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Abstract

Given a set of arms Z ⊂ Rd and an un-
known parameter vector θ∗ ∈ Rd, the pure
exploration linear bandit problem aims to re-
turn argmaxz∈Z z⊤θ∗, with high probability
through noisy measurements of x⊤θ∗ with
x ∈ X ⊂ Rd. Existing (asymptotically) op-
timal methods require either a) potentially
costly projections for each arm z ∈ Z or b)
explicitly maintaining a subset of Z under
consideration at each time. This complex-
ity is at odds with the popular and simple
Thompson Sampling algorithm for regret min-
imization, which just requires access to a pos-
terior sampling and argmax oracle, and does
not need to enumerate Z at any point. Un-
fortunately, Thompson sampling is known to
be sub-optimal for pure exploration. In this
work, we pose a natural question: is there an
algorithm that can explore optimally and only
needs the same computational primitives as
Thompson Sampling? We answer the question
in the affirmative. We provide an algorithm
that leverages only sampling and argmax ora-
cles and achieves an exponential convergence
rate, with the exponent equal to the exponent
of the optimal fixed allocation asymptotically.
In addition, we show that our algorithm can
be easily implemented and performs as well
empirically as existing asymptotically optimal
methods.

1 INTRODUCTION

The pure exploration bandit problem considers a se-
quential game between a learner with two sets of arms
X ,Z ⊂ Rd and nature. In each round, the learner
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chooses an arm x ∈ X and observes a noisy stochas-
tic reward y = x⊤θ∗ + ϵ where θ∗ ∈ Θ is an un-
known parameter vector and ϵ is assumed to be i.i.d
Gaussian noise. The goal of the learner is to identify
z∗ = argmaxz∈Z z⊤θ∗ with high probability in a few
measurements. The case of X = Z is perhaps the most
natural case to consider, and has enjoyed a fair amount
of attention (Soare et al., 2014; Fiez et al., 2019; De-
genne et al., 2020). However, all proposed approaches
share a common trait - complexity. Existing optimal
algorithms rely on either explicitly enumerating a poten-
tially large subset of Z or periodically solving a convex
optimization program at every iteration. Consequently,
it prompts us to question: is such complexity indeed
indispensable for reaching asymptotic optimality?

Maintaining our focus on the specific instance where
X = Z, we note that the pure exploration task can be
addressed using any readily available regret minimiza-
tion algorithm. That is, if an algorithm generates a
series of plays {xt}Tt=1 such that maxx∈X

∑T
t=1⟨θ∗, x−

xt⟩ ≤ d
√
T then this immediately implies that x̂T

drawn uniformly from the set {xt}Tt=1 is equal to x∗ =
argmaxx∈X ⟨x, θ∗⟩ with constant probability as soon as
T ≥ d2/∆2

min, where ∆min = minx∈X ,x ̸=x∗ θ
⊤
∗ (x

∗ − x).
One popular regret-minimization algorithm is Thomp-
son Sampling (TS). Following its re-emergence from
nearly seven decades of relative obscurity, it has rapidly
ascended to become the most prevalently applied bandit
algorithm in practical scenarios, as per the industrial
experience of the authors. We postulate that its popu-
larity is due to (1) its simplicity to implement, (2) its
flexibility to encode side-information in its prior, (3)
its computational efficiency, and (4) strong empirical
performance. The algorithm works by maintaining a
distribution pt over Θ given all observations up to the
time t, and then plays xt = argmaxx∈X ⟨x, θt⟩ where
θt ∼ pt. Once yt = ⟨xt, θ∗⟩+ϵt is observed, the distribu-
tion is updated and the process repeats. As we can see,
TS only relies on the ability to sample from a posterior
distribution and compute a maximum inner product
(an argmax oracle) - both operations which have been
heavily studied and optimized. Unfortunately, TS is
known to be sub-optimal for the pure exploration linear
bandits problem due to its greedy exploration strategy.
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Indeed, there exist instances of X and θ∗ for which
the sample complexity of TS to identify the best arm
scales quadratically in the optimal sample complexity
achieved by other algorithms (Soare et al., 2014). Even
for regret minimization, it is know that TS is far from
optimal from an instance-dependent perspective (Lat-
timore and Szepesvari, 2017). But yet, due to its many
favorable properties it is still the go-to algorithm in
practice.

This paper aims to answer the following fundamental
theoretical question: Is there an algorithm that en-
joys asymptotically optimal exploration that does not
need to explicitly enumerate Z and only relies on pos-
terior sampling and an argmax oracle? We achieve
this goal by not striving too far from the Thompson
sampling algorithm itself and only assuming access to
a sampling oracle and arg-max oracle. In fact, our pro-
posed algorithm can be viewed as a generalization of
Top-Two Thompson Sampling for the standard multi-
armed bandit game (Russo, 2016) to the richer linear
setting. At each iteration t, we maintain a sampling
distribution centered at θ̂t (a least squares estimator
computed after t samples), and get a sample θt whose
best arm is different than that of θ̂t using a sampling
oracle. Once such a θt is found, we update an online
learner maintaining a distribution over X with rewards
∥θt − θ̂t∥2xx⊤ . We prove that P(ẑt ̸= z∗|{xs}t−1

s=1) de-
creases at an exponential rate with the exponent of the
optimal fixed allocation. We also demonstrate that our
method is not only theoretically sound by achieving an
optimal sample complexity given oracle access, but is
also computationally efficient empirically.

1.1 Problem Setting and Notation

We first define the linear bandit setting. Let X ,Z ∈ Rd

be two sets of arms and Θ ⊂ Rd be the parameter space.
At time t, we draw an action xt ∈ X , and receive the
reward yt = x⊤

t θ∗+ϵt where θ∗ ∈ Θ and ϵt is i.i.d. Gaus-
sian noise. The choice of arm xt at time t is dependent
on the filtration generated by {(xs, ys)}t−1

s=1; further-
more, we denote the conditional probability given this
filtration be Pθ.

Goal: We are interested in the best-arm identification
task, i.e. we would like to find z∗ := argmaxz∈Z z⊤θ∗
with high probability, while minimizing the number of
measurements taken in X .

We make the following assumption on the parameters
that we will discuss further in Section 3.1.

Assumption 1. Θ is closed and bounded, with a non-
empty interior.

Assumption 2. Assume that maxx ∥x∥2 ≤ L.

Assumption 3. Assume that span(Z) ⊂ span(X ) and

the optimal arm z∗ ∈ Z is unique.

Notation. For any matrix A ∈ Rd×d, we define the
norm ∥x∥2A := x⊤Ax. Given a set S, we define the
simplex △S := {λ ∈ R|S|

≥0 :
∑|S|

i=1 λi = 1}. Finally,
given a (multivariate) normal distribution N (θ,Σ−1)
on Rd and some set Θ, we define the truncated nor-
mal distribution, denoted as TN(θ,Σ−1; Θ), to be
the normal distribution restricted on Θ. For some
λ ∈ △X , we define A(λ) :=

∑
x∈X λxxx

⊤. We de-
fine ∆max := maxx∈X maxθ,θ′∈Θ |x⊤(θ − θ′)|. We de-
fine the constants used in the algorithm as C3,ℓ =

∆max + L2
√
d log(Tℓℓ2). The precise definition is in

Appendix A.

2 MOTIVATING OUR APPROACH

Among all adaptive algorithms, it is known that for
every θ∗ ∈ Θ there exists a λ ∈ △X such that sampling
x1, x2, . . . ,

i.i.d.∼ λ achieves the optimal sample complex-
ity in the fixed confidence setting (Soare et al., 2014;
Fiez et al., 2019; Degenne et al., 2020). Specifically, for
any Θ ⊂ Rd and X ,Z ⊂ Rd define

τ∗ := max
λ∈△X

min
θ∈Θc

z∗

1
2∥θ − θ∗∥2A(λ)−1 (1)

where Θc
z∗ = {θ ∈ Θ : ∃z ∈ Z, z⊤θ ≥ z⊤∗ θ}. Then it is

known that to identify z∗ with probability at least 1−δ,
the expected sample complexity of any algorithm scales
as (τ∗)−1 log(2.4/δ). Moreover, sampling according to
the λ that achieves the maximum, when paired with
an appropriate stopping time, achieves the optimal
sample complexity asymptotically. As our setting is
more naturally analyzed in the so-called fixed budget
setting, we next state a result that can be viewed as a
generalization of the result of Russo (2016) originally
stated for the multi-armed bandit setting. Note that
this is a lower bound similar to Glynn and Juneja
(2004) and not a lower bound for the traditional fixed
budget setting in multi-armed bandits (Karnin et al.,
2013), since we only allow fixed λ not adapting to the
observations.
Theorem 2.1. Fix Θ = Rd and any θ∗ ∈ Θ. For
some λ consider a procedure that draws x1, . . . , xT ∼ λ,
then observes yt = ⟨xt, θ∗⟩ + ϵt for each t with ϵt ∼
N (0, 1), and then computes ẑT = argmaxz∈Z⟨z, θ̂T ⟩
where θ̂T = argminθ∈Θ

∑T
t=1 ∥yt − ⟨θ, xt⟩∥22. Then for

any λ ∈ △X we have

lim sup
T→∞

− 1

T
log
(
Pθ∗,xt∼λ(ẑT ̸= z∗)

)
≤ τ∗.

The quantity τ∗ is naturally interpreted from a
hypothesis-testing lens. Given a fixed sampling distri-
bution λ, note that Ex∼λKL(N (θ⊤x, 1)||N (θ⊤∗ x, 1)) =
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1
2∥θ− θ∗∥2A(λ). Thus the min-max problem above aims
to construct the distribution λ which maximizes the
smallest KL divergence between θ and any alternative
with a different best-arm. As noticed by many authors,
this can be translated into a game-theoretic language.
The max-player chooses a distribution over the set of
possible measurements X . At the same time, the min-
player chooses an alternative θ whose best arm is not
z∗ in an attempt to fool the λ-player. This lower bound
intuitively suggests a strategy for algorithm designers:
devise a sampling method that ensures the resultant
allocation aligns with the aforementioned objective.

In this pursuit (discussed extensively in Section 4) the
game-theoretic perspective has been directly exploited
by several works to give asymptotically optimal algo-
rithms. The approaches of these works differ in detail
but are similar in spirit and are motivated by the fol-
lowing oracle strategy that has access to θ∗. At each
time, the max-player utilizes a no-regret online learner,
such as exponential weights (Bubeck, 2011), to set λt+1

based on an estimate of the best-response of the min-
player, namely minθ∈Θc

z∗
∥θ−θ∗∥2A(λt)

. This guarantees
that

max
λ∈△X

min
θ∈Θc

z∗

∥θ−θ∗∥2A(λ)−
T∑

t=1

min
θ∈Θc

z∗

∥θ−θ∗∥2A(λt)
≤ o(T )

which by a standard Jensen’s inequality argument is
sufficient to ensure that 1

T

∑T
t=1 λt is an approximate

solution to the original saddle point problem. Then,
the arm xt pulled is sampled from λt at each time (or
a deterministic tracking strategy is used).

The main computational challenge in this approach
is that obtaining the best-response can be rather in-
volved. The alternative set can be decomposed as a
union of intersections of a convex set with a halfspace:
Θc

z∗ = ∪z ̸=z∗Θ ∩ {θ ∈ Rd : z⊤θ ≥ z⊤∗ θ}. Thus com-
puting the best-response involves computing |Z|-many
projections onto convex sets. For small values of |Z|,
this may be feasible. However, this computation may
be onerous if |Z| is large or the projection step is very
expensive, for example, in many combinatorial bandit
settings such as shortest path problems in a graph
(Chen et al., 2017). As another example, in practical
recommendation systems where Z represents items to
be recommended, |Z| may be in the millions. Thus
computing |Z| many projections under latency con-
straints may be impossible, even though Thompson
Sampling can easily recommend good items (Biswas
et al., 2019). In addition, for both settings, there may
be no easy closed-form expression for the projection.

Our method is based on the following equivalent formu-
lation of τ∗. By linearizing the min over alternatives
with a distribution over Θc

z∗ , we can apply Sion’s mini-

max theorem:

max
λ∈△X

inf
θ∈Θc

z∗

1

2
∥θ − θ∗∥2A(λ)

= max
λ∈△X

min
p∈△(Θc

z∗ )
Eθ∼p

[
1

2
∥θ − θ∗∥2A(λ)

]
= min

p∈△(Θc
z∗ )

max
λ∈△X

Eθ∼p

[
1

2
∥θ − θ∗∥2A(λ)

]
,

where △(Θc
z∗) denotes the set of distribution over the

alternative set Θc
z∗ . This replaces the projections with

an expectation over a distribution on Θc
z∗ . At first

glance, the situation may seem worse - we have gone
from finitely many projections to needing to maintain
a distribution over a potentially infinite set!

However, imagine that Θ is finite and that we solve this
saddle-point problem by maintaining a no-regret learner
for the max-player as before, while similarly maintain-
ing a no-regret learner for the min-player. Standard
results in convex optimization guarantee that the av-
erage of the iterates of the two learners converge to a
saddle point eventually (Liu and Orabona, 2022). To
be more precise, at each round t we draw an xt ∼ λt

and feed the (stochastic) loss
∑

θ∈Θc
z∗

pt,θ∥θ − θ∗∥2xtx⊤
t

to the learner for the min-player. Assuming the min-
player learner is exponential weights, then the update
is

pt+1,θ ∝ pt,θe
−η∥θ∗−θ∥2

xtx
⊤
t ∝ e

−η∥θ∗−θ∥2∑t
s=1 xsx⊤

s .

where η is an appropriate step-size. Hence, the result-
ing distribution pt+1 is reminiscent of the probability
density function of a multivariate normal distribution
N(θ∗, η

−1(
∑t

s=1 xsx
⊤
s )

−1) restricted to Θc
z∗ . This ob-

servation motivates our algorithm - for the min-player
we maintain an appropriate normal distribution and
at each round, use samples from this distribution to
generate a stochastic loss to feed the max-player. This
approach avoids explicitly maintaining Z or ever need-
ing to compute a projection! Of course, this discussion
has relied on knowledge of θ∗ and z∗. In the next sec-
tion, we explain how our algorithm, PEPS, overcomes
these restrictions.

3 BEST ARM IDENTIFICATION
THROUGH SAMPLING

Our main method PEPS is presented in Algorithm 1.
Given a budget of T samples, we repeatedly sample θt
utilizing a sampling oracle SAMPLE. We then sample
an xt ∼ λ̃t where λ̃t is the distribution λt maintained
by the λ-learner at time t mixed in with a diminishing
amount γt of the G-optimal distribution λG. After
playing xt and observing a reward yt, PEPS updates
both the λt and the estimate θ̂t with the covariance.
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Algorithm 1 Pure Exploration with Projection-Free
Sampling (PEPS)
Input: Finite set of arms X ⊂ Rd, Z ⊂ Rd, time

horizon T , ηλ, ηp, α
1: Define λG = argminλ∈△X maxx∈X ∥x∥2A(λ)−1 ,

λ1 = 1
|X |1

2: Initialize V0 = I, S0 = 0, p1 = N(0, V0), θ̂1 arbi-
trarily

3: for t = 1, 2, · · · , T do
4: γt = t−α

5: //Top Two Sampling
6: Compute ẑt = argmax

z∈Z
z⊤θ̂t

7: Sample θt = SAMPLE(TN(θ̂t, η
−1
p V −1

t−1; Θ
c
ẑt
))

8:
9: //Take Sample and Observe Reward

10: Sample xt ∼ λ̃t where λ̃t = (1− γt)λt + γtλ
G

11: Observe yt = ⟨θ∗, xt⟩+ ϵt where ϵt ∼ N (0, 1)
12:
13: //Update
14: Update Vt = Vt−1 +xtx

⊤
t , St = St−1 +xtyt, and

θ̂t+1 = V −1
t St

15: Update λt+1 ∝ λte
ηλg̃t where g̃t,x =∥∥∥θt − θ̂t

∥∥∥2
xx⊤

,∀x ∈ X
16: end for
17: Sample θ̃ = SAMPLE(TN(θ̂T+1, V

−1
T ; Θ))

Output: ẑℓ(θ̃) = argmaxz∈Z z⊤θ̃

In particular, given samples {xs}ts=1, we let θ̂t+1 =
V −1
t St where Vt =

∑t
s=1 xsx

⊤
s and St =

∑t
s=1 xsys.

Algorithm 1 depends on a finite time horizon T . To
ensure that our algorithm is anytime and eventually
converges to the optimal sampling scheme, we employ
an outer loop Algorithm 2 utilizing a doubling scheme.
Before we explain the theoretical guarantees, we first
detail some of the aspects of the algorithm.

Updating the sampling distribution for θt. Our
main innovation is introducing a distribution over Θc

ẑt
from which we can sample over. In particular, in each
round, we sample θt from TN(θ̂t, η

−1
p V −1

t−1; Θ
c
ẑt
), which

Algorithm 2 Doubling trick
Input: Finite set of arms X ⊂ Rd, Z ⊂ Rd

1: for ℓ = 0, 1, · · · , L do

2: Set Tℓ = 2ℓ, ηλ =

√
log |X |
C2

3,ℓTℓ
, ηp =

√
d log(TℓC3,ℓ)

C2
3,ℓTℓ

,

α = 1/4
3: ẑℓ = PEPS(X ,Z, Tℓ, ηλ, ηp, α)
4: end for

Output: ẑL

is a truncated normal distribution with support Θc
ẑt

(Burkardt, 2014).

Following the discussion in the Section 2, it is tempting
to see this update as a form of continuous exponential
weights (Bubeck, 2011). However, this is not quite true
since the underlying action set Θc

ẑt
is changing each

round. This creates several technical challenges in the
proof. Note that similar to previous works, we could
have maintained a learner for each z ∈ Z (Degenne
et al., 2020). However, our approach of maintaining
a distribution prevents the need for this additional
complexity of enumerating Z.

From the perspective of exponential weights, ηp is a
step size: the dependence on d in the numerator comes
from the dimension of Θ; and C2

3,ℓ is an upper bound
on the stochastic loss ∥θt − θ̂t∥2xtx⊤

t
that we guarantee

with high probability due to forced exploration and
boundedness of Θ.

We have the following regret guarantee on the online
min learner. For notational convenience, in this sec-
tion, for some set S with nonempty interior, we let
pt(S) = TN(θ̂t, η

−1
p V −1

t−1;S) be the truncated normal
distribution with support on S.

Lemma 3.1 (informal). In round Tℓ of epoch ℓ of
Algorithm 2, we have with probability greater than 1−
1/ℓ2,

Tℓ∑
t=1

Eθ∼pt(Θc
z∗ )

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

]
− inf

θ∈Θc
z∗

∥θ − θ∗∥2VTℓ

≤ O(d
√

Tℓ log(LTℓ)).

Sampling Oracle. Our algorithm involves a sam-
pling oracle that takes samples from a truncated normal
distribution.

Definition 3.2 (Sampling oracle (SAMPLE)). The
oracle SAMPLE(p) is an algorithm that given some
distribution p, returns a sample θ ∼ p.

There are various ways to implement this sampling
oracle efficiently. The easiest way is to use rejection
sampling. In particular, on line 7, for each round t, we
repeatedly sample θt ∼ N(θ̂t, η

−1
p V −1

t−1) until the best-
arm of argmaxz∈Z z⊤θt is not our current best guess
ẑt = argmaxz∈Z z⊤θ̂t, and on line 17 we repeatedly
sample θ̃ ∼ N(θ̂T+1, V

−1
T ) until θ̃ ∈ Θ. Regarding the

computation cost of rejection sampling, we suffer from
some of the same challenges as Top-two sampling algo-
rithms, which empirically work well in practice (Russo,
2016). From a practical perspective, the rejection sam-
pling step is only computationally costly if it requires
many draws from the posterior to find a θ in the al-
ternative Θc

ẑt
. However, note that if we draw O(1/ν)
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vectors and none of them are in the alternative Θc
ẑt

, by
Markov’s inequality, this arm they all agree on is the
best arm with probability 1 − ν. Thus, as soon as it
becomes computationally costly to sample an alterna-
tive, the problem is basically solved. We demonstrate
empirically that the computational complexity is not
at all onerous in Section 5 and Appendix F. Also, we
note that our focus is on the query complexity given an
effective way to sample, not the complexity of sampling
from the distribution itself. Since the sampling oracle
only returns one sample at the end, our algorithm still
achieves an asymptotically optimal sample complexity
even if we draw O(1/ν) vectors inside the oracle.

Moreover, we remark that sampling from truncated
normal distributions is a well-explored practice across
statistics and machine learning, especially when sam-
pling in a convex set. A variety of efficient methods
such as Gibbs and hit-and-run procedures are avail-
able for this purpose (Devroye, 1986; Murphy, 2013;
Li and Ghosh, 2015; Laddha and Vempala, 2023). In
particular, the hit-and-run algorithm ensures one gets
a sample in the convex set with probability 1 − ν in
O(d3 log(1/ν)) samples in the worst case (Lovász, 1999).
Furthermore, novel approaches have improved the ef-
ficiency of traditional rejection techniques, especially
when dealing with a convex support of the truncated
normal distribution (Maatouk and Bay, 2016).

Update for λt. To update λt, which corresponds to
the action of our max-player, we employ an exponen-
tial weighted learner (Hedge) over the set of actions
X . The reward vector g̃t ∈ R|X | is stochastic with ex-

pectation Eg̃t,x = Eθ∼pt(Θc
ẑt

)

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

conditioning

on the history of the algorithm {(xs, ys, θs)}t−1
s=1, and

is bounded in high probability. We show that if we
choose α = 1

4 and let ∆̃max be an upper bound on the
loss function, we have the following regret guarantee:

Lemma 3.3 (informal). In round Tℓ of epoch ℓ of
Algorithm 2, we have with probability greater than 1−
1/ℓ2,

max
λ∈△X

Tℓ∑
t=1

Eθ∼pt(Θ
c
ẑt

)

∥∥∥θ − θ̂t

∥∥∥2

A(λ)

−
Tℓ∑
t=1

Eθ∼pt(Θ
c
ẑt

)

∥∥∥θ − θ̂t

∥∥∥2

A(λt)
≤ O

(√
(d+ ∆̃max)Tℓ log ℓ

)

Forced Exploration with G-optimal Design.
To ensure adequate sampling in all directions,
in each round we mix in some amount of
the G-optimal distribution, denoted as λG :=
argminλ∈∆X maxx∈X ∥x∥2A(λ)−1 . This ensures that

maxx∈X ∥θ̂t − θ∥xx⊤ is bounded for any θ ∈ Θ and
ẑt is eventually z∗ with probability 1. The rate at

which the mixture of this distribution decays as t−α,
for any 0 < α < 1/2, so it has no effect on asymp-
totic performance. We note that thanks to the implicit
anti-concentration properties of sampling θt from a
multivariate Gaussian, this step is probably unneces-
sary and just an artifact of the analysis (Agrawal and
Goyal, 2017).

Argmax Oracle One advantage of our approach
that is most reminiscient of Thompson Sampling is the
calculation of ẑt at the start of each epoch. In practice,
if we have an efficient argmax-oracle, this calculation
can be computationally efficient and does not require
maintaining Z. By exploiting argmax oracles, we can
tractably solve problems like shortest-path and match-
ings, even in settings where |Z| is super-exponential in
d (Katz-Samuels et al., 2020).

Doubling Trick As presented, the regret guarantees
for Lemmas 3.1 and 3.3 require fixed step sizes ηλ, ηp.
To overcome this need for a fixed step size, we use
a doubling trick and restart the algorithm every 2ℓ

samples (Shalev-Shwartz et al., 2012). We believe
the use of the doubling trick is purely a theoretical
restriction and a more careful analysis could provide
an anytime algorithm with no restarts.

3.1 Theoretical Guarantees

Recall that at the end of each epoch, ẑℓ(θ) =
argmaxz∈Z z⊤θ is the optimal answer for some θ ∼ πℓ.
Our main result is the following guarantee on Algo-
rithm 2.
Theorem 3.4. With probability 1,

lim
ℓ→∞

− 1

Tℓ
logPθ∼πℓ

(ẑℓ(θ) ̸= z∗) = τ∗,

where πℓ := N(θ̂Tℓ
, V −1

Tℓ−1) restricted to Θ.

Thus our algorithm guarantees that asymptotically the
probability that we do not identify the optimal arm
decays at the rate of e−Tτ∗

, with τ∗ being the optimal
exponent as given in Theorem 2.1. Such guarantees on
the probability of a sampled arm are similar to those in
the Bayesian best-arm literature, namely Russo (2016)
and Jourdan et al. (2022). In these works, a poste-
rior distribution is maintained and they guarantee that
the posterior probability that a non-optimal arm is
sampled converges at an exponential rate, with the
best possible exponent among all allocation rules. We
provide a similar guarantee here for linear bandits. As
a remark, this does not directly lead to a bound on the
frequentist probability of error, which requires integra-
tion of the posterior probability over all randomness in
the algorithm. We provide a small sketch of the proof
now. A full proof is in Appendix C.
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Proof sketch. We say that an
.
= bn if 1

n log(an/bn) → 0
as n → ∞. We focus on a fixed round ℓ of Algo-
rithm 2. Using the fact that the expectation of the
empirical log-likelihood ratio (conditioned on the data
collected) between θ∗ and some θ ∈ Θ is the KL di-
vergence between them, we can show using a Laplace
Approximation

Pθ∼πℓ
(ẑℓ ̸= z∗)

.
= exp

(
−Tℓ inf

θ∈Θc
z∗

1

2
∥θ − θ∗∥2A(ēTℓ

)

)
.

where ēTℓ
= 1

Tℓ

∑Tℓ

t=1 ext
. Letting p̄Tℓ

=
1
Tℓ

∑Tℓ

t=1 pt(Θ
c
ẑt
), we have

max
λ∈△X

Eθ∼p̄Tℓ

∥∥∥θ̂t − θ
∥∥∥2

A(λ)
− min

p∈△(Θc
z∗ )

Eθ∼p

∥∥∥θ̂t − θ
∥∥∥2

A(ēTℓ
)

= max
λ∈△X

1

Tℓ

Tℓ∑
t=1

Eθ∼pt(Θ
c
ẑt

)

∥∥∥θ̂t − θ
∥∥∥2

A(λ)

− 1

Tℓ

Tℓ∑
t=1

Eθ∼pt(Θ
c
ẑt

)

∥∥∥θ − θ̂t

∥∥∥2

A(λt)

(regret for max learner)

+
1

Tℓ

Tℓ∑
t=1

Eθ∼pt(Θ
c
ẑt

)

∥∥∥θ − θ̂t

∥∥∥2

A(λt)

− 1

Tℓ

Tℓ∑
t=1

Eθ∼pt(Θc
z∗ )

∥∥∥θ − θ̂t

∥∥∥2

xtx
⊤
t

(error when ẑt ̸= z∗)

+
1

Tℓ

Tℓ∑
t=1

Eθ∼pt(Θc
z∗ )

∥∥∥θ − θ̂t

∥∥∥2

xtx
⊤
t

− 1

Tℓ
inf

θ∈Θc
z∗

∥θ − θ∗∥2VTℓ
.

(regret for the min learner)

The regret guarantees in Lemmas 3.1 and 3.3 ensure the
first and third sum are o(1) and so go to 0 as Tℓ → ∞.
The fact that pt(Θ

c
ẑt
) is equal to pt(Θ

c
z∗) for large

enough t ensures that the middle term similarly goes to
0. Combining all terms and the fact that θ̂t is close to
θ∗ guarantees that for any ϵ > 0 there is a sufficiently
large ℓ such that maxλ∈△X Eθ∼p̄Tℓ

∥θ∗ − θ∥2A(λ) −
minp∈△(Θc

z∗ )
Eθ∼p ∥θ∗ − θ∥2A(ēTℓ

) ≤ ϵ, which using min-

imax duality implies that inf
θ∈Θc

z∗

1
2 ∥θ − θ∗∥2A(ēTℓ

) ≥

maxλ∈△X minp∈△(Θc
z∗ )

Eθ∼p

[
∥θ∗ − θ∥2A(λ)

]
− ϵ. Since

the first term on the right-hand side is τ∗, we have
shown that inf

θ∈Θc
z∗

1
2 ∥θ − θ∗∥2A(ēTℓ

) ≥ τ∗ − ϵ. Since

by definition τ∗ ≥ inf
θ∈Θc

z∗

1
2 ∥θ − θ∗∥2A(ēTℓ

), choosing

ϵ → 0 concludes the proof that Pθ∼πℓ
(ẑℓ ̸= z∗)

.
=

exp

(
−Tℓ inf

θ∈Θc
z∗

1
2 ∥θ − θ∗∥2A(ēTℓ

)

)
= exp(−Tℓτ

∗).

Remark: Stopping times. Note that we are not
providing a guarantee on the expected stopping time
for any finite δ. Existing asymptotically optimal ap-
proaches which guarantee a finite stopping time in

high probability, e.g. Degenne et al. (2020), utilize a
generalized log-likelihood-ratio test of the form

max
z∈Z

min
θ∈Θc

ẑt

∥θ − θ̂t∥Vt
≥ β(t, δ)

where β(t, δ) = O(
√
d log((T + ∥θ∗∥2)/δ)) is an any-

time confidence bound controlling the deviations of ∥θ−
θ̂t∥Vt (Abbasi-Yadkori et al., 2011). As a result, their al-
gorithms saturate the lower bound for an expected stop-
ping time, i.e. lim supδ→∞ E[τδ]/ log(1/δ) ≤ (τ∗)−1.
Unfortunately, this GLRT stopping rule itself requires
a projection onto each element of Z. We leave it as an
open question whether an algorithm can be developed
which is asymptotically optimal, requires no explicit
projection, and has a finite expected stopping time in
high probability.

Remark: Bounded assumptions on Θ. We as-
sume Θ is closed and bounded. The boundedness
assumption is needed since we would like to control
that for each θ ∈ Θ, the rewards x⊤θ to be bounded
for all arms x ∈ X , which is used in our regret anal-
ysis for each learner. Learning algorithms such as
AdaHedge (De Rooij et al., 2014) avoid the need for
bounded rewards and we leave it as a future research
direction to remove this condition.

4 RELATED WORK

Pure Exploration Linear Bandits The pure ex-
ploration linear bandit problem was introduced in the
seminal work of Soare et al. (2014). In recent years,
there has been renewed interest in this problem due to
its ability to capture many best-arm-identification and
pure exploration settings. Following the experimental
design approach first considered by Soare et al. (2014),
several different algorithmic frameworks were consid-
ered (Tao et al., 2018; Xu et al., 2018; Karnin et al.,
2013).

One of the first algorithms to achieve matching instance-
optimal upper and lower bounds (within logarithmic
factors) for the case of Rd was by Fiez et al. (2019)
and depends on an elimination scheme. Shortly af-
ter, several works proposed asymptotically optimal
algorithms. The first of these methods utilized the
track and stop approach given in Jedra and Proutiere
(2020), which fully solves the τ∗ objective of Equa-
tion 1 using a plug-in estimator θ̂t at each round. Due
to the computational difficulty of this, several works
proposed alternatives that iteratively updated the sam-
pling distribution in each round. This includes the
game theoretic viewpoint we utilize first proposed by
Degenne et al. (2020, 2019), and a novel modification of
Frank-Wolfe by Wang et al. (2021). Other works have
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augmented these approaches by providing elimination
schemes to reduce the set of alternative Z that need to
be considered each round. Zaki et al. (2022) proposes
a hybrid approach combining the elimination from Fiez
et al. (2019) and Degenne et al. (2020) to remove the
condition that Θ needs to be bounded. Tirinzoni and
Degenne (2022) provide an elimination approach where
they carefully exploit properties of Z. Finally, we men-
tion that the pure exploration problem has also been
considered in the generalized linear bandit (logistic)
settings in Kazerouni and Wein (2021) and Jun et al.
(2021). Future work could explore extending sampling
methods to these settings.

Oracle Based Approaches As discussed before, if
Z is a large or combinatorial set, it may be impossible
to maintain and appropriate oracles are needed. Katz-
Samuels et al. (2020) considers the linear combinatorial
setting for matroid-like classes e.g. shortest-path, top-
k, and bipartite matching. By exploiting ideas similar
to Fiez et al. (2019), they provide an algorithm utiliz-
ing the argmax oracle to achieve near optimal sample
complexity. A recent work by Li et al. (2022) reduces
optimal policy learning in agnostic contextual bandits
to pure exploration and provides a method analogous to
Agarwal et al. (2014) which only relies on cost-sensitive
classification.

Top Two Methods Our approach is perhaps most
reminiscent of the Top-Two Thompson Sampling
(TTTS) algorithm for best-arm identification in multi-
armed bandits1 of Russo (2016). Similar to Thompson
sampling Russo et al. (2018), TTTS maintains a pos-
terior distribution over the means of the arms, and at
each round samples a mean vector from the distribution
and chooses the arm with the highest sampled mean.
It then continues to sample mean vectors, until one is
returned whose highest mean is different from the previ-
ous found one. Both arms are then pulled. As discussed
in the introduction, our algorithm is similar in spirit -
we sample until finding a parameter vector whose best-
arm is different from our current estimate and then we
utilize these vectors to update our learners. Top-two
algorithms for multi-armed bandits perform well in
practice and have been extensively studied in Bayesian
and frequentist settings under various assumptions on
noise (Qin et al., 2017; Shang et al., 2020; Jourdan
et al., 2022; Qin and Russo, 2022; Lee et al., 2023).
However, they often depend on a parameter β, and
only achieve a weaker notion of β-optimality. Our work
is the first to propose and analyze an asymptotically
optimal Top-two algorithm for the general linear bandit
setting. We remark that the LinGapE algorithm (Xu

1i.e. the arms are standard basis vectors X = Z =
{e1, · · · , ed} ∈ Rd and Θ = [0, 1]d

et al., 2018) also uses a top-two approach and tends
to perform well empricially, however it is unknown
whether it is asymptotically optimal.

Online Learning and Thompson Sampling Fi-
nally we remark that the connection between Thomp-
son Sampling and online learning has been previously
explored in the early work of Li (2013). This work
focuses on the regret setting. Other works in the regret
setting have explored connections between information-
theoretic analysis of Thompson sampling and online
stochastic mirror descent algorithms (Lattimore and
Gyorgy, 2021; Zimmert and Lattimore, 2019). We hope
that our work provides a strong step in this direction
for the structured pure exploration literature.

5 EXPERIMENTS

In the following, we provide some preliminary experi-
ments to demonstrate the performance of Algorithm 1.
Note that the contribution of this paper is primarily the-
oretical - our goal is to demonstrate that asymptotically
optimal algorithms for pure exploration can rely purely
on sampling oracles. We hope that the preliminary
experiments we provide encourage further exploration
of this line of thinking and lead to algorithms that can
be as easy to apply as Thompson sampling in practice.

With this in mind, we ran the following modification of
some of the algorithms of the previous section. Firstly,
we eschewed the doubling trick and instead just ran
PEPS directly for a fixed horizon side T . Secondly,
for the max-learner we made use of AdaHedge which
is able to use an adaptive step size. Finally, we set
ηp = 1. Though our algorithm only has theoretical
guarantees over a bounded set Θ, we believe that this
is primarily a limitation of our analysis and so we
set Θ = Rd. We also remove the forced G-optimal
exploration for the same reason. For the sampling
oracle, we use rejection sampling method because of
its simplicity. We demonstrate empirically that the
computation cost is not onerous. We plot the number
of rejection steps used each round along with clock
time per iteration for our method in Appendix F. We
also see that our method is running faster than the
benchmark LinGame especially when the number of
arms is large in Table 3 in Appendix F. Further details
on our experimental setup and additional evaluations
are also in Appendix F.

The main algorithms we compare to are Thompson
Sampling (Russo et al., 2018), LinGame (Degenne et al.,
2020), and LinGapE Xu et al. (2018). LinGame is based
on the two-player game strategy with best-response
detailed in Section 2. For a fair comparison, we run
LinGame and LinGapE without stopping. The goal of
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Soare’s instance (Soare et al., 2014) Sphere TopK
δ 0.1 0.05 0.01 0.1 0.05 0.01 0.2 0.1 0.05
PEPS 1027 1606 3284 294 476 794 7326 14188 22518
LinGame 828 1500 2688 186 282 638 8838 29963 >30000
LinGapE 708 1141 2281 316 433 690 7096 20570 >30000
Oracle 766 1232 2576 243 328 473 17363 >30000 >30000
TS >5000 >5000 >5000 431 1046 2176 N/A N/A N/A

Table 1: The number of samples needed for Pθ∼πℓ
(ẑℓ = z∗) > 1− δ for various algorithms

our experiments was to demonstrate that sampling and
no-projection algorithms can be competitive against
algorithms that explicitly project. From this perspec-
tive, we did not consider algorithms that eliminate.
For a more extensive empirical comparison of existing
algorithms, please see Tirinzoni and Degenne (2022).
We also include an oracle strategy that pulls arms from
the allocation derived from the lower bound.

In summary, our algorithm achieves a similar perfor-
mance compared to LinGame and LinGapE while beat-
ing LinTS in Soare and Sphere instances. For Top-k
instance, our algorithm beats LinGame, LinTS, and
LinGapE. Note that our algorithm is the first algo-
rithm that relies purely on just sampling oracles and
our theoretical analysis is only asymptotic, the exper-
imental results are satisfactory since they show that
our algorithm works decently well in practice. Now we
detail the setting for each instance.

Soare’s Instance (Soare et al., 2014). The first
instance we consider is the standard benchmark linear
bandit instance described in Soare et al. (2014). In this
instance, the arm set X ⊂ R2 with |X | = 3. The first
two arms are x1 = e1, x2 = e2 ⊂ R2, the canonical basis
vectors, and an informative arm x3 = (cos(ω), sin(ω)).
The true parameter is θ∗ = (1, 0) ∈ Rd.

In this problem, the optimal arm is always x1. How-
ever, when the angle ω is small, it becomes challenging
to distinguish the interfering arm xd+1 from x1. An
effective sampling strategy would pull arm x2 instead
of x1 to reduce uncertainty between x1 and xd+1 ef-
fectively. However, Thompson sampling will tend to
pull x1, which will take much longer to distinguish
between the two competing arms. The experiments
were carried out on a problem instance with d = 2 and
ω = 0.1. Our algorithm achieves a similar performance
compared with LinGame and LinGapE while beats
LinTS.

Sphere. Following Tao et al. (2018) and Degenne
et al. (2020), we also consider a linear bandit instance
where the arm set X ⊂ Bd := {x ∈ Rd : ∥x∥2 = 1}
is randomly drawn from a unit sphere of dimension

Figure 1: Best-arm identification rate for PEPS,
LinGame (Degenne et al., 2020), LinGapE (Xu et al.,
2018), Thompson sampling, and fixed weight strategy
under three instances: Soare instance with ω = 0.1,
sphere instance with d = 6 and |X | = 20, and Top-k
instance with d = 12 and k = 3, with 500 repetitions
for each instance. Confidence intervals with plus or
minus two standard errors are shown.
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d. For the true parameter, we select the two arms, x
and x′, that are closest to each other, and define θ∗ =
x+0.01(x′−x), ensuring that x is the best arm. In our
experiment, we run the three algorithms on a problem
instance with d = 6 and |X | = 20. As we can see, our
algorithm still outperforms Thompson sampling and is
competitive with LinGame and LinGapE.

Top-k. The third instance we consider is the top-
k combinatorial bandit problem where the goal is to
identify the top-k means. In the linear setting, this
can be expressed as X = {e1, · · · , ed} ⊂ Rd and Z =

{ei1 + · · · + eik : i1, · · · , ik ∈
(
[d]
k

)
} ⊂ Rd, i.e. X

is the standard basis and Z is the set of indicator
vectors of subsets of size k. Then, the best arm in
this new arm set Z corresponds to the top-k arms in
X , which is the goal of top-k identification. Then we
run BAI algorithms on this new arm set. We take
θ = [1, .95, .90, · · · , 1− .05i, · · · ] ∈ Rd. As we can see,
our algorithm outperforms LinGame and LinGapE in
this instance.

We also present Table 1 describing the number of sam-
ples needed to reach a 1−δ idenfication rate for various
δ values. Note that we do not run Thompson sampling
for the Top-k instance (it is not defined when X ̸= Z
so we put N/A there), and > n in the table means
that the algorithm fails to achieve 1− δ for the n itera-
tions we run in the experiment. We can see that our
algorithm, PEPS, achieves an 1− δ best-arm identifi-
cation probability for all δ in all instances, with a rate
similar to LinGame, outperforming LinTS in all three
instances.

6 CONCLUSION

In this paper, we present the first sampling-based
projection-free algorithm for pure exploration in linear
bandits. Our algorithm only relies on a sampling oracle
and an argmax oracle, so our algorithm is tractable
in various settings. We show that our algorithm is
asymptotically optimal in the sense that the proba-
bility that we do not identify the optimal arm decays
exponentially with the optimal rate for a fixed allo-
cation. We provide experiments demonstrating that
our algorithm beats Thompson sampling and has com-
petitive performance against benchmark algorithms
such as LinGame (Degenne et al., 2020) in various
problem instances. Our current approach has various
limitations: for example, we need to assume that Θ is
bounded. However, we hope that this work opens a line
of investigation into better sampling-based algorithms
for effective exploration.
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(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
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external libraries. [Yes]
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(b) Complete proofs of all theoretical results.
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(c) Clear explanations of any assumptions. [Yes]
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produce the main experimental results (either
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A NOTATIONS AND GENERAL DESCRIPTION

In the following, we let the index t, 1 ≤ t ≤ Tℓ denote the timestep in round ℓ for any ℓ. Throughout this section
we will make use of the filtration Ft = {(xs, θs, ys)}t−1

s=1 defined in any round. The table below summarizes the
notations used in the proof.

p̄Tℓ
= 1

Tℓ

∑Tℓ

t=1 pt Average of p at the end of round ℓ

ēTℓ
= 1

Tℓ

∑Tℓ

t=1 ext
Empirical probability of arms pulled at the end of round
ℓ

πℓ ∼ N(θ̂Tℓ+1, η
−1
p V −1

Tℓ
) restricted on Θ The distribution θ is sampled from at the end of round

ℓ
∆min = minx ̸=x∗(x∗ − x)⊤θ∗ minimum gap

T2(ℓ) = maxx∈X

(
6
√

log(|X |Tℓℓ2)

λG
x

)4

a time after which each arm gets sufficiently number of
pulls

T0(ℓ) = max

{(
dβ(t,ℓ2)maxz∈Z∥z∥1

∆min

)4/3

, T2(ℓ) + 1

}
a time after which we have ẑt = z∗ with high probability

ℓ0 := min{ℓ : Tℓ ≥ T0(ℓ)
3/2} minimum round number such that we have guarantee

of convergence with high probability
L upper bound on maxx∈X ∥x∥2
B upper bound on ∥θ∗∥2
BX maxx∈X maxθ∈Θ x⊤θ
∆max maxx∈X maxθ,θ′∈Θ |x⊤(θ − θ′)|

β(t, 1/δ) = B +
√
2 log(1/δ) + d log

(
d+tL2

d

)
anytime confidence bound for

∥∥∥θ̂t − θ∗
∥∥∥2
Vt−1

C1,ℓ = ∆max + L2β(Tℓ, ℓ
2) an upper bound on maxx∈X maxt≤Tℓ

|⟨x, θ̂t⟩|
C3,ℓ = BX +∆max + L2β(Tℓ, ℓ

2) an upper bound on maxx∈X maxθ∈Θ maxt≤Tℓ
|⟨x, θ−θ̂t⟩|

Table 2: Table of constants and upper bounds used in the proof

Let Nt,x denote the number of times arm x gets pulled at time t. We then define several good events needed to
guarantee the performance of PEPS at round ℓ.

E1,ℓ =
Tℓ⋃
t=1

{∥∥∥θ̂t − θ∗
∥∥∥2
Vt−1

≤ β(t, ℓ2)

}
,

E2,ℓ =
Tℓ⋃
t=1

{
max
x∈X

|x⊤θ̂t| ≤ C1,ℓ

}
,

E3,ℓ =
Tℓ⋃

t≥T2

⋃
x∈X

Gt,x where Gt,x = {Vt ≥ t3/4A(λG)},∀t ≥ T2, x ∈ X

E4,ℓ = ∪t≥T01{ẑt = z∗}

Throughout the proof we also define for some random variable x ∈ X with x ∼ p and some function f(x),

Fx∼p[f(x)] =
∑
x∈X

pxf(x).

The rest of the supplement is organized as follows. In Section B, we present a proof of the lower bound stated in
Theorem 2.1. Section F provides more experimental results.

In Section C, we prove the main theorem (Theorem 3.4) stated in the paper by combining a saddle-point
convergence argument with a guarantee on the likelihood ratio. We tackle the latter in Section C.1, where
we provide we relate the empirical probability of finding the best-arm at the end of a round of PEPS to the



Optimal Exploration is no harder than Thompson Sampling

likelihood ratio. In Section C.2, we show the saddle point approximation and provide a guarantee on how well τ∗
is approximated after one round of PEPS. This argument depends on

• Section C.3 and C.4 which provide regret guarantees on the max and min learners.

• Section C.5 provides lemmas bounding terms related to the approximation error of θ̂Tℓ
to θ∗.

• Section C.6 formally shows that after certain rounds each arm gets enough samples.

• Section D shows that good events needed to guarantee performance of PEPS happen with high probability.

Finally, Section E provides some technical lemmas used in the proof.

B PROOF OF THEOREM 2.1

Theorem B.1. Fix Θ = Rd and any θ∗ ∈ Θ. For some λ consider a procedure that draws x1, . . . , xT ∼ λ,
then observes yt = ⟨xt, θ∗⟩ + ϵt with ϵt ∼ N (0, 1), and then computes ẑT = argmaxz∈Z⟨z, θ̂T ⟩ where θ̂T =

argminθ∈Θ

∑T
t=1 ∥yt − ⟨θ, xt⟩∥22. Then for any λ ∈ △X we have

lim sup
T→∞

− 1

T
log
(
Pθ∗,xt∼λ(ẑT ̸= z∗)

)
≤ τ∗.

Proof. Assume that {z− z∗}z∈Z span Rd. Otherwise, discard the components of X and θ∗ that are orthogonal to
the span of {z − z∗}z∈Z and reparameterize in the subspace spanned by {z − z∗}z∈Z . We can then work in this
reparameterized space, so without loss of generality we can assume {z − z∗}z∈Z span Rd.

Furthermore, assume that X spans Rd. If this were not true, then there could be a component of θ∗ that is
orthogonal to the span of X which makes z∗ not identifiable since we assumed {z − z∗}z∈Z spans Rd. That is, if
θ⊥∗ is the projection of θ∗ onto the subspace orthogonal to the span of X , then ⟨z − z∗, θ

⊥
∗ ⟩ could be arbitrarily

large but no measurement could detect θ⊥∗ .

Putting the two assumptions together, we conclude that there exists a λ ∈ △X such that A(λ) ≻ 0 (equivalently,
λmin(A(λ)) > 0) and maxz∈Z ∥z − z∗∥A(λ)−1 < ∞. Fix any λ satisfying such conditions. Define the event
Gλ = {

∑T
t=1 xtxt ⪰ A(λ)T (1− gλ,T )} for some gλ,T = o(T ) sequence to be defined next.

By applying matrix Chernoff to the random matrices { 1
T A(λ)−1xtx

⊤
t }t we have for any ϵ ∈ [0, 1) that

P
( 1

T

T∑
t=1

xtx
⊤
t ⪰ A(λ)(1− ϵ)

)
≥ 1− d exp(−ϵ2/2R)

where R = maxt λmax(
1
T A(λ)−1xtx

⊤
t ). Observe that

λmax(
1

T
A(λ)−1xtx

⊤
t ) ≤ ∥ 1

T
A(λ)−1xtx

⊤
t ∥2

≤ L2/λmin(A(λ))T.

So taking ϵ = gλ,T =
√

2L2λmin(A(λ))−1 log(dT )
T we have that P(Gλ) ≥ 1− 1/T whenever gλ,T < 1 which holds for

sufficiently large T .
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Now, for any {xt}Tt=1 that span Rd (will be guaranteed by event Gλ) we have that

θ̂T = argmin
θ∈Θ

T∑
t=1

∥yt − ⟨θ, xt⟩∥22

=
( T∑

t=1

xtx
⊤
t

)−1 T∑
t=1

xtyt

= θ∗ +
( T∑

t=1

xtx
⊤
t

)−1 T∑
t=1

xtϵt

= θ∗ +
( T∑

t=1

xtx
⊤
t

)−1/2

η

where the last line holds with inequality in distribution for η ∼ N (0, Id). We conclude that for any z that
⟨θ̂T − θ∗, z − z∗⟩ is a zero-mean Gaussian random variable with variance

σ2
z,λ :=E[⟨θ̂T − θ∗, z − z∗⟩2]

=E[⟨
( T∑

t=1

xtx
⊤
t

)−1/2

η, z − z∗⟩2]

=(z − z∗)
⊤
( T∑

t=1

xtx
⊤
t

)−1

(z − z∗).

Thus, on Gλ we have that σ2
z,λ ≤ 1

T (1−gλ,T )∥z − z∗∥2A(λ)−1 .

Consequently,

Pθ∗(ẑT ̸= z∗) = Pθ∗(
⋃

z∈Z\z∗

{ẑT = z, z ̸= z∗})

≥ max
z∈Z\z∗

Pθ∗(ẑT = z, z ̸= z∗)

= max
z∈Z\z∗

Pθ∗(⟨θ̂T , z − z∗⟩ ≥ 0)

= max
z∈Z\z∗

Pθ∗(⟨θ̂T − θ∗, z − z∗⟩ ≥ ⟨θ∗, z − z∗⟩)

≥ max
z∈Z\z∗

E{xt}∼λEθ∗

[
1{Gλ}1

{
⟨θ̂T − θ∗, z − z∗⟩ ≥ ⟨θ∗, z − z∗⟩

}∣∣{xt}
]]

= max
z∈Z\z∗

P{xt}∼λ(Gλ)Pη1∼N (0,1)

(
η1σz,λ ≥ ⟨θ∗, z − z∗⟩

)
.

Using the fact that

Pη1∼N (0,1)

(
η1 ≥ s) =

∫ ∞

x=s

1√
2π

e−x2/2dx > (
1

s
− 1

s3
)

1√
2π

e−s2/2

for positive s, we conclude that

Pθ∗(ẑT ̸= z∗)

≥ max
z∈Z\z∗

P{xt}∼λ(Gλ)Pη1∼N (0,1)

(
η1σz,λ ≥ ⟨θ∗, z − z∗⟩

)
≥ 1{gλ,T < 1}(1− 1

T
) max
z∈Z\z∗

(
σz,λ

⟨θ∗, z − z∗⟩
−

σ3
z,λ

⟨θ∗, z − z∗⟩3
)

1√
2π

e
− ⟨θ∗,z−z∗⟩2

σ2
z,λ

/2

≥ max
z∈Z\z∗

1{gλ,T < 1, ⟨θ∗,z−z∗⟩2
σ2
z,λ

≥ 2}(1− 1

T
)

σz,λ

⟨θ∗, z − z∗⟩
1√
8π

e
− ⟨θ∗,z−z∗⟩2

σ2
z,λ

/2

≥ max
z∈Z\z∗

1{gλ,T < 1,
T (1−gλ,T )⟨θ∗,z−z∗⟩2

∥z−z∗∥2
A(λ)−1

≥ 2}(1− 1

T
)

∥z−z∗∥2
A(λ)−1

T (1−gλ,T )⟨θ∗,z−z∗⟩2
1√
8π

e
−

T (1−gλ,T )⟨θ∗,z−z∗⟩2

∥z−z∗∥2
A(λ)−1

/2

.
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Thus, because gλ,T = o(T ) and
∥z−z∗∥2

A(λ)−1

⟨θ∗,z−z∗⟩2 < ∞ we have that

lim sup
T→∞

− 1

T
log
(
Pθ∗,xt∼λ(ẑT ̸= z∗)

)
≤ ⟨θ∗, z − z∗⟩2

∥z − z∗∥2A(λ)−1

/2

= min
θ∈Θc

z∗

∥θ − θ∗∥2A(λ)/2

≤ max
λ∈△X

min
θ∈Θc

z∗

∥θ − θ∗∥2A(λ)/2 = τ∗

where the second line uses the fact that Θ = Rd.

C PROOF OF THEOREM 3.4

Theorem C.1. Under Algorithm 1 and 2 and Assumption 1, we have the sampling distribution satisfies with
probability 1,

lim
ℓ→∞

− 1

Tℓ
log πℓ(Θ

c
z∗) = τ∗.

Proof. By Theorem C.2, we have that for ℓ ≥ ℓ0, P(Ec
ℓ ) ≤ 5

ℓ2 . Also, since Tℓ = 2ℓ, and T0(ℓ) only scales
logarithmically in ℓ, so ℓ0 < ∞. Therefore,

∑∞
ℓ=1 P(Eℓ) < ∞. By Borel-Cantelli, we have

P
(
lim sup
n→∞

Ec
ℓ

)
= 0.

Note that lim supℓ→∞ Eℓ =
⋂∞

ℓ=1

⋃∞
k=ℓ Ek, this implies that the probability that infinitely many of them occur is

zero, which means that Eℓ eventually holds for sufficiently large ℓ with probability 1. However, under Eℓ we have

πℓ(Θ
c
z∗) =

∫
Θc

z∗
πℓ(θ)dθ∫

Θ
πℓ(θ)dθ

=

∫
Θc

z∗
πℓ(θ)/πℓ(θ

∗)dθ∫
Θ
πℓ(θ)/πℓ(θ∗)dθ

.
=

∫
Θc

z∗
e
−Tℓ

2 ∥θ−θ∗∥2
A(ēTℓ

)dθ∫
Θ
e
−Tℓ

2 ∥θ−θ∗∥2
A(ēTℓ

)dθ

(by Eℓ)

.
= e

−Tℓ inf
θ∈Θc

z∗

1
2∥θ−θ∗∥2

A(ēTℓ
)

. (Lemma E.2 and inf
θ∈Θ

∥θ − θ∗∥2A(λ) = 0 for any λ)

This implies that there exists some ϵ′ℓ → 0 such that∣∣∣∣− 1

Tℓ
log πℓ(Θ

c
z∗)− inf

θ∈Θc
z∗

1

2
∥θ − θ∗∥2A(ēTℓ

)

∣∣∣∣ ≤ ϵ′ℓ.

Under E6,ℓ, there exists some sequence ϵℓ → 0 such that

τ∗ − inf
θ∈Θc

z∗

1

2
∥θ − θ∗∥2A(ēTℓ

) ≤ ϵℓ.

Since
τ∗ = max

λ∈△X
inf

θ∈Θc
z∗

1

2
∥θ − θ∗∥2A(λ) ≥ inf

θ∈Θc
z∗

1

2
∥θ − θ∗∥2A(ēTℓ

) ,

combining the above three displays, we have under Eℓ,∣∣∣∣− 1

Tℓ
log πℓ(Θ

c
z∗)− τ∗

∣∣∣∣ ≤ ϵℓ + ϵ′ℓ,

where ϵℓ + ϵ′ℓ → 0 as ℓ → ∞. Combining this with the fact that P (lim supℓ→∞ Eℓ) = 0, we have with probability
1,

lim
ℓ→∞

− 1

Tℓ
log πℓ(Θ

c
z∗) = τ∗.
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Theorem C.2. In round ℓ for ℓ ≥ ℓ0, define

E5,ℓ =
{
sup
θ∈Θ

1

Tℓ

∣∣∣∣log πTℓ
(θ∗)

πTℓ
(θ)

− Tℓ

2
∥θ − θ∗∥2A(ēTℓ

)

∣∣∣∣ ≤ κℓ

}
E6,ℓ =

{∣∣∣∣max
λ∈△X

inf
θ∈Θc

z∗

1

2
∥θ − θ∗∥2A(λ) − inf

θ∈Θc
z∗

1

2
∥θ − θ∗∥2A(ēTℓ

)

∣∣∣∣ ≤ ϵℓ

}
with ϵℓ → 0 and κℓ → 0 as ℓ → ∞. Define Eℓ = E5,ℓ ∩ E6,ℓ. Then P(Eℓ) ≥ 1− 5/ℓ2.

Proof. We first summarize the guarantees for the probabilities of events below. For ℓ ≥ ℓ0, we have

• from Lemma C.4, we have that P(E6,ℓ|E1,ℓ ∩ E2,ℓ ∩ E3,ℓ ∩ E4,ℓ) ≥ 1− 1/ℓ2 with choice of ϵℓ = O(T
−1/4
ℓ );

• from Lemma D.1, P(E1,ℓ) ≥ 1− 1/ℓ2;

• by Lemma D.2, E2,ℓ is true under E3,ℓ ∩ E1,ℓ;

• by Lemma C.16, P(E4,ℓ|E1,ℓ) ≥ 1− 1/ℓ2;

• by Lemma C.3 with κℓ = O(T
−1/2
ℓ ), P(E5,ℓ) ≥ 1− 1/ℓ2;

• by Lemma C.14, P(E3,ℓ) ≥ 1− 1/ℓ2.

Note that Eℓ ⊃ E1,ℓ ∩ E2,ℓ ∩ E3,ℓ ∩ E4,ℓ ∩ E5,ℓ ∩ E6,ℓ, and so

Ec
ℓ ⊂ Ec

1,ℓ ∪ Ec
2,ℓ ∪ Ec

3,ℓ ∪ Ec
4,ℓ ∪ Ec

5,ℓ ∪ Ec
6,ℓ

= Ec
1,ℓ ∪ (Ec

2,ℓ ∩ E1,ℓ ∩ E3,ℓ) ∪ Ec
3,ℓ ∪ (Ec

4,ℓ ∩ E1,ℓ) ∪ Ec
5,ℓ ∪ (Ec

6,ℓ ∩ E1,ℓ ∩ E2,ℓ ∩ E3,ℓ ∩ E4,ℓ).

Therefore, for ℓ ≥ ℓ0,

P(Ec
ℓ )

≤ P(Ec
1,ℓ) + P(Ec

2,ℓ ∩ E1,ℓ ∩ E3,ℓ) + P(Ec
3,ℓ) + P(Ec

4,ℓ ∩ E1,ℓ) + P(Ec
5,ℓ) + P(Ec

6,ℓ ∩ E1,ℓ ∩ E2,ℓ ∩ E3,ℓ ∩ E4,ℓ)
≤ P(Ec

1,ℓ) + P(Ec
2,ℓ|E1,ℓ ∩ E3,ℓ)P(E1,ℓ ∩ E3,ℓ) + P(Ec

3,ℓ) + P(Ec
4,ℓ|E1,ℓ)P(E1,ℓ)

+ P(Ec
5,ℓ) + P(Ec

6,ℓ|E1,ℓ ∩ E2,ℓ ∩ E3,ℓ ∩ E4,ℓ)P(E1,ℓ ∩ E2,ℓ ∩ E3,ℓ ∩ E4,ℓ)
≤ P(Ec

1,ℓ) + P(Ec
2,ℓ|E1,ℓ ∩ E3,ℓ) + P(Ec

3,ℓ) + P(Ec
4,ℓ|E1,ℓ) + P(Ec

5,ℓ) + P(Ec
6,ℓ|E1,ℓ ∩ E2,ℓ ∩ E3,ℓ ∩ E4,ℓ)

≤ 5

ℓ2
.

Therefore, P(Eℓ) ≥ 1− 5
ℓ2 .

C.1 Guarantees on the Likelihood Ratio

Lemma C.3. We have with probability at least 1− 1/ℓ2,

sup
θ∈Θ

1

Tℓ

∣∣∣∣log πℓ(θ)

πℓ(θ∗)
− Tℓ

2
∥θ − θ∗∥2A(ēTℓ

)

∣∣∣∣ ≤ ∆max

√√√√2d log
(

(d+TℓL2)ℓ2

d

)
Tℓ

.

Which implies that πℓ(θ)
πℓ(θ∗)

.
= e

−Tℓ∥θ−θ∗∥2
A(ēTℓ

) .

Proof. Throughout the following we set T := Tℓ. Recall that πℓ(θ) = N (θ̂T+1, V
−1
T ) restricted on Θ, which means

that for each θ ∈ Θ,

πℓ(θ) =

exp

(
− 1

2

∥∥∥θ − θ̂T+1

∥∥∥2
VT

)
∫
Θ
exp

(
− 1

2

∥∥∥θ′ − θ̂T+1

∥∥∥2
VT

)
dθ′

.
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Since the denominator is independent of θ, this means that

πℓ(θ)

πℓ(θ∗)
= exp

(
−1

2

(∥∥∥θ − θ̂T+1

∥∥∥2
VT

−
∥∥∥θ∗ − θ̂T+1

∥∥∥2
VT

))
where ∥∥∥θ∗ − θ̂T+1

∥∥∥2
VT

−
∥∥∥θ − θ̂T+1

∥∥∥2
VT

= ∥θ∗∥2VT
− 2(θ∗)⊤VT θ̂ +

∥∥∥θ̂T+1

∥∥∥2
VT

−
∥∥∥θ̂T+1

∥∥∥2
VT

+ 2(θ̂T+1)
⊤VT θ − ∥θ∥2VT

= ∥θ∗∥2VT
− 2 (θ∗)

⊤
VT

(
θ∗ + V −1

T

T∑
s=1

ϵsxs

)
+ 2θ⊤VT

(
θ∗ + V −1

T

T∑
s=1

ϵsxs

)
− ∥θ∥2VT

= ∥θ∗∥2VT
− 2 ∥θ∗∥2VT

− 2(θ∗)⊤

(
T∑

s=1

ϵsxs

)
+ 2(θ∗)⊤VT θ + 2θ⊤

(
T∑

s=1

ϵsxs

)
− ∥θ∥2VT

= −∥θ∗ − θ∥2VT
− 2

〈
θ∗ − θ,

T∑
s=1

ϵsxs

〉

= −∥θ∗ − θ∥2VT
− 2

T∑
s=1

ϵsx
⊤
s (θ

∗ − θ).

Note that
T∑

s=1

ϵsx
⊤
s (θ

∗ − θ) =

T∑
s=1

ϵsx
⊤
s V

−1/2
T V

1/2
T (θ∗ − θ)

≤

∥∥∥∥∥
T∑

s=1

ϵsxs

∥∥∥∥∥
V −1
T

∥θ∗ − θ∥VT
.

Note that

∥θ∗ − θ∥VT
=
√
∥θ∗ − θ∥2VT

=

√√√√ T∑
t=1

(x⊤
t (θ

∗ − θ))2 ≤ ∆max

√
T ,

and since E[ϵsxs|Fs−1] = 0 for all s, ϵsxs is a vector-valued martingale. Then by Theorem 1 of Abbasi-Yadkori
et al. (2011), with probability greater than 1− δ,∥∥∥∥∥

T∑
s=1

ϵsxs

∥∥∥∥∥
V −1
T

≤

√
2d log

(
d+ TL2

dδ

)
so with probability 1− δ, ∥∥∥∥∥

T∑
s=1

ϵsxs

∥∥∥∥∥
V −1
T

∥θ∗ − θ∥VT
≤ ∆max

√
T

√
2d log

(
d+ TL2

dδ

)
.

so for any θ ∈ Θ,∣∣∣∣(∥∥∥θ − θ̂T+1

∥∥∥2
VT

−
∥∥∥θ∗ − θ̂T+1

∥∥∥2
VT

)
− ∥θ∗ − θ∥2VT

∣∣∣∣ ≤ ∆max

√
T

√
2d log

(
d+ TL2

dδ

)
,

which means that ∣∣∣∣log πℓ(θ
∗)

πℓ(θ)
− T

2
∥θ − θ∗∥2A(ēT )

∣∣∣∣ ≤ ∆max

√
T

√
2d log

(
d+ TL2

dδ

)
.

Taking a supremum over θ ∈ Θ on both sides and taking δ = 1
ℓ2 gives the result.
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C.2 Guarantee on Saddle-Point Convergence of PEPS in Round ℓ

In this section, we present a key result to this proof, which shows that as round ℓ gets large, the distribution from
PEPS achieves the optimal allocation deduced by τ∗. Fix a round ℓ. At iteration t, let λ̃t denote the sampling
distribution of xt . The result is stated in the following lemma. In the proof, we decompose the difference into
several terms and argue about each piece in subsequent sections.

Lemma C.4 (Guarantee for PEPS). On E1,ℓ ∩ E2,ℓ ∩ E3,ℓ ∩ E4,ℓ, for ℓ > ℓ0 then at the end of epoch ℓ, we have
with probability at least 1− 1

ℓ2 ,

τ∗ − inf
θ∈Θc

z∗

[
1

2
∥θ∗ − θ∥2A(ēTℓ

)

]
≤ ϵℓ

for a sequence ϵℓ → 0 as ℓ → ∞.

Proof. Recall the definition of p̄Tℓ
and ēTℓ

in Section A. We first show that there exists some ϵℓ that goes to zero
as ℓ → ∞ such that under E1,ℓ ∩ E2,ℓ ∩ E3,ℓ ∩ E4,ℓ, for ℓ > ℓ0,

max
λ∈△X

Fθ∼p̄Tℓ

[
1

2
∥θ∗ − θ∥2A(λ)

]
− min

p∈P(Θc
z∗ )

Fθ∼p

[
1

2
∥θ∗ − θ∥2A(ēTℓ

)

]
≤ ϵℓ.

We have

max
λ∈△X

Fθ∼p̄Tℓ

[
∥θ∗ − θ∥2A(λ)

]
− min

p∈P(Θc
z∗ )

Fθ∼p

[
∥θ∗ − θ∥2A(ēTℓ

)

]
= max

λ∈△X
Fθ∼p̄Tℓ

[
∥θ∗ − θ∥2A(λ)

]
− inf

θ∈Θc
z∗

∥θ∗ − θ∥2A(ēTℓ
)

= max
λ∈△X

Fθ∼p̄Tℓ

[
∥θ∗ − θ∥2A(λ)

]
− 1

Tℓ
inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

+ C ′′
Tℓ

= max
λ∈△X

Fθ∼p̄Tℓ

[
∥θ∗ − θ∥2A(λ)

]
− max

λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[∥∥∥θ̂t − θ
∥∥∥2
A(λ)

]
(S1. C ′

Tℓ
)

+ max
λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[∥∥∥θ̂t − θ
∥∥∥2
A(λ)

]
− 1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
(S2. regret for max learner)

+
1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− 1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
(S3.)

+
1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− 1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

]
(S4.)

+
1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

]
− 1

Tℓ
inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

(S5. regret for the min learner)

+ C ′′
Tℓ
,

where we define

C ′
Tℓ

:= max
λ∈△X

Fθ∼p̄Tℓ

[
∥θ∗ − θ∥2A(λ)

]
− max

λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[∥∥∥θ̂t − θ
∥∥∥2
A(λ)

]
C ′′

Tℓ
=

1

Tℓ
inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

− inf
θ∈Θc

z∗

∥θ∗ − θ∥2A(ēTℓ
) .

We now handle each term separately by referring to the lemma which provides a guarantee.
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• (S1) By Lemma C.10, under E1,ℓ ∩ E2,ℓ, for Tℓ ≥ T2(ℓ),

max
λ∈△X

Fθ∼p̄Tℓ

[
∥θ∗ − θ∥2A(λ)

]
− max

λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[∥∥∥θ̂t − θ
∥∥∥2
A(λ)

]
≤ T2(ℓ)L

2β(T2(ℓ), ℓ
2)

Tℓ
+ 4dβ(Tℓ, ℓ

2)T
−3/4
ℓ ,

so for Tℓ ≥ T2(ℓ)
3/2, we have the above is upper bounded by

O(L2β(T2(ℓ), ℓ
2)T

−1/2
ℓ + 4dβ(Tℓ, ℓ

2)T
−3/4
ℓ );

• (S2) By Lemma C.5, we have with probability 1− 1/(3ℓ2) conditioned on E2,ℓ

max
λ∈△X

Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

−
Tℓ∑
t=1

Fθ∼pt,x∼λ̃t

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

≤ 2C2
3,ℓ

√
log |X |Tℓ +

√
2C2

3,ℓTℓ|X | log(Tℓℓ2) + 2C2
3,ℓ

Tℓ∑
t=1

γt,

so with a choice of γt = t−α with α = 1/4,

max
λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

− 1

Tℓ

Tℓ∑
t=1

Fθ∼pt,x∼λ̃t

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

≤ C2
3,ℓ

√
log |X |T−1/2

ℓ +
√
2C2

3,ℓ log ℓ
2T

−1/2
ℓ +

√
2C2

3,ℓ|X | log(3Tℓ2)T−1/2
ℓ + 2C2

3,ℓT
−1/4
ℓ

• (S3) By Lemma C.12, we have conditioned on E4,ℓ ∩ E1,ℓ for ℓ ≥ ℓ0,

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− 1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
≤

2C2
3,ℓT0(ℓ)

Tℓ

for Tℓ ≥ T0(ℓ)
3/2, we have the above is bounded by 2C2

3,ℓT
−1/2
ℓ ;

• (S4) By Lemma C.8, we have with probability 1− 1/(3ℓ2), conditioned on E2,ℓ,

1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− 1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

]
≤

√
2C1,ℓ log ℓ2

Tℓ

• (S5) By Lemma C.7, we have with probability 1− 1/(3ℓ2), conditioned on E1,ℓ ∩ E2,ℓ,

1

Tℓ

[
Tℓ∑
t=1

Eθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

]
− inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

]

≤

√
C2

3,ℓd log(TℓC1,ℓ)

Tℓ
+ C3,ℓ

√
2dβ(Tℓ, ℓ2)

Tℓ
log

(
d+ TℓL2

d

)
+ C3,ℓ

√
2 log(ℓ2)

Tℓ
.

• (C ′′
Tℓ

) By Lemma C.11, conditioned on E1,ℓ ∩ E2,ℓ, we have

∣∣∣∣ 1Tℓ
inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

− 1

Tℓ
inf

θ∈Θc
z∗

∥θ∗ − θ∥2VTℓ

∣∣∣∣ ≤ (C3,ℓ +∆max)

√
β(Tℓ, ℓ2)

Tℓ
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Add them altogether, we get that with probability greater than 1− 1/ℓ2 on E1,ℓ ∩ E2,ℓ ∩ E4,ℓ

max
λ∈△X

Eθ∼p̄Tℓ

[
∥θ∗ − θ∥2A(λ)

]
− min

p∈P(Θc
z∗ )

Eθ∼p

[
∥θ∗ − θ∥2A(λ̄Tℓ

)

]
≤ L2β(T2(ℓ), ℓ

2)T
−1/2
ℓ + 4dβ(Tℓ, ℓ

2)T
−3/4
ℓ

+ C2
3,ℓ

√
log |X |T−1/2

ℓ +
√
2C2

3,ℓ log ℓ
2T

−1/2
ℓ +

√
2C2

3,ℓ|X | log(3Tℓ2)T−1/2
ℓ + C2

3,ℓT
−1/4
ℓ

+ 2C2
3,ℓT

−1/2
ℓ +

√
2C1,ℓ log ℓ2

Tℓ

+

√
C2

3,ℓd log(TℓC1,ℓ)

Tℓ
+ C3,ℓ

√
2dβ(Tℓ, ℓ2)

Tℓ
log

(
d+ TℓL2

d

)
+ C3,ℓ

√
2 log(ℓ2)

Tℓ

+ (C3,ℓ +∆max)

√
β(Tℓ, ℓ2)

Tℓ
.

Note that each term approaches zero as Tℓ → ∞. By the choice of Tℓ = 2ℓ in the algorithm, this implies that
there exists some ϵℓ > 0 with ϵℓ → 0 as ℓ → ∞ such that for each ℓ,

max
λ∈△X

Fθ∼p̄Tℓ

[
∥θ∗ − θ∥2A(λ)

]
− min

p∈P(Θc
z∗ )

Fθ∼p

[
∥θ∗ − θ∥2A(ēTℓ

)

]
≤ ϵℓ. (2)

Now we show how this result leads to the saddle point convergence. Note that

max
λ∈△X

Fθ∼p̄Tℓ

[
∥θ∗ − θ∥2A(λ)

]
≥ max

λ∈△X
min

p∈P(Θc
z∗ )

Fθ∼p[∥θ∗ − θ∥2A(λ)] ≥ min
p∈P(Θc

z∗ )
Fθ∼p

[
∥θ∗ − θ∥2A(ēTℓ

)

]
,

so using Equation 2 we have

max
λ∈△X

min
p∈P(Θc

z∗ )
Fθ∼p[∥θ∗ − θ∥2A(λ)]− min

p∈P(Θc
z∗ )

Fθ∼p

[
∥θ∗ − θ∥2A(ēTℓ

)

]
≤ ϵℓ.

However, note that
min

p∈P(Θc
z∗ )

Fθ∼p

[
∥θ∗ − θ∥2A(ēTℓ

)

]
= inf

θ∈Θc
z∗

∥θ∗ − θ∥2A(ēTℓ
)

and maxλ∈△X minp∈P(Θc
z∗ )

Fθ∼p[∥θ∗ − θ∥2A(λ)] = τ∗, we have shown that

τ∗ − inf
θ∈Θc

z∗

∥θ∗ − θ∥2A(ēTℓ
) < ϵℓ.

C.3 Guarantees on the max-learner

In this section, we show that the max-learner gets sublinear regret as ℓ gets large. The key idea is that we mix
a diminishing amount of G-optimal distribution each round, and we show that by its diminishing nature, the
mixing of G-optimal distribution keeps the regret sublinear.

Lemma C.5. Under Eℓ,2, with the choice of ηλ =

√
log |X |
C4

3,ℓT
, we have with probability greater than 1− 1/ℓ2,

max
λ∈△X

Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

−
Tℓ∑
t=1

Fθ∼pt,x∼λ̃t

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

≤ 2C2
3,ℓ

√
log |X |Tℓ +

√
2C2

3,ℓTℓ|X | log(Tℓℓ2) + 2C2
3,ℓ

Tℓ∑
t=1

γt.
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Proof. We first show that the statement is true for some fixed λ, i.e. we would like to show that with probability
1− δ,

Tℓ∑
t=1

Fθ∼pt,x∼λ

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]
−

Tℓ∑
t=1

Fθ∼pt,x∼λ̃t

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]

≤ C2
3,ℓ

√
log |X |Tℓ +

√
2C2

3,ℓTℓ log(1/δ) + 2C2
3,ℓ

Tℓ∑
t=1

γt.

Let Ft−1 be the history up to time t. Then for any fixed λ,

Eθt [Fx∼λ[∥θ̂t − θt∥2xx⊤ ]|Ft−1] = Fθ∼pt,x∼λ[∥θ̂t − θ∥2xx⊤ ].

Thus, setting

Xt = Fx∼λ̃t

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]
− Fx∼λ̃t,θ∼pt

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

−
[
Fx∼λ

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]
− Fx∼λ,θ∼pt

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]

we see that the Xt form a Martingale difference sequence, i.e. E[Xt|Ft−1] = 0. Note that for any θ ∈ Θ,

Fx∼λt

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]
= Fx∼λ̃t

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]
+ γt

(
Fx∼λt

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]
− Fx∼λG

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

])
,

Since under E2,ℓ, we have for any x ∈ X , θ ∈ Θ, any t ≤ Tℓ,
∥∥∥θ − θ̂t

∥∥∥2
xx⊤

≤ C2
3,ℓ, we have for any θ ∈ Θ,

Fx∼λt

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]
≤ Fx∼λ̃t

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]
+ 2C2

3,ℓγt.

Then we have
Tℓ∑
t=1

Fθ∼pt,x∼λ

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]
−

Tℓ∑
t=1

Fθ∼pt,x∼λ̃t

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]

=

Tℓ∑
t=1

Fx∼λ

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]
−

Tℓ∑
t=1

Fx∼λ̃t

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]

−

[
Tℓ∑
t=1

Fx∼λ

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]
−

Tℓ∑
t=1

Fx∼λ̃t

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]

−

[
Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

−
Tℓ∑
t=1

Fx∼λ̃t,θ∼pt

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]]

≤
Tℓ∑
t=1

Fx∼λ

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]
−

Tℓ∑
t=1

Fx∼λt

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]

−

[
Tℓ∑
t=1

Fx∼λ

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]
−

Tℓ∑
t=1

Fx∼λ̃t

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]

−

[
Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

−
Tℓ∑
t=1

Fx∼λ̃t,θ∼pt

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]]
+ 2C2

3,ℓ

Tℓ∑
t=1

γt (3)
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Note that
Tℓ∑
t=1

Fx∼λ

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]
−

Tℓ∑
t=1

Fx∼λ̃t

[∥∥∥θt − θ̂t

∥∥∥2
xx⊤

]

−

[
Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

−
Tℓ∑
t=1

Fx∼λ̃t,θ∼pt

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]
=

Tℓ∑
t=1

Xt.

We know that under E2,ℓ, we have for any x ∈ X , θ ∈ Θ, any t ≤ Tℓ,
∥∥∥θ − θ̂t

∥∥∥2
xx⊤

≤ C2
3,ℓ. Then, for any t,

|Xt| ≤ 4C2
3,ℓ, so by Azuma-Hoeffding, with probability 1− δ,

∑Tℓ

t=1 Xt ≤
√

8C2
3,ℓTℓ log(1/δ). Plugging the above

and Lemma C.6 in Equation 3 gives us

Tℓ∑
t=1

Fθ∼pt,x∼λ

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]
−

Tℓ∑
t=1

Fθ∼pt,x∼λ̃t

[∥∥∥θ − θ̂t

∥∥∥2
xx⊤

]

≤ C2
3,ℓ

√
log |X |Tℓ +

√
2C2

3,ℓTℓ log(1/δ) + 2C2
3,ℓ

Tℓ∑
t=1

γt.

This result holds for any λ, but in particular we want it to hold for the λ which maximizes the reward, so we
perform a covering argument on λ.

We take an ϵ-cover Sϵ of △X in ∥·∥1. Then, we know that for any λ ∈ △X , there is some λ′ ∈ Sϵ such that

∥λ− λ′∥1 ≤ ϵ. Let wt(λ) := Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

. Then, note that for any t and λ1, λ2 ∈ △X ,

w(λ1)− w(λ2) = Fθ∼pt,x∼λ1

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

− Fθ∼pt,x∼λ2

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

= Fθ∼pt

∑
x

([λ1]x − [λ2]x)(x
⊤(θ − θ̂t))

2

≤ C2
3,ℓFθ∼pt

∑
x

([λ1]x − [λ2]x)

= C2
3,ℓ ∥λ1 − λ2∥1 ,

so wt(λ) is C2
3,ℓ-Lipschitz for any t. Then, assuming that λ̄ ∈ △X satisfies that

Tℓ∑
t=1

Fθ∼pt,x∼λ̄

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

= max
λ∈△X

Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

,

we can find some λ0 ∈ Sϵ such that
∥∥λ0 − λ̄

∥∥ ≤ ϵ, so by Lipschitzness of wt for any t, we have

max
λ∈△X

Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

−max
λ∈Sϵ

Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

=

Tℓ∑
t=1

Fθ∼pt,x∼λ̄

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

−max
λ∈Sϵ

Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

≤
Tℓ∑
t=1

Fθ∼pt,x∼λ̄

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

−
Tℓ∑
t=1

Fθ∼pt,x∼λ0

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

≤ C2
3,ℓTℓϵ.

Also, let K = |X |. Denote BK
1 as the l1 ball with dimension K. We know that for ϵ ≤ 1, N(BK

1 , ∥·∥1 , ϵ) ≤
(
3
ϵ

)K .
Since △X ⊂ BK

1 , we have the covering number

N(△X , ∥·∥1 , ϵ) ≤ N(Bk
1 , ∥·∥1 , ϵ) ≤

(
3

ϵ

)K

.
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Therefore, |Sϵ| ≤
(
3
ϵ

)K . By union bounding over all λ ∈ Sϵ, we have with probability at least 1− δ,

max
λ∈Sϵ

Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

−
Tℓ∑
t=1

Fθ∼pt,x∼λt

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

≤ C2
3,ℓ

√
log |X |Tℓ +

√
2C2

3,ℓTℓ log(1/(δ|Sϵ|)) + 2C2
3,ℓ

Tℓ∑
t=1

γt

≤ C2
3,ℓ

√
log |X |Tℓ +

√
2C2

3,ℓTℓ|X | log(3/(ϵδ)) + 2C2
3,ℓ

Tℓ∑
t=1

γt.

Combining two displays gives us

max
λ∈△X

Tℓ∑
t=1

Fθ∼pt,x∼λ

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

−
Tℓ∑
t=1

Fθ∼pt,x∼λt

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

≤ C2
3,ℓ

√
log |X |Tℓ +

√
2C2

3,ℓTℓ|X | log(3/(δϵ)) + 2C2
3,ℓ

Tℓ∑
t=1

γt + C2
3,ℓTℓϵ.

Taking ϵ = 1/
√
Tℓ and δ = 1/ℓ2 gives us the result.

Lemma C.6. Under E2,ℓ, with the choice of η =

√
log |X |
C4

3,ℓTℓ
, we have for any λ,

Tℓ∑
t=1

∥∥∥θt − θ̂t

∥∥∥2
A(λ)

−
Tℓ∑
t=1

∥∥∥θt − θ̂t

∥∥∥2
A(λt)

≤ C2
3,ℓ

√
log |X |Tℓ.

Proof. Let ℓt(λ) = −
∥∥∥θt − θ̂t

∥∥∥2
A(λ)

. Then we have

[∇λℓt(λt)]x = −
∥∥∥θt − θ̂t

∥∥∥2
xx⊤

= g̃t,x.

Since

max
t∈[Tℓ]

∥g̃t∥∞ = max
t∈[Tℓ],x∈X

∥∥∥θt − θ̂t

∥∥∥2
xx⊤

≤ C2
3,ℓ,

by the guarantee of exponentiated gradient algorithm Orabona (2019), we have that for any λ,

Tℓ∑
t=1

[ℓt(λt)− ℓt(λ)] ≤
log |X |

η
+

ηTℓ

2
C4

3,ℓ.

Plugging in the definition of ℓt(λ), we have

Tℓ∑
t=1

∥∥∥θt − θ̂t

∥∥∥2
A(λ)

−
Tℓ∑
t=1

∥∥∥θt − θ̂t

∥∥∥2
A(λt)

≤ log |X |
η

+
ηTℓ

2
C4

3,ℓ.

Choosing η =

√
log |X |
C4

3,ℓTℓ
, we have

Tℓ∑
t=1

∥∥∥θt − θ̂t

∥∥∥2
A(λ)

−
Tℓ∑
t=1

∥∥∥θt − θ̂t

∥∥∥2
A(λt)

≤ C2
3,ℓ

√
log |X |Tℓ.
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C.4 Guarantees on the min-learner

In this section, we show that the min-learner gets sublinear regret as ℓ gets large. For the min learner, we see that
the update for the sampling distribution is very similar to the continuous exponential weights updates Bubeck
(2011). The difference between our setting and continuous exponential weights is that the space Θc

ẑt
is changing

each time, so we potentially have a changing action space each time. To overcome this challenge, we first analyze
the regret guarantee when we assume access to the true alternative in Lemma C.7, and use Lemma C.16 to argue
that the estimate Θc

ẑt
is good enough. We state the following guarantee for the min-learner.

Lemma C.7. On event Eℓ,1 ∩ Eℓ,2, with probability 1− 1/ℓ2,

1

Tℓ

[
Tℓ∑
t=1

Eθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

]
− inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

]

≤

√
C2

3,ℓd log(TℓC1,ℓ)

Tℓ
+ C3,ℓ

√
2dβ(Tℓ, ℓ2)

Tℓ
log

(
d+ TℓL2

d

)
+ C3,ℓ

√
2 log(ℓ2)

Tℓ
.

Proof. We begin by a bound that will be useful in our exponential weights analogy. At iteration t, we apply
Hoeffding’s lemma with the following upper bound given Eℓ,1 ∩ Eℓ,2 and Lemma E.1,

Eθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

+
∥∥∥θ − θ̂t+1

∥∥∥2
Vt

−
∥∥∥θ − θ̂t

∥∥∥2
Vt

]
≤ C2

3,ℓ + Eθ∼p̃t

[∥∥∥θ − θ̂t+1

∥∥∥2
Vt−1

−
∥∥∥θ − θ̂t

∥∥∥2
Vt−1

]
(Eℓ,2)

≤ C2
3,ℓ + 2C3,ℓ(C1,ℓ + 1) (Lemma E.1)

≤ 4C2
3,ℓ.

At round t > 1, we define Wt =
∫
θ∈Θc

z∗
exp

(
−ηp

∥∥∥θ − θ̂t

∥∥∥2
Vt−1

)
dθ and W1 being a uniform distribution on Θc

z∗ .

Then

log
Wt+1

Wt

= log

∫
θ∈Θc

z∗
exp

(
−ηp

∥∥∥θ − θ̂t+1

∥∥∥2

Vt

)
dθ

∫
θ∈Θc

z∗
exp

(
−ηp

∥∥∥θ − θ̂t

∥∥∥2

Vt−1

)
dθ

= log

∫
θ∈Θc

z∗
exp

(
−ηp

∥∥∥θ − θ̂t+1

∥∥∥2

Vt

− ηp

∥∥∥θ − θ̂t

∥∥∥2

xtx
⊤
t

+ ηp

∥∥∥θ − θ̂t

∥∥∥2

xtx
⊤
t

+ ηp

∥∥∥θ − θ̂t

∥∥∥2

Vt−1

− ηp

∥∥∥θ − θ̂t

∥∥∥2

Vt−1

)
dθ

∫
θ∈Θc

z∗
exp

(
−ηp

∥∥∥θ − θ̂t

∥∥∥2

Vt−1

)
dθ

= log

∫
θ∈Θc

z∗
exp

(
−ηp

∥∥∥θ − θ̂t

∥∥∥2

xtx
⊤
t

− ηp

∥∥∥θ − θ̂t+1

∥∥∥2

Vt

+ ηp

∥∥∥θ − θ̂t

∥∥∥2

Vt

− ηp

∥∥∥θ − θ̂t

∥∥∥2

Vt−1

)
dθ

∫
θ∈Θc

z∗
exp

(
−ηp

∥∥∥θ − θ̂t

∥∥∥2

Vt−1

)
dθ

≤ −ηpEθ∼pt(Θc
z∗ )

[∥∥∥θ − θ̂t

∥∥∥2

xtx
⊤
t

+
∥∥∥θ − θ̂t+1

∥∥∥2

Vt

−
∥∥∥θ − θ̂t

∥∥∥2

Vt

]
+

η2
p · 4C2

3,ℓ

8

where the inequality follows from the Hoeffding inequality lnEesX ≤ sEX + s2(a−b)2

8 . By telescoping, we have

log
WTℓ+1

W1
= ln

WTℓ+1

WTℓ

+ ln
WTℓ

WTℓ−1
+ · · ·+ ln

W2

W1

≤ −ηp

Tℓ∑
t=1

Eθ∼pt(Θc
z∗ )

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

+
∥∥∥θ − θ̂t+1

∥∥∥2
Vt

−
∥∥∥θ − θ̂t

∥∥∥2
Vt

]
+

Tℓη
2
pC

2
3,ℓ

2
.
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On the other hand, let θ̃ = arg inf
θ∈Θc

z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

. Let wt(θ) = exp

(
−ηp

∥∥∥θ − θ̂t

∥∥∥2
Vt−1

)
. Let Nγ := {(1 −

γ)θ̃ + γθ, θ ∈ Θc
z∗} for γ > 0 that we choose later. We have

log
WTℓ+1

W1
= log


∫
θ∈Θc

z∗
exp

(
−ηp

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

)
dθ∫

θ∈Θc
z∗

1dθ



≥ log


∫
θ∈Nγ

exp

(
−ηp

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

)
dθ∫

θ∈Θc
z∗

1dθ



≥ log


∫
θ∈γΘc

z∗
exp

(
−ηp

∥∥∥(1− γ)θ̃ + θ − θ̂Tℓ+1

∥∥∥2
VTℓ

)
dθ∫

θ∈Θc
z∗

1dθ



= log


∫
θ∈Θc

z∗
γd exp

(
−ηp

∥∥∥(1− γ)θ̃ + γθ − θ̂Tℓ+1

∥∥∥2
VTℓ

)
dθ∫

θ∈Θc
z∗

1dθ



= log


∫
θ∈Θc

z∗
γd exp

(
−ηp

∥∥∥(1− γ)θ̃ + γθ − θ̂Tℓ+1

∥∥∥2
VTℓ

)
dθ∫

θ∈Θc
z∗

1dθ



≥ log


∫
θ∈Θc

z∗
γd exp

(
−ηp

(
(1− γ)

∥∥∥θ̃ − θ̂Tℓ+1

∥∥∥2
VTℓ

+ γ
∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

))
dθ∫

θ∈Θc
z∗

1dθ



≥ log


∫
θ∈Θc

z∗
γd exp

(
−ηp

(
(1− γ)

∥∥∥θ̃ − θ̂Tℓ+1

∥∥∥2
VTℓ

+ γ
∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

))
dθ∫

θ∈Θc
z∗

1dθ



≥ log


∫
θ∈Θc

z∗
γd exp

(
−ηp

(∥∥∥θ̃ − θ̂Tℓ+1

∥∥∥2
VTℓ

+ γTℓC1,ℓ

))
dθ∫

θ∈Θc
z∗

1dθ


= −ηp inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

+ d log γ − ηpγTℓC1,ℓ.

where the last inequality follows from the fact that for any θ ∈ Θ,

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

=

Tℓ∑
t=1

(x⊤
t (θ − θ̂Tℓ+1)

2 ≤ TℓC
2
3,ℓ

under E2,ℓ. Combining the two displays gives us

− ηp inf
θ∈Θc

z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

+ d log γ − ηpγTℓC1,ℓ

≤ −ηp

Tℓ∑
t=1

Eθ∼pt(Θc
z∗ )

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

+
∥∥∥θ − θ̂t+1

∥∥∥2
Vt

−
∥∥∥θ − θ̂t

∥∥∥2
Vt

]
+

Tℓη
2
pC

2
3,ℓ

2
.



Zhaoqi Li, Kevin Jamieson, Lalit Jain

Rearranging, we have

Tℓ∑
t=1

Eθ∼pt(Θc
z∗ )

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

+
∥∥∥θ − θ̂t+1

∥∥∥2
Vt

−
∥∥∥θ − θ̂t

∥∥∥2
Vt

]
− inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

≤
ηpC

2
3,ℓTℓ

2
+

d log(1/γ)

ηp
+ γTℓC1,ℓ.

By choosing γ = 1
TℓC1,ℓ

and ηp =

√
d log(TℓC1,ℓ)

C2
3,ℓTℓ

, we have

Tℓ∑
t=1

Eθ∼pt(Θc
z∗ )

[∥∥∥θ − θ̂t

∥∥∥2

xtx
⊤
t

+
∥∥∥θ − θ̂t+1

∥∥∥2

Vt

−
∥∥∥θ − θ̂t

∥∥∥2

Vt

]
− inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2

VTℓ

≤
√

TℓC2
3,ℓd log(TℓC1,ℓ),

so

1

Tℓ

[
Tℓ∑
t=1

Eθ∼pt(Θc
z∗ )

[∥∥∥θ − θ̂t

∥∥∥2

xtx
⊤
t

+
∥∥∥θ − θ̂t+1

∥∥∥2

Vt

−
∥∥∥θ − θ̂t

∥∥∥2

Vt

]
− inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2

VTℓ

]
≤

√
C2

3,ℓd log(TℓC1,ℓ)

Tℓ
.

In other words,

1

Tℓ

[
Tℓ∑
t=1

Eθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

]
− inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

]

≤

√
C2

3,ℓd log(TℓC1,ℓ)

Tℓ
+

1

Tℓ

Tℓ∑
t=1

Eθ∼p̃t

[∥∥∥θ − θ̂t+1

∥∥∥2
Vt

−
∥∥∥θ − θ̂t

∥∥∥2
Vt

]
.

By Lemma C.9, we have with probability 1− 1/ℓ2,

1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t+1

∥∥∥2
Vt

−
∥∥∥θ − θ̂t

∥∥∥2
Vt

]
≤ C3,ℓ

√
2dβ(Tℓ, ℓ2)

Tℓ
log

(
d+ TℓL2

d

)
+ C3,ℓ

√
2 log(ℓ2)

Tℓ
.

Combining the above two displays gives us with probability 1− 1/ℓ2,

1

Tℓ

[
Tℓ∑
t=1

Eθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

]
− inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

]

≤

√
C2

3,ℓd log(TℓC1,ℓ)

Tℓ
+ C3,ℓ

√
2dβ(Tℓ, ℓ2)

Tℓ
log

(
d+ TℓL2

d

)
+ C3,ℓ

√
2 log(ℓ2)

Tℓ
.

C.5 Approximation Guarantees

In this section, we present several technical lemmas bounding the terms related to the approximation error of θ̂t
to θ∗ in each iteration t. More specifically, these lemmas show upper bound on the terms in the decomposition in
the proof of lemma C.4.
Lemma C.8 (S4). Under E2,ℓ, with probability 1− 1/ℓ2,

1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− 1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

]
≤

√
2C1,ℓ log ℓ2

Tℓ
.

Proof. Define Mt = Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

]
. Note that

Ext [Mt|Ft−1] = Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
,
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so M̃t = Mt − Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
is a mean-zero martingale. Also, under E2,ℓ, |Mt| ≤ C1,ℓ, then by Azuma-

Hoeffding, we have with probability at least 1− 1
ℓ2 ,
∑Tℓ

t=1 M̃t ≤
√
2C1,ℓTℓ log ℓ2, so

1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− 1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
xtx⊤

t

]
≤

√
2C1,ℓ log ℓ2

Tℓ
.

Lemma C.9 (CTℓ
). Under E1,ℓ ∩ E2,ℓ, with probability 1− 1/ℓ2,

1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t+1

∥∥∥2
Vt

−
∥∥∥θ − θ̂t

∥∥∥2
Vt

]
≤ C3,ℓ

√
2dβ(Tℓ, ℓ2)

Tℓ
log

(
d+ TℓL2

d

)
+ C3,ℓ

√
2 log(ℓ2)

Tℓ
.

Proof. We first consider some round t and some θ. By Lemma E.1,

∥∥∥θ − θ̂t

∥∥∥2
Vt−1

−
∥∥∥θ − θ̂t+1

∥∥∥2
Vt−1

≤ 2C3,ℓ(yt − x⊤
t θ̂t).

Therefore,

1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
Vt−1

−
∥∥∥θ − θ̂t+1

∥∥∥2
Vt−1

]
≤ 2C3,ℓ

Tℓ

Tℓ∑
t=1

(yt − x⊤
t θ̂t). (4)

Now, note that

yt − x⊤
t θ̂t = x⊤

t (θ
∗ − θ̂t) + ϵt

≤ ∥xt∥V −1
t−1

∥∥∥θ∗ − θ̂t

∥∥∥
Vt−1

+ ϵt

≤ ∥xt∥V −1
t−1

√
β(t, ℓ2) + ϵt. (by E1,ℓ)

Note that since ϵt ∼ N(0, 1) is 1-subGaussian, by Azuma-Hoeffding, we have with probability 1− 1/ℓ2,

Tℓ∑
t=1

ϵt ≤
√
2Tℓ log(ℓ2).

By summing it from 1 to Tℓ, we have under E1,ℓ, with probability 1− 1/ℓ2,

Tℓ∑
t=1

(yt − x⊤
t θ̂t) ≤

Tℓ∑
t=1

√
β(t, ℓ2) ∥xt∥V −1

t−1
+

Tℓ∑
t=1

ϵt

≤
Tℓ∑
t=1

√
β(t, ℓ2) ∥xt∥V −1

t−1
+
√

2Tℓ log(ℓ2)

≤

√√√√Tℓ

Tℓ∑
t=1

β(t, ℓ2) ∥xt∥2V −1
t−1

+
√
2Tℓ log(ℓ2) (by Cauchy-Schwarz)

≤

√√√√Tℓβ(Tℓ, ℓ2)

Tℓ∑
t=1

∥xt∥2V −1
t−1

+
√
2Tℓ log(ℓ2) (by Cauchy-Schwarz)

≤

√
Tℓβ(Tℓ, ℓ2)2d log

(
d+ TℓL2

d

)
+
√
2Tℓ log(ℓ2).

(by Elliptical potential lemma (Abbasi-Yadkori et al., 2011))

Plugging this in Equation 4 gives the result.
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Lemma C.10 (C ′
Tℓ

). Under E1,ℓ ∩ E2,ℓ, we have

max
λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[
∥θ∗ − θ∥2A(λ)

]
− max

λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[∥∥∥θ̂t − θ
∥∥∥2
A(λ)

]
≤ T2(ℓ)L

2β(T2(ℓ), ℓ
2)

Tℓ
+ 4dβ(Tℓ, ℓ

2)T
−3/4
ℓ .

Proof. We have

max
λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[
∥θ∗ − θ∥2A(λ)

]
− max

λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[∥∥∥θ̂t − θ
∥∥∥2
A(λ)

]

≤ max
λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[
∥θ∗ − θ∥2A(λ) −

∥∥∥θ̂t − θ
∥∥∥2
A(λ)

]
.

We fix some θ and λ. Note that

∥θ∗ − θ∥2A(λ) −
∥∥∥θ̂t − θ

∥∥∥2
A(λ)

= (θ∗ + θ̂t − 2θ)⊤A(λ)(θ∗ − θ̂t)

=
∑
x∈X

λx(θ
∗ + θ̂t − 2θ)⊤xx⊤(θ∗ − θ̂t)

≤ max
x∈X

(θ∗ + θ̂t − 2θ)⊤xx⊤(θ∗ − θ̂t)

≤ (C3,ℓ +∆max)max
x∈X

x⊤(θ∗ − θ̂t).

Therefore,

max
λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[
∥θ∗ − θ∥2A(λ) −

∥∥∥θ̂t − θ
∥∥∥2
A(λ)

]
≤ (C3,ℓ +∆max)max

x∈X

1

Tℓ

Tℓ∑
t=1

〈
θ̂t − θ∗, x

〉
. (5)

By Lemma C.15, under E3,ℓ ∩ E1,ℓ, for any t ≥ T2(ℓ) + 1, we have for any x ∈ X ,〈
x, θ̂t − θ∗

〉
≤ d

t3/4
β(t, ℓ2).

Also, by Lemma D.2, under E1,ℓ, we have for any t ≥ 1,〈
x, θ̂t − θ∗

〉
≤ L2β(t, ℓ2).

Therefore,

max
x∈X

1

Tℓ

Tℓ∑
t=1

〈
θ̂t − θ∗, x

〉

≤ max
x∈X

1

Tℓ

T2(ℓ)∑
t=1

〈
θ̂t − θ∗, x

〉
+

Tℓ∑
t=T2(ℓ)+1

〈
θ̂t − θ∗, x

〉
≤ 1

Tℓ

T2(ℓ)L
2β(T2(ℓ), ℓ

2) +

Tℓ∑
t=T2(ℓ)+1

d

t3/4
β(t, ℓ2)

 (by Lemma D.2 and C.15)

≤ 1

Tℓ

[
T2(ℓ)L

2β(T2(ℓ), ℓ
2) + dβ(Tℓ, ℓ

2)

∫ Tℓ

t=T2(ℓ)

t−3/4dt

]

=
1

Tℓ

[
T2(ℓ)L

2β(T2(ℓ), ℓ
2) + dβ(Tℓ, ℓ

2)(4T
1/4
ℓ − 4T2(ℓ)

1/4)
]

≤ T2(ℓ)L
2β(T2(ℓ), ℓ

2)

Tℓ
+ 4dβ(Tℓ, ℓ

2)Tℓ
−3/4.
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Plugging this in Equation 5 gives us

max
λ∈△X

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[
∥θ∗ − θ∥2A(λ) −

∥∥∥θ̂t − θ
∥∥∥2
A(λ)

]
≤ T2(ℓ)L

2β(T2(ℓ), ℓ
2)

Tℓ
+ 4dβ(Tℓ, ℓ

2)T
−3/4
ℓ .

Lemma C.11 (C ′′
Tℓ

). Assume that Θ is closed. Then, we have under E1,ℓ ∩ E2,ℓ,

∣∣∣∣ 1Tℓ
inf

θ∈Θc
z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

− 1

Tℓ
inf

θ∈Θc
z∗

∥θ∗ − θ∥2VTℓ

∣∣∣∣ ≤ (C3,ℓ +∆max)

√
β(Tℓ, ℓ2)

Tℓ
.

Proof. Let θ1 := arg inf
θ∈Θc

z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

and θ2 := arg inf
θ∈Θc

z∗

∥θ − θ∗∥2VTℓ
. We have

inf
θ∈Θc

z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

− inf
θ∈Θc

z∗

∥θ∗ − θ∥2VTℓ

≤
∥∥∥θ̂Tℓ+1 − θ2

∥∥∥2
VTℓ

− ∥θ∗ − θ2∥2VTℓ

=

(∥∥∥θ̂Tℓ+1 − θ2

∥∥∥
VTℓ

− ∥θ∗ − θ2∥VTℓ

)(∥∥∥θ̂Tℓ+1 − θ2

∥∥∥
VTℓ

+ ∥θ∗ − θ2∥VTℓ

)
.

≤
∥∥∥θ̂Tℓ+1 − θ∗

∥∥∥
VTℓ

(∥∥∥θ̂Tℓ+1 − θ2

∥∥∥
VTℓ

+ ∥θ∗ − θ2∥VTℓ

)
.

Note that under E2,ℓ,

∥∥∥θ̂Tℓ+1 − θ1

∥∥∥
VTℓ

=

√√√√ Tℓ∑
t=1

(x⊤
t (θ̂Tℓ+1 − θ1))2 ≤ C3,ℓ

√
Tℓ;

∥θ∗ − θ2∥VTℓ
=

√√√√ Tℓ∑
t=1

(x⊤
t (θ

∗ − θ2))2 ≤ ∆max

√
Tℓ.

Therefore,

inf
θ∈Θc

z∗

∥∥∥θ − θ̂Tℓ+1

∥∥∥2
VTℓ

− inf
θ∈Θc

z∗

∥θ∗ − θ∥2VTℓ

≤ (C3,ℓ +∆max)
√
Tℓ

∥∥∥θ̂Tℓ+1 − θ∗
∥∥∥
VTℓ

≤ (C3,ℓ +∆max)
√
Tℓβ(Tℓ, ℓ2). (by E1,ℓ)

We use the above lemma to bound the term that relates p̃t to pt.

Lemma C.12 (p̃t to pt). Under E2,ℓ ∩ E4,ℓ for Tℓ ≥ T0,

1

Tℓ

Tℓ∑
t=1

Fθ∼pt

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− 1

Tℓ

Tℓ∑
t=1

Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
≤

2C2
3,ℓT0(ℓ)

Tℓ
.
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Proof. Note that p̃t = pt under E4,ℓ,

1

Tℓ

Tℓ∑
t=1

(
Fθ∼pt

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

])

=
1

Tℓ

T0(ℓ)∑
t=1

(
Fθ∼pt

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

])

+
1

Tℓ

Tℓ∑
t=T0(ℓ)+1

(
Fθ∼pt

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

])

=
1

Tℓ

T0(ℓ)∑
t=1

(
Fθ∼pt

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

])
.

Since for any θ ∈ Θ, under E2,ℓ,

∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

=
∑
x∈X

λ̃t,x

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

≤ max
x∈X

∥∥∥θ − θ̂t

∥∥∥2
xx⊤

≤ C2
3,ℓ,

we have

1

Tℓ

T0(ℓ)∑
t=1

(
Fθ∼pt

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

]
− Fθ∼p̃t

[∥∥∥θ − θ̂t

∥∥∥2
A(λ̃t)

])
≤

2C2
3,ℓT0(ℓ)

Tℓ
.

C.6 Guarantees on sampling and learning the estimate

In this section we provide some general guarantees on sampling together with a threshold after which each arm
gets enough samples and . Consider a setting where at each time we receive a distribution λ̃ = (1− γt)λt + γtP
for a fixed distribution P .

Lemma C.13. Fix a distribution P on X with full support. On an event that is true with probability greater
than 1− δ, for any 0 < α < 1/2 there exists a T1 := T1(α, δ, T ) such that for any t ≥ T1,

Vt ≥
c

1− α
A(P )t1−α.

Proof. Fix x ∈ X , let Nt,x =
∑t

s=1 Zs where Zs = 1 if xs = x else 0. Then, Vt =
∑

x∈X
∑t

s=1 Zsxx
⊤. We assume

that γs = 1/sα, s ≥ 1.
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Note that P(Zs = 1|Fs−1) = (1− γs)λs,x + γsPx. So for t > 1,

P

(
t∑

s=1

Zs ≤ cPx

t∑
s=1

γs

)
= P

(
t∑

s=1

Zs − (1− γs)λs,x − γsPx ≤
t∑

s=1

cPxγs − (1− γs)λs,x − γsPx

)

= P

(
t∑

s=1

Zs − (1− γs)λs,x − γsPx ≤
t∑

s=1

(c− 1)Pxγs − (1− γs)λs,x

)

≤ P

(
t∑

s=1

Zs − (1− γs)λs,x − γsPx ≤
t∑

s=1

(c− 1)Pxγs

)

≤ P

(
t∑

s=1

Zs − (1− γs)λs,x − γsPx ≤ −
t∑

s=1

(1− c)Pxγs

)

≤ exp

−1

t

(
t∑

s=1

(1− c)Pxγs

)2
 (Azuma-Hoeffding)

= exp

−

(
(1− c)Px√

t

t∑
s=1

γs

)2


≤ exp

(
−
(
(1− c)Px√

t

t1−α − 1

1− α

)2
)

(
∑t

s=1
1
sα ≥ t1−α−1

1−α )

≤ exp

(
−
(
(1− c)Px

t1/2−α − t−1/2

1− α

)2
)

≤ exp

(
−
(
(1− c)Px

2(1− α)
t1/2−α

)2
)

(t1/2−α − t−1/2 > 1
2 t

1/2−α, t ≥ 2)

≤ exp

(
−
(
(1− c)Px

2(1− α)

)2

t1−2α

)

This implies that with the sequence γs = 1/sα, α < 1/2 (to ensure 1− 2α > 0), with probability greater than
1− δ we have

Nt,x =

t∑
s=1

Zs ≥ cPx

t∑
s=1

γs ≥
cPx

1− α
(t1−α − 1) whenever t ≥

(
2(1− α)

√
log(1/δ)

(1− c)Px

) 2
1−2α

.

The lemma below states that there exists some time T2 such that all the arms get enough samples.

Lemma C.14. For T2(ℓ) = maxx∈X

(
6
√

log(|X |Tℓℓ2)

λG
x

)4

, we have

P (E3,ℓ) ≥ 1− 1/ℓ2.

Proof. By Lemma C.13 with a choice of c = 1 − α, α = 1
4 , δ = 1

|X |Tℓℓ2
, and P = λG, we have for any

t ≥
(

2(1−α)
√

log(1/δ)

(1−c)Px

) 2
1−2α

=

(
6
√

log(|X |Tℓℓ2)

λG
x

)4

, we have P(Vt ≥ t3/4A(λG)) ≥ 1 − 1
|X |Tℓℓ2

. Let T2(ℓ) :=

maxx∈X

(
6
√

log(|X |Tℓℓ2)

λG
x

)4

, union bounding for t ∈ [T2, Tℓ] and x ∈ X gives the result.

Lemma C.15. Under E3,ℓ ∩ E1,ℓ, for any t ≥ T2(ℓ) + 1, we have for any x ∈ X ,〈
x, θ̂t − θ∗

〉
≤ d

t3/4
β(t, ℓ2).
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Proof. Let Nt,x be the number of times arm x gets pulled at round t. By Lemma C.14, for t ≥ T2(ℓ) + 1, under
E3,ℓ, we have

Vt−1 =
∑
x∈X

Nt−1,xxx
⊤ ≥ t3/4A(λG).

Therefore, for any x ∈ X ,

∥x∥2V −1
t−1

≤ 1

t3/4
∥x∥2A(λG)−1 ≤ d

t3/4

by Kiefer-Wolfowitz. Therefore, under E1,ℓ, for any x ∈ X ,〈
x, θ̂t − θ∗

〉
≤ ∥x∥2V −1

t−1

∥∥∥θ̂t − θ∗
∥∥∥2
Vt−1

≤ d

t3/4

∥∥∥θ̂t − θ∗
∥∥∥2
Vt−1

≤ d

t3/4
β(t, ℓ2).

The following lemma provides a guarantee that we eventually finds z∗.

Lemma C.16. For T0(ℓ) = max

{(
dβ(Tℓ,ℓ

2)maxz∈Z∥z∥1

∆min

)4/3
, T2(ℓ) + 1

}
, we have P(E4,ℓ|E1,ℓ ∩ E3,ℓ) ≥ 1− 1/ℓ2.

Proof. By Lemma C.15, we know that for any t ≥ T2(ℓ) + 1, under E1,ℓ ∩ E3,ℓ we have for any x ∈ X ,〈
x, θ̂t − θ∗

〉
≤ d

t3/4
β(t, ℓ2).

Since the span of Z is in the subset of X , for any z ∈ Z, we write z∗ − z =
∑

x∈X αz,xx. Then

(z∗ − z)⊤(θ∗ − θ̂t) =
∑
x∈X

αz,xx
⊤(θ∗ − θ̂t)

≤
∑
x∈X

αz,x
d

t3/4
β(t, ℓ2)

≤ max
z∈Z

∥z∥1
d

t3/4
β(t, ℓ2).

Then, for any t >
(

dβ(t,ℓ2)maxz∈Z∥z∥1

∆min

)4/3
, we have

max
z∈Z

∥z∥1
d

t3/4
β(t, ℓ2) < ∆min,

which implies that for any z,

(z∗ − z)⊤(θ∗ − θ̂t) < ∆min

⇒(z∗ − z)⊤(θ̂t − θ∗) > −∆min

⇒(z∗ − z)⊤θ̂t > 0,

which implies that ẑt = z∗.
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D BOUNDS AND EVENTS THAT HOLD TRUE EACH ROUND

The following lemma states an anytime confidence bound for the least-squares estimator. It is a restatement of
Theorem 20.5 of Lattimore and Szepesvári (2020) in our setting.

Lemma D.1 (E1,ℓ). With probability 1− 1/ℓ2, for all t, we have

∥∥∥θ̂t − θ∗
∥∥∥2
Vt−1

≤ B +

√
2 log(ℓ2) + d log

(
d+ tL2

d

)
.

Proof. Follows from Theorem 20.5 of Lattimore and Szepesvári (2020).

Lemma D.2 (E2,ℓ). Under E1,ℓ, we have for any x ∈ X and any t ∈ [1, Tℓ],
〈
x, θ̂t

〉
≤ ∆max + L2β(Tℓ, ℓ

2).

Proof. For any x ∈ X , 〈
x, θ̂t

〉
= ⟨x, θ∗⟩+

〈
x, θ̂t − θ∗

〉
≤ ∆max + ∥x∥2V −1

t−1

∥∥∥θ̂t − θ∗
∥∥∥2
Vt−1

≤ ∆max + ∥x∥2V −1
t−1

β(t, ℓ2). (under E1,ℓ)

Since we have

Vt−1 = V0 +

t−1∑
s=1

xsx
⊤
s ,

for V0 = I, we have the minimum eigenvalue σmin(Vt−1) ≥ σmin(V0) + σmin

(∑t−1
s=1 xsx

⊤
s

)
≥ 1, so

σmax(V
−1
t−1) =

1

σmin(Vt−1)
≤ 1,

which implies that
max
x∈X

∥x∥2V −1
t−1

≤ σmax(V
−1
t−1)max

x∈X
∥x∥22 ≤ L2.

Therefore, 〈
x, θ̂t

〉
≤ ∆max + L2β(t, ℓ2) ≤ ∆max + L2β(Tℓ, ℓ

2).

E TECHNICAL LEMMAS

Lemma E.1 (Recursive Least Squares Guarantee). In any round ℓ, conditional on event E1,ℓ ∩ E2,ℓ, for any
θ ∈ Θ and any t ∈ [1, Tℓ] we have∥∥∥θ − θ̂t+1

∥∥∥2
Vt

−
∥∥∥θ − θ̂t

∥∥∥2
Vt

≤ 2C3,ℓ(yt − x⊤
t θ̂t) ≤ 2C3,ℓ(C1,ℓ + 1),

assuming that all rewards are bounded in [−1, 1].

Proof. We first consider some round t and some θ. Note that θ̂t = V −1
t X⊤

t Yt. Then
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θ̂t+1 = (Vt−1 + xtx
⊤
t )

−1(X⊤
t−1Yt−1 + xtyt)

=

(
V −1
t−1 −

V −1
t−1xtx

⊤
t V

−1
t−1

1 + x⊤
t V

−1
t−1xt

)
(X⊤

t−1Yt−1 + xtyt)

= θ̂t −
V −1
t−1xtx

⊤
t θ̂t

1 + x⊤
t V

−1
t−1xt

+ V −1
t−1xtyt −

V −1
t−1xtx

⊤
t V

−1
t−1xtyt

1 + x⊤
t V

−1
t−1xt

= θ̂t −
V −1
t−1xtx

⊤
t θ̂t

1 + x⊤
t V

−1
t−1xt

+
V −1
t−1xtyt(1 + x⊤

t V
−1
t−1xt)− x⊤

t V
−1
t−1xtV

−1
t−1xtyt

(1 + x⊤
t V

−1
t−1xt)

= θ̂t −
V −1
t−1xtx

⊤
t θ̂t

1 + x⊤
t V

−1
t−1xt

+
V −1
t−1xtyt

(1 + x⊤
t V

−1
t−1xt)

= θ̂t +
V −1
t−1xt(yt − x⊤

t θ̂t)

1 + x⊤
t V

−1
t−1xt

Hence

θ̂t+1 − θ̂t =
V −1
t−1xt

1 + x⊤
t V

−1
t−1xt

(yt − x⊤
t θ̂t)

and

Vt(θ̂t+1 − θ̂t) =
VtV

−1
t−1xt

1 + x⊤
t V

−1
t−1xt

(yt − x⊤
t θ̂t)

=
(I + xtx

⊤
t V

−1
t−1)xt

1 + x⊤
t V

−1
t−1xt

(yt − x⊤
t θ̂t)

=
xt(1 + x⊤

t V
−1
t−1xt)

1 + x⊤
t V

−1
t−1xt

(yt − x⊤
t θ̂t)

= (yt − x⊤
t θ̂t)xt

Then ∥∥∥θ − θ̂t+1

∥∥∥2
Vt

−
∥∥∥θ − θ̂t

∥∥∥2
Vt

= (θ̂t+1 − θ̂t)
⊤Vt(θ̂t+1 + θ̂t − 2θ)

= (yt − x⊤
t θ̂t)x

⊤
t (θ̂t+1 + θ̂t − 2θ)

≤ 2C3,ℓ(yt − x⊤
t θ̂t)

≤ 2C3,ℓ(C1,ℓ + 1)

assuming all rewards are bounded by 1.

Lemma E.2. For any open set Θ̃ ⊂ Θ, we have∫
Θ̃

exp

(
−Tℓ

2

(
∥θ∗ − θ∥2A(ēTℓ

)

))
dθ

.
= exp

(
−Tℓ

2
inf
θ∈Θ̃

∥θ∗ − θ∥2A(ēTℓ
)

)
.

Proof. The following argument is inspired by an analogous one in Lemma 11 of Russo (2016). Let ιℓ :=∫
Θ̃
exp

(
−Tℓ

2 ∥θ∗ − θ∥2A(ēTℓ
)

)
dθ and WTℓ

(θ) := 1
2 ∥θ

∗ − θ∥2A(ēTℓ
). Also, let θ̃ℓ ∈ closure(Θ̃) be a point that attains

the infimum, i.e.
θ̃ℓ := arg inf

θ∈Θ̃
∥θ∗ − θ∥2A(ēTℓ

) .
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Such a point must exist by the continuity of WTℓ
(θ) and closure(Θ̃) being compact. Then, we first observe that∫

Θ̃

exp

(
−Tℓ

2
∥θ∗ − θ∥2A(ēTℓ

)

)
dθ ≤ Vol(Θ̃) exp

(
−Tℓ

2

∥∥∥θ∗ − θ̃ℓ

∥∥∥2
A(ēTℓ

)

)
,

so
lim sup
ℓ→∞

1

Tℓ
log(ιℓ) +WTℓ

(θ̃ℓ) ≤ 0.

Second, we fix some arbitrary ϵ > 0. Note that for any θ, θ′ ∈ Θ,

|WTℓ
(θ)−WTℓ

(θ′)| = 1

2

(
∥θ∗ − θ∥2A(ēTℓ

) − ∥θ∗ − θ′∥2A(ēTℓ
)

)
=

1

2

(
(2θ∗ − θ − θ′)⊤A(ēTℓ

)(θ − θ′)
)

=
1

2Tℓ

Tℓ∑
t=1

(
(2θ∗ − θ − θ′)⊤xtx

⊤
t (θ − θ′)

)
≤ ∆max max

x∈X
x⊤(θ − θ′)

≤ ∆max max
x∈X

∥x∥2 ∥θ − θ′∥2

≤ L∆max ∥θ − θ′∥2 .

Then, there exists δ > 0 such that

∥θ − θ′∥2 < δ ⇒ |WTℓ
(θ)−WTℓ

(θ′)| < ϵ.

Then, we take a δ-cover of Θ with ∥·∥2, and intersect them with Θ̃, and denote the resulting cover as O. Then,
θ̃ℓ ∈ O for some O ∈ O. Since we know that Vol(O) > 0 for any O ∈ O, we have

ιℓ ≥
∫
O

exp (−TℓWTℓ
(θ)) dθ ≥ Vol(O) exp

(
−Tℓ

(
WTℓ

(
θ̃ℓ

)
− ϵ
))

.

Taking logarithm on both sides implies that

1

Tℓ
log (ιℓ) +WTℓ

(
θ̃ℓ

)
≥ Vol(O)

Tℓ
− ϵ → −ϵ.

Since we choose ϵ > 0 arbitrarily, we have

lim inf
ℓ→∞

1

Tℓ
log (ιℓ) +WTℓ

(
θ̃ℓ

)
≥ 0.

Therefore, limℓ→∞
1
Tℓ

log (ιℓ) +WTℓ

(
θ̃ℓ

)
= 0 and the statement follows.

F SUPPLEMENTARY PLOTS

In this section, we present more supplementary plots. All experiments in the main text and supplement are
run on a computing cluster with 64 AMD EPYC 7302 16-Core Processor (1500 MHz) with 1TB of RAM. For
LinGame, LinGapE, and Oracle algorithms, we directly use the existing implementation from Tirinzoni and
Degenne (2022) with the open-source GitHub link: https://github.com/AndreaTirinzoni/bandit-elimination.

We demonstrate that the computational cost of our algorithm is not heavy. We first plot the average number
of rejection samples taken to get some θ ∈ Θc

ẑt
in the alternative and the running time for our algorithm to

demonstrate the computation cost rejection sampling takes. Figures 2 and 3 show the result. By comparing
Figure 2 with Figure 1, we see that the number of rejection samples needed to get some θ ∈ Θc

ẑt
is generally less

than 30 until δ < 0.01. This shows that the computational burden for rejection sampling is generally not large
unless we have basically solved the problem. Also, we can see from Figure 3 that the running time per iteration is
generally very small, which means our algorithm runs very fast.
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Figure 2: Average number of rejection samples taken until finding some θ ∈ Θc
ẑt

Figure 3: Average clock time per iteration for PEPS under three scenarios

To make a clear comparison of the sampling part in our method with computing the best alternative step in
LinGame, we implemented our algorithm, PEPS, in Julia and compared its clock time to existing LinGame
implementations on a sphere instance with varying arm numbers, denoted as K. We run both algorithms for a
fixed budget of 1000 iterations across 100 trials and compute the average clock time per iteration. We assessed
both methods for K = 50, 200, 1000, 5000, 10000, 20000, with results presented in milliseconds. Table 3 shows the
results. We can see that our method consistently running faster than the benchmark LinGame, particularly as
the number of arms increases. This distinction becomes especially significant when K = 10000 and K = 20000,
which corresponds to the case that calculating the best alternative is expensive. Therefore, our method maintains
efficiency even in scenarios when computing the alternative is really expensive.

K = 50 K = 200 K = 1000 K = 5000 K = 10000 K = 20000
PEPS 0.132 0.484 0.681 3.770 6.710 17.110
LinGame 0.152 0.596 3.265 18.610 46.762 126.683

Table 3: Average clock time per iteration for PEPS and LinGame under the sphere instance with d = 6 and various
number of arms K. Numbers are displayed in milliseconds.
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