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Abstract

Fourier Neural Operator (FNO) is a popular op-
erator learning framework. It not only achieves
the state-of-the-art performance in many tasks,
but also is efficient in training and prediction.
However, collecting training data for the FNO
can be a costly bottleneck in practice, because it
often demands expensive physical simulations.
To overcome this problem, we propose Multi-
Resolution Active learning of FNO (MRA-FNO),
which can dynamically select the input functions
and resolutions to lower the data cost as much
as possible while optimizing the learning effi-
ciency. Specifically, we propose a probabilistic
multi-resolution FNO and use ensemble Monte-
Carlo to develop an effective posterior inference
algorithm. To conduct active learning, we max-
imize a utility-cost ratio as the acquisition func-
tion to acquire new examples and resolutions at
each step. We use moment matching and the ma-
trix determinant lemma to enable tractable, effi-
cient utility computation. Furthermore, we de-
velop a cost annealing framework to avoid over-
penalizing high-resolution queries at the early
stage. The over-penalization is severe when the
cost difference is significant between the resolu-
tions, which renders active learning often stuck at
low-resolution queries and inferior performance.
Our method overcomes this problem and applies
to general multi-fidelity active learning and op-
timization problems. We have shown the advan-
tage of our method in several benchmark operator
learning tasks. The code is available at https:
//github.com/shib0li/MRA-FNO.
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1 INTRODUCTION

Operator learning is emerging as an important topic in sci-
entific machine learning. It intends to estimate function-to-
function mappings and can serve as a useful surrogate model
for many physical simulation related applications, such as
weather forecast (Pathak et al., 2022), control (Bhan et al.,
2023), engineering design (Liu et al., 2023) and inverse
problems (Kaltenbach et al., 2022). One representative
approach is the Fourier neural operator (FNO) (Li et al.,
2020d), which uses fast Fourier transform (FFT) and convo-
lution theorem to implement global linear transforms in the
functional space. The FNO not only shows state-of-the-art
performance in many tasks, but also is highly efficient in
training and prediction.

Despite the advantages, collecting training data for the FNO
can be a severe bottleneck in practice because it often re-
quires many physical simulations (e.g., running numeri-
cal solvers), which is known to be computationally expen-
sive. To reduce the cost, one can consider leveraging multi-
resolution data. The low-resolution data is cheap to obtain —
typically computed with rough meshes — but the provided
output function samples are quite inaccurate (large bias).
On the contrary, high-resolution data offers accurate output
function samples, yet is much more costly to generate from
dense meshes. Although with substantial difference in qual-
ity, the low and high resolution examples share the same
underlying physics and are strongly correlated. Hence, one
can reasonably expect using multi-resolution data to well
train the FNO while reducing the data cost.

However, blindly collecting examples at different resolu-
tions is hardly optimal in both cost saving and learning effi-
ciency. To reduce the data cost to the greatest extent while
optimizing the learning efficiency, we propose MRA-FNO,
a novel multi-resolution active learning method, which can
dynamically select the best input function and resolution
each step, at which to generate new examples. The major
contributions of our work are summarized as follows.

• Probabilistic Multi-Resolution FNO. We first extend
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the FNO to integrate multi-resolution training data. To
capture the influence of the resolution choice on the
predictive distribution, we append a resolution embed-
ding to the samples of the input function. After the
FNO layers, we create two branches: one generates the
prediction mean of the target function and the other
the variance. In this way, the prediction is up to not
only the input function samples but also the resolu-
tion choice. We then use Monte-Carlo ensemble learn-
ing (Lakshminarayanan et al., 2017) to fulfill effective
uncertainty quantification, which is critical for utility
evaluation and active learning.

• Active Learning. To optimize the learning efficiency
while reducing the data cost as much as possible, we
maximize the utility-cost ratio to select the best train-
ing input and resolution at each step, where the util-
ity is measured by mutual information. The strategy
is similar to the state-of-the-art multi-fidelity active
learning and Bayesian optimization methods (Li et al.,
2022b; Takeno et al., 2020; Li et al., 2020a), but there
are two severe challenges. The first challenge is that
the computation of the utility function is analytically
intractable and costly. We use moment matching to
approximate the posterior predictive distribution as a
multi-variate Gaussian. We then leverage the struc-
ture of the covariance matrix, and apply the matrix
determinant lemma to achieve efficient, closed-form
mutual information calculation. The second challenge
is that, directly maximizing the utility-cost ratio as in
previous methods, tends to trap the active learning at
low-resolution queries and inferior performance. This
is due to that when the data is few (at the early stage),
the mutual information measurement for examples at
different resolutions is close. High-resolution exam-
ples are thereby over-penalized by the large cost. We
propose a cost annealing framework, which initializes
the same cost for every resolution. The cost for each
resolution is scheduled to gradually converge to the
true cost along with data accumulation. When the data
is enough and mutual information can reflect the true
potential of each example, our active learning returns
to maximizing the benefit-cost ratio. In this way, our
method can flexibly incorporate high-resolution exam-
ples at the early stage to ensure continuous improve-
ment. Our framework applies to general multi-fidelity
learning and optimization problems.

• Experimental Results. We evaluated MRA-FNO
with four benchmark operator learning tasks, based on
Burger’s, Darcy flow, nonlinear diffusion and Navier-
Stoke equations. On fixed training datasets, our multi-
resolution FNO shows better or very close predic-
tion error as compared to the standard FNO. Both the
prediction accuracy and test log likelihood are much
higher than applying other popular Bayesian infer-

ence methods, including Monte-Carlo (MC) dropout,
stochastic gradient Langevin dynamics and variational
inference. It shows our ensemble inference provides
much better uncertainty quantification. During the
course of each active learning experiment, MRA-FNO
consistently achieves much better prediction accuracy
with the same accumulated data cost, as compared
with random queries, core-set active learning, and our
framework using dropout inference.

2 BACKGROUND

Operator Learning. Suppose our goal is to learn a
function-to-function mapping ψ : H → Y , whereH and Y
are two function spaces, e.g., Banach spaces. The training
dataset comprises pairs of discretized input and output func-
tions, D = {(fn,yn)}Nn=1, where each fn are samples of a
function fn ∈ H, and yn are samples of ψ[fn] ∈ Y . All the
input and output functions are discretized (sampled) at a set
of evenly-spaced locations, e.g., a 64× 64 mesh in the 2D
spatial domain [0, 1]× [0, 1].

Fourier Neural Operators (FNO). Given a discretized in-
put function f , the FNO first applies a feed-forward network
(FFN) over each element of f and the associated sampling lo-
cation to lift the input to a higher-dimensional channel space.
Then a Fourier layer is used perform a linear transform and
nonlinear activation in the functional space,

v(x)← σ

(
Wv(x) +

∫
κ(x− x′)v(x′)dx′

)

where v(x) in the R.H.S is the input function to the Fourier
layer and in the L.H.S the output function, κ(·) is the integra-
tion kernel and σ(·) is the activation. Based on the convolu-
tion theorem

∫
κ(x−x′)v(x′)dx′ = F−1 [F [κ] · F [v]] (x)

where F and F−1 are the Fourier and inverse Fourier trans-
forms, respectively, the Fourier layer performs fast Fourier
transform (FFT) over v, multiplies it with the discretized
kernel in the frequency domain, and then performs inverse
FFT. The local linear transform,Wv(x), is performed by
standard convolution (as in convolution nets). Due to the
usage of FFT, the computation of the Fourier layer is highly
efficient. After several Fourier layers, another FFN is ap-
plied channel-wisely to project back and make the final
prediction. The training is typically done by minimizing
an L2 loss, Θ∗ = argminΘ

1
N

∑N
n=1 ‖gn − ψFNO(fn; Θ)‖,

where Θ are the model parameters, including the discretized
kernel in the frequency domain, standard convolution pa-
rameters in each Fourier layer, and the parameters of the
FNN’s for channel lifting and projection.

3 PROBABILISTIC MULTI-
RESOLUTION FNO

Despite the advantages of the FNO, the training data collec-
tion can be a severe bottleneck for practical usage, because
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it typically requires many expensive physical simulations.
To reduce the cost, we consider using multi-resolution data,
which combines accurate yet expensive high-resolution ex-
amples with inaccurate (large bias) yet cheap-to-generate
low-resolution examples. We then propose an active learn-
ing approach to lower the data cost to the fullest extent
while reaching a high learning efficiency. To this end, we
first propose a probabilistic FNO that can effectively inte-
grate multi-resolution training examples and perform poste-
rior inference.

Specifically, suppose a multi-resolution dataset is given,
D = {(fn,gn, rn)}Nn=1 where rn denotes the resolution
of the n-th example. We have R different resolutions in
total (1 ≤ rn ≤ R). For example, on a 2D spatial domain
[0, 1]× [0, 1], we might have two resolutions, 16× 16 and
128×128. To explicitly model the influence of the resolution
choice on the prediction, we introduce an embedding er to
represent each resolution r ∈ [1, R]. In our experiment,
we set er to a one-hot encoding. We have also tried other
embeddings, such as positional encodings (Vaswani et al.,
2017). The performance is close. We apply an FFN to every
element of fn, the corresponding sample location xj , and
the embedding ern to obtain a new representation f̂n, where
each

[̂fn]j = FNN([fn]j ,xj , ern). (1)

Next, we use standard Fourier layers to perform successive
linear and nonlinear transforms in the functional space. De-
note by vn the output (discretized) function. We then create
two branches. One branch applies an FNN in each channel
to project vn back to the target dimension and output the
prediction mean, µΘ(fn, en) where Θ denote the model pa-
rameters. The other branch performs a standard convolution
and then an FNN to output the prediction variance in the log
domain, ηΘ(fn, en). We then use a Gaussian likelihood to
model the observed (discretized) output function,

p(gn|fn, rn) = N
(
gn|µΘ(fn, ern), eηΘ(fn,ern ) · I

)
.

We can see that both the mean and variance are not only
dependent on the input fn but also up to the resolution choice
rn. In this way, our model can capture the influence of the
resolution choice on the prediction distribution. Our model
is illustrated in Appendix Fig. 6.

Next, we use Monte-Carlo ensemble learning (Lakshmi-
narayanan et al., 2017)1 to fulfill effective posterior infer-
ence. Specifically, we randomly initialize the model param-
eters Θ, and maximize the log likelihood to obtain one point
estimate via stochastic mini-batch optimization,

Θ∗ = argmax
Θ

N∑

n=1

log
[
N
(
gn|µΘ(fn, en), eηΘ(fn,en)I

)]
.

1we do not introduce adversarial samples as in (Lakshmi-
narayanan et al., 2017). We empirically found little help with
such samples.

We independently repeat this procedure for M times, and
obtain an ensemble of the point estimates of the model pa-
rameters, {Θ∗1, . . . ,Θ∗M}. We then construct a discrete pos-
terior approximation of the model parameters, p(Θ|D) ≈
1
M

∑M
m=1 δ(Θ−Θ∗m), where δ(·) is the Dirac delta measure.

Given a test input function f and the resolution embedding e,
the predictive distribution of the output function is therefore
a Gaussian mixture,

p(y(f , e)|D)

=
1

M

M∑

m=1

N
(
y|µΘ∗m

(f , e), σ2
Θ∗m

(f , e) · I
)
. (2)

where σ2
Θ∗m

(f , e) = eηΘ∗m (f ,e).

4 MULTI-RESOLUTION ACTIVE
LEARNING

Now, we present our multi-resolution active learning algo-
rithm. To optimize the learning efficiency while lowering
the data cost as much as possible, at each step, we maximize
a utility-cost ratio (as the acquisition function) to determine
the most valuable input function and its resolution, at which
we query a new example. Specifically, we prepare a pool
of candidate input functions P . Denote by λr the cost of
generating the output function at resolution r ∈ [1, R]. We
have λ1 < . . . < λR. To measure the value of an example
with input function h ∈ P and resolution r, we consider two
utility functions. The first one follows (Li et al., 2022b) and
quantifies the information the example can bring to predict
at the highest resolution R,

u(h, r) = I(y(hr, er),y(hR, eR)|D), (3)

where D is the current training dataset, I(·, ·) is the mu-
tual information, hr and hR are function h discretized at
resolution r and R, respectively, and er and eR are the
corresponding resolution embeddings. The utility function
(3) only considers how the example can improve the pre-
diction for the same input function. To model its benefit
in improving the prediction for other input functions, we
follow (Li et al., 2022a) to consider a second utility func-
tion u(h, r) = Ep(h′)[I(y(hr, er),y(h′R, eR)|D)], where
h′ ∈ H and p(h′) is a distribution overH. The expectation
usually does not have a closed-form, and we therefore draw
A functions, h′1, . . . , h

′
A ∼ p(h′), and employ an Monte-

Carlo approximation,

û(h, r) =
1

A

A∑

l=1

I(y(hr, er),y(h′Rl , eR)|D). (4)

4.1 Efficient Utility Computation

The utility function in both (3) and (4) demands we compute
the mutual information between a pair of predictions from
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our model. The computation is challenging in that (1) those
predictions are typically high-dimensional (e.g., a 100×100
resolution corresponds to 10K dimensional outputs), and (2)
the mutual information is analytically intractable due to the
Gaussian mixture predictive distribution in (2). To address
this problem, we observe that for any two predictions y1

and y2, we have

I(y1,y2|D)

= H(y1|D) + H(y2|D)−H(y1,y2|D). (5)

Denote by (f1, e1) the discretized input function and
resolution embedding for y1 and by (f2, e2) for y2.
We first use moment matching to approximate the pre-
dictive distributions of y1, y2 and ŷ = [y1; y2] as
multi-variate Gaussian distributions, and we can thereby
compute each entropy with a closed form. Specifi-
cally, let us first consider ŷ. According to (2), we
can derive that p(ŷ|D) = 1

M

∑M
m=1N (ŷ|ρm,Λm),

where ρm = [µΘ∗m(f1, e1);µΘ∗m(f2, e2)] and Λm =

diag
(
σ2

Θ∗m
(f1, e1) · I, σ2

Θ∗m
(f2, e2) · I

)
. The mean and co-

variance, i.e., the first and second moments, are given by

E(ŷ|D) =
1

M

M∑

m=1

ρm,

cov(ŷ|D) =
1

M

M∑

m=1

(
Λm + ρmρ>m

)
− E(ŷ|D)E(ŷ|D)>.

Via moment matching, we construct a multi-variate Gaus-
sian approximation, p(ŷ|D) ≈ N (ŷ|E(ŷ|D), cov(ŷ|D)),
which is the best approximation in the exponential family
in the sense of Kullback Leibler divergence (Bishop and
Nasrabadi, 2006). Accordingly, the entropy can be com-
puted with a closed-form, H(ŷ) = 1

2 log det [cov(ŷ|D)] +
const.

However, since ŷ is high-dimensional, computing the log
determinant of its huge covariance matrix is extremely ex-
pensive or even infeasible. To address this problem, we
observe that

cov(ŷ|D) = Λ +
1

M

M∑

m=1

ρmρ>m − E(ŷ|D)E(ŷ|D)>

= Λ +
1

M − 1

M∑

m=1

(ρm − E(ŷ|D)) (ρm − E(ŷ|D))
>

(6)

where

Λ = diag

(
1

M

M∑

m=1

σ2
Θ∗j

(f1, e1) · I, 1

M

M∑

m=1

σ2
Θ∗j

(f2, e2) · I

)

is a diagonal matrix, and the second term in the R.H.S
of (6) is the empirical covariance matrix over {ρm}. We

can further derive that cov(ŷ|D) = Λ + BB>, where
B = 1√

M−1
[ρ1 − E(ŷ|D), . . . ,ρM − E(ŷ|D)], which in-

cludes M columns. We then use the matrix determinant
lemma (Harville, 1997) to compute,

log det [cov(ŷ|D)] = log det
[
Λ + BB>

]

= log det[Λ] + log det[I + B>Λ−1B]. (7)

The first log determinant is over the diagonal matrix Λ,
and the complexity is linear in the dimension of ŷ. The
second log determinant is computed over an M ×M matrix.
Since M is the size of the ensemble and is very small (we
take M = 5 in our experiments), the computation is highly
efficient. It is straightforward to use a similar approach to
compute H(y1|D) and H(y2|D) in (5).

4.2 Cost Annealing

In practice, directly maximizing the utility-cost ratio u(h,r)
λr

or û(h,r)
λr

(see (3) and (4)) tends to make the active learning
stuck at low-resolution queries and inferior performance,
especially when the cost discrepancy is significant between
the low and high resolutions. This is because at the early
stage, the training data is few, and the mutual information
does not differ much for candidates at different resolutions.
In other words, the scales are close. Consequently, the high-
resolution examples are over-penalized by the large cost, and
the active learning keeps selecting low-resolution examples,
which can severely hinder the model improvement.

To overcome this problem, we propose a cost annealing
method. We schedule a dynamic cost assignment for each
resolution. Denote by λ̂r(t) the cost schedule for resolution
r at step t. For convenience, we normalize the true cost into
[0, 1], i.e., each λr ∈ [0, 1] and

∑R
r=1 λr = 1. We set

λ̂r(t) =
λr

1 + (Rλr − 1)c(t)
, (8)

where c(t) is a decaying function such that c(0) = 1 and
c(∞) = 0. For example, we can use

c(t) = exp(−αt), or c(t) = 2(1− s(αt)), (9)

where s(·) is the sigmoid function and α controls the decay
rate. We can see that all λ̂r(0) = 1

R and lim
t→∞

λ̂r(t) = λr.
To further enhance smoothness in annealing, we can re-
normalize λ̂r at each step t. Note that this adjustment does
not alter the convergence limit. We select the input and
resolution by maximizing the acquisition function, u(h,r)

λ̂r(t)

or û(h,r)

λ̂r(t)
. In this way, at the early stage when the data

is few and the mutual information does not differ much,
our method avoids over-penalizing high-resolution exam-
ples, and promote their queries to ensure continuous model
improvement. With the accumulation of data, the mutual
information is more and more capable of reflecting the true
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Algorithm 1 MRA-FNO (M , P , T , {λr}Rr=1)
1: Learn the probabilistic multi-resolution FNO from an initial

dataset D with the ensemble size M .
2: for t = 1 . . . T do
3: Based on the cost schedule (8), select the input function

ht ∈ P and the resolution rt by

ht, rt = argmax
h∈P,1≤r≤R

β(h, r)

λ̂r(t)

where β(h, r) is the utility function that can take (3) or (4).

4: Query the output function at ht with resolution rt to obtain
yt.

5: Remove ht from P .
6: D ← D ∪ {(ht,yt, rt)} where ht is the discretized ht at

resolution rt.
7: Re-train the probabilistic multi-resolution FNO on D
8: end for

potential/value of new examples, the active learning returns
to maximizing the ideal utility-cost ratio to select the input
functions and resolutions. Our method is summarized in
Algorithm 1.

4.3 Algorithm Complexity

The time complexity of each active learning step is
O(|P|RM2d) where |P| is the size of the candidate pool,
and d is the output dimension at the highest resolution. The
space complexity is O(Md), which is to store the predic-
tive distribution (for any input function) and the parameter
estimates in the ensemble.

5 RELATED WORK

Operator learning is a type of surrogate modeling aimed
at mapping an input function to an output function. Many
prior works in surrogate modeling instead map a limited
set of system parameters, e.g., PDE parameters, to the out-
put function, e.g., PDE solution functions, such as (Higdon
et al., 2008; Zhe et al., 2019; Li et al., 2021; Wang et al.,
2021; Xing et al., 2021b,a; Li et al., 2022c). A variety of
operator learning methods have been developed, most of
which are based on neural networks and henceforth called
neural operators. For example, along with FNO, a sim-
ple low-rank neural operator (LNO) (Li et al., 2020d) was
proposed to employ a low-rank decomposition of the op-
erator’s kernel. Li et al. (2020b) proposed GNO that uses
Nystrom approximation and graph neural networks to ap-
proximate the function convolution. In (Li et al., 2020c),
a multipole graph neural operator (MGNO) is developed,
which uses a multi-scale kernel decomposition to achieve
linear complexity in computing the convolution. Gupta et al.
(2021) developed a multiwavelet-based operator learning

model that represents the operator’s kernel with fine-grained
wavelets. Another popular approach is the Deep Operator
Net (DeepONet) (Lu et al., 2021), which combines a branch
net over the input functions and a trunk net over the sam-
pling locations to predict the target function values. A more
stable and efficient version, POD-DeepONet was proposed
in (Lu et al., 2022), which replaces the trunk net with the
POD (or PCA) bases computed from the training data. A
survey of neural operators is given in (Kovachki et al., 2023).
Recent work has also developed kernel operator learning
approaches (Long et al., 2022; Batlle et al., 2023).

Active learning is a classical machine learning topic. The
recent research focuses on the active learning of deep neural
networks. For example, in (Gal et al., 2017), Monte-Carlo
(MC) Dropout (Gal and Ghahramani, 2016) was used to
generate the posterior samples and compute the acquisition
function. (Geifman and El-Yaniv, 2017; Sener and Savarese,
2018) used core-set search to query diverse and represen-
tative examples, which are shown to be particularly effec-
tive for convolution neural nets. Other examples include
(Gissin and Shalev-Shwartz, 2019; Ducoffe and Precioso,
2018) for adversarial active learning, (Ash et al., 2019) us-
ing the gradient magnitude to represent the uncertainty and
to query new examples, etc. Recently, (Li et al., 2022b)
proposed the first multi-fidelity active learning approach,
which dynamically queries multi-fidelity simulation exam-
ples to train a surrogate model that predicts PDE solutions
from PDE parameters. (Li et al., 2022a) further developed a
batch multi-fidelity active learning algorithm with budget
constraints. The key difference is that these works aim to
learn a mapping from the PDE parameters (low-dimensional
input) to the solution (high-dimensional output), and they
employ an auto-regressive architecture to combine examples
of multiple fidelities. The stochastic variational inference
used in the method, however, is inferior in posterior approx-
imation and uncertainty quantification for operator learning.
We therefore develop another posterior inference approach
based on ensemble learning, which turns out to be much
more effective. We accordingly develop an efficient method
for utility function computation. In addition, we discovered
the over-penalization problem during the active learning,
which was never discovered in these previous works. We
proposed a novel and flexible cost annealing framework to
overcome the problem. The recent work (Pickering et al.,
2022) proposed an active learning approach for DeepONet.
The goal is to query examples that can facilitate the discov-
ery of rare events hidden in physical systems. The work
does not consider multi-resolution examples and their vary-
ing costs. The goal, model estimation, acquisition function
design and computation are all different from our work.
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Method Burgers Darcy
FNO 0.0575 ± 0.0031 0.0891 ± 0.0078

FNO-Dropout 0.0791 ± 0.0035 0.1038 ± 0.0056
FNO-SGLD 0.0804 ± 0.0049 0.0933 ± 0.0074
FNO-SVI 0.1182 ± 0.0056 0.0946 ± 0.0041

MRA-FNO 0.0586 ± 0.0042 0.0876 ± 0.0059

(a) Relative L2 error
Method Burgers Darcy

FNO NA NA
FNO-Dropout 176.84 ± 16.11 4447.92 ±63.08
FNO-SGLD 223.48 ± 15.74 3683.45 ± 83.49

FNO-SVI 391.61 ± 10.59 4027.71 ± 73.96
MRA-FNO 44.57 ± 3.62 1167.73 ± 29.13

(b) Negative Log-Likelihood (NLL)
Method Burgers Darcy

FNO 296.31% 218.54%
FNO-Dropout 331.64% 233.04%
FNO-SGLD 200.62% 183.60%

FNO-SVI 111.14% 188.16%
MRA-FNO 286.86% 201.71%

(c) Relative L2 error increase

Table 1: Prediction accuracy using 200 high-resolution and 200
low-resolution examples (a, b), and compared to (a) the error
increase of using 400 low-resolution examples (c). The results
were averaged from five runs.

6 EXPERIMENT

6.1 Prediction Accuracy on Fixed Training Data

We first examined if our multi-resolution FNO can achieve
good prediction accuracy and uncertainty calibration. To
this end, we tested with two benchmark operator learning
tasks, one is based on a Burgers’ equation and the other
a Darcy flow equation. For Burgers, we aim to learn a
mapping from the initial condition to the solution at time
t = 1, while for Darcy, the goal is to learn a mapping from
the coefficient function to the solution. We considered two
resolutions for each task. The details are provided in Section
A.1 in Appendix.

We randomly generated 200 examples for each resolution
to obtain a training set. We randomly generated another
200 examples at the highest resolution as the test set. We
compared with the standard FNO (point estimation), FNO
trained via MC Dropout (FNO-Dropout) (Gal and Ghahra-
mani, 2016), stochastic gradient Langevin dynamics (FNO-
SGLD) (Welling and Teh, 2011), and stochastic variational
inference (FNO-SVI) (Kingma and Welling, 2013). For all
the methods, we set the mini-batch size to 20, the learn-
ing rate to 10−3, and use ADAM optimization and Co-
sine Annealing schedule. We used the FNO implementa-
tion from the original authors (https://github.com/
neuraloperator/neuraloperator). We tuned the
dropout rate from {0.1, 0.2, 0.3, 0.4, 0.5}. For SGLD and
SVI, we assigned a standard Gaussian prior over the model
parameters. For SVI, we employed a fully factorized Gaus-

Task Resolution Cost Ratio
Burgers 33, 129 1 : 41.2
Darcy 32× 32, 128× 128 1 : 38.3
Darcy3 32× 32, 64× 64, 128× 128 1 : 21.3 : 38.3

Diffusion 32× 32, 128× 128 1 : 17.6
NS 16× 16, 64× 64 1 : 7

Table 2: Resolution and cost ratio for each active learning task.
The cost is measured by the average running time for solving the
PDEs (100 runs) at the corresponding resolution.

sian posterior approximation. We repeated the training and
test procedure for five times, and examined the average rel-
ative L2 error, the average negative log likelihood (NLL),
and their standard deviation on the test datasets. The results
are reported in Table 1a and 1b. To confirm the value of
high-resolution examples, we also ran all the methods using
400 low resolution examples, and tested if the error will
increase. The results are summarized in Table 1c.

From Table 1a and 1b, one can see that the our model (MRA-
FNO) achieves the relative L2 error significantly smaller
than the competing methods in all the cases, except that in
Burger’s equation, the L2 error of MRA-FNO is slightly
worse than the standard FNO. More important, MRA-FNO
consistently outperforms all the probabilistic versions of
FNO by a large margin in test log likelihood. Hence, not
only does our model give superior prediction accuracy, our
ensemble posterior inference also enables much better un-
certainty quantification.

Table 1c illustrates that, without high-resolution examples,
the relative L2 error of all the methods increases dramati-
cally, even with the same training size. This underscores the
importance of high-resolution examples for achieving good
accuracy, despite their higher cost of collection.

6.2 Active Learning Performance

Next, we evaluated the active learning performance of MRA-
FNO. In addition to the tasks in Section 6.1, we considered
two more PDEs, one is a nonlinear diffusion equation, and
the other is a 2D Navier-Stokes (NS) equation used in (Li
et al., 2020d). For each task, we considered two resolutions.
We leave the details in Section A.1 of Appendix. In addi-
tion, we tested active learning on the same Darcy problem
as in Section 6.1 with three resolutions. We summarize the
data acquiring cost at different resolutions in Table 2. As
we can see, the cost discrepancy is large among different
resolutions. We compared with the following active learn-
ing methods for FNO: (1) Random-Low/High, randomly
selecting an input function from the candidate pool, and
querying the example at the lowest/highest resolution. (2)
Random-Mix, randomly selecting both the input and res-
olution. (3) Coreset-Low/High, using the coreset active
learning strategy (Sener and Savarese, 2018) to select the
input function that maximizes the minimum distance to the

https://github.com/neuraloperator/neuraloperator
https://github.com/neuraloperator/neuraloperator
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Figure 1: Relative L2 error vs. accumulated data cost. Each method ran 500 active learning steps. Note that different methods can end up
with different total data cost (after running the same number of steps).
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Figure 2: Number of resolutions queried by MRA-FNO at different stages during active learning.
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Figure 3: Relative L2 error vs. accumulated data cost.

existed examples, according to the output of the last Fourier
layer as the representation. We fixed the resolution to be
the lowest or the highest one. (4) Coreset-Mix, the same
coreset active learning strategy as in (3), except that we
allow querying at different resolutions. We interpolate the
representation to the highest resolution to compute the dis-
tance. (5) MR-Dropout: we used MC dropout to perform
posterior inference for FNO, and then used the same ac-
quisition function(s), computation method, and annealing
framework as in our approach to identify the input function
and resolution. (6) MR-PredVar: we averaged the predictive
variance of each output function values as the utility func-
tion, and the remaining is the same as our approach. We ran
all our experiments on Lambda Cloud instances equipped
with A100 GPUs.

For every active learning experiment, we randomly gener-
ated 10 examples for each resolution to obtain an initial
dataset. We randomly generated 990 input functions at the
highest resolution, which we used as the candidate pool
for active learning. If one example is queried at a lower
resolution, the input function is downsampled accordingly
at which to run the simulation. We randomly generated
another 200 examples at the highest resolution for testing.
We then ran active learning with each method. For our
method and MR-Dropout, we tested two annealing sched-
ules, one is based on the exponential decay and the other
sigmoid decay; see (9) . We tuned the decaying rate α
from {0.002, 0.005, 0.01, 0.02, 0.5, 1.0}. We ran 500 ac-
tive learning steps (queries) for all the experiments except
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Figure 4: The influence of the cost schedule on active learning. We report the result with the exponential decay; see (9). The larger α, the
faster the schedule converges to the true cost.
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MRA-
FNO(u)

MRA-
FNO(û)

Figure 5: Point-wise error on NS.

for the NS problem, we ran 300 steps. We examined the rel-
ative L2 error of each method vs. the accumulated data cost.
To avoid cluttered figures, we show the result of our method
with the exponential-decay-based schedule in Fig. 1 and 3,
and the result of using the sigmoid decay and MR-PredVar
in Fig. 7 in Appendix.

Prediction Accuracy. As we can see, at the beginning, the
performance of each method is identical or very close. As
the active learning progresses, MRA-FNO improves rapidly
and constantly. It soon achieves a superior prediction ac-
curacy to all the competing methods, and consistently out-
performs them during the remaining course of the active
learning. Accordingly, MRA-FNO can reach the smallest
prediction error under the same data cost, or use the least
data cost to achieve the same performance. We empirically
observed that using the utility function (3) or (4), denoted
by MRA-FNO (u) and MRA-FNO (û), respectively, result
in close performance, except that on the diffusion problem,

MRA-FNO (u) appears to be better. This might be be-
cause the Monte-Carlo approximation in (4) (we set A = 5)
still has a significant gap from the true expectation. It is
worth noting that both Random-Low and Coreset-Low were
quickly trapped at large prediction errors. It therefore shows
only using low-resolution examples, the predictive perfor-
mance will soon meet a bottleneck and can hardly improve,
though the data cost grows very slowly. On the other hand,
Random-High and Coreset-High enables steady improve-
ment because they only query high-resolution examples at
each step. However, the data cost accumulation is much
greater, e.g., Fig. 1b and 1c. In addition, the performance of
MR-Dropout tends to stuck at large prediction errors early,
especially in Burgers, Darcy and Darcy3. We observed that
MR-Dropout mainly selected low-resolution examples. This
might be because the uncertainty quantification by dropout
is not reliable for FNO, and even using our annealing frame-
work cannot correct its bias. From Fig. 7 of Appendix,
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we can see that the performance of MRA-FNO with the
sigmoid-based cost schedule is close to that with exp-based
schedule (see (9)), except in Darcy3, the exp-based sched-
ule shows a slight yet consistent advantage. Interestingly,
MR-PredVar outperforms the other competing methods in
all the cases, confirming the importance of effective uncer-
tainty quantification in utility evaluation (it also uses our
ensemble posterior inference). While MR-PredVar achives
close performance to our method in Burgers, in all the other
cases, MR-PredVar is apparently worse. This might be be-
cause MR-PredVar ignores the (strong) correlation between
the output function values, and hence the quality of utility
evaluation is worse.

In addition, we examined the count of queried resolutions
at different stages by MRA-FNO (u) with the exp-based
schedule. As depicted in Fig. 2, during the first 100 or 200
steps, MRA-FNO queried the majority of high-resolution
examples. Subsequently, MRA-FNO increasingly queried
low-resolution examples, while the test performance contin-
ued to improve, consistently outperforming other methods
by a large margin. These findings validate the effective-
ness of our cost annealing schedule. Overall, these results
demonstrate the advantage of our multi-resolution active
learning approach.

Influence of Cost Schedule. Next, we investigated how
the cost annealing schedule influences the active learn-
ing. To this end, we used the exponential decay func-
tion in our schedule, and varied the decaying rate α ∈
{0.002, 0.005, 0.01, 0.02, 0.5, 1.0}. We show the cost
schedule for different choices of α in Fig. 4a. We then
run MRA-FNO on Burgers with 500 steps. The L2 relative
error vs. the accumulated data cost is reported in Fig. 4b and
4c. We can see that when α is too small, e.g., α = 0.002,
though the active learning ensures steady improvement of
the prediction accuracy, the data cost is suboptimal. To ob-
tain the same performance, a too small α consumes a much
bigger data cost, or under the same cost, it gives worse
performance. The reason is that the convergence of the
cost annealing is too slow; see Fig. 4a. Even when the
mutual information has become sufficiently discriminative,
the cost assignments for different resolutions are still not
far, which actually over-penalize low-resolution examples
and lead to a selection bias toward high-resolution exam-
ples. Another extreme is to use a too big α, e.g., α = 0.5
and α = 1.0. In such case, the schedule will converge to
the true cost very fast, even at the early stage when data is
few. Accordingly, the high-resolution examples are soon
over-penalized, making the learning stuck at low-resolution
queries. The prediction accuracy is fluctuating yet hard to
increase substantially. On the contrary, an appropriate decay
rate in between, e.g., α = 0.01 and α = 0.02, can sidestep
these problems, and lead to superior performance in both
cost saving and prediction accuracy.

Point-wise Error. Finally, we investigate the local errors

of the prediction. We randomly selected six test cases for
NS and Diffusion. We examined the post-wise error of each
method after active learning. MRA-FNO used the exp-based
schedule. We show the results in Fig. 5 and Appendix Fig.
8. We can see that the point-wise error of MRA-FNO is
quite uniform across the domain and is close to zero (white).
By contrast, the other methods exhibit large errors in many
local regions. Together these results have shown that MRA-
FNO not only gives a superior global accuracy, but locally
better recovers individual output function values.

7 CONCLUSION

We have presented MRA-FNO, a multi-resolution active
learning method for Fourier neural operators. On several
benchmark operator learning tasks, MRA-FNO can save the
data cost substantially while achieving superior predictive
performance. Currently, the selection of the decay rate in
our cost annealing framework is done by manual tuning or
cross-validation. In the future, we plan to develop novel
methods, such as reinforcement learning, to automatically
determine the best rate.
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A APPENDIX

A.1 OPERATOR LEARNING TASK DETAILS

We tested our method with the following operator learning tasks.

• Burgers. The first one is based on the Burger’s equation,

ut + uxx = νuxx, u(x, 0) = u0(x), (10)

where (x, t) ∈ [0, 1]2, and u0(x) is the initial condition, and ν = 0.002 is the viscosity. We aim to learn a mapping
from the initial condition to the solution at t = 1, namely, u0 → u(x, 1). We considered two resolutions, which
use 33 and 129 samples for discretization, respectively. We used a parametric form of the input function, u0(x) =
a exp(−ax) sin(2πx) cos(bπx), and we then randomly sampled a, b ∈ [1, 6] to obtain the instances.

• Darcy. The second task is based on a 2D Darcy flow equation,

−∇(c(x)∇u(x)) = f(x), (11)

where x ∈ [0, 1]2, f(x) = 1 is a constant forcing function, c(x) > 0 is the diffusion coefficient function, and on the
boundary, u(x) = 0. We aim to learn the mapping from the coefficient function to the solution, c→ u. We employed
two sampling resolutions, 32× 32 and 128× 128. We followed (Li et al., 2020d) to first sample a discretized function
from a Gauss random field, and then threshold the values to be 4 or 12 to obtain the input function.

• Diffusion. The third one is based on a nonlinear diffusion PDE,

ut = 0.01uxx + 0.01u2 + f(x) (12)

where (x, t) ∈ (0, 1) × (0, 1], u(0, t) = u(1, t) = 0, u(x, 0) = 0 and f(x) is the forcing function. The goal is to
learn the mapping from the forcing function to the solution, f → u. We employed two resolutions for data acquiring,
32× 32 and 128× 128. We drew samples of f from a Gaussian process with an RBF kernel. Note that to use FNO and
MRA-FNO, we replicated the spatial discretization of f along the time dimension (steps).

• Navier Stoke (NS). The last task is based the a 2D Navier-Stokes (NS) equation used in (Li et al., 2020d). The solution
u(x, t) is the vorticity of a viscous, incompressible fluid, where x ∈ [0, 1]2 and t ∈ [0, 50]. We set the viscosity to
10−3. Following (Li et al., 2020d), we considered 40 steps in the time domain. We used the the solution at the first 20
time steps to predict the solution at the next 20 steps. For data collection, we used two resolutions 16× 16 and 64× 64
in the spatial domain. We sampled the input functions from a Gaussian random field.

Figure 6: Graphical representation of our probabilistic multi-resolution FNO. Here P is the FFN that lifts the input function to a
higher-dimensional channel space, Q1 is the FFN for channel-wise projection and producing the prediction mean, and Q2 is a convolution
net plus another FFN to produce the variance in the log space.
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MRA-FNO(û) Sigmoid
MR-PredVar Exp
MR-PredVar Sigmoid
Frontier of Other baselines

(a) Burgers

0 100 200 300 400
Accumulated Data Cost

0.08

0.12

0.25

0.35

R
el

at
vi

e
L

2
E

rr
or

(b) Darcy

0 100 200 300 400
Accumulated Data Cost

0.08

0.12

0.22

0.35

R
el

at
vi

e
L

2
E

rr
or

(c) Darcy3

0 20 40 60 80 100
Accumulated Data Cost

0.02
0.03

0.06

0.10

R
el

at
vi

e
L

2
E

rr
or

(d) Diffusion

0 200 400 600 800 1000
Accumulated Data Cost

0.05

0.10

0.18

0.30

R
el

at
vi

e
L

2
E

rr
or

(e) NS
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Figure 7: Relative L2 error vs. accumulated data cost (a-e) and the cost schedule with a sigmoid-based decay. Each method ran 300
active learning steps for NS, and 500 steps for all the other tasks. Note that different methods can end up with different total data cost
(after running the same number of steps).
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Figure 8: Point-wise error on nonlinear Diffusion.
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