
Backward Filtering Forward Deciding
in Linear Non-Gaussian State Space Models

Yun-Peng Li Hans-Andrea Loeliger
ETH Zürich ETH Zürich

Abstract

The paper considers linear state space mod-
els with non-Gaussian inputs and/or con-
straints. As shown previously, NUP rep-
resentations (normal with unknown param-
eters) allow to compute MAP estimates in
such models by iterating Kalman smooth-
ing recursions. In this paper, we propose
to compute such MAP estimates by iterat-
ing backward-forward recursions where the
forward recursion amounts to coordinatewise
input estimation. The advantages of the pro-
posed approach include faster convergence,
no “zero-variance stucking”, and easier con-
trol of constraint satisfaction. The approach
is demonstrated with simulation results of ex-
emplary applications including (i) regression
with non-Gaussian priors or constraints on
k-th order differences and (ii) control with
linearly constrained inputs.

1 INTRODUCTION

Consider the estimation of the input sequence
U1, . . . , UN ∈ RL of a linear state space model (SSM)
with state sequence X1, . . . , XN+1 ∈ RM and output
sequence Y1, . . . , YN ∈ RK . The SSM evolves accord-
ing to

Xn+1 = AXn +BUn (1)

Yn = CXn (2)

for n = 1, . . . , N , where A, B, and C are known ma-
trices of appropriate dimensions. We observe a noisy
version of the outputs

Y̆n = Yn + Zn, (3)

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

where the noise Zn ∈ RK is a sequence of independent
zero-mean Gaussian random variables (or random vec-
tors) with known covariance matrices VZn

. We also
assume a Gaussian prior on the initial state X1. From
Y̆n = y̆n ∈ RK , n = 1, . . . , N , we wish to estimate the
unknown inputs U1, . . . , UN . (The estimate of Un for
n ≈ 1 or n ≈ N may be poor if the initial state X1 or
the final state XN + 1, respectively, are unknown.)

If the input sequence U1, . . . , UN is Gaussian, then
estimating the state sequence X1, . . . , XN+1 is the
standard Kalman smoothing problem (Kalman, 1960).
Pertinent Kalman smoothing algorithms can be ex-
tended to yield an estimate of the input sequence as
well (cf. Glover, 1969; Bruderer et al., 2014; Loeliger
et al., 2016; Gakis et al., 2024).

In this paper, we consider the estimation of a non-
Gaussian input sequence U1, . . . , UN . The motivating
applications include (i) regression with non-Gaussian
priors or constraints on (k + 1)-th order differences
(Steidl et al., 2006; Kim et al., 2009; Ramdas et
al., 2016; Loeliger et al., 2016; Politsch et al., 2020;
Roonizi, 2021) and (ii) control with linear constraints
on the control signal (Keusch, 2023; Keusch et al.,
2024).

Related prior work considers state estimation with
non-Gaussian state noise, which can be used also for
input signal estimation (if the input matrix B con-
tains an L × L diagonal matrix). The algorithm pro-
posed by Aravkin et al. (2014) uses an interior point
method (involving both solving a system of linear in-
equalities and a line search at every step). Roonizi
(2022) addresses only Kalman filtering (i.e., state esti-
mation based on past observations), but not smooth-
ing in the usual sense (i.e., trajectory estimation based
on all observations).

One way to deal with non-Gaussian priors or con-
straints are NUP representations (normal with un-
known parameters), which are closely related to vari-
ational representations of penalty functions (Palmer
et al., 2005; Bach et al., 2012), see Loeliger (2023)
for a brief review. In prior work (including Loeliger

Backward Filtering Forward Deciding in Linear Non-Gaussian SSM

et al., 2016; Keusch et al., 2021, 2024), this approach
was used to convert estimation in linear SSMs with
non-Gaussian inputs or/and non-Gaussian observation
noise into iterations of Kalman smoothers that are
augmented with input signal estimation for general B
(Loeliger 2016). This approach appears to work very
well, but it may suffer from zero-variance stucking (as
will be explained in Section 2.3) and convergence may
be slow.

In this paper, we use the same NUP representations,
but we propose another estimation algorithm, which
avoids zero-variance stucking, converges faster, and
makes it easier to control the parameters for constraint
satisfaction.

The paper is structured as follows. Section 2 intro-
duces the system model with NUP priors and reviews
pertinent prior work. The proposed new algorithm is
given in Section 3. Some applications and numerical
results are given in Section 4.

The following notation will be used: “k : `” denotes
a range of indices, e.g., Uk:` = (Uk, . . . , U`); “∝”
denotes equality of functions up to a scale factor;

(ξ)+
4
= max{ξ, 0}; and N (ξ; θ) denotes a Gaussian

probability density function in ξ with parameter(s) θ.

The factor graph notation follows Loeliger et al.
(2007), where variables are represented by edges and
factors are represented by nodes/boxes. Forward and
backward arrows (e.g., −→µUn

and←−µUn
) refer to messages

flowing with or against, respectively, the arrows in Fig-
ures 1 and 2. In this paper, messages are (possibly de-
generate) Gaussian probability density functions, up
to a scale factor, and are parameterized either by a

mean −→m and a covariance matrix
−→
V , or by a precision

matrix
−→
W =

−→
V −1 and the vector

−→
ξ =

−→
W−→m, and like-

wise with reversed arrows.

2 BACKGROUND

2.1 System Model with NUP Priors

We will use the system model (1)–(3) with a prior of
the (separable) form

p(u1, . . . , uN) =

N∏

n=1

p(un) (4)

with (possibly improper) p(un) that can be written as

p(un) = max
θn

ρ(un, θn), (5)

where

ρ(un, θn)
4
= N (un; θn)g(θn). (6)

g(θ1)

?
θ1

N (u1; θ1)

?
U1

ρ(u1, θ1)

· · ·

g(θN)

?
θN

N (uN ; θN)

?
UN

ρ(uN , θN)

p(y̆|u1, . . . , uN)

according to (1)–(3)

y̆1
· · ·

y̆N

Figure 1: Factor graph of the system model.

The parameter θn in (6) comprises a mean −→mUn
and a

variance (or a covariance matrix)
−→
VUn

, and g is cho-
sen so that (5) is some desired prior or enforces some
constraint on Un.

Note that NUP priors of the form (5) are essentially
equivalent to variational representations of regulariz-
ers as in Palmer et al. (2005); Bach et al. (2012); Ar-
avkin et al. (2014), which, however, does not exhaust
all NUP priors, (cf. Giri et al., 2016; Loeliger, 2023).

With u
4
= (u1, . . . , uN) = u1:N , y̆

4
= y̆1:N , and θ

4
=

θ1:N , the joint probability density function of u and y̆
is

p(y̆|u)p(u) = p(y̆|u)

N∏

n=1

p(un) (7)

= max
θ
f(u, θ) (8)

with

f(u, θ)
4
= p(y̆|u)

N∏

n=1

ρ(un, θn), (9)

which is illustrated in Figure 1.

2.2 Iteratively Reweighted Linear Gaussian
Estimation (IRLGE)

In (Loeliger et al., 2016, 2018; Loeliger, 2023), a joint
MAP estimate of U and θ (for fixed y̆) was computed
by alternating maximization, i.e., by iterating the fol-
lowing two steps until convergence:

Yun-Peng Li, Hans-Andrea Loeliger

Table 1: Selected scalar NUP priors and update rules for their mean −→mUn and variance
−→
VUn

− log p(un) −→mUn

−→
VUn

Laplace/L1 β|un| 0 |ûn|/β

Huber loss

{
u2
n

2r2 + β2r2

2 |un| ≤ βr2

β|un| |un| > βr2
0

{
r2

|ûn|/β

hinge loss β(a− un)+ a+ |ûn − a| 2|ûn − a|/β

Vapnik loss β
(
|un − a|+ |un − b|

) a|ûn − b|+ b|ûn − a|
|ûn − a|+ |ûn − b|

|ûn − a||ûn − b|
β [|ûn − a|+ |ûn − b|]

plain NUV ln |un| 0 û2
n

1. For fixed θ = θ̂, compute

û = argmax
u

p(y̆|u)p(u) (10)

= argmax
u

p(y̆|u)

N∏

n=1

ρ(un, θ̂n) (11)

= argmax
u

p(y̆|u)

N∏

n=1

N (un; θ̂n). (12)

2. For fixed u = û, compute

θ̂ = argmax
θ

p(y̆|u)p(u) (13)

= argmax
θ

p(y̆|û)

N∏

n=1

ρ(ûn, θn), (14)

which splits into

θ̂n = argmax
θn

ρ(ûn, θn) (15)

for n = 1, . . . , N .

Step 1 of this approach is linear Gaussian estimation
and can be carried out by Kalman smoothing (involv-
ing both a forward recursion and a backward recur-
sion) augmented with input estimation. Step 2 of
this approach amounts to simple closed-form updates,
some important cases of which are recalled in Table 1
(cf. MacKay, 1992; Tipping et al., 2003; Bach et al.,
2012; Keusch, 2023; Loeliger, 2023), where β > 0 is a
scale parameter. The hinge loss and the Vapnik loss
will later (in Section 3.4) be used to enforce the con-
straints Un ≥ a and a ≤ Un ≤ b.

2.3 Zero-Variance Stucking

An issue with the approach of Section 2.2 (IRLGE)

is the possibility of getting stuck with
−→
VUn

= 0 and

ûn = −→mUn for some input Un, at a point û =
(û1, . . . , ûN) that is not a maximum of p(y̆|u)p(u).

Specifically, the update of ûn in (12) can be written as

ûn =
−→mUn

←−
VUn +←−mUn

−→
VUn−→

VUn +
←−
VUn

(16)

where ←−mUn
and
←−
VUn

are the parameters of the (Gaus-
sian) backward message at Un. It can happen that (15)

updates
−→
VUn to zero. In this case, (16) will update ûn

to −→mUn , which in turn keeps
−→
VUn stuck at zero. In the

first line of Table 1, this happens for ûn = 0; in the
third line of Table 1, this happens for ûn = a; and in
the fourth line of Table 1, this happens for ûn ∈ {a, b}.
The algorithm proposed in the next section does not
have this problem (since its update (23) of ûn disre-

gards
−→
VUn

).

3 PROPOSED ALGORITHM

3.1 Iterated Backward Filtering Forward
Deciding (IBFFD)

We now propose to compute the same estimate as in
Section 2.2 (i.e., the joint MAP estimate of U and θ) by
iterating the following three steps until convergence:

1. Standard backward filtering (BF). For fixed θ = θ̂,
compute←−µXn(xn) ∝ max

un:N

p(y̆n:N |xn, un:N)p(un:N) (17)

∝ max
un:N

p(y̆n:N |xn, un:N)

`=N∏

`=n

N (u`; θ̂`) (18)

for n = N,N − 1, . . . , 1 by the recursion←−µXn
(xn) ∝ max

un,xn+1

p(xn+1|xn, un)p(y̆n|xn)

· N (un; θ̂n)←−µXn+1
(xn+1) (19)

Backward Filtering Forward Deciding in Linear Non-Gaussian SSM

beginning with ←−µXN+1
(xN+1) = 1 (or with some

Gaussian ←−µXN+1
expressing some side informa-

tion about XN+1). The function ←−µXn
is a (pos-

sibly degenerate) Gaussian density, up to an ir-
relevant scale factor, p(xn+1|xn, un) is determin-
istic according to (1), and p(y̆n|xn) is given by (2)
and (3).

The recursion (19) is efficiently computed by
the standard backward information filter (Fraser,
1967), or, equivalently, the backward recursion of
BIFM (backward information filter, forward with
marginals) message passing (Loeliger et al., 2016).

2. Forward deciding (FD). Begin by computing

x̂1 = argmax
x1

p(x1)←−µX1
(x1), (20)

where p(x1) is the given (proper or improper)
Gaussian prior on X1. Then, for n = 1, 2, . . . , N ,
compute ûn with fixed X1 = x̂1 and U1:n−1 =
û1:n−1 (and thereby fixed X1:n = x̂1:n), and fixed
θn+1:N = θ̂n+1:N (but ignoring θ̂1:n), by

ûn = argmax
un

max
un+1:N

p(y̆|u)p(u) (21)

= argmax
un

max
un+1:N

p(y̆n+1:N |x̂n, un:N)

· p(un)

N∏

`=n+1

N (u`; θ̂`) (22)

= argmax
un

p(un)←−µUn
(un), (23)

where ←−µUn
is a (possibly degenerate) Gaussian

density, up to an irrelevant scale factor, given by

←−µUn
(un) ∝ max

un+1:N

p(y̆n+1:N |x̂n, un:N)

·
N∏

`=n+1

N (u`; θ̂`) (24)

∝ max
xn+1

p(xn+1|x̂n, un)←−µXn+1(xn+1) (25)

with ←−µXn+1
from (18).

3. For fixed u = û, compute

θ̂ = argmax
θ

p(y̆|u)p(u), (26)

which splits as in (15). This step coincides with
Step 2 of IRLGE and can be carried out using
Table 1.

For scalar Un, Table 2 gives the update rule (23) (for
the same priors p(un) as in Table 1) in terms of the

mean ←−mUn and the variance
←−
VUn of ←−µUn . Some of

these rules coincide with well-known proximal opera-
tors (Moreau, 1965; Parikh et al., 2014); e.g., the first

Table 2: Deciding rule (23)

ûn condition

Laplace/L1

←−mUn
+ β
←−
VUn

←−mUn
< −β←−VUn

0 |←−mUn
| ≤ β←−VUn←−mUn

− β←−VUn

←−mUn
> β
←−
VUn

Huber loss

←−mUn
+ β
←−
VUn

←−mUn
< −β(

←−
VUn

+ r2)

r2←−mUn
←−
VUn+r2

|←−mUn
| ≤ β(

←−
VUn

+ r2)←−mUn
− β←−VUn

←−mUn
> β(

←−
VUn

+ r2)

hinge loss

←−mUn
+ β
←−
VUn

←−mUn
< −β←−VUn

+ a

a −β←−VUn
+ a ≤ ←−mUn

≤ a←−mUn

←−mUn
> a

Vapnik loss

←−mUn
+ 2β

←−
VUn

←−mUn
< −2β

←−
VUn

+ a

a −2β
←−
VUn

+ a ≤ ←−mUn
≤ a←−mUn

a < ←−mUn
< b

b b ≤ ←−mUn
≤ 2β

←−
VUn

+ b←−mUn
− 2β

←−
VUn

←−mUn
> 2β

←−
VUn

+ b

plain NUV

←−mUn
−
[←−
VUn

/←−mUn

] ←−mUn
< −←−V 1/2

Un

0 |←−mUn
| ≤ ←−V 1/2

Un←−mUn
−
[←−
VUn

/←−mUn

] ←−mUn
>
←−
V

1/2
Un

line is the soft-thresholding operator of Donoho et al.
(1995) and the last line was used by Tipping et al.
(2003).

Convergence of this algorithm will be discussed in Sec-
tion 3.3.

Note that backward filtering forward deciding in itself
is just classical dynamic programming (Bellman, 1954)
(with optimal-value function (17)–(19)). The point of
this paper is the specific blending of this idea with
NUP priors as described above.

3.2 Detailed Algorithm

A complete IBFFD algorithm (with Step 3 included in
the forward recursion) is given in Algorithm 1, which
refers to the system model of Section 1 for the case of
multiple inputs, where Un = (Un,1, . . . , Un,L) consists
of independent scalar components Un,` and b` denotes
column ` of the matrix B, as illustrated in Figure 2.

Algorithm 1 implements IBFFD as Gaussian mes-
sage passing in Figure 2; its details are easily assem-
bled from the pertinent tables given in Loeliger et al.
(2016). The complexity (per iteration) of the algo-

Yun-Peng Li, Hans-Andrea Loeliger

p(x1)

A +

B

p(un)

=

C

+

XN+1

n = 1 : N

Xn

Un

X
′
n+1 Xn+1

Yn

Y̆n

y̆n

Zn N (zn; 0, VZn)

+

b`

N (un,`; θn,`)

g(θn,`)

= =

` = 1 : L

X
′
n+1 X`−1

n+1

Un,`

θn,`

X`
n+1 Xn+1

Figure 2: Factor graph of SSM with noisy observations y̆1, y̆2, · · · , y̆N driven by unknown inputs U1, U2, · · · , UN .

rithm is linear in N and it involves no matrix inver-
sions (or solving linear equations) except in (30).

By default (i.e., unless some extra information
about XN+1 warrants another choice), the back-
ward message ←−µXN+1

is neutral (uninformative), i.e.,←−µXN+1
(xN+1) = 1, which is represented by the preci-

sion matrix
←−
WXN+1

= 0 and
←−
ξXN+1

= 0. In this case,
no meaningful estimate of UN is possible, and both
−→mUN

and
−→
VUN

can be left unchanged throughout the
algorithm.

3.3 Convergence and Convexity

Both IRLGE and IBFFD try to maximize (9) by some
version of alternating (or cyclic) maximization, which
guarantees convergence (to something) except for very
exotic situations. However, the NUP representation
(5) may introduce spurious maxima (with variance
zero) into (9), which underly the problem discussed
in Section 2.3. However, the update rule (21)–(23)
makes it extremely unlikely to get trapped in such a
spurious maximum.

In consequence, IBFFD will “practically almost
surely” converge to a local maximum of p(y̆|u)p(u).

In all the applications and numerical experiments in
Section 4, − log p(y̆|u)p(u) is convex, in which case
IBFFD will “practically almost surely” find the max-
imum of p(y̆|u)p(u).

3.4 Constraint Satisfaction

Both the hinge loss prior and the Vapnik loss prior can
be used to enforce linear constraints on Un. Specifi-
cally, with sufficiently large β, the (improper) hinge
loss “prior” p(un) ∝ exp(−β(a−un)+) can be used to

enforces ûn ≥ a, and (improper) Vapnik loss “prior”
p(un) ∝ exp(−β|un − a| − β|un − b|) with a < b can
be used to enforce ûn ∈ [a, b].

However, the choice of β (“sufficiently large”) is not
obvious since choosing β to be unnecessarily large
slows down the convergence of iterative algorithms like
IRLGE and IBFFD. An obvious approach (used with
IRLGE by Keusch (2023)) is to run the algorithm with
fixed β until convergence; then check the constraints,
increase β if necessary (e.g., by a factor of 2), and
re-run the algorithm.

However, IBFFD offers an attractive alternative: Al-
gorithm 1 is easily adapted to guarantee constraint
satisfaction in every forward recursion by allowing an
individual factor βn for each n, which is increased, if
necessary, during the forward recursion. For each un,
the required minimal value of βn is easily obtained
from the update rules in Table 2: if the constraint
ûn ≥ a is violated, increasing βn to

βn =
a−←−mUn←−
VUn

(35)

results in ûn ≥ a; if the constraint ûn ∈ [a, b] is vio-
lated, increasing βn to

βn = max

{
a−←−mUn

2
←−
VUn

,
←−mUn

− b
2
←−
VUn

}
(36)

results in ûn ∈ [a, b]. Consequently, the deciding rules
in Table 2 work as proximal operators (Parikh et al.,
2014) and project ûn on the boundary of the con-
straints by selecting appropriate βn when necessary.

Backward Filtering Forward Deciding in Linear Non-Gaussian SSM

Algorithm 1 IBFFD

1: Initialize −→mUn,`
,
−→
VUn,`

for n = 1, . . . , N and ` = 1, . . . , L.
2: while not converged do
3: Backward filtering recursion: Begin with←−

ξXN+1
= 0 and

←−
WXN+1

= 0 (unless some ex-
tra information about XN+1 warrants another
choice).

4: for n = N to 1 do
5: ←−

WXL
n+1

=
←−
WXn+1

,
←−
ξXL

n+1
=
←−
ξXn+1

. (27)

6: for ` = L to 1 do
7:

H`
n+1 =

[−→
V −1
Un,`

+ bT`
←−
WX`

n+1
b`

]−1

,

h`n+1 = b`H
`
n+1

[−→
V −1
Un,`

−→mUn,`
+ bT`
←−
ξX`

n+1

]
,←−

ξX`−1
n+1

=
←−
ξX`

n+1
−←−WX`

n+1
h`n+1,←−

WX`−1
n+1

=
←−
WX`

n+1
−←−WX`

n+1
b`H

`
n+1b

T
`

←−
WX`

n+1
.

(28)
8: end for
9: ←−

ξXn
= AT←−ξX0

n+1
+ CT←−V −1

Yn

←−mYn
,←−

WXn = AT←−WX0
n+1

A+ CT←−V −1
Yn
C.

(29)

10: end for
11: Forward deciding recursion: beginning with

−→mX1
,
−→
VX1

, obtain x̂1 = mX1
by solving the lin-

ear equations

[−→
V −1
X1

+
←−
WX1

]
mX1 =

−→
V −1
X1

−→mX1 +
←−
ξX1 . (30)

12: for n = 1 to N do
13: x̂0

n+1 = Ax̂n. (31)

14: for ` = 1 to L do
15: ←−

VUn,`
=
[
bT`
←−
WX`

n+1
b`

]−1

,

←−mUn,`
=
←−
VUn,`

[
bT`
←−
ξX`

n+1
− bT`
←−
WX`

n+1
x̂`−1
n+1

]
.

(32)
16: Decide ûn,` according to Table 2.
17:

x̂`n+1 = x̂`−1
n+1 + b`ûn,`. (33)

18: Update θ̂n,` = (−→mUn,`
,
−→
VUn,`

) according to
Table 1.

19: end for
20: x̂n+1 = x̂Ln+1. (34)

21: end for
22: end while

4 APPLICATIONS AND
SIMULATION RESULTS

4.1 Regression with Constraints on (k + 1)-th
Order Differences

For a given time series y̆ ∈ RN , consider the problem
of computing y ∈ RN such that

J(y) =
1

2

N∑

n=1

(y̆n − yn)2 + β

N−k−1∑

n=1

κ(∆k+1
yn) (37)

(for fixed k ≥ 0 and β > 0) is as small as possible,
where

∆k+1
yn =

{
yn+1 − yn k = 0,

∆k
yn+1

−∆k
yn k = 1, 2, . . . ,

(38)

is the (k + 1)-th order forward difference of y. For
κ(z) = z2, (37) is the classical smoothing spline prob-
lem (De Boor, 1978). As is well known (Kohn et al.,

1992; Durbin et al., 2012), un
4
= ∆k+1

yn can be viewed
as the input of a linear SSM with

A =

ak ak−1 · · · a1 a0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

∈ R(k+1)×(k+1),

B =
(
1 0 · · · 0 0

)T ∈ R(k+1)×1,

C =
(
0 0 · · · 0 1

)
∈ R1×(k+1),

(39)
where coefficients ai = (−1)i+k

(
k+1
i

)
.

We will consider two variations of this problem that
have been considered in the literature: in Section 4.1.1,
we use κ(un) = |un| for trend filtering (Kim et al.,
2009); in Section 4.1.2, we consider the constraint
un ≥ 0 for shape-constrained regression (Guntuboyina
et al., 2018), and we encourage this constraint with the
hinge loss κ(un) = (−un)+. In both cases, there is a
finite βmax such that the minimizer y of (37) does not
change with β for β ≥ βmax.

4.1.1 Trend Filtering with Laplace Prior

In this section, we experimentally compare different
algorithms for minimizing (37) for κ(z) = |z| and k ∈
{1, 2}.
Specifically, we compare IBFFD with the primal-dual
interior point method (PDIP) (Kim et al., 2009) and
with an alternating direction method of multipliers
(ADMM) (Ramdas et al., 2016), which are popular
methods for trend filtering with fixed β. The perfor-
mance of PDIP depends on its log barrier update as

Yun-Peng Li, Hans-Andrea Loeliger

0 0.2 0.4 0.6 0.8 1

0

10

20 β = 10−4βmax

k = 1
k = 2

0 0.2 0.4 0.6 0.8 1

0

10

20 β = 10−2βmax

k = 1
k = 2

0 0.2 0.4 0.6 0.8 1

0

10

20 β = βmax

k = 1
k = 2

0 10 20 30 40 50

9

10

11

12
k = 1, β = 10−4βmax

ln
J
(y
)

IBFFD
ADMM
PDIP

0 10 20 30 40 50

10

12

14

16
k = 1, β = 10−2βmax

IBFFD
ADMM
PDIP

0 10 20 30 40 50

12

14

16

18

20

22

k = 1, β = βmax

IBFFD
ADMM
PDIP

0 10 20 30 40 50

10

12

14

16

18 k = 2, β = 10−4βmax

Iteration

ln
J
(y
)

IBFFD
ADMM
PDIP

0 10 20 30 40 50

10

15

20

k = 2, β = 10−2βmax

Iteration

IBFFD
ADMM
PDIP

0 10 20 30 40 50
10

15

20

25
k = 2, β = βmax

Iteration

IBFFD
ADMM
PDIP

Figure 3: Comparison of different algorithms for trend
filtering of the “blocks” data of Donoho et al. (1995)
for k = 1 and k = 2. Top row: raw data y̆ (circles)
and estimate y from IBFFD. Middle and bottom rows:
convergence of the fitting cost ln J(y) for different val-
ues of β.

0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

β = 10−4βmax

k = 1
k = 2

0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

β = 10−2βmax

k = 1
k = 2

0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

β = βmax

k = 1
k = 2

0 10 20 30 40 50

8

9

10

11

12 k = 1, β = 10−4βmax

ln
J
(y
)

IBFFD
ADMM
PDIP

0 10 20 30 40 50

10

12

14

16 k = 1, β = 10−2βmax

IBFFD
ADMM
PDIP

0 10 20 30 40 50

12

14

16

18

20

22

k = 1, β = βmax

IBFFD
ADMM
PDIP

0 10 20 30 40 50

10

12

14

16

18

k = 2, β = 10−4βmax

Iteration

ln
J
(y
)

IBFFD
ADMM
PDIP

0 10 20 30 40 50

10

12

14

16

18

20

22

k = 2, β = 10−2βmax

Iteration

IBFFD
ADMM
PDIP

0 10 20 30 40 50
10

15

20

25
k = 2, β = βmax

Iteration

IBFFD
ADMM
PDIP

Figure 4: Same as Fig. 3 for the “Doppler” data of
Donoho et al. (1995).

IBFFD ADMM PDIP

0.1

0.2

0.3

0.4
N = 500

T
im

e
p
er

it
er

at
io

n
(m

s)

IBFFD ADMM PDIP
0.1

0.2

0.3

0.4
N = 1000

IBFFD ADMM PDIP

0.2

0.3

0.4

0.5
N = 2000

IBFFD ADMM PDIP
0.4

0.6

0.8

1

1.2

1.4

1.6 N = 5000

T
im

e
p
er

it
er

at
io

n
(m

s)

IBFFD ADMM PDIP

2

4

6

8

10

N = 10000

IBFFD ADMM PDIP

2

4

6

8

10

12 N = 20000

Figure 5: Box plots of running time (ms) per iteration
of IBFFD, ADMM, and PDIP. For each N, the time
per iteration was averaged over a total of 1000 rep-
etitions: two choices of underlying functions (blocks
and Doppler), two choices of k = 1, 2, five values of
β = 10−iβmax(i = −4, · · · , 0), and 50 repetitions of
each combination.

well as the backtracking line search; the speed of con-
vergence of ADMM depends on the choice of the aug-
mented Lagrangian parameter.

For experiments in this part, we used the C versions of
PDIP and ADMM from Koh et al. (2008) and Arnold
et al. (2014), respectively. The IBFFD of this pa-
per was implemented in C as well1. The pertinent
hyper-parameters of PDIP and ADMM are the de-
fault choices suggested by their authors. No hyper-
parameters are required by IBFFD (with fixed β).

Some experimental results are given in Figs. 3–5. Figs.
3 and 4 show the convergence behaviour of these algo-
rithms for the “blocks” and “Doppler” data of Donoho
et al. (1995), both with N = 2048 and noisy observa-
tions with SNR = 49.

In these simulations, IBFFD converges faster than
ADMM and never slower than PDIP. Moreover,
IBFFD is more robust than PDIP for k = 2 and
β ≈ βmax.

Fig. 5 shows the time per iteration of these algorithms,
which are rather similar. (The large variance of the
running time of PDIP is due to its unstable backtrack-
ing line search.) IRLGE (not shown here) has essen-
tially the same running time per iteration as IBFFD,
but it requires more iterations.

1https://github.com/yunpli2sp/NUP4SSM/

Backward Filtering Forward Deciding in Linear Non-Gaussian SSM

1,880 1,900 1,920 1,940 1,960 1,980 2,000 2,020

−0.5

0

0.5

1 β = 10−4βmax

T
em

pe
ra

tu
re

an
om

al
y

k = 0
k = 1

1,880 1,900 1,920 1,940 1,960 1,980 2,000 2,020

−0.5

0

0.5

1 β = 10−2βmax

k = 0
k = 1

1,880 1,900 1,920 1,940 1,960 1,980 2,000 2,020

−0.5

0

0.5

1 β = βmax

k = 0
k = 1

0 20 40 60 80 100

1

1.5

2

2.5

3

3.5 β = 10−4βmax

J
(y

IR
L
G
E
)/
J
(y

IB
F
F
D
)

k = 0

0 20 40 60 80 100

0.8

1

1.2
β = 10−2βmax

k = 0

0 20 40 60 80 100

1

1.5

2

2.5

β = βmax

k = 0

0 20 40 60 80 100

1

1.5

2

2.5

β = 10−4βmax

Iteration

J
(y

IR
L
G
E
)/
J
(y

IB
F
F
D
)

k = 1

0 20 40 60 80 100

0.98

1

1.02

β = 10−2βmax

Iteration

k = 1

0 20 40 60 80 100

0.96

0.98

1

β = βmax

Iteration

k = 1

Figure 6: Shape-constrained regression of the global
warming dataset. Top row: raw data y̆ (circles) and es-
timated y from IBFFD. Middle and bottom rows: the
ratio J(yIRLGE)/J(yIBFFD) of the fitting costs of IRLGE
and IBFFD.

4.1.2 Encouraging Shape Constraints with
Hinge Loss Prior

In this section, we demonstrate the use of the hinge-
loss κ(un) = (−un)+, and we compare IBFFD (with
fixed β) with IRLGE as in Loeliger et al. (2016). For
k = 0, κ(un) = (−yn+1+yn)+ encourages the estimate
y to be monotonously increasing; for k = 1, κ(un) =
(−yn+2 + 2yn+1 − yn)+ encourages the estimate y to
be convex.

Following Tibshirani et al. (2011), we here use the
global warming datasets containing the annual tem-
perature anomalies from 1880 to 2022 (NOAA, 2023).

Some pertinent simulation results are shown in Fig. 6.
In the top row, we see the progression from inter-
polation (for small β) to constraint satisfaction (for
β = βmax). The middle and bottom rows of Fig. 6
summarize 100 experiments for each choice of β, with

random initial variances
−→
VUn

; for each such experi-
ment, the cost ratio J(yIRLGE)/J(yIBFFD) is recorded
for every iteration.

We observe that J(yIRLGE)/J(yIBFFD) ≥ 1 holds al-
most always, and sometimes J(yIRLGE)/J(yIBFFD) >
1 even after convergence. We therefore conclude
that (i) IBFFD converges faster than IRLGE and
(ii) IRLGE may fail to converge to the actual mini-
mum; the latter issue is due to zero-variance stucking
(Section 2.3) and avoided by IBFFD.

0 20 40 60 80 100

−1.5

−1

−0.5

0

Po
sit

io
n
X

n
,1

hinge
Vapnik

0 20 40 60 80 100

−5

0

5

10

15

·10−2

Ve
lo

cit
y
X

n
,3

hinge
Vapnik

0 20 40 60 80 100

0

50

100

150

200

Ac
ce

ler
at

io
n
U
n
,1

hinge
Vapnik

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2

n

Po
sit

io
n
X

n
,2

hinge
Vapnik

0 20 40 60 80 100
−15

−10

−5

0

5

·10−2

n

Ve
lo

cit
y
X

n
,4

hinge
Vapnik

0 20 40 60 80 100

0

20

40

60

80

n

Ac
ce

ler
at

io
n
U
n
,2

hinge
Vapnik

Figure 7: States Xn and inputs Un of the example in
Section 4.2, for two different constraints on the inputs.
Green: Un,` ≥ −10; blue: Un,` ∈ [−10, 10].

4.2 Control with Linearly Constrained
Inputs

Given a dynamical system (1), a desired final state
xf ∈ RM , and a cost function

J(u1:N)
4
= (xN+1 − xf)

T
Qf (xN+1 − xf)

+

N∑

n=1

(xn − xf)
T
Q (xn − xf) (40)

with positive definite matrices Q and Qf , consider
the problem of computing an input signal u1:N that
minimizes (40) subject to un,` ≥ a, or subject to
a ≤ un,` ≤ b, for all n and `.

The hinge loss prior and the Vapnik prior can be used
to solve such problems using IRLGE as in Keusch
(2023). However, as mentioned in Section 3.4, IBFFD
offers an attractive alternative by allowing an individ-
ual factor βn,` for each scalar input un,`, and increasing
it, if necessary, during the forward recursion according
to (35) or (36).

For this application, we modify Algorithm 1 as follows:

1. Since x1 is given, the matrix computation (30) is
omitted.

2. The backward filtering begins with
←−
WXN+1

= Qf

and
←−
ξXN+1

= Qfxf .

3. Equation (29) is changed to

←−
ξXn

= AT←−ξX0
n+1

+Qxf ,←−
WXn

= AT←−WX0
n+1

A+Q.
(41)

The proposed algorithm works very well, as illustrated
by the following example. Consider a object moving

Yun-Peng Li, Hans-Andrea Loeliger

0 50 100 150 200

0.2

0.4

0.6

0.8
·104

J
(u

1:
N
)

IRLGE(β = 5)
IRLGE(β = 500)

IBFFD

0 20 40 60 80 100

0

50

100

150

200

U
n
,1

IRLGE(β = 5)
IRLGE(β = 500)

IBFFD

0 20 40 60 80 100

−50

0

50

U
n
,2

IRLGE(β = 5)
IRLGE(β = 500)

IBFFD

0 50 100 150 200

0.4

0.6

0.8

1

·104

Iteration

J
(u

1:
N
)

IRLGE(β = 5)
IRLGE(β = 500)

IBFFD

0 20 40 60 80 100

0

20

40

60

n

U
n
,1

IRLGE(β = 5)
IRLGE(β = 500)

IBFFD

0 20 40 60 80 100

−40

−30

−20

−10

0

10

n

U
n
,2

IRLGE(β = 5)
IRLGE(β = 500)

IBFFD

Figure 8: Comparing IBFFD and IRLGE in linearly
constrained control. Top row: Un,` ≥ −10 with hinge
loss; bottom row: Un,` ∈ [−10, 10] with Vapnik loss.

in 2D according to

Xn+1,1

Xn+1,2

Xn+1,3

Xn+1,4

︸ ︷︷ ︸
Xn+1

=

1 0 τ 0
0 1 0 τ
0 0 1 0
0 0 0 1

︸ ︷︷ ︸
A

Xn +

0 0
0 0
α 0
0 α

︸ ︷︷ ︸
B

(
Un,1
Un,2

)

︸ ︷︷ ︸
Un

,

(42)
where (Xn+1,1, Xn+1,2) ∈ R2 is the position,
(Xn+1,3, Xn+1,4) ∈ R2 is the velocity, and the input
(Un,1, Un,2) ∈ R2 is the acceleration.

The results of a pertinent numerical example are
shown in Figure 7. The details are as follows: the
given initial state is x1 = (−1.5, 0.8,−0.05, 0.08)T, the
desired final state is xf = (0, 0, 0, 0)T, τ = 1, α =
10−3, N = 100, Q = 102I, and Qf = 108I (where I is
the identity matrix).

As shown in Figure 7, the latent state Xn is success-
fully steered from x1 to xf using duly constrained con-
trol inputs.

A comparison of IBFFD with IRLGE (in the same
setting as Figure 7) is shown in Figure 8. IRLGE
normally works with a fixed global β that needs to
be adjusted: if β is too small, the constraints are not
satisfied, and if β is large, convergence is slow. By con-
trast, IBFFD (as discussed in Section 3.4) guarantees
constraint satisfaction and converges faster.

5 CONCLUSION

We proposed an iterated BFFD (backward filtering
forward deciding) algorithm for MAP estimation in
linear state space models with NUP priors, with a
focus on non-Gaussian input estimation. Compared
with prior work, the proposed approach avoids zero-
variance stucking, converges faster, and makes con-
straint satisfaction much easier. These advantages

were demonstrated with several examples, all with
convex cost functions; for nonconvex cost functions
(e.g., for a binarizing prior p(un)), the deciding rule
(21) can be too agressive and the method of (Keusch
et al., 2021, 2024) may still perform better.

References

A. Y. Aravkin, J. V. Burke, and G. Pillonetto, “Opti-
mization viewpoint on Kalman smoothing with ap-
plications to robust and sparse estimation,” Com-
pressed Sensing & Sparse Filtering, pp. 237–280,
2014.

T. B. Arnold, V. Sadhanala, and R. J. Tibshirani,
glmgen: Fast algorithms for generalized lasso prob-
lems, September 2014. URL https://github.com/

glmgen.

F. Bach, R. Jenatton, J. Mairal, G. Obozinski, “Opti-
mization with Sparsity-Inducing Penalties,” Foun-
dations and Trends® in Machine Learning, vol. 4,
no. 1, pp. 1–106, 2012.

L. Bruderer and H.-A. Loeliger. “Estimation of sen-
sor input signals that are neither bandlimited nor
sparse,” in 2014 Information Theory and Applica-
tions Workshop (ITA), pp. 1–5, 2014.

R. Bellman, “The theory of dynamic program-
ming,” Bulletin of the American Mathematical So-
ciety, vol. 60, no. 6, pp. 503–515, 1954.

C. De Boor, A Practical Guide to Splines, vol. 27.
Springer-Verlag, New York, 1978.

D. L. Donoho and I. M. Johnstone. “Adapting to un-
known smoothness via wavelet shrinkage,” Jour-
nal of the American Statistical Association, vol. 90,
no. 432, pp. 1200–1224, 1995.

J. Durbin and S. J. Koopman, Time Series Analysis
by State Space Methods, OUP Oxford, 2012.

R. C. Fraser, A New Technique For the Optimal
Smoothing of Data. PhD thesis, Massachusetts In-
stitute of Technology, 1967.

A. Guntuboyina and B. Sen, “Nonparametric shape-
restricted regression,” Statistical Science, vol. 33,
no. 4, pp. 568–594, 2018.

G. Gakis and M. C. Smith, “A limit Kalman filter
and smoother for systems with unknown inputs,”
Int. Journal of Control, vol. 97, no. 3, pp. 532–542,
2024.

J. Glover, “The linear estimation of completely un-
known signals,” IEEE Trans. on Automatic Control,
vol. 14, no. 6, pp. 766–767, 1969.

R. Giri and B. Rao, “Type I and Type II Bayesian
methods for sparse signal recovery using scale mix-
tures,” IEEE Trans. on Signal Processing, vol. 64,
no. 13, pp. 3418–3428, 2016.

Backward Filtering Forward Deciding in Linear Non-Gaussian SSM

R. E. Kalman, “A new approach to linear filtering and
prediction problems,” Journal of Basic Engineering,
vol. 82, no. 1, pp. 35–45, 1960.

R. Keusch, H. Malmberg, and H.-A. Loeliger, “Bi-
nary control and digital-to-analog conversion using
composite NUV priors and iterative Gaussian mes-
sage passing,” in 2021 IEEE Int. Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pp. 5330–5334, IEEE, 2021.

R. Keusch, Composite NUV Priors and Applications.
PhD thesis, ETH Zurich, 2023.

R. Keusch, H.-A. Loeliger, and T. Geyer, “Long-
horizon direct model predictive control for power
converters with state constraints,” IEEE Trans. on
Control Systems Technology, vol. 32, pp. 340–350,
2024.

S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “`1
Trend filtering,” SIAM Review, vol. 51, no. 2, pp.
339–360, 2009.

K. Koh, S.-J. Kim, and S. Boyd, l1 tf: Software
for l1 Trend Filtering, May 2008. URL http://

stanford.edu/~boyd/l1_tf/.

R. Kohn, C. F. Ansley, and C.-M. Wong, “Nonpara-
metric spline regression with autoregressive moving
average errors,” Biometrika, vol. 79, no. 2, pp. 335–
346, 1992.

H.-A. Loeliger, J. Dauwels, Junli Hu, S. Korl, Li Ping,
and F. R. Kschischang, “The factor graph approach
to model-based signal processing,” Proceedings of
the IEEE, vol. 95, no. 6, pp. 1295–1322, June 2007.

H.-A. Loeliger, L. Bruderer, H. Malmberg, F. Wadehn,
and N. Zalmai, “On sparsity by NUP-EM, Gaussian
message passing, and Kalman smoothing,” 2016 In-
formation Theory and Applications Workshop, pp.
1–10, 2016.

H.-A. Loeliger, “On NUP priors and Gaussian message
passing,” IEEE Int. Workshop on Machine Learning
for Signal Processing, 2023.

H.-A. Loeliger, B. Ma, H. Malmberg, and F. Wadehn,
“Factor graphs with NUP priors and iteratively
reweighted descent for sparse least squares and
more,” 2018 IEEE 10th Int. Symposium on Turbo
Codes & Iterative Information Processing, pp. 1–5,
2018.

D. J. C. MacKay, “Bayesian interpolation,” Neural
Computation, vol. 4, no. 3, pp. 415–447, 1992.

J.-J. Moreau, “Proximité et dualité dans un espace
hilbertien,” Bulletin de la Société mathématique de
France, vol. 93, pp. 273–299, 1965.

NOAA National Centers for Environmental in-
formation, “Climate at a Glance: Global

Time Series, published October 2023,” re-
trieved on October 16, 2023 from https:

//www.ncei.noaa.gov/access/monitoring/

climate-at-a-glance/global/time-series,
2023.

C. A. Politsch, J. Cisewski–Kehe, R. A. Croft, and
L. Wasserman, “Trend filtering – I. A modern sta-
tistical tool for time-domain astronomy and astro-
nomical spectroscopy,” Monthly Notices of the Royal
Astronomical Society, vol. 492, no. 3, pp. 4005–4018,
2020.

J. Palmer, K. Kreutz–Delgado, B. Rao, and D. Wipf,
“Variational EM algorithms for non-Gaussian latent
variable models,” in Advances in Neural Informa-
tion Processing Systems, 2006.

N. Parikh, S. Boyd, “Proximal Algorithms,” Founda-
tions and Trends® in Optimization, vol. 1, no. 3,
pp. 127–239, 2014.

A. Ramdas and R. J. Tibshirani, “Fast and flexi-
ble ADMM algorithms for trend filtering,” Journal
of Computational and Graphical Statistics, vol. 25,
no. 3, pp. 839–858, 2016.

A. K. Roonizi, “`2 and `1 Trend filtering: a Kalman
filter approach [Lecture Notes],” IEEE Signal Pro-
cessing Magazine, vol. 38, no. 6, pp. 137–145, 2021.

A. K. Roonizi, “Kalman filtering in non-Gaussian
model errors: a new perspective,” IEEE Signal Pro-
cessing Magazine, vol. 39, no. 3, pp. 105–114, 2022.

G. Steidl, S. Didas, and J. Neumann, “Splines in
higher order TV regularization,” Int. Journal of
Computer Vision, vol. 70, no. 3, pp. 241–255, 2006.

M. E. Tipping and A. C. Faul, “Fast marginal likeli-
hood maximisation for sparse Bayesian models,” in
Int. Workshop on Artificial Intelligence and Statis-
tics, pp. 276–283, 2003.

R. J. Tibshirani, H. Hoefling, and R. Tibshi-
rani, “Nearly-Isotonic Regression,” Technometrics,
vol. 53, no. 1, pp. 54–61, 2011.

Yun-Peng Li, Hans-Andrea Loeliger

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries.
Not Applicable

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results.
Not Applicable

(b) Complete proofs of all theoretical results.
Not Applicable

(c) Clear explanations of any assumptions.
Not Applicable

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL).
No: the code is not presently included or pub-
licly available

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen).
Not Applicable

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times).
Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider).
No: not relevant

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets.
Yes

(b) The license information of the assets, if ap-
plicable.
No: we use only publicly available data and
code

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable.
No

(d) Information about consent from data
providers/curators.
Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content.
Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots.
Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable.
Not Applicable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation.
Not Applicable

Backward Filtering Forward Deciding
in Linear Non-Gaussian State Space Models:

Supplementary Materials

A MORE ABOUT NUP PRIORS

For selected NUP priors in Table 1, we discuss their variation representations and pertinent updating rules for
unknown parameter θn in this Section. Their densities p(un) (up to a scalar factor) and corresponding penalty
functions − ln p(un) (up to a additive constant) are shown in Figure 9.

−2 −1 0 1 2

0.2

0.4

0.6

0.8

1

p
(u

n
)

Laplace/L1

−2 −1 0 1 2

0.1

0.2

0.3

0.4

0.5

0.6

Huber loss (r = 1)

−2 −1 0 1 2

0.2

0.4

0.6

0.8

1

hinge loss (a = 0)

−2 −1 0 1 2

2

4

6

8

10

12

14
·10−2
Vapnik loss (a = −1, b = 1)

−2 −1 0 1 2

0

200

400

600

800

plain NUV

−2 −1 0 1 2

0

0.5

1

1.5

2

un

−
ln
p
(u

n
)

−2 −1 0 1 2

0.5

1

1.5

2

un
−2 −1 0 1 2

0

0.5

1

1.5

2

un
−2 −1 0 1 2

2

2.5

3

3.5

4

4.5

un
−2 −1 0 1 2

−6

−4

−2

0

un

Figure 9: The densities p(un) and penalty functions − ln p(un) of selected scalar NUP priors.

A.1 Laplace/L1

Considering the variational representation of Laplace/L1 density in

p(un) ∝ exp [−β|un|]

= max
σ2
n

exp

[
− u2

n

2σ2
n

− β2σ2
n

2

]

= max
σ2
n

1√
2πσ2

n

exp

[
− u2

n

2σ2
n

]√
2πσ2

n exp

[
−β

2σ2
n

2

]

= max
θn
N (un; θn)g(θn),

(43)

where unkown parameter θn contains mean −→mUn = 0, variance
−→
VUn = σ2

n. Given un = ûn, closed-form updates
for (15) become

−→mUn
= 0,

−→
VUn

= |ûn|/β. (44)

Yun-Peng Li, Hans-Andrea Loeliger

A.2 Huber loss

When |un| > βr2, Huber loss shares a same variation representation with Laplace/L1, and its closed-form updates
for (15) is (44).

When |un| ≤ βr2, the pertinent density of Huber loss is

p(un) ∝ exp

[
− u

2
n

2r2
− β2r2

2

]

=
1√

2πr2
exp

[
− u

2
n

2r2

]√
2πr2 exp

[
−β

2r2

2

]

= max
θn
N (un; θn)g(θn),

(45)

where unknown parameter θn contains fixed mean −→mUn = 0, fixed variance
−→
VUn = r2, and they are closed-form

updates for (15). Given un = ûn, thus the update rules for Huber loss are
{−→mUn

= 0,
−→
VUn

= r2, |ûn| ≤ βr2,
−→mUn

= 0,
−→
VUn

= |ûn|/β, |ûn| > βr2.
(46)

A.3 Hinge loss

For hinge loss, we consider its variational representation

p(un) ∝ exp [−β(a− un)+]

= exp

[
−β

2
(|un − a|+ a− un)

]

= max
σ2
n

exp

[
− (un − a)2

2σ2
n

− β2σ2
n

8
− β

2
(a− un)

]

= max
σ2
n

exp

[
−(un − a−

βσ2
n

2
)2/(2σ2

n)

]

= max
σ2
n

1√
2πσ2

n

exp

[
−(un − a−

βσ2
n

2
)2/(2σ2

n)

]√
2πσ2

n

= max
θn
N (un; θn)g(θn),

(47)

where the mean −→mUn
and the variance

−→
VUn

contained in the unknown parameter θn are

−→mUn
= a+

βσ2
n

2
,
−→
VUn

= σ2
n. (48)

Given un = ûn, closed-form updates for (15) become

−→mUn
= a+ |ûn − a|,

−→
VUn

= 2|ûn − a|/β. (49)

A.4 Vapnik loss

For the density of Vapnik loss, we consider its variational representation as below

p(un) ∝ exp [−β(|un − a|+ |un − b|)]

= max
σ2
n,a

exp

[
− (un − a)2

2σ2
n,a

− β2σ2
n,a

2

]
·max
σ2
n,b

exp

[
− (un − b)2

2σ2
n,b

−
β2σ2

n,b

2

]

= max
σ2
n,a

max
σ2
n,b

1√
2πσ2

n,a

exp

[
− (un − a)2

2σ2
n,a

]
1√

2πσ2
n,b

exp

[
− (un − b)2

2σ2
n,b

]
· (2π

√
σ2
n,aσ

2
n,b) exp

[
−β

(σ2
n,a + σ2

n,b)

2

]

= max
θn
N (un; θn)g(θn),

(50)

Backward Filtering Forward Deciding in Linear Non-Gaussian SSM

where the mean −→mUn
, variance

−→
VUn

in θn satisfy

−→mUn−→
VUn

=
a

σ2
n,a

+
b

σ2
n,b

,
1
−→
VUn

=
1

σ2
n,a

+
1

σ2
n,b

, (51)

and the unknown parameter θn contains

−→mUn
=
aσ2

n,b + bσ2
n,a

σ2
n,a + σ2

n,b

,
−→
VUn

=
σ2
n,aσ

2
n,b

σ2
n,a + σ2

n,b

. (52)

Given un = ûn, we maximize p(un) by selecting

σ2
n,a = |ûn − a|/β, σ2

n,b = |ûn − b|/β, (53)

and plug them into (52) to obtain

−→mUn
=
a|ûn − b|+ b|ûn − a|
|ûn − a|+ |ûn − b|

,
−→
VUn

=
|ûn − a||ûn − b|

β [|ûn − a|+ |ûn − b|]
(54)

for (15).

A.5 Plain NUV

For plain NUV, its desnity can be expressed as

p(un) ∝ exp [− ln |un|]

∝ max
σ2
n

1√
2πσ2

n

exp

[
− u2

n

2σ2
n

]

= N (un; θn)g(θn),

(55)

where unknown parameter contains mean −→mUn
= 0, variance

−→
VUn

= σ2
n. Given un = ûn, closed-form updates for

(15) become
−→mUn

= 0,
−→
VUn

= û2
n. (56)

B INPUT ESTIMATION IN IRLGE

To apply message passing involving Un in Figure 1, we consider its local part shown in Figure 10, where backward

mean ←−mUn , backward variacne
←−
VUn come from ←−µUn(un), and forward mean −→mUn , forward variance

−→
VUn come

from NUP prior p(un).

Unθn

N
(
un;
←−mUn ,

←−
VUn

)
N(un; θn)g(θn)

p(un)
←−µUn

(un)

Figure 10: Local part of system model involving Un. p(un) is the NUP prior, and ←−µUn(un) is the Gaussian
message collected from the rest of Figure 1.

For single Un, we compute
ûn = argmax

un

p(un)←−µUn(un) (57)

via IRLGE, and the iterative two steps are:

Yun-Peng Li, Hans-Andrea Loeliger

1. For fixed θn = θ̂n = (−→mUn
,
−→
VUn

), computing

ûn = argmax
un

p(un)←−µUn
(un)

= argmax
un

N (un; θ̂n)g(θ̂n))←−µUn
(un)

= argmax
un

N (un; θ̂n)←−µUn
(un)

= argmax
un

N (un;−→mUn
,
−→
VUn

)N (un;←−mUn
,
←−
VUn

)

(58)

yields

ûn =
−→mUn

←−
VUn

+←−mUn

−→
VUn−→

VUn
+
←−
VUn

. (59)

2. For fixed un = ûn, update θ̂n same to equation (15).

According to (59), the description for zero-variance stucking becomes much clear: once
−→
VUn becomes zero owing to

certain û
(k)
n at k-th iteration, the likelihood in N (un; θ̂n) become unbounded, and ûn gets stuck with −→mUn

= û
(k)
n

in subsequent iterations.

C DERIVATIONS OF DECIDING RULES

To avoid zero-variance stucking, the deciding rule in Table 2 can derived by considering (59)(15) simultaneously,

and the obtained fixed point ûn is the solution to (57). Given fixed ←−mUn ,
←−
VUn , deciding rule in (57) selects

the best ûn to maximize the joint MAP probability compared with the limited increase caused by (59) used in
IRLGE,

We next use the −→mUn
,
−→
VUn

in Table 1 and (59) to derive deciding rules for the selected NUP priors.

C.1 Laplace/L1

(59) becomes

ûn =
|ûn|←−mUn

β
←−
VUn + |ûn|

, (60)

therefore, the fixed point ûn is the solution of

ûn|ûn|+ β
←−
VUn ûn −←−mUn |ûn| = 0, (61)

which idicates that

ûn < 0,− û2
n + β

←−
VUn

ûn +←−mUn
ûn = 0 ⇐⇒ ûn = ←−mUn

+ β
←−
VUn

< 0 ⇒←−mUn
< −β←−VUn

,

ûn > 0, û2
n + β

←−
VUn

ûn −←−mUn
ûn = 0 ⇐⇒ ûn = ←−mUn

− β←−VUn
> 0 ⇒←−mUn

> β
←−
VUn

.
(62)

When ûn = 0, we have

ûn = 0 ⇒ |←−mUn
| ≤ β←−VUn

. (63)

C.2 Huber loss

(59) becomes

ûn =

r2←−mUn
←−
VUn+r2

, |ûn| ≤ βr2,

|ûn|←−mUn

β
←−
VUn+|ûn|

, |ûn| > βr2.
(64)

Backward Filtering Forward Deciding in Linear Non-Gaussian SSM

Similar to Laplace/L1, when |ûn| > βr2, the fixed point ûn satisifies following rules

ûn < −βr2,− û2
n + β

←−
VUn

ûn +←−mUn
ûn = 0 ⇐⇒ ûn = ←−mUn

+ β
←−
VUn

< −βr2 ⇒←−mUn
< −β(

←−
VUn

+ r2),

ûn > βr2, û2
n + β

←−
VUn ûn −←−mUn ûn = 0 ⇐⇒ ûn = ←−mUn − β

←−
VUn > βr2 ⇒←−mUn > β(

←−
VUn + r2).

(65)

Additionally, for |ûn| ≤ βr2, we have

ûn =
r2←−mUn←−
VUn + r2

⇒ |←−mUn | ≤ β(
←−
VUn + r2). (66)

C.3 Hinge loss

(59) becomes

ûn =
β(a+ |ûn − a|)

←−
VUn

+ 2|ûn − a|←−mUn

β
←−
VUn

+ 2|ûn − a|
, (67)

therefore, the fixed point ûn is the solution of

2|ûn − a|ûn + β
←−
VUn

ûn − β(a+ |ûn − a|)
←−
VUn
− 2|ûn − a|←−mUn

= 0, (68)

which indicates that

ûn < a, 2|ûn − a|ûn + β
←−
VUn ûn − β(a+ |ûn − a|)

←−
VUn − 2|ûn − a|←−mUn = 0 ⇐⇒

ûn < a, (ûn − a)(ûn − β
←−
VUn
−←−mUn

) = 0 ⇐⇒
ûn = ←−mUn

+ β
←−
VUn

< a ⇒ ←−mUn
< −β←−VUn

+ a;

ûn > a, 2|ûn − a|ûn + β
←−
VUn ûn − β(a+ |ûn − a|)

←−
VUn − 2|ûn − a|←−mUn = 0 ⇐⇒

ûn > a, (ûn − a)(ûn −←−mUn
) = 0 ⇐⇒

ûn = ←−mUn > a ⇒ ←−mUn > a.

(69)

When ûn = a, we have

ûn = a ⇒ −β←−VUn
+ a ≤ ←−mUn

≤ a. (70)

C.4 Vapnik loss

(59) becomes

ûn =
βa
←−
VUn |ûn − b|+ βb

←−
VUn |ûn − a|+←−mUn |ûn − a||ûn − b|

|ûn − a||ûn − b|+ β
←−
VUn |ûn − b|+ β

←−
VUn |ûn − a|

, (71)

therefore, the fixed point ûn is the solution of

(ûn −←−mUn)|ûn − a||ûn − b|+ β
←−
VUn(ûn − a)|ûn − b|+ β

←−
VUn |ûn − a|(ûn − b) = 0. (72)

If ûn < a, (72) tells us

ûn < a, (ûn −←−mUn − 2β
←−
VUn)(ûn − a)(ûn − b) = 0 ⇐⇒ ûn = ←−mUn + 2β

←−
VUn < a ⇒ ←−mUn < −2β

←−
VUn + a. (73)

if ûn > b, (72) tells us

ûn > b, (ûn −←−mUn + 2β
←−
VUn)(ûn − a)(ûn − b) = 0 ⇐⇒ ûn = ←−mUn − 2β

←−
VUn > b ⇒ ←−mUn > 2β

←−
VUn + b. (74)

if a < ûn < b, (72) tells us

a < ûn < b, (ûn −←−mUn)(ûn − a)(ûn − b) = 0 ⇐⇒ a < ûn = ←−mUn < b ⇒ a < ←−mUn < b. (75)

In addition, when ûn = a or ûn = b, we have

ûn = a ⇒ −2β
←−
VUn

+ a ≤ ←−mUn
≤ a, ûn = b ⇒ b ≤ ←−mUn

≤ 2β
←−
VUn

+ b. (76)

Yun-Peng Li, Hans-Andrea Loeliger

C.5 Plain NUV

Different from the joint MAP estimation used in previous derivations, we use Type-II estimation to form a
decision ûn for plain NUV.

Considering the margin density p(σ2
n) in Figure 10

p(σ2
n) ∝

∫ +∞

−∞
N (un; θn)g(θn)←−µUn

(un)dun

=

∫ +∞

−∞

1√
2πσ2

n

exp

[
− u2

n

2σ2
n

]
1√

2π
←−
VUn

exp

[
− (un −←−mUn

)2

2
←−
VUn

]
dun

∝ 1√
2π(σ2

n +
←−
VUn

)

exp

[
−

←−m2
Un

2(σ2
n +
←−
VUn)

]
.

(77)

Maximizing (77) over σ2
n provides

−→
VUn = σ̂2

n =

←−m2
Un
−←−VUn

←−mUn < −
←−
V

1
2

Un

0 |←−mUn
| ≤ ←−V 1

2

Un←−m2
Un
−←−VUn

←−mUn
>
←−
V

1
2

Un

. (78)

We next plug (78) to (59), and obtain

ûn =

←−mUn −
[←−
VUn/

←−mUn

] ←−mUn < −
←−
V

1/2
Un

0 |←−mUn | ≤
←−
V

1/2
Un←−mUn −

[←−
VUn/

←−mUn

] ←−mUn >
←−
V

1/2
Un

. (79)

