
When No-Rejection Learning is Consistent for Regression with
Rejection

Xiaocheng Li Shang Liu Chunlin Sun Hanzhao Wang
† Imperial College Business School, Imperial College London

‡ Institute for Computational and Mathematical Engineering, Stanford University

Abstract

Learning with rejection has been a prototyp-
ical model for studying the human-AI inter-
action on prediction tasks. Upon the arrival
of a sample instance, the model first uses
a rejector to decide whether to accept and
use the AI predictor to make a prediction
or reject and defer the sample to humans.
Learning such a model changes the struc-
ture of the original loss function and often
results in undesirable non-convexity and in-
consistency issues. For the classification with
rejection problem, several works develop con-
sistent surrogate losses for the joint learn-
ing of the predictor and the rejector, while
there have been fewer works for the regres-
sion counterpart. This paper studies the re-
gression with rejection (RwR) problem and
investigates a no-rejection learning strategy
that uses all the data to learn the predictor.
We first establish the consistency for such a
strategy under the weak realizability condi-
tion. Then for the case without the weak
realizability, we show that the excessive risk
can also be upper bounded with the sum of
two parts: prediction error and calibration
error. Lastly, we demonstrate the advantage
of such a proposed learning strategy with em-
pirical evidence.

1 INTRODUCTION

The problem of learning with rejection models the
teaming of humans and AI systems in accomplishing
a prediction task, and it has received increasing atten-

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

tion in recent years due to the adventure of powerful
AI tools and critical applications such as medication
and healthcare. Learning with rejection has two com-
ponents: (i) a predictor that predicts the label or tar-
get value Y given a feature X and (ii) a rejector that
decides whether to make predictions based on uncer-
tainty/low confidence. Upon the rejection, the sample
will be deferred to human experts, and the rejection
decision will incur a cost. The rejector can be viewed
as a binary classifier that assigns the prediction task
to either the predictor or the human, and thus it en-
ables the predictor to focus on predicting only the un-
rejected samples, ideally samples with high prediction
confidence. Such problem is also studied under vari-
ants that take a similar setup, known as learning under
triage (Okati et al., 2021), learning to defer (Mozannar
and Sontag, 2020; Verma and Nalisnick, 2022; Verma
et al., 2023; Mozannar et al., 2023), learning under
human assistance (De et al., 2020, 2021), learning to
complete human (Wilder et al., 2020), and selective
prediction (Geifman and El-Yaniv, 2019; Jiang et al.,
2020). Learning with rejection can also be categorized
into two classes based on the underlying task: (i) re-
gression with rejection and (ii) classification with rejec-
tion. In this paper, we mainly focus on the regression
with rejection problem while some results also gener-
alize to the classification with rejection problem.

A natural way to tackle the learning problem of pre-
diction with rejection is to modify the loss function
to incorporate both the predictor loss and the rejec-
tion cost. This will enable joint learning of the pre-
dictor and the rejector simultaneously by minimizing
the modified loss on the training data. If we single out
the learning of the predictor, such an approach will
only use part of the samples (those unrejected ones)
to train the predictor; this is partially justified by the
observation that the prediction performance on the re-
jected samples will not affect the final performance (De
et al., 2020). For classification problems with a reject
option, this approach is also supported by generaliza-
tion bounds derived using surrogate loss (Cortes et al.,

When No-Rejection Learning is Consistent for Regression with Rejection

2016b). However, the fact of using part of the training
data to train the predictor is quite counter-intuitive to
the common sense that more samples will lead to bet-
ter training of the prediction model. Specifically, for
regression with rejection, learning the predictor based
on part of the training data can lead to overfitting
on the wrong subset (Geifman and El-Yaniv, 2019) or
result in a local optimum that performs significantly
worse than the global optimum (See Proposition 2).
Therefore in this paper, we explore the condition un-
der which no-rejection learning – that treats prediction
with rejection just as a standard ML task and utilizes
all the training data – achieves consistency.

1.1 Our Contribution

We first establish the consistency of no-rejection learn-
ing under a weak realizability condition which requires
that the predictor function class covers the conditional
expectation function. This result implies that the sub-
optimality of no-rejection learning will only arise when
the underlying function class is not rich enough. Then
we proceed with the analysis without this condition
and introduce the truncated loss. The truncated loss
allows full flexibility for the rejector and thus singles
out the learning of the predictor. We show that con-
sistency and surrogate property can be derived based
on this truncated loss in an easier manner than the
joint learning problem. Consequently, it leads to a
generalization bound for the regression with rejection
problem. We also discuss the learning of the rejector
under two environments: fixed cost and fixed budget.
Lastly, we use numerical experiments to complement
our theoretical results.

1.2 Related Literature

Regression with Rejection. Zaoui et al. (2020)
characterize the optimal predictor and rejector for the
function class of all measurable functions, and pro-
pose a nonparametric algorithm to learn them. Geif-
man and El-Yaniv (2019) present a neural network-
based algorithm with numerical illustrations. Kang
and Kang (2023) quantify the prediction uncertainty
directly, which can also be applied to address the re-
gression with rejection problem. In comparison to
these works, we also consider the cost of rejection,
while they only investigate the budgeted setting. Jiang
et al. (2020) aim to minimize the rejection rate under
a specified level of loss without considering rejection
costs. Shah et al. (2022) consider both rejection costs
and reject budgets, highlighting the challenges of op-
timizing the predictor and rejector even for training
samples, and develop a greedy algorithm to solve the
problem approximately.

A concurrent work (Cheng et al., 2024) also considers
the regression with rejection problem while our work
contributes to the problem against it in three aspects:
First, Cheng et al. (2024) establishes a surrogate prop-
erty for their proposed surrogate loss, but the proposed
loss is nonconvex. The nonconvexity brought by loss
truncation is unlike the benign nonconvexity convexity
for neural networks commonly acknowledged by the
deep learning community, but it can result in severe
suboptimality as shown in Proposition 2. However, our
advocated no-rejection learning enjoys a nice squared
loss (which is convex and easy to optimize). Second,
we discuss the calibration of the conditional risk and
explicitly characterize the suboptimality brought by
learning the rejector in Theorem 1, and this part is
completely ignored in previous literature. Third, ac-
cording to our check, the main results of Theorems
5 and 7 in Cheng et al. (2024) are incorrect as they
missed the critical condition that the pre-specified hy-
pothesis class should contain the Bayes-optimal regres-
sor and rejector to make both theorems valid. This is
exactly the weak realizability condition that we first
introduce to the general problem of learning with re-
jection.

Classification with Rejection. While the regres-
sion with rejection literature has been largely focused
on deriving heuristic algorithms, there have been more
theoretical developments for the classification with re-
jection problem, and the key is to introduce a proper
surrogate loss. Various surrogate loss functions have
been proposed that share the same optimal solution
as the original loss function for binary classification
and multi-class classification (Bartlett and Wegkamp,
2008; Yuan and Wegkamp, 2010; Ramaswamy et al.,
2018; Ni et al., 2019; Verma and Nalisnick, 2022;
Charusaie et al., 2022; Cao et al., 2022). Moreover,
Cortes et al. (2016b) establish an explicit relationship
between the excess loss of the original loss and the
surrogate loss. In parallel to the works on classifi-
cation with rejection, we give the first surrogate loss
and consistency analysis for regression with rejection.
Different from classification with rejection, no convex
surrogate loss has been proposed for regression with re-
jection, and our work shows that the original squared
loss (no-rejection learning) already serves as a good
surrogate loss for learning the regressor.

2 PROBLEM SETUP

Consider n data samples {(Xi, Yi)}ni=1 drawn indepen-
dently from an unknown distribution P. The feature
vector is Xi ∈ X ⊆ Rd, and the target is Yi ∈ Y ⊆ R.
The problem of regression with rejection (RwR) con-
siders the regression problem with a rejection option.
Specifically, it consists of two components: (i) a re-

Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang

gressor f : X → Y, which predicts the target with the
feature. (ii) a rejector r : X → {0, 1}, which decides
whether to apply the regressor f (when r(X) = 1) or
to defer the sample to human (r(X) = 0).

Compared to the standard regression problem, the RwR
problem introduces a rejection/deferral option. Re-
jected samples are typically handled by humans at a
fixed cost of c > 0. Consequently, the RwR loss function
is defined as follows

lRwR(f, r; (X,Y)) = r(X) · l(f(X), Y) + (1− r(X)) · c

where l(·, ·) represents the standard regression loss,
say, the squared loss, l(Ŷ , Y) = (Ŷ −Y)2. The motiva-
tion of this loss structure is to encourage the deferral
of high-risk samples to humans.

The problem of RwR aims to find a regressor and a
rejector that jointly minimize the expected loss

min
f∈F,r∈G

LRwR(f, r) := E [lRwR(f, r; (X,Y))] (1)

where the expectation is taken with respect to
(X,Y) ∼ P. Here F and G denote the sets of can-
didate regressors and rejectors, respectively.

The following proposition from Zaoui et al. (2020)
characterizes the optimal solution of (1) when only
measurability is imposed on the functions classes of F
and G. It says that the optimal regressor is the con-
ditional expectation, and the optimal rejector rejects
samples with a conditional variance larger than c.

Proposition 1 (Zaoui et al. (2020)). Suppose F con-
tains all measurable functions that map from X to Y,
and G contains all measurable functions that map from
X to {0, 1}. Then the optimal regressor f∗(X) and re-
jector r∗(X) for (1) are

f∗(x) = f̄(x) := E[Y |X = x],

r∗(x) =

{
1, if E[(Y − f∗(X))2|X = x] ≤ c,

0, otherwise.

Proposition 1 characterizes the optimal solution, but it
does not provide much insight into the learning proce-
dure (which is based on data samples). In the following
sections, we will present several results that shed light
on the learning procedure, showing how the optimal
solution can be achieved.

3 CONSISTENCY UNDER WEAK
REALIZABILITY

In this section, we first show a challenge of the joint
learning of a regressor f and a rejector r with an exam-
ple such that directly minimizing the RwR loss will end

up with inconsistency/local optima. For the classifica-
tion setting, some consistent surrogate loss functions
have been designed, but there are no existing results
for the regression setting to our knowledge. Here we
propose a two-step no-rejection learning procedure: we
first ignore the RwR loss structure and treat the prob-
lem as an ordinary least squares regression problem,
then learn a rejector by calibrating the conditional ex-
pected loss of the learned regressor. We establish the
consistency of such a two-step learning under a weak
realizability condition.

3.1 Challenge of Joint Learning of f and r

For the classification with rejection problem, there
have been various proposed surrogate losses (for
the original nonconvex loss) that enjoy consistency
guarantees (Bartlett and Wegkamp, 2008; Yuan and
Wegkamp, 2010; Cortes et al., 2016a,b; Ramaswamy
et al., 2018; Ni et al., 2019; Mozannar and Sontag,
2020; Verma and Nalisnick, 2022; Mozannar et al.,
2023). However, it turns out to be much more dif-
ficult to construct a surrogate loss for the regression
with rejection problem. Without a consistency guar-
antee, the brute-forced approach of joint learning of f
and r or alternatively optimizing f and r can lead to
bad local minima. To formally illustrate the point, we
define the following optimality conditions.

Definition 1 (Optimality of joint learning). For any
regression with rejection task on X×Y with a regressor
class F (equipped with some norm ∥·∥F) and a rejector
class G (equipped with some norm ∥ · ∥G), we define
the following optimality conditions for a pair (f, r) ∈
F × G:

(a) (f, r) is globally optimal if LRwR(f, r) ≤ LRwR(f
′, r′)

for any (f ′, r′) ∈ F × G;

(b) (f, r) is locally optimal if there exists δ0 > 0, s.t.
LRwR(f, r) ≤ LRwR(f

′, r′) for any pair (f ′, r′) that
∥f ′ − f∥F ≤ δ0, ∥r′ − r∥G ≤ δ0;

(c) (f, r) is entry-wise optimal if LRwR(f, r) ≤
LRwR(f, r

′) for any r′ ∈ G and LRwR(f, r) ≤
LRwR(f

′, r) for any f ′ ∈ F .

With these optimality notions, we formally state the
following result that curves some fundamental obsta-
cles in joint learning (f, r).

Proposition 2. Consider X × Y = Rd × R and a
continuous distribution P with a well-defined proba-
bility density function. Suppose the conditional mean
E[Y |X = x] is well-defined for any x ∈ Rd, and the
conditional variance of Y on X varies across the whole
domain so that minx E[(Y − E[Y |X = x])2|X = x] <
c < maxx E[(Y − E[Y |X = x])2|X = x]. Let F be the

When No-Rejection Learning is Consistent for Regression with Rejection

class of all measurable functions from Rd to R and G be
the class of all measurable functions from Rd to {0, 1}.
With the distances ∥f ′−f∥F := supx |f ′(x)−f(x)| and
∥r′ − r∥G := PX∼PX

(r′(X) ̸= r(X)), we have

(a) There exists (f0, r0) locally optimal but not glob-
ally optimal. In other words, joint learning can be
trapped by bad initialization;

(b) There exists (f1, r1) entry-wise optimal but not
globally optimal. In other words, alternative opti-
mization can be trapped by entry-wise optimum.

The intuitions behind Proposition 2 are as follows:
for the regression with rejection problem, there is a
vital difference between high-risk samples and bad-
performed samples, where the high-risk cases are those
X = x samples with a large mean squared error un-
der f and the bad-performed samples are those with
a large bias term. For any fixed regressor f and fea-
ture X, the mean squared error can be decomposed
into two terms: squared bias and variance. The bias
term measures the prediction quality of the regressor
f and it is reducible with the choice of F covering all
the measurable functions, while the variance term is
an irreducible term and an intrinsic property of the
data distribution. However, those two terms are not
separately considered when performing the rejection;
the rejector focuses on the sum of these two terms.
Thus, when the regressor has the rejector to decide
which samples to learn from and refrain from learning
on bad-performed samples, the regressor would prob-
ably miss the potential improvement on those cases
with high bias but low variance. In other words, the
difficulty of joint learning lies in the difference between
regressor f and rejector r: the former needs to evaluate
bias and variance separately, while the latter cares for
the sum. In the context of regression with rejection,
or the more general learning with rejection, this obser-
vation leads to the suboptimality of the joint learning
procedure which ignores the non-convexity and per-
forms a joint optimization of the loss (1).

3.2 Learning with Weak Realizability

As is discussed in the previous subsection, the differ-
ence between learning the regressor and learning the
rejector forms the basic difficulties of the regression
with rejection problem. Such an observation implies
that the learner needs to deal with each learning sep-
arately. In this subsection, we formalize this intuition
under a condition called weak realizability. We first
derive a few asymptotic consistency results under the
condition; we will discuss the general cases without the
condition in Section 4. The weak realizability condi-
tion states that the function class F includes the con-

ditional expectation function (as a function mapping
X to Y).

Definition 2 (Weak realizability). We say that the
distribution P and the regressor’s function class F sat-
isfy weak realizability if

f̄(x) := E[Y |X = x] ∈ F .

For the rejector function class G, it satisfies weak real-
izability if ∀f ∈ F ,

rf (x) := 1{E[(Y − f(X))2|X = x] ≤ c} ∈ G

where we call rf as the rejector induced by f .

We refer to the condition as weak realizability in that it
only requires the conditional expectation function (or
the indicator function of the conditional risk, respec-
tively) belonging to F (or G, respectively), but it does
not require the existence of a regressor-rejector pair
that achieves a zero loss as the standard realizability
condition. Under such a condition, the RwR problem
exhibits a nice learning structure which also extends
to the classification problem (See Appendix B).

Proposition 3. If the weak realizability condition
holds for P and F , then

f̄(·) ∈ argmin
f∈F

LRwR(f, r)

for any measurable rejector function r(·). In addition,
if the weak realizability condition holds for G, i.e., rf ∈
G for any f ∈ F , then for any fixed regressor f ∈ F ,
rf minimizes the expected RwR loss that

rf (·) ∈ argmin
r∈G

LRwR(f, r).

While Proposition 2 points out the inconsistency of
jointly or alternatively learning the regressor and the
rejector, Proposition 3 says that this inconsistency dis-
appears if one only reject to predict rather than reject
to learn those bad-performed cases. As is discussed in
Section 3.1, the major concern of joint learning is due
to the possibility that a regressor might never improve
on those bad-performed cases after rejection. But if
one can consistently learn the conditional mean f̄(x),
then it naturally leads to the minimizer of the RwR

loss for any rejector point-wisely. Such a result im-
plies that one can always learn the regressor first and
a corresponding rejector later to obtain consistency.
In general, we do not need to bother with the rejector
when learning the regressor. Thus we can ignore the
RwR loss and treat the problem as a standard regres-
sion problem to learn the regressor. Such an intuition
is formalized in the following proposition.

Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang

Proposition 4. Any regressor {fn}∞n=1 that is consis-
tent in probability (or almost surely) w.r.t. the squared
loss is also consistent in probability (or almost surely)
w.r.t. the RwR loss for any regressor r ∈ G. That is, if

E[(fn(X)− Y)2] → E[(f∗(X)− Y)2]

in probability (or almost surely) as n → ∞, then

LRwR(fn, r) → LRwR(f
∗, r)

in probability (or almost surely) as n → ∞ for any
r ∈ G. Moreover, if the constant function 1 ∈ G, then
the reverse also holds.

The following provides a more concrete example of the
consistent assumption in Proposition 4.

Example 1. Consider a parameterized family of func-
tions F = {fθ : fθ : X → Y, θ ∈ Θ} with a compact
parameter space Θ. Suppose the function is Lipschitz
with respect to θ, i.e., |fθ1(X)− fθ2(X)| ≤ L∥θ1−θ2∥2
with some L > 0 for all θ1, θ2 ∈ Θ andX ∈ X . Assume
X and Y are bounded. Let

fθn(·) = argmin
f∈F

n∑
i=1

l (f(Xi), Yi) . (2)

Then under weak realizability of F , we have ∀r,

LRwR(fθn , r) → LRwR(f
∗, r)

a.s. as n → ∞ with f∗ defined in Proposition 1.

The analysis of Example 1 shows that although the
function fθn is learned under the original loss l (e.g.,
squared loss), it still works optimally for RwR loss. In
other words, under the weak realizability condition,
the learning is consistent without taking account of the
RwR structure. In fact, this is what we mean by no-
rejection learning. Specifically, consider the empirical
version of the RwR loss

min
f∈F,r∈G

n∑
i=1

r(Xi) · l(f(Xi), Yi) + (1− r(Xi)) · c. (3)

If we take the perspective of learning the regressor f ,
the above empirical loss (3) essentially only uses part
of the training samples (those where r(Xi) = 1) to
learn f . This is quite counter-intuitive to the common
sense that more training samples will lead to a bet-
ter model. Proposition 3 with Example 1 points out
that no-rejection learning (2) which considers all the
training samples and simply treats it as a standard re-
gression task, is consistent when the underlying func-
tion class F is rich enough. Moreover, for classification
with rejection, while the existing works propose surro-
gate losses to convexify (3), our result says that such

design is only necessary when the underlying function
class is not rich enough to include the Bayes optimal
classifier.

Bansal et al. (2021) consider classification with rejec-
tion and use examples to demonstrate that it will re-
sult in a suboptimal predictor/classifier if one ignores
the rejector structure and simply performs the stan-
dard no-rejection learning. On one hand, the findings
highlight the special structure of learning with rejec-
tion. On the other hand, our results above say that
such suboptimality of the learned predictor/classifier
(under no-rejection learning) can be mitigated by the
adoption of a richer family of functions F . We further
illustrate this intuition in Figure 1.

Zaoui et al. (2020) consider the k-nearest neighbor (k-
NN) method for the RwR problem. Our results above
generalize and justify their choice of k-NN. Specifi-
cally, for k-NN or a nonparametric method in general,
one usually imposes an assumption on the Lipschitz-
ness/smoothness of the conditional expectation func-
tion f̄ . This is in fact a special case of our weak realiz-
ability condition where the Lipschitzness/smoothness
assumption ensures the function class F of the non-
parametric estimators is rich enough to cover the true
f̄ . Hence in their algorithm development, they use all
the training samples to learn the k-NN regressor. One
goal of our work is to justify such a no-rejection learn-
ing procedure with and without the presence of the
weak realizability condition, and more importantly,
beyond the scope of nonparametric methods.

4 LEARNING BEYOND WEAK
REALIZABILITY

Now we extend the results in the previous section to
the case when weak realizability does not hold. The
aim is to establish the squared loss as a surrogate loss
of the RwR loss and derive error bounds for no-rejection
learning. We also give a simple consistent algorithm
to calibrate the conditional risk in order to practically
learn the rejector.

4.1 Surrogate Property

We first define the truncated loss as follows

L̃(f) = E
[
E
[
l(f(X), Y)

∣∣X]
∧ c

]
, (4)

where a ∧ b = min{a, b} for a, b ∈ R. Here the inner
expectation is taken with respect to the conditional
distribution Y |X and the outer expectation is taken
with respect to the marginal distribution X. Basically,
the truncated loss truncates the expected loss given X
if it exceeds the threshold c.

When No-Rejection Learning is Consistent for Regression with Rejection

(a) Linear SVM Model 1. (b) Linear SVM Model 2. (c) SVM with RBF kernel.

Figure 1: An illustration adapted from Bansal et al. (2021) on classification with rejection. (a) plots the linear SVM
model that gives optimal classification accuracy and (b) plots the optimal linear SVM model that optimizes the loss of
classification with rejection. That is, (a) ignores the rejection structure and treats the problem as a standard classification
problem, while (b) is optimized for the classification with rejection objective. As a consequence, (a) achieves an accuracy
of 24/35, but it needs to reject 20 points to achieve 34/35 overall accuracy (assuming the human classifier always correctly
predicts). (b) achieves an accuracy of 21/35, but it only needs to reject 15 points to achieve 34/35 overall accuracy.
Bansal et al. (2021) uses the paradox to emphasize the importance of accounting for the rejection structure when learning
the classifier. In (c), we explain this paradox by the richness of the classifier function class. Specifically, we plot an SVM
classifier with a Gaussian radial basis function (RBF) kernel that is learned as the standard classification problem; and
this classifier is provably optimal for any measurable rejector (in the sense of Proposition 3). The contrast between (a)
and (b) is a result of the limitation of the classifier class. For the linear SVM model in this example, when it performs
well on some region of the data, it will sacrifice the other region. When the function class becomes richer to (in practice,
approximately) cover the Bayes optimal classifier, this phenomenon will not exist anymore.

It is natural to consider the rejector induced by a cali-
brator R̂(f, x), where the calibrator estimates the con-
ditional risk R(f, x) := EY [(f(X) − Y)2|X = x]. We
formally define the induced rejector by

rR̂(x) := 1{R̂(f, x) ≤ c}.

We shall see in the next proposition that the truncated
loss and the original RwR loss are closely related with
respect to the induced rejector.

Proposition 5. For the truncated loss, we have:

(a) For any regressor f and any rejector r,

L̃(f) ≤ LRwR(f, r).

Moreover, the equality holds if r = rf .

(b) Suppose we have a calibrator R̂ to estimate the
regressor’s conditional risk. Then

LRwR(f, rR̂) ≤ L̃(f)+E
[
|R̂(f,X)−R(f,X)|

]
. (5)

Proposition 5 establishes the truncated loss as a proxy
of the RwR loss and states the relationship between
these two. The gap between these two losses can be
bounded by a term which we called calibration error
(the last term in (5)). We suspend (for the moment)
the questions of providing a calibration algorithm to
deal with the calibration error. The truncated loss
L̃ indeed provides convenience for the algorithm de-
sign and analysis in that it singles out the regressor
learning problem. Moreover, learning against such a

truncated loss is justifiable as the truncated loss can
appear in both the upper and lower bounds of the RwR
loss in Proposition 5. Yet, the non-convexity issue still
persists for the truncated loss just as the original RwR
loss. Fortunately, the simple squared loss is a provable
surrogate loss for the truncated loss and this paves
the way for the theoretical development without the
previous weak realizability condition.

Define the squared loss as

L2(f) := E
[
(f(X)− Y)

2
]
.

The following proposition establishes the squared loss
as a surrogate loss of the truncated loss, following the
analysis of Bartlett et al. (2006).

Proposition 6. For any measurable function f , we
have

L̃(f)− L̃∗ ≤ L2(f)− L∗
2 (6)

where L̃∗ := minf∈F L̃(f), L∗
2 := minf∈F L2(f) with

F here being the class of all measurable functions.

Proposition 6 upper bounds the excess loss under the
truncated loss L̃ by that under the squared loss L2.
Hence learning and optimization against the squared
loss L2 have an aligned objective with the truncated
loss L̃: the performance guarantee under the former
is directly transferable to that under the latter. Note
that the squared loss indeed utilizes all the samples
and corresponds to no-rejection learning. Thus we ad-
vocate no-rejection learning in the following sense: it

Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang

essentially aims for the squared loss L2, which is a
provable surrogate of the truncated loss; the truncated
loss subsequently is a proxy of the RwR loss with the
gap controlled by Proposition 5. We remark that all
these arguments are made without the weak realizabil-
ity condition. In the following, we further pursue the
path and establish error bounds for no-rejection learn-
ing. Importantly, the error bounds are expressed by
the standard estimation error term and the approxi-
mation error term, which, we believe, are more tangi-
ble than the inevitable gap between local minima and
global minimum in joint learning of f and r.

4.2 Error Bounds for No-Rejection Learning

We have the following theorem on the error bound
under the RwR loss.

Theorem 1. For any regressor class F and calibrator
R̂ to predict the conditional risk R(f, x) = E[(f(X)−
Y)2|X = x],

LRwR(f̂ , rR̂)− L∗
RwR ≤ E

[(
f̂(X)− f∗(X)

)2]︸ ︷︷ ︸
prediction error

+ E
[∣∣R̂(f̂ , X)−R(f̂ , X)

∣∣]︸ ︷︷ ︸
calibration error

(7)

where L∗
RwR = LRwR(f

∗, r∗) with f∗ and r∗ given in
Proposition 1.

Theorem 1 upper bounds the RwR error of no-rejection
learning f̂n with two terms: prediction error for the re-
gressor f̂ ∈ F , and calibration error of the conditional
risk’s calibrator R̂. The first term can be analyzed
via classical statistical learning theory, so we make a
few additional explanations for the second term. How
to get a statistically consistent and computationally
tractable calibrator with provable guarantee is in gen-
eral a vast land of research that is of independent inter-
est. Hence we do not bother to theoretically analyze
different methods’ calibration error bounds explicitly
but keep the term to stay as is. The calibration task
itself is also another regression task, which means that
the calibration error can be further decomposed in a
similar way as statistical learning theory does. As pre-
viously discussed, one needs weak realizability to get
rid of the approximation error completely, which mo-
tivates the usage of nonparametric methods for the
rejector.

To the best of our knowledge, Theorem 1 provides the
first generalization bound for the regression with rejec-
tion problem. Technically, if we compare our analysis
in terms of surrogate loss and generalization bound
against the analyses of the classification with rejec-
tion problem such as Cortes et al. (2016b), there are

several differences. First, the introduction of L̃ sin-
gles out the regressor and makes the analysis much
more convenient than the surrogate loss derivation of
the joint learning of both the classifier and the rejec-
tor. While it seems much more challenging to derive a
joint surrogate loss for the regression problem, it does
not hurt to follow this “single-out” approach, theoret-
ically and algorithmically. Second, the truncated loss
for the classification problem truncates the binary loss
which is non-convex, while the truncated loss for the
regression problem truncates the squared loss which is
convex. For the non-convex binary loss, the derivation
of one more layer of surrogate loss is inevitable and
thus raises the question of whether one can derive a
surrogate loss for the classifier and rejector jointly in
one shot. But for regression with rejection, the orig-
inal squared loss provides a natural surrogate loss it-
self. Thirdly, our result endows no-rejection learning
from a practical viewpoint, which is well-motivated for
modern machine learning. While the theoretical un-
derstanding of the joint learning for linear predictor
classes such as linear regression and linear SVM can
be of theoretical interest, neural network models have
the capacity to meet the weak realizability condition.

5 LEARNING THE REJECTOR

5.1 Fixed Cost

In the previous sections, we mainly focus on the learn-
ing of the regressor f . Given a learned regressor f̂n,
the learning of the rejector is closely related to uncer-
tainty quantification/calibration for regression models.
In particular, this can be seen from the loss function
lRwR and Proposition 1. While the existing literature
on calibrating regression models mainly aims to pre-
dict quantiles or the conditional distribution of Y |X,
the goal of the rejector essentially requires a prediction
of conditional expected loss E[(Y − f̂n(X))2|X = x]
as a function of x. Here we present a nonparametric
method that calibrates the conditional expected loss
and works as a rejector. The method is by no means
the optimal one for all problem settings, but it is sim-
ple to implement and generally compatible with any
regressor.

Algorithm 1 learns the rejector based on a given regres-
sor f̂ . It first uses a nonparametric approach to esti-
mate the condition expected loss E[(Y − f̂(X))2|X =
x] at a new data point. Then, based on a thresholding
rule, it assigns the point to either the regressor or the
human. We make several remarks on the algorithm.
First, the algorithm is agnostic of the underlying re-
gressor f̂ . Second, it utilizes an independent validation
dataset different from the one that trains f̂ . Third, it
can be viewed as a generalization of the k-NN rejec-

When No-Rejection Learning is Consistent for Regression with Rejection

Algorithm 1 Regressor-agnostic rejector learning

1: Input: regressor f̂ , validation data Dval =
{(Xi, Yi)}mi=1, kernel k(·, ·).

2: %% Loss calibration
3: Calculate the empirical loss of each sample in the

validation data Dval:

li(f̂) := l(f̂(Xi), Yi), 1, ...,m.

4: Estimate the loss x through kernel estimation:

R̂(f̂ , x) :=

∑m
i=1 k(x,Xi) · li(f̂)∑m

i=1 k(x,Xi)
. (8)

5: %% Output rejector
6: Output the rejector with the given deferral cost c:

r̂(x) :=

{
1, if R̂(f̂ , x) ≤ c,

0, otherwise.

7: Output: rejector r̂(x).

tor in Zaoui et al. (2020) which is originally designed
to ensure a certain rejection rate. For the theoretical
guarantee of the learned rejector, we refer to the ap-
proach by Györfi et al. (2002); Liu et al. (2023) which
can be applied to the context here.

5.2 Fixed Budget

Here we consider a different setting of RwR with a fixed
rejection budget/ratio rather than a fixed rejection
cost. It is formalized as follows: only at most a fixed
ratio γ ∈ (0, 1) of the test samples can be deferred to
humans, meaning that we should learn a rejector with

P(r(X) = 1) ≥ 1− γ. (9)

In the fixed cost case, the optimal rule is straightfor-
ward: defer the sample to humans if and only if its
conditional risk is greater than c. But in the case with-
out an explicit cost of c, one should manually set up
a rule to fulfill the requirement (9). For any regressor
f , the oracle rule is to explicitly derive the threshold
c∗ such that

c∗ := sup{c ∈ R : PX(EY [(f(X)− Y)2|X] > c∗) ≤ γ}.

But such a threshold is never obtainable for two rea-
sons: we have no access to the conditional risk nor its
distribution. A more practical way is to assume access
to a score function s : F × X → R to represent the
conditional risk R(f, x) = E[(f(X)− Y)2|X = x]. For
instance, one can use the calibrator R̂ that estimates
the conditional risk in the position of such a score func-
tion. Then we can develop a practical thresholding
way in the following proposition.

Proposition 7. Suppose we have a score function
s : F × X → R and a regressor f ∈ F . For m i.i.d.
samples {Xj}mj=1 that have the same distribution as X
and are independent of the regressor f , let

ĉ := the ⌈(1−γ)(m+1)⌉ smallest value of {s(f,Xj)}mj=1

and define

rs,f,ĉ(x) := 1{s(f, x) ≤ ĉ},

then
P(rs,f,ĉ(X) = 1) ≥ 1− γ.

That is, such a rejector satisfies the requirement (9).

The proof of Proposition 7 can be easily adapted from
the literature on split conformal prediction (for exam-
ple, see Proposition 1 of Papadopoulos et al. (2002)).
We make a short note here to emphasize the require-
ment of independence between those m samples and
the regressor f . If, for instance, one uses the same set
of samples to accomplish both the task of training f
and that of evaluating the scores, one would likely get
a set of biased (and probably underestimated) scores.
To see it, one just needs to think of the relationships
between the residuals of the training samples and the
errors of the test samples in the case of linear regres-
sion. In fact, such independence is crucial for the split
conformal prediction methods (Vovk et al., 2005).

One interesting insight from the excessive risk decom-
position in Theorem 1 is that it is independent of the
fixed cost c. In the fixed budget/ratio case, if we
choose the calibrator R̂ as our score function, then our
rejector still falls into the category of those induced by
calibrators, implying that such a risk decomposition in
Theorem 1 also holds and applies to this fixed budget
setting. Moreover, Proposition 7 provides a simple ap-
proach to improve the rejection ratio for fixed-budget
RwR algorithms such as SelectiveNet (Geifman and
El-Yaniv, 2019).

6 NUMERICAL EXPERIMENTS

We use numerical experiments to show the perfor-
mance of no-rejection learning on 8 UCI datasets
(Kelly et al., 2023) under two settings: fixed-cost and
fixed-budget. We present part of the results here in
Figure 2 and Table 1. Full results with details about
the experiments can be found in Appendix A. Our code
is available at https://github.com/hanzhao-wang/

RwR.

Fixed-cost: In Figure 2, we first implement a neural
network (NN) model with no-rejection learning and
then implement Algorithm 1 (kNNRej) with several
variants: the logistic regression rejector LogRej (to

https://github.com/hanzhao-wang/RwR
https://github.com/hanzhao-wang/RwR

Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang

Dataset Rej. Budget
Machine loss Rejection rate

Joint learning No-rejection learning Joint learning No-rejection learning
SelNet(α = 0.5) SelNet(α = 1) NN+SelRej NN+LossRej SelNet(α = 0.5) SelNet(α = 1) NN+SelRej NN+LossRej

Concrete 0.3 45.16 (17.88) 66.04 (19.12) 35.92 (4.01) 33.35 (5.98) 0.32 (0.07) 0.28 (0.06) 0.26 (0.04) 0.30 (0.03)
Airfoil 0.3 4.85 (0.79) 4.98 (1.01) 6.12 (0.72) 6.55 (0.82) 0.30 (0.06) 0.30 (0.05) 0.31 (0.06) 0.30 (0.04)

Parkinsons 0.3 12.13 (3.59) 11.72 (1.83) 13.56 (1.96) 6.94 (0.64) 0.30 (0.02) 0.33 (0.02) 0.29 (0.02) 0.31 (0.02)
Energy 0.3 1.19 (0.45) 1.54 (0.50) 1.42 (0.12) 1.25 (0.23) 0.31 (0.06) 0.31 (0.06) 0.29 (0.07) 0.32 (0.05)

Table 1: Machine loss and rejection rate with budget rate = 0.3. Full results can be found in the Appendix.

train a logistic classifier to predict whether the con-
ditional loss ≥ c), the loss-based rejector LossRej (to
first train a linear predictor for the conditional loss
and build the rejector by checking whether the pre-
dicted loss ≥ c), the SelectiveNet-based rejector SelRej
(to train a selection head from SelectiveNet (SelNet)
(Geifman and El-Yaniv, 2019) to decide whether to se-
lect/reject). All these variants are trained based on the
second last layer of the feature extracted by the pre-
dictor NN. Also, we implement several benchmarks:
Differentiable Triage (Triage) (Okati et al., 2021), Sel-
Net (Geifman and El-Yaniv, 2019), and kNN predic-
tor with reject option (kNN) (Zaoui et al., 2020). The
model NN+kNNRej has a uniform advantage over the
other algorithms across different datasets, which high-
lights (i) the effectiveness of no-rejection learning and
(ii) the importance of a rich (non-parametric) rejector
class. Also, note always rejecting the sample will re-
sult in an RwR loss of c, only our algorithm uniformly
beats this naive baseline across all datasets.

Figure 2: RwR loss with fixed cost c = 2 (red dashed
line).

Fixed-budget: Table 1 illustrates the performance
in terms of the average machine loss and rejection rate
on testing data. Four algorithms are examined: SelNet
with α = 1, which jointly learns the regressor and the
rejector and the learning of the regressor only focuses
on the accepted samples; SelNet with α = 0.5 which
can be viewed as a hybrid of the SelNet with α = 1
with the no-rejection learning. In other words, the pa-
rameter α in SelNet controls the extent to which we
focus on no-rejection learning v.s. solely optimizing

the accepted samples. Also, we train a neural network
model NN with no-rejection learning as regressor with
two rejectors, which are both trained based on the sec-
ond last layer of the feature extracted by the regressor
NN: SelRej which uses SelNet’s selection head to out-
put rejection score, and LossRej which uses a linear
function to predict conditional loss, where both come
with a thresholding rejection rule guided by Proposi-
tion 7. We make the following observations. First, the
SelNet with α = 0.5 generally performs better than
the SelNet with α = 1, which indicates the benefit of
incorporating no-rejection learning into the objective
function. Second, the no-rejection learning algorithms
NN+SelRej and NN+LossRej give comparable or even
better performance than SelNet. It means that the
superior performance achieved by the SelNet in the
existing literature should be attributed to its network
architecture and the idea of using the high-level feature
(second last layer) to train the rejector, rather than the
joint learning of regressor and rejector. Third, Propo-
sition 7 and its induced rejector of SelRej and LossRej
provide an effective approach to make the rejection
rate meet the target level. We defer more experiment
results and discussions to Appendix A.

7 CONCLUSION

In this paper, we study the problem of regression
with rejection. To deal with the challenge of non-
convexity, we develop a two-step learning procedure,
where one first trains a regressor and calibrates the
regressor later. In particular, we analyze the property
of no-rejection learning which utilizes all the samples
in training the regressor. We hope our results pro-
vide a starting point for future research on this no-
rejection learning perspective of regression with rejec-
tion as well as classification with rejection. While our
paper mainly focuses on the setting with a fixed defer-
ral cost c, we also provide a parallel formulation that
considers the regression with rejection problem with a
fixed deferral budget. The fixed deferral cost c gives
rise to a new calibration problem that may inspire new
calibration algorithms. Establishing more connections
between the two settings for both algorithm design and
analysis deserves future research.

When No-Rejection Learning is Consistent for Regression with Rejection

References

Solar Flare. UCI Machine Learning Repository, 1989.
DOI: https://doi.org/10.24432/C5530G.

Gagan Bansal, Besmira Nushi, Ece Kamar, Eric
Horvitz, and Daniel S Weld. Is the most accurate ai
the best teammate? optimizing ai for teamwork. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 11405–11414, May
2021.

Peter L Bartlett and Marten H Wegkamp. Classifica-
tion with a reject option using a hinge loss. Journal
of Machine Learning Research, 9(8), 2008.

Peter L Bartlett, Michael I Jordan, and Jon D
McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical Associ-
ation, 101(473):138–156, 2006.

Thomas Brooks, D. Pope, and Michael Mar-
colini. Airfoil Self-Noise, 2014. DOI:
https://doi.org/10.24432/C5VW2C.

Yuzhou Cao, Tianchi Cai, Lei Feng, Lihong Gu, Jinjie
Gu, Bo An, Gang Niu, and Masashi Sugiyama. Gen-
eralizing consistent multi-class classification with re-
jection to be compatible with arbitrary losses. Ad-
vances in Neural Information Processing Systems,
35:521–534, 2022.

Mohammad-Amin Charusaie, Hussein Mozannar,
David Sontag, and Samira Samadi. Sample efficient
learning of predictors that complement humans.
In International Conference on Machine Learning,
pages 2972–3005. PMLR, 2022.

Xin Cheng, Yuzhou Cao, Haobo Wang, Hongxin Wei,
Bo An, and Lei Feng. Regression with cost-based re-
jection. Advances in Neural Information Processing
Systems, 36, 2024.

Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri.
Boosting with abstention. Advances in Neural In-
formation Processing Systems, 29, 2016a.

Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri.
Learning with rejection. In Algorithmic Learning
Theory: 27th International Conference, ALT 2016,
Bari, Italy, October 19-21, 2016, Proceedings 27,
pages 67–82. Springer, 2016b.

Paulo Cortez and Anbal Morais. Forest Fires.
UCI Machine Learning Repository, 2008. DOI:
https://doi.org/10.24432/C5D88D.

Paulo Cortez, A. Cerdeira, F. Almeida, T. Matos,
and J. Reis. Wine Quality, 2009. DOI:
https://doi.org/10.24432/C56S3T.

Abir De, Paramita Koley, Niloy Ganguly, and Manuel
Gomez-Rodriguez. Regression under human assis-
tance. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 34, pages 2611–2620,
Apr. 2020.

Abir De, Nastaran Okati, Ali Zarezade, and
Manuel Gomez Rodriguez. Classification under hu-
man assistance. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
5905–5913, May 2021.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A
deep neural network with an integrated reject op-
tion. In International conference on machine learn-
ing, pages 2151–2159. PMLR, 2019.

László Györfi, Michael Kohler, Adam Krzyzak, Harro
Walk, et al. A distribution-free theory of nonpara-
metric regression, volume 1. Springer, 2002.

David Harrison Jr and Daniel L Rubinfeld. Hedonic
housing prices and the demand for clean air. Journal
of environmental economics and management, 5(1):
81–102, 1978.

Wenming Jiang, Ying Zhao, and Zehan Wang. Risk-
controlled selective prediction for regression deep
neural network models. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–
8. IEEE, 2020.

Myeonginn Kang and Seokho Kang. Surrogate ap-
proach to uncertainty quantification of neural net-
works for regression. Applied Soft Computing, 139:
110234, 2023.

Markelle Kelly, Rachel Longjohn, and Kolby Notting-
ham. Uci machine learning repository, 2023. URL
https://archive.ics.uci.edu.

Shang Liu, Zhongze Cai, and Xiaocheng Li.
Distribution-free model-agnostic regression calibra-
tion via nonparametric methods. arXiv preprint
arXiv:2305.12283, 2023.

Hussein Mozannar and David Sontag. Consistent es-
timators for learning to defer to an expert. In In-
ternational Conference on Machine Learning, pages
7076–7087. PMLR, 2020.

Hussein Mozannar, Hunter Lang, Dennis Wei,
Prasanna Sattigeri, Subhro Das, and David Son-
tag. Who should predict? exact algorithms
for learning to defer to humans. arXiv preprint
arXiv:2301.06197, 2023.

Chenri Ni, Nontawat Charoenphakdee, Junya Honda,
and Masashi Sugiyama. On the calibration of multi-
class classification with rejection. Advances in Neu-
ral Information Processing Systems, 32, 2019.

Nastaran Okati, Abir De, and Manuel Rodriguez. Dif-
ferentiable learning under triage. Advances in Neu-
ral Information Processing Systems, 34:9140–9151,
2021.

https://archive.ics.uci.edu

Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang

Harris Papadopoulos, Kostas Proedrou, Volodya
Vovk, and Alex Gammerman. Inductive confi-
dence machines for regression. In Machine Learn-
ing: ECML 2002: 13th European Conference on
Machine Learning Helsinki, Finland, August 19–23,
2002 Proceedings 13, pages 345–356. Springer, 2002.

Harish G. Ramaswamy, Ambuj Tewari, and Shiv-
ani Agarwal. Consistent algorithms for multiclass
classification with an abstain option. Electronic
Journal of Statistics, 12(1):530 – 554, 2018. doi:
10.1214/17-EJS1388. URL https://doi.org/10.

1214/17-EJS1388.

Abhin Shah, Yuheng Bu, Joshua K Lee, Subhro Das,
Rameswar Panda, Prasanna Sattigeri, and Gre-
gory W Wornell. Selective regression under fairness
criteria. In International Conference on Machine
Learning, pages 19598–19615. PMLR, 2022.

Athanasios Tsanas and Angeliki Xi-
fara. Energy efficiency, 2012. DOI:
https://doi.org/10.24432/C51307.

Athanasios Tsanas, Max Little, Patrick McSharry, and
Lorraine Ramig. Accurate telemonitoring of parkin-
son’s disease progression by non-invasive speech
tests. Nature Precedings, pages 1–1, 2009.

AadWVan der Vaart. Asymptotic statistics, volume 3.
Cambridge university press, 2000.

Rajeev Verma and Eric Nalisnick. Calibrated learn-
ing to defer with one-vs-all classifiers. In Inter-
national Conference on Machine Learning, pages
22184–22202. PMLR, 2022.

Rajeev Verma, Daniel Barrejón, and Eric Nalisnick.
Learning to defer to multiple experts: Consistent
surrogate losses, confidence calibration, and confor-
mal ensembles. In International Conference on Arti-
ficial Intelligence and Statistics, pages 11415–11434.
PMLR, 2023.

Vladimir Vovk, Alexander Gammerman, and Glenn
Shafer. Algorithmic learning in a random world, vol-
ume 29. Springer, 2005.

Bryan Wilder, Eric Horvitz, and Ece Kamar. Learn-
ing to complement humans. arXiv preprint
arXiv:2005.00582, 2020.

I-Cheng Yeh. Concrete Compressive Strength, 2007.
DOI: https://doi.org/10.24432/C5PK67.

Ming Yuan and Marten Wegkamp. Classification
methods with reject option based on convex risk
minimization. Journal of Machine Learning Re-
search, 11(1), 2010.

Ahmed Zaoui, Christophe Denis, and Mohamed
Hebiri. Regression with reject option and applica-
tion to knn. Advances in Neural Information Pro-
cessing Systems, 33:20073–20082, 2020.

8 Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes

(b) Complete proofs of all theoretical results. Yes

(c) Clear explanations of any assumptions. Yes

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). No

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Yes

(b) The license information of the assets, if ap-
plicable. Yes

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Yes

(d) Information about consent from data
providers/curators. Yes

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

https://doi.org/10.1214/17-EJS1388
https://doi.org/10.1214/17-EJS1388

When No-Rejection Learning is Consistent for Regression with Rejection

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Applica-
ble

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable

Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang

A EXPERIMENT DETAILS

Full Experiment Results.

For the fixed-cost experiment, Table 2 reports the performance in terms of the averaged RwR loss on testing
data with respect to different deferral/rejection costs c and Table 3 reports the corresponding rejection rate. We
compare Algorithm 1 (NN+kNNRej) and its variants (NN+LogRej, NN+LossRej, NN+SelRej), against several
benchmarks: Differentiable Triage (Triage) (Okati et al., 2021), SelectiveNet (SelNet) (Geifman and El-Yaniv,
2019), and kNN predictor with reject option (kNN) (Zaoui et al., 2020). Since all these benchmark algorithms
are originally designed for the scenario where the overall rejection rate is capped by a given rate, we modify
them for our setting where the deferral cost is positive while no restriction on the rejection rate. In general,
the no-rejection learning together with Algorithm 1 has an advantage over the other algorithms across different
datasets and deferral costs. We should note the cost c itself is the baseline benchmark: always rejecting the
sample will result in an RwR loss of c. However, only our algorithm uniformly outperforms the baseline in all
datasets. For the rejection rate on testing data shown in Table 3, we can find the rejection rate is in general
decreasing in the deferral cost in our algorithm as expected: there should have fewer samples to be rejected due
to the large deferral cost. Another observation is that the Triage algorithm always rejects all samples. Since
the Triage algorithm is the only one among implemented algorithms that use only a (potentially small) subset
of training data when training the regressor, the trained regressor can be overfitted and thus has large errors in
general, which finally causes almost all testing samples to be rejected.

For the fixed-budget experiment, Table 4 illustrates the performance, quantified through average machine loss
and rejection rate on testing data, under varying rejection rate budgets. Four algorithms are examined: SelNet
with α = 1, which jointly learns the regressor and the rejector and the learning of the regressor only focuses
on the accepted samples; SelNet with α = 0.5 which can be viewed as a hybrid of the SelNet with α = 1 with
the no-rejection learning; and NN+SelRej and NN+LossRej, two SelNet variants that adhere to a no-rejection
learning framework, where NN+SelRej first trains the main body (with no-rejection learning) and then fine-tunes
the heads of SelNet, and NN+LossRej follows the same training process except replacing the SelNet’s heads with
a simple linear layer to predict conditional loss. While all algorithms maintain rejection rates (nearly) within
the given budget, there are two notable observations regarding machine loss: (1) SelNet typically outperforms
or at least matches SelNet(α = 1); (2) NN+SelRej and NN+LossRej yield losses comparable to those of SelNet.
Consequently, it can be inferred that focusing solely on the accepted portion may precipitate overfitting prior
to the extraction of high-level features, thereby diminishing performance—a point also discussed in the original
work of SelNet. Conversely, employing a no-rejection paradigm in learning the regressor and rejector proves to
be at least not harmful to the performance.

Table 2, 3, 4 show the full experiments results in Section 6. Each test is repeated 10 times and we report the
average performance on the test set alongside its standard deviation. For all datasets, the train–validate–test
set is split as 70%–20%–10%.

Datasets.

• Airfoil Self-Noise (Airfoil) (Brooks et al., 2014) is collected by NASA to test two and three-dimensional
airfoil blade sections conducted in an anechoic wind tunnel. It has 1503 instances with five features. The
output is the scaled sound pressure level.

• Concrete Compressive Strength (Concrete) contains 1030 instances with eight features. The output is the
compressive strength of concrete, which is a highly non-linear function of its ingredients (seven features)
and age (one feature) as indicated in the original data description (Yeh, 2007).

• Wine Quality (Wine) (Cortez et al., 2009) is to predict the wine quality based on physicochemical tests.
We use the red wine part in the dataset, which contains 1599 instances with 11 features.

• Energy Efficiency (Energy) (Tsanas and Xifara, 2012) is to predict the energy efficiency of the buildings as
a function of building parameters. It contains 768 instances and 8 features.

• Boston Housing (Housing) is to predict the median value of a home collected in Boston, originally published
by Harrison Jr and Rubinfeld (1978). It contains 506 instances and 14 features.

When No-Rejection Learning is Consistent for Regression with Rejection

Dataset Cost c
No-rejection learning Benchmark

NN+kNNRej NN+LogRej NN+LossRej NN+SelRej Triage SelNet kNN

Concrete

0.2 0.19 (0.00) 0.76 (1.16) 0.20 (0.00) 0.20 (0.00) 0.20 (0.00) 0.75 (0.68) 0.20 (0.00)
0.5 0.47 (0.01) 0.78 (0.72) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 1.09 (0.97) 0.50 (0.00)
1.0 0.92 (0.01) 1.35 (0.41) 1.01 (0.02) 1.00 (0.00) 1.00 (0.00) 2.82 (2.33) 1.08 (0.13)
2.0 1.75 (0.04) 2.69 (0.88) 2.18 (0.40) 2.02 (0.06) 2.00 (0.00) 3.16 (1.65) 2.11 (0.14)

Wine

0.2 0.10 (0.01) 0.20 (0.03) 0.18 (0.02) 0.24 (0.03) 0.20 (0.00) 0.18 (0.03) 0.27 (0.05)
0.5 0.16 (0.01) 0.25 (0.03) 0.23 (0.02) 0.23 (0.04) 0.50 (0.00) 0.24 (0.03) 0.61 (0.09)
1.0 0.20 (0.01) 0.25 (0.03) 0.24 (0.03) 0.25 (0.04) 1.00 (0.00) 0.25 (0.04) 0.84 (0.10)
2.0 0.23 (0.03) 0.24 (0.03) 0.24 (0.03) 0.24 (0.03) 2.00 (0.00) 0.25 (0.04) 0.95 (0.10)

Airfoil

0.2 0.18 (0.00) 0.20 (0.01) 0.28 (0.09) 0.20 (0.01) 0.20 (0.00) 0.21 (0.01) 0.20 (0.00)
0.5 0.44 (0.01) 0.50 (0.00) 0.56 (0.05) 0.51 (0.04) 0.50 (0.00) 0.49 (0.00) 0.50 (0.00)
1.0 0.82 (0.02) 1.01 (0.08) 1.06 (0.07) 1.06 (0.08) 1.00 (0.00) 0.99 (0.03) 1.01 (0.03)
2.0 1.50 (0.06) 1.83 (0.06) 2.00 (0.11) 2.06 (0.18) 2.00 (0.00) 1.84 (0.03) 2.35 (0.55)

Energy

0.2 0.17 (0.01) 0.27 (0.05) 0.24 (0.05) 0.21 (0.02) 0.20 (0.00) 0.26 (0.10) 0.21 (0.02)
0.5 0.38 (0.02) 0.51 (0.10) 0.55 (0.12) 0.55 (0.08) 0.50 (0.00) 0.49 (0.12) 0.63 (0.11)
1.0 0.69 (0.05) 0.90 (0.10) 0.86 (0.06) 1.06 (0.14) 1.00 (0.00) 0.86 (0.15) 1.29 (0.23)
2.0 1.13 (0.09) 1.38 (0.15) 1.45 (0.13) 1.64 (0.32) 2.00 (0.00) 1.39 (0.15) 2.21 (0.28)

Housing

0.2 0.18 (0.01) 1.59 (0.81) 1.01 (1.08) 0.20 (0.00) 0.20 (0.00) 1.27 (0.63) 0.20 (0.00)
0.5 0.42 (0.02) 1.89 (1.34) 1.57 (1.36) 0.59 (0.14) 0.50 (0.00) 1.31 (0.67) 0.59 (0.23)
1.0 0.79 (0.02) 3.71 (5.02) 2.18 (1.52) 1.56 (0.47) 1.00 (0.00) 2.23 (1.16) 1.15 (0.29)
2.0 1.43 (0.05) 2.80 (0.76) 3.74 (1.39) 4.27 (1.29) 2.00 (0.00) 2.47 (0.50) 2.48 (0.51)

Solar

0.2 0.08 (0.01) 0.22 (0.08) 0.44 (0.23) 0.33 (0.19) 0.20 (0.00) 0.18 (0.04) 0.23 (0.14)
0.5 0.15 (0.01) 0.44 (0.15) 0.50 (0.28) 0.60 (0.37) 0.50 (0.00) 0.45 (0.15) 0.36 (0.17)
1.0 0.22 (0.03) 0.56 (0.12) 0.71 (0.36) 0.68 (0.35) 1.00 (0.00) 0.52 (0.20) 0.60 (0.34)
2.0 0.32 (0.04) 0.72 (0.34) 0.75 (0.35) 0.68 (0.33) 2.00 (0.00) 0.68 (0.35) 0.70 (0.36)

Forest

0.2 0.17 (0.01) 0.68 (0.53) 0.65 (0.26) 0.71 (0.81) 0.20 (0.00) 0.54 (0.40) 0.20 (0.00)
0.5 0.39 (0.02) 1.03 (0.32) 1.12 (0.37) 1.25 (0.56) 0.50 (0.00) 0.78 (0.32) 0.51 (0.03)
1.0 0.68 (0.06) 1.30 (0.25) 1.44 (0.20) 2.17 (0.74) 1.00 (0.00) 1.25 (0.42) 1.22 (0.24)
2.0 1.06 (0.10) 2.19 (0.33) 2.17 (0.49) 2.58 (1.08) 2.00 (0.00) 2.17 (0.42) 2.01 (0.32)

Parkinsons

0.2 0.18 (0.00) 0.21 (0.04) 0.38 (0.05) 0.20 (0.00) 0.20 (0.00) 0.20 (0.00) 0.43 (0.18)
0.5 0.44 (0.00) 0.50 (0.00) 0.81 (0.15) 0.51 (0.01) 0.50 (0.00) 0.60 (0.23) 0.69 (0.19)
1.0 0.82 (0.01) 1.06 (0.14) 1.28 (0.10) 1.13 (0.09) 1.00 (0.00) 1.17 (0.27) 1.12 (0.27)
2.0 1.51 (0.03) 1.98 (0.31) 2.23 (0.12) 2.67 (0.36) 2.00 (0.00) 1.97 (0.27) 1.99 (0.42)

Table 2: Full results for Figure 2. RwR loss on the testing data.

• Solar Flare (Solar) (mis, 1989) is to predict the number of solar flares of a certain class that occur in a 24
hour period. In the experiment, we only predict for X-class solar flares. It contains 1066 instances and 10
features.

• Forest Fires (Forest) (Cortez and Morais, 2008) is to predict the burned area of forest fires. It contains 517
instances and 12 features.

• Parkinsons Telemonitoring (Parkinsons) (Tsanas et al., 2009) is to predict UPDRS scores from 42 people
with early-stage Parkinson’s disease. It contains 5875 instances and 20 features.

Algorithms Implementations.

The details regarding the implementation of our methods as well as the benchmarks are as follows:

• NN+kNNRej (Algorithm 1): We build a neural network as the regressor f̂ . We then implement Algorithm
1 with radial basis function kernel k(x1, x2) = exp(∥x1 − x2∥22/σ) as the kernel choice, where the kernel
length scale σ is a hyperparameter tuning by the validation dataset.

• SelNet: It contains one main body block, whose last layer is the representation layer to extract the data
features, and three output heads for prediction, selection (rejection), and auxiliary prediction. The loss

Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang

Dataset Cost c
No-rejection learning Benchmark

NN+kNNRej NN+LogRej NN+LossRej NN+SelRej Triage SelNet kNN

Concrete

0.2 0.95 (0.01) 0.96 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.95 (0.03) 1.00 (0.00)
0.5 0.90 (0.02) 0.98 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.95 (0.03) 1.00 (0.00)
1.0 0.88 (0.02) 0.95 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.90 (0.10) 0.99 (0.01)
2.0 0.80 (0.02) 0.96 (0.04) 1.00 (0.01) 1.00 (0.01) 1.00 (0.00) 0.93 (0.06) 0.98 (0.01)

Wine

0.2 0.31 (0.04) 0.59 (0.18) 0.03 (0.01) 0.03 (0.01) 1.00 (0.00) 0.59 (0.13) 0.83 (0.03)
0.5 0.13 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.00 (0.00) 0.52 (0.05)
1.0 0.05 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.01 (0.02) 0.23 (0.03)
2.0 0.01 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.00 (0.00) 0.04 (0.02)

Airfoil

0.2 0.87 (0.03) 0.98 (0.02) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.97 (0.01) 1.00 (0.00)
0.5 0.81 (0.03) 0.99 (0.01) 1.00 (0.01) 1.00 (0.01) 1.00 (0.00) 0.97 (0.02) 1.00 (0.00)
1.0 0.74 (0.03) 0.92 (0.09) 0.92 (0.04) 0.92 (0.04) 1.00 (0.00) 0.87 (0.07) 1.00 (0.00)
2.0 0.64 (0.04) 0.82 (0.03) 0.78 (0.04) 0.78 (0.04) 1.00 (0.00) 0.83 (0.03) 0.98 (0.02)

Energy

0.2 0.77 (0.05) 0.75 (0.05) 0.91 (0.04) 0.91 (0.04) 1.00 (0.00) 0.70 (0.09) 1.00 (0.01)
0.5 0.64 (0.05) 0.71 (0.10) 0.68 (0.06) 0.68 (0.06) 1.00 (0.00) 0.66 (0.09) 0.93 (0.02)
1.0 0.54 (0.07) 0.65 (0.13) 0.52 (0.05) 0.52 (0.05) 1.00 (0.00) 0.65 (0.06) 0.70 (0.04)
2.0 0.40 (0.06) 0.42 (0.13) 0.29 (0.06) 0.29 (0.06) 1.00 (0.00) 0.41 (0.12) 0.39 (0.06)

Housing

0.2 0.87 (0.05) 0.60 (0.09) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.66 (0.03) 0.99 (0.01)
0.5 0.78 (0.03) 0.65 (0.10) 0.96 (0.03) 0.96 (0.03) 1.00 (0.00) 0.72 (0.07) 0.99 (0.02)
1.0 0.69 (0.03) 0.67 (0.13) 0.79 (0.08) 0.79 (0.08) 1.00 (0.00) 0.67 (0.07) 0.97 (0.04)
2.0 0.57 (0.04) 0.63 (0.10) 0.47 (0.10) 0.47 (0.10) 1.00 (0.00) 0.70 (0.08) 0.92 (0.06)

Solar

0.2 0.28 (0.04) 0.63 (0.17) 0.19 (0.04) 0.19 (0.04) 1.00 (0.00) 0.62 (0.13) 0.35 (0.05)
0.5 0.20 (0.03) 0.50 (0.21) 0.08 (0.04) 0.08 (0.04) 1.00 (0.00) 0.48 (0.20) 0.24 (0.05)
1.0 0.11 (0.03) 0.28 (0.22) 0.03 (0.02) 0.03 (0.02) 1.00 (0.00) 0.24 (0.16) 0.16 (0.05)
2.0 0.07 (0.02) 0.03 (0.08) 0.01 (0.01) 0.01 (0.01) 1.00 (0.00) 0.03 (0.05) 0.07 (0.04)

Forest

0.2 0.77 (0.05) 0.86 (0.08) 0.89 (0.07) 0.89 (0.07) 1.00 (0.00) 0.88 (0.08) 1.00 (0.01)
0.5 0.66 (0.07) 0.82 (0.08) 0.55 (0.07) 0.55 (0.07) 1.00 (0.00) 0.90 (0.06) 0.97 (0.02)
1.0 0.51 (0.08) 0.81 (0.10) 0.16 (0.05) 0.16 (0.05) 1.00 (0.00) 0.87 (0.11) 0.74 (0.08)
2.0 0.31 (0.05) 0.63 (0.28) 0.01 (0.01) 0.01 (0.01) 1.00 (0.00) 0.54 (0.38) 0.38 (0.06)

Parkinsons

0.2 0.88 (0.02) 0.97 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.77 (0.01)
0.5 0.81 (0.01) 0.99 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.94 (0.07) 0.73 (0.01)
1.0 0.73 (0.02) 0.95 (0.07) 0.96 (0.02) 0.96 (0.02) 1.00 (0.00) 0.90 (0.08) 0.70 (0.01)
2.0 0.64 (0.02) 0.87 (0.08) 0.80 (0.03) 0.80 (0.03) 1.00 (0.00) 0.85 (0.09) 0.65 (0.02)

Table 3: Full results for Figure 2. Rejection rate on the testing data.

function is designed as the average over the original mean square loss of the auxiliary prediction head, the
weighted mean square loss of the prediction head, where the weights are the output rejection confidence of
the selection head and a penalty term to guarantee the overall rejection rate is smaller than a pre-determined
rate γ. SelNet uses the hyperparameter α (with value 1/2 in the original work and our implementation) to
weight these two types of losses. Thus, SelNet jointly trains the predictor (prediction head) and the rejector
(selection head), while utilizing the auxiliary prediction head to push the main body to learn all training
instances to extract latent features and avoid overfitting.

• SelNet(α = 1): same as the SelNet except α = 1. This means the auxiliary head’s performance/loss is not
included in the training loss and it only focuses on the to-be-accepted samples during the training and tends
to ignore the to-be-rejected ones.

• NN+SelRej: It has the same architecture as the SelNet(α = 1) except that the training has two stages:

the first stage trains a neural network as a regressor f̂ based on the training dataset and uses its main
body (layers before the output layer) as the latent feature extractors for the second stage. In the second
stage, we freeze this main body, add the prediction head and selection head as output layers and fine-tune
them with the loss function from SelNet (with α = 1 since there is no auxiliary head). Thus, compared to
SelNet(α = 1), this two-stage training process forces the model to learn the latent features from all samples
in the first stage.

When No-Rejection Learning is Consistent for Regression with Rejection

Dataset Rej. Budget
Machine loss Rejection rate

Joint learning No-rejection learning Joint learning No-rejection learning
SelNet(α = 0.5) SelNet(α = 1) NN+SelRej NN+LossRej SelNet(α = 0.5) SelNet(α = 1) NN+SelRej NN+LossRej

Concrete
0.1 56.05 (11.67) 71.28 (17.47) 44.99 (6.95) 38.55 (6.49) 0.10 (0.04) 0.14 (0.03) 0.10 (0.03) 0.11 (0.02)
0.2 48.39 (8.84) 67.03 (15.19) 41.12 (4.86) 35.71 (5.25) 0.20 (0.04) 0.20 (0.05) 0.18 (0.03) 0.21 (0.04)
0.3 45.16 (17.88) 66.04 (19.12) 35.92 (4.01) 33.35 (5.98) 0.32 (0.07) 0.28 (0.06) 0.26 (0.04) 0.30 (0.03)

Wine
0.1 0.23 (0.03) 0.24 (0.04) 0.23 (0.03) 0.19 (0.03) 0.05 (0.01) 0.06 (0.02) 0.07 (0.02) 0.15 (0.04)
0.2 0.22 (0.04) 0.21 (0.04) 0.21 (0.04) 0.17 (0.03) 0.18 (0.03) 0.19 (0.03) 0.19 (0.03) 0.28 (0.03)
0.3 0.20 (0.03) 0.19 (0.04) 0.21 (0.04) 0.18 (0.04) 0.26 (0.03) 0.26 (0.05) 0.26 (0.04) 0.39 (0.04)

Airfoil
0.1 8.08 (1.27) 8.07 (1.28) 8.78 (0.88) 9.01 (1.29) 0.10 (0.04) 0.10 (0.04) 0.10 (0.03) 0.10 (0.02)
0.2 6.35 (1.16) 5.66 (0.92) 7.51 (1.34) 7.26 (0.89) 0.20 (0.04) 0.20 (0.05) 0.19 (0.05) 0.21 (0.03)
0.3 4.85 (0.79) 4.98 (1.01) 6.12 (0.72) 6.55 (0.82) 0.30 (0.06) 0.30 (0.05) 0.31 (0.06) 0.30 (0.04)

Energy
0.1 2.91 (0.68) 3.06 (0.62) 3.30 (0.64) 3.04 (0.56) 0.11 (0.04) 0.09 (0.03) 0.11 (0.03) 0.11 (0.04)
0.2 1.80 (0.48) 1.92 (0.67) 1.80 (0.29) 1.51 (0.16) 0.19 (0.04) 0.20 (0.04) 0.19 (0.05) 0.21 (0.04)
0.3 1.19 (0.45) 1.54 (0.50) 1.42 (0.12) 1.25 (0.23) 0.31 (0.06) 0.31 (0.06) 0.29 (0.07) 0.32 (0.05)

Housing
0.1 7.76 (2.42) 8.11 (2.25) 7.83 (2.61) 7.76 (1.82) 0.13 (0.05) 0.12 (0.05) 0.11 (0.07) 0.13 (0.04)
0.2 6.71 (1.82) 7.15 (2.57) 7.06 (2.39) 7.77 (1.96) 0.21 (0.04) 0.23 (0.04) 0.23 (0.08) 0.23 (0.04)
0.3 6.01 (2.55) 6.25 (3.01) 6.03 (1.97) 6.75 (2.46) 0.32 (0.05) 0.31 (0.04) 0.35 (0.07) 0.32 (0.06)

Solar
0.1 0.60 (0.32) 0.58 (0.33) 0.61 (0.35) 0.65 (0.41) 0.08 (0.04) 0.09 (0.04) 0.10 (0.05) 0.11 (0.03)
0.2 0.41 (0.26) 0.40 (0.26) 0.38 (0.30) 0.63 (0.42) 0.18 (0.03) 0.18 (0.03) 0.20 (0.03) 0.20 (0.04)
0.3 0.38 (0.30) 0.39 (0.32) 0.24 (0.16) 0.60 (0.34) 0.30 (0.06) 0.29 (0.06) 0.30 (0.07) 0.30 (0.04)

Forest
0.1 2.62 (1.59) 2.36 (0.92) 2.54 (1.02) 2.31 (0.57) 0.08 (0.06) 0.09 (0.06) 0.07 (0.04) 0.13 (0.06)
0.2 2.29 (0.75) 2.31 (0.79) 2.21 (0.51) 2.31 (0.65) 0.16 (0.07) 0.20 (0.08) 0.21 (0.09) 0.31 (0.07)
0.3 2.44 (1.13) 2.63 (1.40) 2.30 (1.16) 2.22 (0.82) 0.28 (0.10) 0.29 (0.08) 0.32 (0.12) 0.40 (0.09)

Parkinsons
0.1 13.57 (1.54) 14.41 (2.03) 16.17 (2.50) 10.83 (1.26) 0.16 (0.02) 0.19 (0.02) 0.15 (0.01) 0.10 (0.01)
0.2 13.50 (2.39) 13.67 (1.18) 16.10 (2.35) 8.21 (0.65) 0.21 (0.01) 0.26 (0.02) 0.21 (0.02) 0.21 (0.02)
0.3 12.13 (3.59) 11.72 (1.83) 13.56 (1.96) 6.94 (0.64) 0.30 (0.02) 0.33 (0.02) 0.29 (0.02) 0.31 (0.02)

Table 4: Extended Table for Table 1. Machine loss and rejection rate on the testing data.

• NN+LossRej: It is a variant of NN+SelRej: we still first train a neural network as a regressor and train
another neural network, named loss rejector (LossRej), to predict the loss and as rejector. Specifically,
the rejector network shares the same weights on the main body of the regressor network (as the feature
extractor) and fine-tunes a linear output layer by validation data, which maps from latent features to loss.
This two-stage training process can again force both the regressor and rejector to learn from all samples.
During the inference, if the deferral cost is given as c, then we reject the samples whose predicted losses are
larger than c. And if a rejection rate budget γ (and c = 0) is given as in Table 4, then we use the validation
data to estimate a threshold of loss such that the samples with predicted losses larger than the threshold
are rejected.

• NN+LogRej: It is the same as the NN+LossRej, except that the fine-tuned rejector network, named as
logistic rejector (LogRej), directly predicts whether to reject samples: given validation data, we first decide
the binary rejection labels based on the trained regressor (i.e., comparison with cost c or choosing the top
γ fraction samples with largest losses), and fine-tune a linear layer with Sigmoid head as a binary classifier
to decide the rejection. Thus, we make a logistic regression on the latent features and rejection labels.

• Triage: It first trains a neural network regressor. At training epoch t, it only uses the samples in the
mini-batch with empirical mean square loss (based on the predictor fitted at epoch t− 1) smaller than the
deferral cost c, and thus to make the training process focus on the non-rejected samples. To improve the
robustness of training, when the number of used samples from the mini-batch is smaller than 32, it will use
the first 32 samples with the smallest empirical mean square losses. After training the predictor, it will train
a neural network binary classifier as the rejector on the validation dataset, where the sample is labeled as
positive if its empirical mean square loss (w.r.t. the fitted predictor) is less than c and negative otherwise.
We highlight that the Triage method is the only algorithm among implemented algorithms that utilizes a
subset of training data for training the predictor.

• kNN: It first trains a kNN-based predictor kNNy(x) for E
[
y
∣∣X = x

]
and trains another kNN-based predictor

kNNl(x) for the loss E
[
l(kNNy(x), Y)

∣∣X = x
]
. For the testing sample x, the algorithm will reject it if kNNl(x) >

c and will accept otherwise.

Architectures and Hyperparameters tuning.

Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang

The details regarding the architectures and hyperparameters tuning of our methods as well as the benchmarks
are as follows. For benchmark algorithms, their architectures and hyperparameter tuning processes are set to be
identical to the original works if applicable.

• NN+kNNRej: The neural network architecture for the regressor has one hidden layer activated by ReLU
with 64 neurons and one following fully-connected linearly activated neuron. The kernel length scale σ for the
Gaussian kernel is selected to minimize the loss of validation data among σ ∈ {10j : j = −3,−2,−1, 0, 1, 2, 3}.

• Triage: The neural network architecture for the predictor/regressor has one hidden layer activated by ReLU
with 64 neurons and one following fully-connected linearly activated neuron. The rejector also has one
hidden layer activated by ReLU with 64 neurons and a following one Sigmoid-activated neuron. We set the
training dataset as Dval due to the limited number of samples in most datasets.

• SelNet/SelNet(α = 1): The neural network architecture is identical to the original work for the regression
task: the main body block has one hidden layer activated by ReLU with 64 neurons. Both prediction and
auxiliary heads are fully connected with one linearly activated neuron. The selection head has one hidden
layer activated by ReLu with 16 neurons and a following one Sigmoid-activated neuron. If the cost c is
non-zero, we select the rejection rate γ as a hyperparameter of the SelNet and use the validation data set
to test the validation RwR loss for γ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} and select the γ with the minimized validation
loss. All other hyperparameters are identical to the original work. If the cost c = 0 but a rejection rate
budget is given as in Table 4, as in the original work, we use validation data to calibrate the threshold of
rejection from 0, 0.1, ..., 1 to make the empirical rejection rate close to the given budget.

• NN+SelRej: The regressor network has the same architecture as in NN+kNNRej and the fine-tuned output
layer (prediction and selection head) is identical to the SelNet. The dataset for the fine-tuning step is the
same as the training dataset for the regressor network. We also use the same hyperparameter tuning process
as the SelNet.

• NN+LossRej: The regressor network has the same architecture as in NN+kNNRej and the loss rejector
network’s head has one hidden layer activated by ReLu with 16 neurons with a linear output layer. The
dataset for the fine-tuning step is the same as the training dataset for the regressor network. When making
an inference for rejecting, the predicted probability from the rejector > 0.5 will be rejected.

• NN+LogRej: The regressor network has the same architecture as in NN+kNNRej and the logistic rejector
network’s head has a linear layer that maps the latent features to a scalar, following a Sigmoid output layer.
The dataset for the fine-tuning step is the same as the training dataset for the regressor network.

• kNN: We use the same hyperparameter turning processes to choose the number of neighbors k
as the original work, where we employ the 10-fold cross-validation to select the parameter k ∈
{5, 10, 15, 20, 30, 50, 70, 100, 150} for two kNN models respectively.

All the neural network predictors/regressors’ training/fine-tunings are optimized by the ADAM algorithm with
a learning rate of 5× 10−4 and weight decay of 1× 10−4, and mini-batch size as 256 with 800 training epochs,
which are all identical to the original SelNet setup (Geifman and El-Yaniv, 2019) for the regression task. In
addition, the neural network rejector in Triage is optimized by the ADAM algorithm with a learning rate of
1× 10−3, and mini-batch size as 128 with 40 training epochs, which is identical to the setup in the posted code
of the Triage algorithm (Okati et al., 2021).

B EXTENSION TO CLASSIFICATION

In this part, we consider binary classification with rejection under the weak realizability condition and show a
parallel statement as Proposition 3.

The setting of classification with rejection is the same as regression with rejection when we set the target space
to be Y = {0, 1}. Specifically, this classification problem also encompasses two components:

(i) a classifier f : X → {0, 1}, which predicts the label from the feature

When No-Rejection Learning is Consistent for Regression with Rejection

(ii) a rejector r : X → {0, 1}, which decides whether to predict with the predictor or abstain from the prediction
to human.

Similarly, we also denote F be the set of candidate classifiers, and the goal is to find a pair of classifier and
rejector to minimize the following expected RwR loss, which, in this case, is equivalent to 0-1 loss

LRWR = E [r(X) · I{f(X) ̸= Y }+ (1− r(X)) · c] .

In this case, Definition 2 cannot be satisfied in general. The reason is that the conditional expectation function
f̄ = E[Y |X = x] might be a fractional number, and thus it cannot be a classifier. Therefore, we first redefine
the weak realizability for classification:

Definition 3 (Weak realizability for classification). The joint distribution of the feature and label pair (X,Y)
and the function class F satisfy weak realizability if the classifier is consistent with the conditional expectation
function f̄ is in the function class. That is, the following classifier is in the function class F .

f̃(x) =

{
1, if f̄(x) = E[Y |X = x] ≥ 0.5,

0, otherwise.

Then, similar to Proposition 3 for regression with rejection, we have a similar result for classification with
rejection.

Proposition 8. If the weak realizability condition for classification holds, then f̃(·) minimizes the expected RwR

loss that

f̃(·) ∈ argmin
f∈F

LRwR(f, r)

for any measurable rejector function r(·).

Proof. Similar to the proof of Proposition 3, we directly minimize the expected RwR loss for any fixed feature
X ∈ X . For any fixed X ∈ X , we have

EY [lRwR(f, r)|X] = EY

[
(Y − f(X))2|X

]
· r(X).

If r(X) = 0, the corresponding RwR loss is 0 given the feature X, and thus, all predictors minimize the RwR loss
at that feature. If r(X) = 1, we have

EY

[
(Y − f(X))2|X

]
= E[(Y − f̄(X))2|X] + E[(f(X)− f̄(X))2|X],

where the first term is independent of the choice of the predictor, and the second term is minimized at f = f̃ .
We then finish the proof.

C AUXILIARY LEMMAS

We introduce a lemma related to the uniform laws of large numbers, which is a useful tool when proving
consistency.

Lemma 1 (Uniform Laws of Large Numbers). Let F = {fθ, θ ∈ Θ} be a collection of measurable functions defined
on X indexed by a bounded subset Θ ⊆ Rd. Suppose that there exists a constant M such that |fθ1(X)− fθ2(X)| ≤
M∥θ1 − θ2∥2. Then,

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ → 0

almost surely as n → ∞, where the expectation is taken with respect to i.i.d. samples {Xi}∞i=1.

Proof. We refer to 19.5 Theorem (Glivenko-Cantelli) and 19.7 in Van der Vaart (2000).

Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang

D PROOFS OF SECTION 3

D.1 Proof of Proposition 2

Proof. Part (a): we construct a regressor f0 via

f0(x) :=

{
E[Y |X = x] + 2

√
c, if E[(Y − E[Y |X = x])2|X = x] ≤ c;

E[Y |X = x], if E[(Y − E[Y |X = x])2|X = x] > c.

f0 performs poorly on every instance of X = x such that the expected conditional squared loss is at least 4c for
those low variance cases and at least c for those high variance cases. Thus, we can construct its optimal rejector
r0 to be r0 := 0, inducing an RwR loss of c.

For any regressor f ′
0 that slightly deviates from f0 by at most

√
c, it still performs poorly on every instance

of X = x such that the expected conditional squared loss is at least c no matter which rejector it uses. Thus,
(f0, r0) is locally optimal in a neighborhood of radius

√
c. But apparently, it is not globally optimal.

Part (b): consider an instance of X = x with the conditional variance of Y smaller than c. By the continuous
assumption, there is a neighborhood of x (denoted by U1) such that the conditional variance of Y is permanently
smaller than c on U1. W.l.o.g. we assume the probability of X falling into U1 is lower bounded by p1 > 0. Then
we can construct a regressor f1 as

f1(x) :=

{
E[Y |X = x] + 2

√
c, if x ∈ U1;

E[Y |X = x], otherwise.

We denote the optimal rejector induced by f1 as r1. Then the pair (f1, r1) must be optimal w.r.t. the rejector
argument. As for the regressor argument, notice that r1(x) = 0 for any x ∈ U1, which means that any change
for f1(x), x ∈ U1 does not affect the RwR loss. Combining this with the fact that f1 is optimal outside U1, we
conclude that (f1, r1) is optimal w.r.t. the regressor argument. But it is not globally optimal.

D.2 Proof of Proposition 3

Proof. To prove the statement, we directly minimize the expected RwR loss for any fixed feature X ∈ X and
rejector r. We first show that for any fixed feature X and any fixed rejector r, the conditional expectation
f̄(X) = E[Y |X] minimizes the conditional RwR loss EY [(Y − f(X))2 · r(X)|X] with respect to the predictors
f ∈ F . To see this, we first notice when r(X) = 0, the conditional RwR is constant and all predictors minimize
this loss; when r(X) = 1,

EY [(Y − f(X))2 · r(X)|X] = EY [(Y − f(X))2|X]

= EY [(Y − f̄(X))2|X] + (f̄(X)− f(X))2,

which is minimized by f̄(X) = E[Y |X].

Then, since the RwR loss is minimized pointwise by f̄(·), we have that when the weak realizability condition
holds, i.e., f̄ ∈ F , f̄(·) also minimizes the expected RwR loss LRwR.

D.3 Proof of Proposition 4

Proof. With a fixed rejector r, one can easily verify

LRwR(fn, r)− LRwR(f
∗, r) = EX [r(X) · (EY [(fn(X)− Y)2|X]− EY [(f

∗(X)− Y)2|X]) + (1− r(X)) · (c− c)]

= EX [r(X) · (fn(X)− f∗(X))2]

≤ EX [(fn(X)− f∗(X))2]

= E[(fn(X)− Y)2]− E[(f∗(X)− Y)2],

where the second equality holds by bias-variance decomposition, the inequality by 0 ≤ r(X) ≤ 1, and the
last equality by bias-variance decomposition again. Since E[(fn(X) − Y)2] − E[(f∗(X) − Y)2] tends to zero in
probability (or almost surely) as n tends to infinity, the proof is complete.

For the reverse part, one just needs to set r(X) ≡ 1 to verify the conclusion.

When No-Rejection Learning is Consistent for Regression with Rejection

D.4 Proof of Example 1

Proof. We first show that E[(Y −fθn(X))2] converges to infθ∈Θ E[(Y −fθ(X))2] almost surely as n goes to infinity.
This part is an application of the uniform laws of large numbers: by Lemma 1, we have E[(Y −fθn(X))2] converges
to infθ∈Θ E[(Y − fθ(X))2] almost surely as n → ∞.

Then, we show that infθ∈Θ E[(Y − fθ(X))2] = E[(Y − f∗(X))2]. In fact, this is a direct consequence of the weak
realizability condition of F , which states that f̄ ∈ F and f̄ minimizes the conditional risk pointwise (see the
Proof of Proposition 3).

We now have E[(Y − fθn(X))2] → E[(Y − f∗(X))2] almost surely as n → ∞. Applying Proposition 4 yields the
desired result.

D.5 Consistency of the regressor-rejector pair

By Proposition 3, the optimal rejector for any regressor f is rf . We can then formalize the consistency of any
rejector w.r.t. the convergence to rf . Combining a consistent regressor with another consistent rejector (where
we defer the learning of rejectors to later sections) leads to a consistent regressor-rejector pair.

Proposition 9. Suppose we have a consistent regressor {fn}∞n=1 and a consistent rejector {rn}∞n=1, i.e.,

E[(fn(X)− f∗(X))2] → 0

and
E[(rn(X)− rfn(X))2] → 0

in probability (or almost surely) as n → ∞. Assume that all fn(X)’s and Y are uniformly bounded. Then we
have a consistent regressor-rejector pair {(fn, rn)}∞n=1, say

LRwR(fn, rn) → LRwR(f
∗, r∗)

in probability (or almost surely) as n → ∞.

D.6 Proof of Proposition 9

Proof. Recall that we have defined rf (x) = 1{E[(f(X)−Y)2|X = x] ≤ c}. We first prove that LRwR(fn, rn) tends
to LRwR(fn, rfn). This is due to

0 ≤ LRwR(fn, rn)− LRwR(fn, rfn) = EX [E[(fn(X)− Y)2|X] · (rn(X)− rfn(X)) + c · (rfn(X)− rn(X))]

≤ EX [(E[(fn(X)− Y)2|X] + c) · |rn(X)− rfn(X)|]
= EX [(E[(fn(X)− Y)2|X] + c) · (rn(X)− rfn(X))2]

≤ EX [B(rn(X)− rfn(X))2] → 0,

as n → 0 in probability (or almost surely), where the first inequality is due to the optimality of rfn w.r.t. fn, the
second inequality due to the non-negativity of each part, the last equality due to the fact that |rn(X)− rfn(X)|
is boolean, and the last inequality by the uniform boundedness of fn(X) and Y by some constant B.

Since

LRwR(fn, rfn) = EX [E[(fn(X)− Y)2|X] ∧ c],

LRwR(f
∗, r∗) = EX [E[(f∗(X)− Y)2|X] ∧ c],

we have

0 ≤ LRwR(fn, rfn)− LRwR(f
∗, r∗) = EX [E[(fn(X)− Y)2|X] ∧ c− E[(f∗(X)− Y)2|X] ∧ c]

≤ EX [E[(fn(X)− Y)2|X]− E[(f∗(X)− Y)2|X]]

= E[(fn(X)− Y)2]− E[(f∗(X)− Y)2]

= E[(fn(X)− f∗(X))2] → 0,

Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang

as n → 0 in probability (or almost surely), where the first inequality holds by the optimality of (f∗, r∗), the
second inequality by the fact that a ∧ c− b ∧ c ≤ a− b for any a ≥ b, and the last equality by the bias-variance
decomposition.

E PROOFS OF SECTION 4

E.1 Proof of Proposition 5

Proof. (a) We first show that the expected RwR loss is bounded by the truncated loss from the below. To see
this,

EY [lRwR(f, r; (x, Y))|X] = EY [(Y − f(X))2|X] · r(X) + c · (1− r(X))

≥
(
EY [(Y − f(X))2|X] ∧ c

)
· r(X) +

(
EY [(Y − f(X))2|X] ∧ c

)
· (1− r(x))

=
(
EY [(Y − f(X))2|X] ∧ c

)
,

where this equality comes from the definition of the RwR loss, the second line from the monotonicity of the
min function, and the last line comes from the direct calculation. The equality holds if r(X) = 1{EY [(f(X)−
Y)2|X] ≤ c}. Then, taking expectation with respect to the feature X, we finish the proof of Part (a).

(b) We have

LRwR(f, rR̂)− L̃(f)

= EX

[
EY

[
(f(X)− Y)2|X

]
· rR̂(X) + c · (1− rR̂(X))− EY

[
(f(X)− Y)2|X

]
∧ c

]
= EX

[(
EY

[
(f(X)− Y)2|X

]
− c

)
· 1

{
rR̂(X) = 1 and EY [(f(X)− Y)2|X] > c

}
+
(
c− EY

[
(f(X)− Y)2|X

])
· 1

{
rR̂(X) = 0 and EY [(f(X)− Y)2|X] ≤ c

}]
= EX

[(
R(f,X)− c

)
· 1

{
R̂(f,X) ≤ c and R(f,X) > c

}
+
(
c−R(f,X)

)
· 1

{
R̂(f,X) > c and R(f,X) ≤ c

}]
≤ EX

[(
R(f,X)− R̂(f,X)

)
· 1

{
R̂(f,X) ≤ c and R(f,X) > c

}
+
(
R̂(f,X)−R(f,X)

)
· 1

{
R̂(f,X) > c and R(f,X) ≤ c

}]
≤ EX

[∣∣R̂(f,X)−R(f,X)
∣∣],

where the first two equalities hold by definition of LRwR and L̃, the third equality by the definition of R and
R̂, the first inequality by checking the indicator functions’ conditions, and the second inequality by the fact
that those two indicator functions cannot be both non-zero simultaneously.

E.2 Proof of Proposition 6

Proof. we first show that both the expected squared loss and the truncated loss can be minimized by the
conditional expectation function f̄(X). For any predictor, its squared loss can be re-written as follows:

L2(f) = E[(Y − f(X))2]

= E[(Y − f̄(X) + f̄(X)− f(X))2] (10)

= E[(Y − f̄(X))2] + E[(f̄(X)− f(X))2] + 2E[(Y − f̄(X))(f̄(X)− f(X))]

= E[(Y − f̄(X))2] + E[(f̄(X)− f(X))2],

where the first line comes from the definition of the squared loss, the second and the third line comes from
direct calculation, and the last line from the equality that E[(Y − f̄(X))(f̄(X) − f(X))] = 0 obtained by the

When No-Rejection Learning is Consistent for Regression with Rejection

definition of f̄(X). In the last line of (10), the first term is independent of the chosen predictor. The second
term is non-negative, and it is zero only when f̄(X) = f(X) with probability one. Then, we can see that for any
predictor f ̸= f̄ , the corresponding squared loss is no less than the squared loss of f̄ . Thus, we have the squared
loss is minimized by f̄ . For the truncated loss, the proof is similar. We have

L̃(f) = EX [EY [(Y − f(X))2|X] ∧ c]

= EX

[(
EY [(Y − f̄(X))2|X] + EY [(f̄(X)− f(X))2|X]

)
∧ c

]
(11)

≥ EX

[
EY [(Y − f̄(X))2|X] ∧ c

]
,

where the first line comes from the definition of the truncated loss, the second line comes from similar steps as
in (10), and the last line comes from the non-negativity of EY [(f̄(X) − f(X))2|X]. Thus, similarly, we can see
that the truncated loss is also minimized by f̄ . Then, recall that

L̃∗ := min
f

L̃(f), L∗
2 := min

f
L2(f),

where the minimums are taken over all measurable functions. Thus, we have showed

L̃(f̄) = L̃∗, L2(f̄) = L∗
2. (12)

Next, we show the calibration condition (6). For any predictor f , we have

L̃(f)− L̃∗ = L̃(f)− L̃(f̄)

= EX

[(
EY [(Y − f̄(X))2|X] + EY [(f̄(X)− f(X))2|X]

)
∧ c− EY [(Y − f̄(X))2|X] ∧ c

]
≤ EX

[
EY [(f̄(X)− f(X))2|X] ∧ c

]
(13)

≤ E
[
(f̄(X)− f(X))2

]
where the first line is obtained by (12), the second and last lines come from (10) and (11), the third line comes
from the inequality that

min(x, c) + min(y, c) ≥ min(x+ y, c)

for any non-negative numbers x, y, and the forth line comes from x ≥ min(x, c) for all x.

Finally, to show the calibration condition, it is sufficient to show that the last line of (13) equals to L2(f)− L∗
2

for any predictor f . This can be obtained by (10),

L2(f)− L∗
2 = L2(f)− L2(f̄)

= E[(Y − f̄(X))2] + E[(f̄(X)− f(X))2]− E[(Y − f̄(X))2]

= E[(f̄(X)− f(X))2],

where the first line comes from (12), the second line comes from (10), and the last line comes from cancelling
E[(Y − f̄(X))2].

E.3 Proof of Theorem 1

Proof. The statement of Theorem 1 can be obtained directly from Proposition 6 and Part (b) of Proposition 5.
Specifically, we have

LRwR(f̂ , rR̂)− L∗
RwR ≤ L̃(f̂)− L̃∗ + E

[
|R̂(f̂ , X)−R(f̂ , X)|

]
≤ L2(f̂)− L∗

2 + E
[
|R̂(f̂ , X)−R(f̂ , X)|

]
= E

[(
f̂(X)− f∗(X)

)2]
+ E

[
|R̂(f̂ , X)−R(f̂ , X)|

]
,

where the first line is obtained by Part (b) of Proposition 5, the second line from Proposition 6, and the last line
from the bias-variance decomposition.

	INTRODUCTION
	Our Contribution
	Related Literature

	PROBLEM SETUP
	CONSISTENCY UNDER WEAK REALIZABILITY
	Challenge of Joint Learning of f and r
	Learning with Weak Realizability

	LEARNING BEYOND WEAK REALIZABILITY
	Surrogate Property
	Error Bounds for No-Rejection Learning

	LEARNING THE REJECTOR
	Fixed Cost
	Fixed Budget

	NUMERICAL EXPERIMENTS
	CONCLUSION
	Checklist
	EXPERIMENT DETAILS
	EXTENSION TO CLASSIFICATION
	AUXILIARY LEMMAS
	PROOFS OF SECTION 3
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Example 1
	Consistency of the regressor-rejector pair
	Proof of Proposition 9

	PROOFS OF SECTION 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Theorem 1

