

• In the case when H ≥ H0, it means that the federated learning process terminated before even reaching
H, then the clients optimize their local objectives separately. Therefore, we know that for term (a) in Eqn.
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(19), we have

(a) ≤
H∑

h=1

⌈ τh
M

⌉ ∑
(h,i)∈Kh

M∑
m=1

(f∗
m − fm(xh,i)) ≤

H∑
h=1

⌈ τh
M

⌉ ∑
(h,i)∈Kh

M∑
m=1

(
f∗
m − f(xh,i)

)
≤

H0∑
h>0

13Mν1ρ
h−1 max

{
1,

4c2 log(c1T/δ)

Mν21
ρ−2h

}
k|Kh−1|

≤
∑

0<h≤h0

13kCMν1ρ
h−1|Kh−1|+ 52kc2C log(c1T/δ)

ν1ρ2

H0∑
h=1

ρ−2h|Kh−1|

≤
∑

0<h≤h0

13kCMν1(ρ
h−1)−(d−1) +

52kc2C log(c1T/δ)

ν1ρ2

H0∑
h=1

(ρh−1)−(d+1)

≤
∑

0<h≤h0

13kCMν1(ρ
h−1)−(d−1) +

52kc2C log(c1T/δ)

ν1ρ2(ρ−(d+1) − 1)
ρ−H0(d+1)

(28)

where h0 = ⌊ 1
2 logρ−1

Mν2
1

4c2 ⌋. For the term (b), we have the following inequality

(b) ≤
M∑

m=1

H∑
h=1

∑
(h,i)∈Kh

m\Kh

(f∗
m − fm(xh,i)) τh ≤

M∑
m=1

H∑
h=1

∑
(h,i)∈Kh

m\Kh

48c2 log(c1T/δ)

ν1ρ2
ρ−(h−1)

≤
M∑

m=1

H∑
h=1

48c2 log(c1T/δ)

ν1ρ2
ρ−(h−1)k|Kh−1

m | ≤ 48kc2C log(c1T/δ)

ν1ρ2

H−1∑
h=0

Mρ−h(dmax+1)

=
48kc2C log(c1T/δ)

ν1ρ2(ρ−(dmax+1) − 1)
Mρ−H(dmax+1)

(29)

where the second inequality is because when h ∈ [1, H0], we have f
∗
m− fm(xh,i) ≤ 24ν1ρ

h−1. When h > H0,
it means that the clients start learning separately and thus we have f∗

m − fm(xh,i) ≤ 12ν1ρ
h−1 by Lemma

A.4. Therefore in the worst case, f∗
m − fm(xh,i) ≤ 24ν1ρ

h−1. For term (c), it could be bounded by

(c) ≤
T∑

t=1

12Mν1ρ
H ≤ 12Mν1ρ

HT (30)

Therefore if we combine the bounds on the three terms (a), (b), and (c), we have the following inequality

R(T )E ≤ (a) + (b) + (c)

≤ C0 +
52kc2C log(c1T/δ)

ν1ρ2(ρ−(d+1) − 1)
ρ−H0(d+1) +

48kc2C log(c1T/δ)

ν1ρ2(ρ−(dmax+1) − 1)
Mρ−H(dmax+1) + 12ν1ρ

HMT

≤ C0 +
52kc2C log(c1T/δ)

ν1ρ2(ρ−(d+1) − 1)
ρ−H(d+1) +

48kc2C log(c1T/δ)

ν1ρ2(ρ−(dmax+1) − 1)
Mρ−H(dmax+1) + 12ν1ρ

HMT

≤ C0 + 2max

{
52kc2C log(c1T/δ)

ν1ρ2(ρ−(d+1) − 1)
ρ−H(d+1),

48kc2C log(c1T/δ)

ν1ρ2(ρ−(dmax+1) − 1)
Mρ−H(dmax+1)

}
+ 12ν1ρ

HMT

≤ C0 + C1 max

{
M

d+1

d+2T
d+1

d+2 (log(MT ))
d+1

d+2 ,MT
dmax+1
dmax+2 (log(MT ))

dmax+1
dmax+2

}
(31)

where C0 is a constant, C1 = (2+ 2 log c1)max

{(
52kc2C(12ν1)

(d+1)

ν1ρ2(ρ−(d+1)−1)

) 1
d+2

,
(

48kc2C(12ν1)
(dmax+1)

ν1ρ2(ρ−(dmax+1)−1)

) 1
dmax+2

}
and

the last inequality is by balancing the size of the dominating terms using H. Now combining all the above

bounds on R(T )E and R(T )E
c

, we know that the regret is of order Õ
(
M

d+1

d+2T
d+1

d+2 +MT
dmax+1
dmax+2

)
.

□



Wenjie Li, Jean Honorio, Qifan Song

B.1 Proof of Corollary 3.1

When we assume Assumption 4, we basically assume that near-optimal nodes in f are also near-optimal in the
local objectives. Without loss of generality, we assume that ω = 1 in Assumption 4. If ω ̸= 1, we only have to
change a few constants in the proof.

For term (a) in Eqn. (19), note that every 6ν1ρ
h-near-optimal node for f is ∆ + 6ν1ρ

h ≤ 12ν1ρ
h-near-optimal

in every fm, that means Kh−1 ⊆ Kh−1

m ,∀m ∈ [M ],∀h ≤ H. Therefore, we could bound term (a) as

(a) ≤
∑

0<h≤h0

13kCMν1(ρ
h−1)−(dmin−1) +

52kc2C log(c1T/δ)

ν1ρ2(ρ−(dmin+1) − 1)
ρ−H0(dmin+1)

(32)

whereas for term (b) in Eqn. (19), since Nfm(12νρh, νρh) \ Nf (6νρ
h, ρh) ≤ C0ρ

−dnewh,∀m ∈ [M ], we have the
following bound

(b) ≤ 48kc2C0 log(c1T/δ)

ν1ρ2(ρ−(dnew+1) − 1)
Mρ−H(dnew+1) (33)

If we combine the bounds on the three terms (a), (b), and (c), we have the following inequality

R(T )E ≤ (a) + (b) + (c)

≤ C ′
0 +

52kc2C log(c1T/δ)

ν1ρ2(ρ−(dmin+1) − 1)
ρ−H0(dmin+1) +

48kc2C0 log(c1T/δ)

ν1ρ2(ρ−(dnew+1) − 1)
Mρ−H(dnew+1) + 24ν1ρ

HMT

≤ C ′
0 + 2max

{
52kc2C log(c1T/δ)

ν1ρ2(ρ−(dmin+1) − 1)
ρ−H(dmin+1),

48kc2C log(c1T/δ)

ν1ρ2(ρ−(dnew+1) − 1)
Mρ−H(dnew+1)

}
+ 24ν1ρ

HMT

≤ C ′
0 + C ′

1 max

{
M

dmin+1

dmin+2T
dmin+1

dmin+2 (log(MT ))
dmin+1

dmin+2 ,MT
dnew+1
dnew+2 (log(MT ))

dnew+1
dnew+2

}
(34)

where C ′
0 > 0, C ′

1 > 0 is another set of constants. Therefore the final regret for the PF-PNE algorithm is bounded

by Õ
(
M

dmin+1

dmin+2T
dmin+1

dmin+2 +MT
dnew+1
dnew+2

)
.

C EXPERIMENTAL DETAILS

In this section, we provide all the details related to the algorithms, datasets, and hyper-parameters in Section 4.
We also provide more federated X -armed bandit experiments.

C.1 Algorithms and Hyper-parameters

For the implementation of hierarchical partitioning and centralized X -armed bandit algorithms, we have used
the publicly available open-source package PyXAB by Li et al. [2023a]. We list the algorithms used in our
experiments and the hyper-parameter settings of these algorithms.

• HCT. The HCT algorithm is a (single-client) X -armed bandit algorithm proposed by Azar et al. [2014]. We have
used the publicly-available implementation by Li et al. [2023a] at the link https://github.com/WilliamLwj/
PyXAB

• Fed1-UCB. The Fed1-UCB algorithm is a multi-armed bandit algorithm proposed by Shi and Shen [2021a].
We have followed Li et al. [2022b] and generate 20 arms on each dimension randomly for each trial of the
algorithm for 1-D and 2-D objective functions. For other high-dimensional functions, we have randomly
generated 1000 arms for Fed1-UCB. The hyper-parameters are set to be the same as the original paper and
their codebase.

• FN-UCB. The FN-UCB algorithm is a neural bandit algorithm proposed by Dai et al. [2023]. We have
used the public implementation Dai et al. [2023] at the link https://github.com/daizhongxiang/

Federated-Neural-Bandits with the default hyperparamter choices. Similar to FN-UCB, we have gener-
ated 20 arms on each dimension randomly for each trial of the algorithm for 1-D and 2-D objective functions.
For other high-dimensional functions, we have randomly generated 1000 arms.

https://github.com/WilliamLwj/PyXAB
https://github.com/WilliamLwj/PyXAB
https://github.com/daizhongxiang/Federated-Neural-Bandits
https://github.com/daizhongxiang/Federated-Neural-Bandits
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(a) Doublesine (1D) (b) Ackley (2D)

Figure 2: Cumulative regret of different algorithms on the synthetic functions. Unlimited communications are
allowed for centralized algorithms.

• Fed-PNE. We have followed Li et al. [2022b] and used their parameter settings for the Fed-PNE algorithm.

• The smoothness parameters ν1 and ρ are set to be ν1 = 1 and ρ = 0.5.

• The confidence parameters c and c1 are set to be c = 0.1 and c1 = 1.

Notably, the performance of Fed-PNE is originally measured by the global regret, i.e., the regret on the average
of all local objective. However, in this paper we measure the performance on the local objectives. We believe
this is the main reason why Fed-PNE performs non-ideally in our experiments.

• PF-PNE. Since PF-PNE can be viewed as an “upgraded” version of Fed-PNE, we have used the same hyper-
parameter setting as the Fed-PNE, i.e., ν1 = 1, ρ = 0.5, c = 0.1 and c1 = 1. For the additional hyper-parameter
∆, we have set it to be ∆ = 0.01 in all the experiments. Tuning these hyper-parameters will not affect the
final result too much.

C.2 Objective Functions and Dataset

Synthetic Functions. Garland, DoubleSine, Himmelblau, and Rastrigin are synthetic functions that are used
very frequently in the experiments of X -armed bandit algorithms because of their large number of local optimums
and their extreme unsmoothness, which appeared in works such as Azar et al. [2014], Grill et al. [2015], Shang
et al. [2019], Bartlett et al. [2019], Li et al. [2023b]. Garland and DoubleSine are defined on the domain [0, 1],
Himmelblau is defined on [−5, 5], while Rastrigin can be defined on [−1, 1]k where k is an arbitrarily large
integer. We have normalized these functions so that their values are between [0, 1] to fulfill the requirements in
the analysis. The local objectives are the shifted versions of the original objectives, with a random shift on each
dimension. Random noise is added to the function evaluations.

Landmine Dataset. The landmine dataset contains multiple landmine fields with features from radar images.
We have followed Dai et al. [2020] and split the dataset into equal-sized training set and testing set. Each client
randomly chooses one landmine field and optimize one SVM machine to detect the landmines in the particular
field. The local objectives are the AUC-ROC scores on one landmine objective. The original dataset can be
downloaded from http://www.ee.duke.edu/~lcarin/LandmineData.zip

C.3 Additional Experiments

We have conducted additional experiments on two more synthetic objectives Doublesine (1D) and Ackley (2D).
Similarly, we add random shifts to the each dimension of the original objectives to produce the local objectives
of each client. The experimental results are similar to what we present in the main paper. PF-PNE performs
slightly better than HCT and much better than Fed-PNE on Doublesine. On the other hand, PF-PNE performs
similarly as HCT and Fed-PNE on Ackley. Both results are aligned with our theoretical analysis.

http://www.ee.duke.edu/~lcarin/ LandmineData.zip
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C.4 Communication Cost

We provide the communication cost comparison between Fed-PNE and PF-PNE on the synthetic objectives, as
shown in Figure 3. As can be observed, the communication cost of Fed-PNE keeps increasing. However, the com-
munication cost of PF-PNE stops to increase after a certain point in the learning process, proving the correctness
of our theory.

(a) Garland (1D) (b) Himmelblau (2D) (c) Rastrigin (10D) (d) Ackley (2D)

Figure 3: Communication cost comparison between Fed-PNE and PF-PNE
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