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Abstract

Deep generative models for de novo molecu-
lar generation using discrete data, such as the
simplified molecular-input line-entry system
(SMILES) strings, have attracted widespread
attention in drug design. However, train-
ing instability often plagues generative ad-
versarial networks (GANs), leading to prob-
lems such as mode collapse and low diver-
sity. This study proposes a pure transformer
encoder-based GAN (TenGAN) to solve these
issues. The generator and discriminator of
TenGAN are variants of the transformer en-
coders and are combined with reinforcement
learning (RL) to generate molecules with the
desired chemical properties. Besides, data
augmentation of the variant SMILES is lever-
aged for the TenGAN training to learn the se-
mantics and syntax of SMILES strings. Ad-
ditionally, we introduce an enhanced vari-
ant of TenGAN, named Ten(W)GAN, which
incorporates mini-batch discrimination and
Wasserstein GAN to improve the ability to
generate molecules. The experimental results
and ablation studies on the QM9 and ZINC
datasets showed that the proposed models
generated highly valid and novel molecules
with the desired chemical properties in a
computationally efficient manner.

1 Introduction

The primary goal of de novo molecular generation is
to find novel molecules with the desired chemical prop-
erties (Schneider and Fechner, 2005). However, find-
ing such molecules in a vast chemical space without
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any prior knowledge is extremely difficult. In recent
years, deep learning-based methods have been used
in biomedicine and drug discovery to significantly re-
duce the time and cost of drug design. Generally,
deep learning-based molecular generation can be di-
vided into the following two categories: string-based
methods (Grisoni et al., 2020; Li and Yamanishi, 2023)
and graph-based methods (Merkwirth and Lengauer,
2005; Jin et al., 2018b; Xia et al., 2019). For the for-
mer, molecules can be represented as strings based
on the simplified molecular-input line-entry system
(SMILES), which makes it possible to use deep gen-
erative models of the natural language process (NLP)
for calculation. While the serialized representations
of molecules in SMILES strings are more concise than
the graph representations, they contain less informa-
tion (David et al., 2020). Additionally, unlike NLP, the
semantic and syntax rules for SMILES strings are not
strict, leading to various representations for a molecule
depending on the order in which atoms are traversed
(Li et al., 2022). Therefore, generating molecules with
SMILES strings poses a significant challenge.

Generative adversarial networks (GANs) (Goodfellow
et al., 2014) can generate highly realistic content, and
they have recently been used in various NLP applica-
tions, such as machine translation (Wu et al., 2018)
and question answering (Jiang et al., 2020). Unfor-
tunately, GANs are mainly used to generate contin-
uous data. There are two main drawbacks of using
GAN for generating discrete data such as SMILES
strings. First, the gradient of the loss function in the
discriminator of a GAN helps guide the training of the
generator (i.e., making slight changes to the parame-
ters so that the generator can generate realistic data).
The discriminator cannot effectively guide the gener-
ator in the case of discrete data because there are no
corresponding labels in the dictionary space (Huszár,
2015). Second, the discriminator cannot evaluate an
incomplete string. Different intermediate tokens dur-
ing SMILES string generation may lead to different
scoring results for the discriminator (Yu et al., 2017).



TenGAN: Pure Transformer Encoder-based GAN for Molecular Generation

A reinforcement learning (RL)-based GAN called OR-
GAN (Guimaraes et al., 2017) has been proposed to
solve the inability of GANs to generate molecules from
discrete SMILES strings. In ORGAN, the genera-
tor is a variant of recurrent neural networks (RNNs),
known as long short-term memory (LSTM), which pro-
duces SMILES-like data to confuse the discriminator.
The discriminator is a convolutional neural network
(CNN), which tries to differentiate samples correctly.
RL is used to improve the scores for desired molecular
properties. Intuitively, the scores of desired proper-
ties can be increased by shifting the reward distribu-
tion of molecules generated during each iteration to
the right in a stepwise manner. A larger shift to the
right increases the score of the molecular properties
while decreasing the amount of data in the training
set. Therefore, after multiple iterations, the diversity
of the molecules decreases, and the repetition rate of
the generated molecules increases. The prediction of
RNNs at the current time step based on previous time
steps limits its application to large molecular corpora
on GPUs (Li et al., 2019). Furthermore, the convo-
lution operator of CNNs has a local receptive field.
In other words, a CNN can handle long-range depen-
dencies only when a sufficient number of layers is set
(Jiang et al., 2021). However, the difficulty of opti-
mization increases with the number of layers.

The transformer (Vaswani et al., 2017) abandons the
recurrent structure of RNNs and only uses a self-
attention mechanism to capture features in sequences.
The self-attention of a transformer has a global re-
ceptive field that can capture long-range dependen-
cies, which inspired us to create a GAN that only uses
transformers. Transformers for goal-directed tasks can
encode a given starting molecule and decode it into a
new molecule (He et al., 2021). However, their suit-
ability in distribution learning tasks for GANs (e.g.,
generating molecular distributions from scratch and
evaluating their quality) is unclear, particularly with
discrete data. In this study, we propose a pure trans-
former encoder-based GAN, called TenGAN, to solve
the above issues. The generator and discriminator
of TenGAN are variants of the transformer encoders.
Atoms can access each other at each layer of the en-
coder to capture the complex semantic and syntac-
tic rules of SMILES strings. To sufficiently train the
generator, variant SMILES (Arús-Pous et al., 2019)
is used in the pretraining phase. We also propose an
enhanced algorithm that incorporates the mini-batch
discrimination (Salimans et al., 2016) and Wasserstein
GAN (WGAN) (Gulrajani et al., 2017) to stabilize
GAN training. To our knowledge, we are the first
to generate molecules with chemical properties from
SMILES strings using only transformer encoders. The
main contributions of this study are as follows:

• Novel design architecture: To solve the prob-
lems of expansion and parallelization of the sequen-
tial network structure and the problem of long-
range dependencies of the local receptive field of
CNNs, we propose a GAN based only on the trans-
former encoders to generate SMILES strings.

• Alleviation of training instability: Variant
SMILES can help the generator sufficiently learn
the semantic and syntactic features. Mini-batch
discrimination constructs a diversity measure in a
mini-batch, and the WGAN solves the training im-
balance between the generator and discriminator.

• Performance improvement: The experimental
results demonstrated the usefulness of the proposed
models for generating molecules with different prop-
erties. Ablation studies also demonstrated the effec-
tiveness of the proposed techniques.

2 Related Work

2.1 Variational Autoencoders-based Models

Variational autoencoders (VAEs) (Kingma and
Welling, 2014) have been used for molecular genera-
tion (Kusner et al., 2017; Jin et al., 2018a). However,
traditional VAEs cannot generate valid molecules
without constraints because SMILES and graphical
representations of molecules are discrete data and
their structures mainly contain semantic and syntax
information. A parse tree with context-free grammar
has been constructed to represent discrete data in
producing valid molecules from SMILES strings
(Kusner et al., 2017). By using context-free grammar
to describe a syntactically valid SMILES string set,
a grammar-based model for parsing and validation
can be used. Two tasks of molecular generation
are discussed: character-based VAE (CharVAE)
and grammar-based VAE (GramVAE). The former
samples any possible character at every step without
any stack and masking operation, whereas the latter is
constrained by a grammar tree to select syntactically
valid SMILES strings. However, the grammar cannot
fully capture the chemical validity. JTVAE is a junc-
tion tree-based VAE that generates molecules from
molecular graphs instead of linear SMILES strings
(Jin et al., 2018a). JTVAE can generate molecules
from graphs in two steps: a tree-structured scaffold
has been generated on a chemical substructure and
the tree-structured scaffolds were combined into a
molecule using a graph message-passing network (Dai
et al., 2016). JTVAE guaranteed the validity of the
molecules generated in each step.
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2.2 Flow-based Autoregressive Models

GraphAF is a flow-based autoregressive model that
generates molecules from graph structures (Shi et al.,
2020). It can be used not only to produce valid molec-
ular structures but also to optimize chemical proper-
ties. GraphAF can dynamically generate edges and
nodes based on the existing subgraph structure dur-
ing sampling. The sequential generation of GraphAF
allows operations such as chemical knowledge and va-
lence check to be imported in each generating step to
ensure the validity of the generated molecules, which is
similar to the graph convolutional policy network (You
et al., 2018) and molecular recurrent neural network
(Popova et al., 2019). Additionally, a feedforward neu-
ral network has been defined to calculate the likelihood
of data from the molecular graphs to the base distri-
bution in parallel. Experiments have demonstrated
the effectiveness of GraphAF. GraphNVP (Madhawa
et al., 2019) stands out as an invertible, normaliz-
ing flow-based model tailored for generating molecu-
lar graphs. It adeptly dissects the generation process
into two key components: the creation of an adjacency
tensor and the generation of node attributes. MoFlow
(Zang and Wang, 2020) uses graphical conditional flow
to generate sequences of atoms for the given chemi-
cal bonds. Finally, the generated atoms and chemical
bonds are combined to obtain molecular graphs.

2.3 Transformer-based Models

Unlike our goal of generating molecules from scratch,
using a transformer to optimize the desired chemi-
cal properties from a given starting molecule is called
a goal-directed task (He et al., 2021). Generally, a
transformer must match the input and target output
for training. Matched molecular pair analysis (Tyr-
chan and Evertsson, 2017) was used to generate paired
SMILES strings for the transformer. The two simi-
lar strings were then used as an input and label for
the transformer. The desired properties were input
into the transformer as an additional condition with
the input molecule, allowing the transformer to de-
sign molecules with chemical properties from the given
starting molecules. A geometry-aware transformer was
proposed to predict the molecular properties, and the
long-range interaction problem of the graph neural
networks was solved (Kwak et al., 2023). This prob-
lem has always existed in CNNs. For molecular gen-
eration, a model that integrates transformer and VAE
was proposed (Dollar et al., 2021), with the encoder
and decoder of a transformer serving as the two com-
ponents of the VAE. The goal-directed model was con-
verted into a distributed learning model, and some new
molecules were sampled from the latent space of the
VAE. However, without an adversarial training mech-

anism, the VAE generates unnatural molecules, result-
ing in low validity. Furthermore, the objective function
determined that the decoder cannot perform property
optimization when generating molecules.

Many transformer-based models have achieved SOTA
performances because of the success of transformers
in machine translation and other fields. In recent
years, many researchers have focused on using only
transformer encoders or transformer decoders to solve
problems. The most well-known models are bidi-
rectional encoder representations from transformers
(BERT) (Kenton and Toutanova, 2019) and generative
pretrained transformers (GPT) (Floridi and Chiriatti,
2020). However, no previous work has considered inte-
grating a transformer and GAN to generate molecules,
particularly when using discrete SMILES strings. In
this study, we propose two property-optimized GANs
called TenGAN and Ten(W)GAN, which use only
the transformer-encoder variants to generate molecules
with the chemical properties.

3 Models

3.1 TenGAN

Data augmentation with variant SMILES.
Generally, the atoms of a molecule are traversed ac-
cording to a set of rules to ensure that the generated
molecular string is standardized and unique. How-
ever, the same molecule can be represented by var-
ious SMILES strings through different traversal or-
ders of the molecular graph, which are called variant
SMILES (Li et al., 2022). For example, the canon-
ical SMILES string “CCNCc1cncnc1” can be repre-
sented by the variant strings “c1ncncc1CNCC” and
“n1cncc(CNCC)c1.” Using a variant string instead of a
canonical string makes the model learn more syntactic
and semantic features. A sufficiently trained genera-
tor can capture additional features of SMILES strings.
Therefore, variant SMILES are produced to pretrain
the generator. Note that the generated strings are con-
verted into the canonical strings after pretraining for
evaluation. An example of a variant SMILES produc-
tion is provided in Appendix A.

Transformer encoder as the generator. Figure 1
demonstrates the architecture of TenGAN. In contrast
to traditional transformers that use an encoder with
a multi-head attention layer to extract features from
an input sequence and decode with a decoder, Ten-
GAN generates SMILES strings from scratch/noise.
Therefore, we discard the transformer decoder and use
only the encoder variant with a masked multi-head
attention layer as the generator to generate SMILES
strings. Formally, let < bos > and < eos > denote
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Figure 1: Overview of TenGAN. TenGAN comprises two main components: a generator Gθ and a discriminator
Dϕ, where θ and ϕ represent weight parameters. The generator and discriminator consist of only the transformer-
encoder variants. The generator first produces SMILES substrings from scratch/noise for new molecules (①).
Then, the generated substrings are complemented using the Monte Carlo (MC) search (②). Next, the complete
strings are shuffled with the training data as the input to the discriminator (③). The discriminator uses the
entire SMILES string as the input to distinguish between the generated and training strings in TenGAN or to
regress the generated distribution to the training distribution in Ten(W)GAN. The current input is penalized
according to the repetition rate to avoid producing the same molecule, and the RDKit tool is used to calculate
the value of their chemical properties (④). Subsequently, the discriminator takes the probability of the input
SMILES being real as part of the reward (⑤). Finally, the probabilities, penalties, and property scores are jointly
used as rewards to update the parameters of the generator with RL (⑥).

the first and last tokens of a SMILES string, respec-
tively. For a SMILES string X1:T = [x1, x2, · · · , xT ] of
string length T , xi refers to the i-th token. We define
[< bos >, x1, · · · , xT ] and [x1, · · · , xT , < eos >] as pre-
training input and output, and mask the multi-head
attention layer of the traditional transformer encoder
to avoid exposing the generator to future information.
Only the starting token < bos > is given in the gen-
eration phase after pretraining, and the next token is
sampled from the current one. Details of the calcula-
tion are provided in Appendix B.

Transformer encoder as the discriminator.
The discriminator is a binary classifier that uses the
transformer encoders to determine whether the string
is from the generator or the training set of SMILES
strings. The discriminator uses a padding mask to
ensure that the transformer encoders do not pay any
attention to padding tokens. After obtaining the fea-
ture vector of the attention scores of each atom in
the SMILES string to others, these feature vectors are
summed, averaged, and input to the last fully con-
nected layer to calculate the probability. For addi-
tional details, refer to Appendix B.

Reinforcement learning. Because SMILES repre-
sents molecules as discrete data, GANs cannot differ-
entiate samples directly. RL is an alternative method

that can be used to solve the non-differentiable prob-
lem. The objective of the generator Gθ is to produce a
SMILES string that started from noise and maximizes
the reward of its expected chemical properties. Gen-
erally, let Y1:T = {y1, y2, · · · , yT } and s0 be the gen-
erated SMILES string and initial state, respectively.
The objective function of the generator is given by

J(θ) =
∑
Y1:T

Gθ(Y1:T |s0) ·RGθ (Y1:T−1, yT ), (1)

where RGθ denotes the action-value function that ac-
cumulates the reward at state Y1:T−1, takes action yT ,
and follows policy Gθ. RGθ mainly comprises three
parts: the probability that the generated SMILES
string is real according to the discriminator, the prop-
erty scores of the generated SMILES strings as calcu-
lated by RDKit tool (Landrum, 2013), and the penalty
for generating nonunique SMILES strings.

RGθ (Y1:T−1, yT ) =λDϕ(Y1:T ) + (1− λ)·
O(Y1:T ) · P (Y1:T )− b(Y1:T ),

(2)

Here, O and P are the property scores and the ratio of
the number of unique SMILES strings to the product
of the number of strings and the number of repeated
strings, respectively. b is defined with a baseline value
to provide a molecule with a large reward. For simplic-
ity, it is computed by the average of the reward. λ is a
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hyperparameter that is used to balance the strengths
of GAN and RL. Particularly, TenGAN is fully trained
by RL when λ = 0 and by GAN when λ = 1. Dϕ, O,
and P can only score the complete SMILES string of
Y1:T and cannot provide a reward for substrings. MC
search was used for sampling to evaluate the action-
value function for an incomplete string. Let N be the
number of MC searches. An N -time search can gener-
ate N samples by using Y1:t:

Y i
1:T ∈ MCGθ (Y1:t, N), and i ∈ [1, N ]. (3)

The probabilities of N samples being real are calcu-
lated using Dϕ, and the average value is used as the
final calculation result of the intermediate state of Y1:t:

RGθ (Y1:t−1, yt) =
1

N

N∑
n=1

λDϕ(Y n
1:T ) + (1− λ)·

O(Y n
1:T ) · P (Y n

1:T )− b(Y n
1:T ), if t < T,

(4)

RGθ (Y1:t−1, yt) =λDϕ(Y1:t) + (1− λ) ·O(Y1:t)·
P (Y1:t)− b(Y1:t), if t = T.

(5)

Then, the gradient of the objective function of Eq.(1)
can be rewritten by

∇J(θ) ≃ 1

T

T∑
t=1

∑
yt

[RGθ (Y1:t−1, yt) · ∇ logGθ(yt|Y1:t−1)]. (6)

Finally, the generator Gθ is updated to Gθ′ using the
gradient ∇J(θ) by θ′ ← θ +∇J(θ).

3.2 Ten(W)GAN

Mini-batch discrimination. In RL, the SMILES
strings used for training decreases as the reward in-
creases, reducing the diversity of the generated data.
Additionally, the discriminator discriminates each in-
put string independently, and there is no correlation
between the gradients. Therefore, the discrimina-
tor cannot guide the generator to generate diverse
molecules. Mini-batch discrimination is used to miti-
gate these issues. Unlike the original approach, we con-
sider a variant mini-batch discrimination, which does
not require new parameter learning. Formally, the out-
put of the last layer is defined as M ∈ RB×dmodel ,
where B is the mini-batch size. We first calculate
the standard deviation of the feature matrix M in the
dmodel dimension. Then, we concatenate the mean of
the estimates to M. Note that the mini-batch discrim-
ination mainly acts on the last layer of discriminator.

Wasserstein GAN. To further mitigate training
instability, we consider the Ten(W)GAN, a WGAN
based on the mini-batch discrimination. Ten(W)GAN,
in contrast to TenGAN’s binary classification, uses the

Algorithm 1: Procedures for TenGAN

Data: a SMILES dataset Sreal = {X1:T }
Initialization: generator Gθ, discriminator Dϕ

// Pretrain the generator

1 for i = 1 to g-epochs do
2 Update θ with the MLE
3 end
4 Generate a fake dataset Sfake = {Y1:T }
// Pretrain the discriminator

5 for i = 1 to d-epochs do
6 Update ϕ with the cross-entropy or

Wasserstein distance (③ in Fig. 1)
7 end
// Adversarial training

8 for i = 1 to epochs do
// Train the generator

9 for j = 1 to g-steps do
10 Input noise (① in Fig. 1) and generate

{Y1:t}
11 Complete {Y1:t} and produce Sfake (② in

Fig. 1)
12 Calculate RGθ (Y1:t−1, yt) by Eq. (4) and

Eq. (5) (④ and ⑤ in Fig. 1) Update θ by
Eq. (6) (⑥ in Fig. 1)

13 end
// Train the discriminator

14 for k = 1 to d-steps do
15 Update ϕ of the discriminator (③ in Fig. 1)
16 end

17 end

WGAN in the discriminator. The WGAN uses the
Wasserstein distance as the cost function, which has a
smoother gradient than a GAN.

Algorithm 1 summarizes the procedures of TenGAN
and Ten(W)GAN. In the pretraining phase, maximum
likelihood estimation (MLE) is used to pretrain the
generator with the SMILES dataset Sreal. Then, the
generated dataset Sfake is combined with Sreal to pre-
train the discriminator. The real dataset has the same
number of SMILES strings as the fake dataset to avoid
the problem of imbalanced datasets. In the training
phase, the generator and discriminator are trained al-
ternately. The gradients of the generator are updated
by the MC policy gradient method.

4 Experiments

4.1 Experimental Setup

Datasets. Two randomly selected subsets of 5000
and 10000 SMILES strings from QM9 (Ramakrishnan
et al., 2014) and ZINC (Irwin et al., 2012) were used
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Table 1: Statistics for the QM9 and ZINC datasets.

Dataset LEN MIN MAX QED SA logP

QM9 15 5 31 0.48 0.23 0.29
ZINC 38 22 69 0.79 0.76 0.63

⋆ LEN, MIN, and MAX indicate the average, minimum,
and maximum length of the SMILES strings.

as the training datasets. All strings in both datasets
contained up to nine heavy atoms, such as carbon (C),
oxygen (O), nitrogen (N), and fluorine (F).

Hyperparameters. Both the QM9 and ZINC
datasets had a vocabulary size of 40 characters and the
molecules had a maximum length of 60 and 70 charac-
ters, respectively. In the training of the two datasets,
each iteration generated 5000 and 10000 samples, re-
spectively, with a batch size of 64. The generator had
four encoder layers. Each encoder had four attention
heads, and the value and feedforward layers had di-
mensions of 128 and 1024, respectively. The dropout
probability (Srivastava et al., 2014) was 0.1. The dis-
criminator had four encoder layers, each with five at-
tention heads. The value and feedforward layers had
dimensions of 100 and 200, respectively. The dropout
probability was set to 0.25. The generator and dis-
criminator were trained by using the Adam optimizer
(Kingma and Ba, 2015). The learning rates of the gen-
erator and discriminator in the pretraining were 8e−4
and 8e−5, respectively. The learning rate of the gen-
erator in the training was set to 8e−5. Additionally,
unless other specified, λ was set to 0.5 and the roll-
out times N for QM9 and ZINC datasets were set to
16 and 8 respectively. The generator was pretrained
for 150 epochs using MLE, and the discriminator was
pretrained for 10 epochs. Up to 100 adversarial train-
ing epochs were performed. Note that all experiments
were performed on GPU using CUDA. Our source code
is publicly available on GitHub 1.

4.2 Metrics

Evaluation measures. To evaluate the perfor-
mance and compare those to baseline models, we used
the following statistics (Simonovsky and Komodakis,
2018). Validity is the percentage of chemically valid
molecules to all generated molecules. Note that the va-
lidity was checked by the RDKit tool. Uniqueness is
the percentage of non-repeated molecules to the num-
ber of valid molecules. Novelty is the percentage of
valid molecules not included in the training dataset
for all unique molecules. Diversity is the average
Tanimoto distance (Rogers and Tanimoto, 1960) be-

1Our code: https://github.com/naruto7283/TenGAN

tween Morgan fingerprints (Morgan, 1965) of any two
molecules with a radius of 4 and 2, 048 bits. We cal-
culated the execution time in the GPU environment.

Optimized properties. For controlled generation
and optimization, models need to be trained to learn
some chemical properties of molecules. We focused
on the following chemical properties for property opti-
mization. Drug-likeness is a measure of the likelihood
that a molecule is a drug, which is usually expressed by
the quantitative estimate of drug-likeness (QED) score
(Bickerton et al., 2012). Synthesizability is a measure
of the difficulty of synthesizing a molecule that can
be described by the synthetic accessibility (SA) score
(Ertl and Schuffenhauer, 2009). Solubility is a measure
of the hydrophilicity of a molecule that is usually cal-
culated by the log octanol-water partition coefficient
(logP) (Comer and Tam, 2001). The calculations of
the chemical properties are detailed in Appendix C.
All the above scores are in the range of [0, 1]. A score
of zero indicates an invalid molecule or a valid molecule
with a score of zero for a given property. Note that
a higher score indicates a better performance regard-
ing the corresponding property. Table 1 provides some
average statistics for molecules in the two datasets.

4.3 Comparison with RNN-based Methods

Table 2 and Table E.1 in the Appendix show the com-
parisons of TenGAN and Ten(W)GAN with Näıve RL,
ORGAN, and OR(W)GAN for the QM9 and ZINC
datasets, respectively. These baseline algorithms are
the closest related works of training RNNs for optimiz-
ing different properties in generating molecules. The
LSTM and transformer encoder (TransEn) baselines
were trained by using MLE without property opti-
mization and stopped immediately after pretraining.
These results suggest that the proposed models per-
formed better than the baselines on most measures.

For the drug-likeness in Table 2, TenGAN improved
the validity and uniqueness by 11.0% and 7.6%, re-
spectively. Ten(W)GAN showed improvements of
14.7% and 133.6%, respectively. Both TenGAN and
Ten(W)GAN had the novelty scores close to 100.0%.
The QED scores were improved by 3.6% and 17.6%,
respectively. Additionally, TenGAN and Ten(W)GAN
performed significantly better in terms of diversity.
The execution times show the superiority of the trans-
former during training with respect to computational
efficiency. Similar trends were also observed on the
ZINC dataset as shown in Table E.1 in the Appendix.

Figure C.1 demonstrates examples of the top-12
molecules of Näıve RL, ORGAN, and OR(W)GAN for
the QM9 dataset. For example, the molecules gen-
erated by Näıve RL, ORGAN, OR(W)GAN include

https://github.com/naruto7283/TenGAN
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Table 2: Performance evaluation on property optimizations compared to the closest related work on QM9 dataset.

Property Algorithm Validity Uniqueness Novelty QED SA logP Diversity Time (h)

LSTM 74.4% 98.3% 96.9% 0.48 0.23 0.29 0.93 0.50
TransEn 89.5% 93.9% 82.7% 0.48 0.24 0.30 0.92 0.33

Drug-likeness

Näıve RL 97.0% 59.0% 100.0% 0.57 0.54 0.47 0.89 7.39
ORGAN 88.1% 65.7% 97.9% 0.55 0.45 0.41 0.86 7.16
OR(W)GAN 85.8% 35.7% 98.1% 0.51 0.57 0.29 0.89 7.31

TenGAN 97.8% 70.7% 98.0% 0.57 0.50 0.40 0.90 5.06

Ten(W)GAN 98.4% 83.4% 99.8% 0.60 0.45 0.44 0.89 5.75

Synthesizability

Näıve RL 97.2% 18.6% 98.2% 0.48 0.75 0.33 0.88 7.54
ORGAN 96.5% 32.7% 99.4% 0.49 0.71 0.41 0.87 7.78
OR(W)GAN 94.8% 23.8% 99.3% 0.50 0.64 0.34 0.86 7.81

TenGAN 96.7% 24.2% 97.5% 0.52 0.71 0.50 0.90 4.67

Ten(W)GAN 96.8% 21.7% 98.0% 0.52 0.76 0.48 0.87 6.73

Solubility

Näıve RL 92.8% 63.2% 100.0% 0.44 0.59 0.80 0.86 7.08
ORGAN 93.3% 41.3% 99.5% 0.51 0.56 0.54 0.89 7.20
OR(W)GAN 92.1% 16.9% 97.2% 0.48 0.52 0.44 0.90 7.53

TenGAN 97.5% 61.6% 97.6% 0.51 0.47 0.55 0.91 2.99

Ten(W)GAN 98.2% 30.1% 99.7% 0.51 0.57 0.64 0.90 4.37

* Red boxes indicate the directly optimized properties. Bold values indicate the highest scores among different meth-
ods. The values in gray cells indicate that TenGAN / Ten(W)GAN outperformed the corresponding baselines.

unnatural substructures such as big ring structures
(e.g., nine-, ten-membered rings). Figure 2 shows
the top-12 molecule structures by QED scores for
the QM9 dataset, TenGAN, and Ten(W)GAN. All
compounds generated by TenGAN have pyrrole rings
(i.e., five-member rings containing nitrogen atoms),
which are in many organic compounds. Intuitively,
the molecules generated by TenGAN are not similar
to the QM9 training dataset, but their QED scores
are much higher. Additionally, most compounds gen-
erated by Ten(W)GAN have pyrrole rings. The high-
est QED score in the dataset was 0.665 [Fig. 2 (a)].
Our proposed TenGAN and Ten(W)GAN improved
the highest QED score to 0.705 [Fig. 2 (b)] and 0.694
[Fig. 2 (c)], respectively. Compared with the top-
12 molecules generated by Näıve RL, ORGAN, and
OR(W)GAN, TenGAN and Ten(W)GAN generated
more stable and feasible structures for drug candi-
dates. Similarly, Figs. E.1, E.2, and E.3 in the Ap-
pendix depict newly valid molecules with high prop-
erty scores on the ZINC dataset.

In the property optimization of synthesizability and
solubility, TenGAN and Ten(W)GAN also worked bet-
ter than the other models. The uniqueness and diver-
sity of the molecules decreased with the training epoch
because of fundamental problems in synthesizability
and solubility functions. However, in the optimization
of synthesizability, TenGAN tended to generate more

molecules that are easier to synthesize, such as ben-
zene rings or carbon chains, containing only carbon to
maximize the SA score. Similarly, in the optimization
of solubility, TenGAN generated more oily molecules
that contained long carbon chains, such as “CCCCC-
CCC.” In contrast to mode collapse, the fundamental
problems in synthesizability and solubility functions
made the generated molecules more repetitive, reduc-
ing their uniqueness and diversity.

Figure 3, Appendix Fig. D.1 and Appendix Fig. E.4)
show similar trajectories for property scores according
to the training epochs of TenGAN and Ten(W)GAN
on the QM9 and ZINC datasets. The increase in the
property scores with the training epochs implies that
TenGAN and Ten(W)GAN generated molecules with
the desired chemical properties on the both datasets.

Figure 4, Appendix Figs.D.2, D.3, D.4, and E.5 show
the property (i.e., QED, SA, and logP) distribu-
tions of molecules in the original training dataset and
molecules generated by TenGAN and Ten(W)GAN on
the QM9 and ZINC datasets. Our proposed models
shifted the distributions of the optimized properties to
the right. TenGAN successfully generated molecules
with higher property scores than the original molecules
in the training dataset. Ten(W)GAN outperformed
TenGAN owing to mini-batch discrimination to im-
prove the diversity of the generated molecules and the
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(a) Samples of the QM9 dataset. (b) Samples of the TenGAN. (c) Samples of the Ten(W)GAN.

Figure 2: Top-12 molecule structures with the QED scores (drug-likeness) generated by the proposed models.

Figure 3: Changes in property scores according to the
training epochs for TenGAN on the QM9 dataset.

Wasserstein distance in the loss function to overcome
the drawbacks of the KL divergence function.

4.4 Comparison with Other Algorithms

To further validate the effectiveness of our proposed
models, we also conducted comparisons with various
graph-based algorithms, including JTVAE, GraphAF,
GraphNVP, MoFlow, and MolGAN (De Cao and Kipf,
2018), as well as GAN-based algorithms like Char-
VAE, GramVAE, and TransVAE. Note that due to the
richer information content in molecular graphs, graph-
based models typically outperform SMILES string-
based models. Specifically, discrete GANs relying on
SMILES strings often exhibit training instability, lead-
ing to a reduced capacity for molecular generation.

The results of the comparison are presented in Ta-
ble 3. Although JTVAE realized the highest valid-
ity (1.6% higher than Ten(W)GAN), the uniqueness

Figure 4: QED Distributions on the QM9 dataset.

Table 3: Comparison with graph-, VAE-, Flow-, and
GAN-based algorithms on the QM9 dataset.

Algorithm QED ValidityUniqueness Novelty Total

JTVAE 0.46 100% 55.7% 97.1% 54.1%
GraphAF 0.47 37.0% 91.7% 99.6% 33.8%
CharVAE 0.50 17.2% 99.9% 94.9% 16.3%
GramVAE 0.48 38.0% 98.8% 93.7% 35.2%
TransVAE 0.52 17.2% 25.2% 97.2% 42.1%
GraphNVP 0.58 83.0% 99.2% - -
MoFlow 0.44 95.0% 93.7% 89.0% 79.2%
MolGAN 0.59 99.3% 2.3% 99.7% 2.3%

TenGAN 0.60 97.8% 82.6% 99.8% 80.6%

Ten(W)GAN 0.60 98.4% 83.4% 99.8% 81.9%

* Total is the product of validity, uniqueness, and novelty.

was only 67.4% of Ten(W)GAN. GraphAF realized a
9.9% improvement in uniqueness but had much lower
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Table 4: Chemical property optimization of drug-likeness (QED) in TenGAN and Ten(W)GAN, followed by a
comparison of the top-k generated molecules with baselines on the QM9 dataset.

Algorithm Top-1 Top-5 Top-10 Top-100 Top-1000
ORGAN 0.68 0.66 0.66 0.65 0.61
GraphNVP 0.63 0.62 0.62 0.59 0.42
MoFlow 0.66 0.65 0.65 0.62 0.57

TenGAN 0.71 0.70 0.69 0.66 0.63

Ten(W)GAN 0.69 0.69 0.69 0.68 0.65

validity and QED scores that were only 37.6% and
78.3% of Ten(W)GAN, respectively. Similarly, Char-
VAE also had much lower validity and QED scores
that were only 17.5% and 83.3% of Ten(W)GAN, re-
spectively. The validity and QED scores of GramVAE
were only 38.6% and 80.0% of Ten(W)GAN, respec-
tively. Although TransVAE combined a VAE with a
transformer, it had the lowest validity and uniqueness
among these models, which were only 17.5% and 30.0%
of Ten(W)GAN, respectively. GraphNVP demon-
strated higher uniqueness compared to both TenGAN
and Ten(W)GAN, but its validity was considerably
lower than that of our models. MoFlow had a lower
Total score than both TenGAN and Ten(W)GAN, de-
spite being the current SOTA model. MolGAN had
high validity, but it had low uniqueness (2.3%) because
of mode collapse. The results with similar trends on
the ZINC dataset are demonstrated in Table E.2 in the
Appendix. Overall, both TenGAN and Ten(W)GAN
performed as the top two in terms of novelty, To-
tal, and QED score, while maintaining high validity
and uniqueness. These results demonstrate that our
proposed discrete GANs, relying on SMILES strings
and containing less molecular information compared
to graph-based models, enhance the performance of
molecular generation with property optimization.

Table 4 presents the chemical property optimiza-
tion of drug-likeness in TenGAN and Ten(W)GAN,
along with a comparison of the top-k generated
molecules with baseline models (ORGAN, GraphNVP,
and MoFlow) on the QM9 dataset. TenGAN demon-
strated superior performance in property optimiza-
tion compared to the three baseline models. Specif-
ically, TenGAN outperformed these baseline models
in Top-1, Top-5, and Top-10, showcasing improve-
ments in QED scores by 4.4%, 6.1%, and 4.5%, com-
pared to the second-ranked ORGAN model. More-
over, Ten(W)GAN exhibited enhancements of 4.6%
and 6.5% in QED scores for Top-100 and Top-1000,
respectively. The findings indicate that, compared
to TenGAN, Ten(W)GAN has the ability to enhance
the overall chemical property values of more generated
molecules (Top-100 and Top-1000). Overall, the com-
prehensive evaluation across various metrics and com-

parisons with baseline models highlight the outstand-
ing performance of both TenGAN and Ten(W)GAN in
the realm of chemical property optimization.

4.5 Ablation Studies

In our pursuit of a thorough examination of each
component within the proposed models, we present
comprehensive ablation studies that scrutinize the im-
pacts of different factors, including λ, N , and variant
SMILES, across both TenGAN and Ten(W)GAN.

Tables F.1, F.2, and F.3 in the Appendix showcase
the results. The findings in Table F.1 illustrate that
λ effectively balances the trade-off between GAN and
RL for property optimization. Additionally, Table F.2
demonstrates that increasing the rollout times N sta-
bilizes validity, uniqueness, and novelty, albeit with
an increase in computational time. Lastly, the re-
sults in Table F.3 validate the effectiveness of the vari-
ant SMILES in enhancing chemical properties, as well
as improving validity, uniqueness, and novelty of the
molecular structures generated by the models.

5 Conclusion

We proposed TenGAN and Ten(W)GAN, which are
based only on transformer encoders to generate
molecules and optimize the desired chemical proper-
ties. Variant SMILES, mini-batch discrimination, and
WGAN were leveraged to mitigate the problem of
training instability. The experimental results demon-
strated that the proposed models performed better
than RNN-, graph-, and VAE-based methods. Addi-
tionally, the evaluation results of ablation studies val-
idated the effectiveness of the proposed techniques.

A major limitation of this study is that MC search re-
quires a trade-off between performance stability and
time consumption, as shown in Section F. A small
number of searches may result in unstable training,
whereas a large number of searches increases the time
cost. We will consider this limitation and address it in
future work by employing a solution such as the soft
actor-critic (Haarnoja et al., 2018).
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Supplementary Material
TenGAN: Pure Transformer Encoders Make an Efficient Discrete GAN for De

Novo Molecular Generation

A Variant SMILES

Figure A.1: Example of producing variant SMILES strings.

Figure A.1 demonstrates an example of producing variant SMILES strings. Generally, a molecular graph has
a canonical SMILES string (left figure). The numbers and arrows in the figure denote the traversal order of
the atoms. Unlike NLP, the canonical molecule has various SMILES representations (middle figure) according
to different traversal orders (right figure) called variant SMILES. However, the same molecular graph can be
represented using these ten variant SMILES strings. Therefore, variant SMILES strings can be produced to
improve the pretraining of the generator and prevent it from learning only a single semantic and syntactic feature.
Several representations of the same molecule can be used to fully train the generator. This also alleviates the
problem of mode collapse caused by a “perfect discriminator.”

B Transformer Encoder

The input representations consist of three parts: the query matrix Q, key matrix K, and value matrix V. The
self-attention sublayer utilizing Q, K, and V is expressed as follows:

self-attention(Q,K,V) = softmax(
QKT

√
dmodel

)V, (7)

where dmodel denotes the dimension of the transformer encoder. Usually, the self-attention can be refined into
multi-head self-attention so that the information of different representation subspaces from different positions
can be jointly considered:

multi-head(Q,K,V) = concat(head1, · · · ,headH)W, (8)

and
headi = self-attention(QWQ,KWK ,VWV ), (9)

where W ∈ Rdv×dmodel , WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , and WV ∈ Rdmodel×dv are the parameter matrices,
and

dk = dv =
dmodel

h
, (10)

where h is the number of heads. Then, the output of the multi-head self-attention layer is fed into a position-wise
feedforward network to generate the final source representation H1:T = {h1, · · · , hT }:

H1:T = feed-forward(multi-head(Q,K,V)) + V. (11)
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Note that the multi-head attention is masked to avoid exposing the generator to future information during the
sampling process. A padding mask is used to ensure that the transformer encoders do not pay any attention to
the padding tokens in the discriminator.

C Property Calculation

C.1 Diversity

The diversity was calculated from the Tanimoto similarity between the Morgan fingerprints of any two molecules
in the generated set. Let Vi and Vj be the Morgan fingerprints of two arbitrary generated molecules. The
Tanimoto similarity is then defined as

Sim(Vi, Vj) =
|Vi&Vj |

|Vi|+ |Vj | − |Vi&Vj |
,

where | · | represents the number of bits set in the fingerprints, and & is the common bits in the two fingerprints.
The diversity is then calculated as

Div(Dz) = 1− 1

|Dz|
∑

Vi,Vj∈Dz

Sim(Vi, Vj).

C.2 Drug-likeness

Drug-likeness is evaluated by the QED scores. We generally assign different weights to eight molecular descriptors:
the molecular weight (MW), octanol-water partition coefficient (ALOGP), number of hydrogen bond donors
(HBDs), number of hydrogen bond acceptors (HBAs), molecular polar surface area (PSA), number of rotatable
bonds (ROTBs), number of aromatic rings (AROMs), and number of structural alerts (ALERTS). The calculation
is as follows:

QED = exp(

∑8
i=1 Wi ln di)∑8

i=1 Wi

,

where di and Wi represent the desirability function and weight of the i-th descriptor, respectively. Usually, the
weights of the eight molecular descriptors are obtained through chemical experiments. In practice, the QED
score is calculated by a function in the RDKit tool. The larger the QED score, the more drug-like the molecule.

C.3 Synthesizability

Synthesizability is evaluated by the SA score defined as

SA = rs −
5∑

i=1

pi,

where rs indicates the “synthetic knowledge” gained by analyzing the features of synthetic molecules. rs is the
ratio of the summed contributions from all fragments to the number of fragments in the molecule. In this work,
we calculated rs from the experimental results (Ertl and Schuffenhauer, 2009). pi (i ∈ {1, · · · , 5}) represents the
ring complexity, stereo complexity, macrocycle penalty, size penalty, and bridge penalty, which were calculated
using the RDKit tool. The larger the SA score, the easier the synthesis of the molecule.

C.4 Solubility

In the physical sciences, solubility is quantified by logP, where P is the partition coefficient (defined as the ratio of
concentrations of a molecule in a mixture of two immiscible solvents at equilibrium). The logP can be calculated
as follows:

logP = log
co
cw

,

where co and cw indicate the substance activity in the organic and water phases, respectively. In practice, we
calculate the logP of a molecule using the RDKit tool. The larger the logP value, the higher the lipophilicity of
the molecule to the organic phase.
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(a) Samples of the Näıve RL. (b) Samples of the ORGAN. (c) Samples of the OR(W)GAN.

Figure C.1: Top-12 molecule structures with the QED scores (drug-likeness) generated by the baseline models.

D Experimental Results on QM9 Dataset

D.1 Molecule Structures

Figure C.1 shows the top-12 molecule structures by QED score for the following molecular generative models
on the QM9 dataset: Näıve RL, ORGAN, and OR(W)GAN. In organic chemistry, molecular structures follow
certain rules, in which existing cyclic organic compounds generally have five- or six-member rings because of their
high stability. The molecules generated by Näıve RL [Fig. C.1 (a)] have ring structures consisting of more than
seven atoms, which are not stable. Additionally, most of them violate Hückel’s rule, which is a fundamental rule
in organic chemistry. Meanwhile, all of the top-12 compounds generated by ORGAN [Fig. C.1 (b)] are acyclic
and the QED scores are lower than those for the compounds generated by Ten(W)GAN. Similar to Näıve RL,
most of the compounds generated by OR(W)GAN [Fig. C.1 (c)] have ring structures consisting of more than

seven atoms. A four-member ring compound (10) that does not satisfy H’́uckel’s rule was also generated.

D.2 Property Optimization of Ten(W)GAN

Figure D.1: Changes in the property scores according to the training epoch for Ten(W)GAN on the QM9 dataset.

Figure D.1 shows the changes in the property scores according to the training epoch for Ten(W)GAN on the QM9
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dataset. Similar to TenGAN, the optimized property scores increased with the training epoch for Ten(W)GAN.
When the optimized property was drug-likeness, the curve of Ten(W)GAN increased smoothly and slowly. The
curves for the synthesizability and solubility increased faster than the drug-likeness because more semantic and
syntactic features were required to generate molecules with high drug-likeness. Fewer semantic and syntactic
features were required to generate molecules with high synthesizability because simple molecules are easier to
synthesize. For solubility, molecules with higher logP values tend to have longer carbon chains. Only a few
semantic and syntactic features are required to generate molecules with a high logP. Therefore, the curve for
the drug-likeness increased slowly, whereas the curves for the synthesizability and solubility increased rapidly.
In summary, Ten(W)GAN can also generate molecules with desired chemical properties.

D.3 Property Distributions

(a) Distribution of SA scores (synthesizability). (b) Distribution of logP scores (solubility).

Figure D.2: Distributions of SA and logP with drug-likeness as the optimized property on the QM9 dataset.

Figure D.2 shows the SA and logP distributions of the generated molecules when the drug-likeness was the
optimized property for TenGAN and Ten(W)GAN on the QM9 dataset. Figure D.2 (a) shows that not only the
QED distribution but also the SA distribution was significantly improved with the proposed models. The SA
distribution of the training set (ORIGINAL) had a peak at 0.1. TenGAN and Ten(W)GAN shifted the peaks to
the right. Although the two distributions of the proposed model became more scattered with the distribution
of the original training set, the mean value of the SA increased overall. Similarly, Fig. D.2 (b) shows that the
logP distributions improved with the proposed models. The difference between the SA and logP scores is that
the QED score could not reach the maximum value of one.

When the property of synthesizability was optimized, TenGAN and Ten(W)GAN significantly improved the
distributions of the generated molecules, and the SA score reached the maximum value of one. Figure D.3
(b) shows that the distribution peak of the training set (0.1) shifted to the right to around 0.75. Therefore,
TenGAN and Ten(W)GAN generated more molecules that are easy to synthesize when the optimized property
was synthesizability. Meanwhile, solubility is improved by generating carbon chain molecules, which are also
easy to synthesize. Therefore, Fig. D.3 (c) shows that the proposed models improved the logP distribution.
Unlike synthesizability and solubility, drug-likeness generated high-quality molecules. A molecule that is easy to
synthesize and has a high logP value and generally has low drug-likeness. Figure D.3 (a) shows that the QED
distributions of the proposed models did not improve much when synthesizability was the optimized property.

Similarly, the distributions of QED scores were not much improved when solubility was the optimized property.
Figure D.4 (b) and Fig. D.4 (c) show that TenGAN and Ten(W)GAN effectively improved the SA and logP
distributions of the generated molecules, whereas the QED distribution remained the same [Fig. D.4] (a) because
the solubility and drug-likeness properties are in conflict when the length of the SMILES string is small.
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(a) Distribution of QED (drug-likeness). (b) Distribution of SA (synthesizabil-
ity).

(c) Distribution of logP (solubility).

Figure D.3: Distributions of QED, SA and logP with synthesizability as the optimized property on the QM9
dataset.

(a) Distribution of QED (drug-likeness). (b) Distribution of SA (synthesizabil-
ity).

(c) Distribution of logP (solubility).

Figure D.4: Distributions of QED, SA and logP with solubility as the optimized property on the QM9 dataset.

E Experimental Results on ZINC Dataset

E.1 Comparison with RNN-based Methods

Table E.1 compares the results of TenGAN and Ten(W)GAN with Näıve RL, ORGAN, and OR(W)GAN for
the ZINC dataset. The results shows that the proposed models performed better than the baselines on most
measures on the ZINC dataset.

For the drug-likeness, TenGAN improved the validity and uniqueness to 95.3% and 80.3%, respectively.
Ten(W)GAN improved to 95.3% and 81.2%, respectively. Both TenGAN and Ten(W)GAN had the novelty
scores larger than 96.0%. The QED scores were improved to 0.84. Additionally, TenGAN and Ten(W)GAN
performed significantly better in terms of diversity and computational cost. When the optimized properties were
synthesizability and solubility, TenGAN and Ten(W)GAN also worked better than the other models.

E.2 Top-12 Molecule Structures

Figures. E.1, E.2 and E.3 provide examles of the top-12 molecules of TenGAN and Ten(W)GAN for the ZINC
dataset. For example, TenGAN and Ten(W)GAN in Fig. E.1 generated drug-like chemical structures.

E.3 Property Optimization of Ten(W)GAN

Figures E.4 shows the two curves of the property scores according to the training epochs for TenGAN and
Ten(W)GAN on the ZINC dataset. The increase in the property scores with the training epochs indicated that
TenGAN and Ten(W)GAN generated molecules with the desired chemical properties.
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Table E.1: Evaluation results with chemical properties compared with the closest related works on the ZINC
dataset.

Property Algorithm Validity Uniqueness Novelty QED SA logP Diversity Time (h)

LSTM 51.9% 97.6% 98.6% 0.76 0.78 0.65 0.89 0.92
TransEn 85.2% 97.8% 97.6% 0.79 0.78 0.63 0.89 0.30

Drug-likeness

Näıve RL 89.2% 65.5% 98.5% 0.81 0.53 0.64 0.86 12.79
ORGAN 91.7% 54.9% 98.4% 0.80 0.48 0.66 0.85 12.40
OR(W)GAN 91.5% 54.1% 98.2% 0.79 0.48 0.66 0.85 11.58

TenGAN 95.3% 80.3% 96.2% 0.84 0.87 0.64 0.86 5.21

Ten(W)GAN 95.3% 81.2% 96.5% 0.84 0.88 0.65 0.87 5.31

Synthesizability

Näıve RL 88.5% 39.3% 98.7% 0.79 0.91 0.66 0.86 13.22
ORGAN 81.7% 44.0% 98.9% 0.77 0.87 0.61 0.86 13.29
OR(W)GAN 76.1% 26.6% 99.3% 0.74 0.89 0.75 0.84 13.00

TenGAN 91.7% 85.4% 96.5% 0.81 0.90 0.67 0.86 3.25

Ten(W)GAN 90.5% 86.5% 96.3% 0.80 0.91 0.69 0.86 3.70

Solubility

Näıve RL 84.2% 76.4% 98.9% 0.74 0.85 0.74 0.86 13.58
ORGAN 68.1% 44.2% 99.3% 0.78 0.82 0.67 0.84 13.55
OR(W)GAN 83.8% 64.6% 98.3% 0.78 0.53 0.71 0.85 13.38

TenGAN 93.0% 80.7% 99.6% 0.62 0.82 0.92 0.86 4.96

Ten(W)GAN 91.7% 79.2% 99.6% 0.63 0.83 0.92 0.85 5.06

* Red boxes indicate the directly optimized properties. Bold values indicate the highest scores among different methods.
The values in gray cells indicate that TenGAN / Ten(W)GAN outperformed the corresponding baseline.

(a) Samples of the ZINC dataset. (b) Samples of the TenGAN. (c) Samples of the Ten(W)GAN.

Figure E.1: Top-12 molecule structures with the QED scores (drug-likeness) on the ZINC dataset.
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(a) Samples of the ZINC dataset. (b) Samples of the TenGAN. (c) Samples of the Ten(W)GAN.

Figure E.2: Top-12 molecule structures with the SA scores (synthesizability) on the ZINC dataset.

(a) Samples of the ZINC dataset. (b) Samples of the TenGAN. (c) Samples of the Ten(W)GAN.

Figure E.3: Top-12 molecule structures with the logP scores (solubility) on the ZINC dataset.
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(a) Property change curve for TenGAN. (b) Property change curve for Ten(W)GAN.

Figure E.4: Changes in the property scores according to the training epoch on the ZINC dataset.

(a) Distribution of QED (drug-likeness). (b) Distribution of SA (synthesizabil-
ity).

(c) Distribution of logP (solubility).

Figure E.5: Distributions with drug-likeness, synthesizability, and solubility as the optimized properties on the
ZINC dataset.

Table E.2: Comparison of TenGAN with graph-based and VAE-based algorithms on the ZINC dataset.

Algorithm Validity Uniqueness Novelty Total logP

JTVAE 100.0% 19.8% 99.8% 19.8% 0.51
GraphAF 100.0% 83.2% 100.0% 83.2% 0.61
CharVAE 86.7% 81.2% 26.4% 18.6% 0.55
GramVAE 91.9% 77.2% 11.9% 8.5% 0.58
TransVAE 25.4% 100.0% 100.0% 25.4% 0.14
MoFlow 26.0% 100.0% 100.0% 26.0% 0.71
MolGAN 95.3% 4.3% 100.0% 4.1% 0.62

TenGAN 91.6% 95.4% 97.5% 85.2% 0.73
Ten(W)GAN 91.2% 95.7% 97.2% 84.8% 0.71

E.4 Property Distributions

Figure E.5 shows the distributions with drug-likeness, synthesizability, and solubility as the optimized properties
on the ZINC dataset. From the figures, it was observed that TenGAN and Ten(W)GAN effectively improved
the QED, SA, and logP distributions of the generated molecules.

E.5 Comparison with Graph and VAE Methods

Table E.2 shows that although JTVAE and GraphAF realized the highest validity (i.e., 100%), the uniqueness
and logP score were much lower than TenGAN. Similarly, CharVAE and GramVAE had much lower novelty
and logP scores than TenGAN. Although TransVAE combined a VAE with a transformer, it had the smallest
validity among these baseline models (i.e., 25.4%). In summary, TenGAN performed best in terms of Total and
logP value while maintaining high validity, uniqueness, and novelty.
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Table F.1: Effect of different λ on the QM9 dataset.

λ QED Validity Uniqueness Novelty Diversity

0 0.59 98.1% 82.6% 99.8% 0.90
0.1 0.60 97.8% 82.6% 99.8% 0.89
0.3 0.57 98.7% 60.2% 96.7% 0.89
0.5 0.57 97.8% 70.7% 98.0% 0.90
0.7 0.52 96.8% 71.5% 92.9% 0.92
0.9 0.47 91.3% 91.6% 86.6% 0.93
1.0 0.46 82.0% 90.2% 85.8% 0.93

Table F.2: Effect of different N on the QM9 dataset.

N QED Validity Uniqueness Novelty Time (h)

1 0.48 89.5% 93.9% 82.7% 0.33
2 0.57 98.1% 77.9% 99.4% 2.16
4 0.55 98.2% 60.2% 94.5% 2.99
8 0.57 97.8% 62.0% 98.7% 4.73
16 0.57 97.8% 70.7% 98.0% 5.06
32 0.56 98.6% 71.9% 97.4% 11.62

Table F.3: Effect of the variant SMILES on the ZINC dataset.

Algorithm QED Validity Uniqueness Novelty

TenGAN w/o 0.83 93.6% 69.2% 96.1%
TenGAN 0.84 95.3% 80.3% 96.2%
Ten(W)GAN w/o 0.84 93.7% 74.2% 95.9%
Ten(W)GAN 0.84 95.3% 81.2% 96.5%

* “w/o” indicates model training without the variant SMILES.

F Ablation Studies

Effect of λ. λ represents the trade-off between the GAN and RL. Different λ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1} were
used on the drug-likeness to explore the effect of λ on the performance of TenGAN. The results are presented
in Table F.1. Increasing λ decreased the QED score, validity, and novelty while increasing the uniqueness
and diversity. These results are reasonable because RL mainly controls the training process when λ is small.
Particularly, the training is fully executed by RL when λ = 0. Because RL updates the generator by improving
the average reward of generated molecules and invalid molecules receive zero rewards, the generator tends to
generate mostly valid molecules in this case. However, a higher validity and QED score mean that the model
must use less data to learn strategies (i.e., the overlap between the training dataset distribution and the generated
data distribution shown in Fig. 4). Therefore, when RL dominates the training process, the uniqueness and
diversity decrease.

Effect of N . The rollout times N controls the number of MC searches, and it also affects the performance
of TenGAN. Intuitively, when N is small, the randomness of the strings generated based on substrings and the
variance of rewards are relatively large, which may result in model instability. Table F.2 shows the effect of N
on the performance of TenGAN with regard to drug-likeness (QED score). Increasing N stabilizes the validity,
uniqueness, and novelty, but the computational time increased as N increases.

Effect of Variant SMILES. We also evaluated the effect of the variant SMILES on the performance of
TenGAN and Ten(W)GAN, respectively. The evaluation results are shown in Table F.3. All metrics (i.e.,
validity, uniqueness, novelty, and QED scores) of TenGAN and Ten(W)GAN improved after using the variant
SMILES technique. Therefore, variant SMILES can help TenGAN and Ten(W)GAN to fully train and learn
more syntactic and semantic rules from SMILES strings.
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