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Abstract

The success of reinforcement learning (RL)
crucially depends on effective function approx-
imation when dealing with complex ground-
truth models. Existing sample-efficient RL
algorithms primarily employ three approaches
to function approximation: policy-based,
value-based, and model-based methods. How-
ever, in the face of model misspecification—a
disparity between the ground-truth and op-
timal function approximators— it is shown
that policy-based approaches can be robust
even when the policy function approximation
is under a large locally-bounded misspecifica-
tion error, with which the function class may
exhibit a Ω(1) approximation error in spe-
cific states and actions, but remains small on
average within a policy-induced state distribu-
tion. Yet it remains an open question whether
similar robustness can be achieved with value-
based and model-based approaches, especially
with general function approximation.

To bridge this gap, in this paper we present
a unified theoretical framework for address-
ing model misspecification in RL. We demon-
strate that, through meticulous algorithm de-
sign and sophisticated analysis, value-based
and model-based methods employing general
function approximation can achieve robust-
ness under local misspecification error bounds.
In particular, they can attain a regret bound
of Õ

(
poly(dH) · (

√
K +K · ζ)

)
, where d rep-

resents the complexity of the function class,
H is the episode length, K is the total number
of episodes, and ζ denotes the local bound
for misspecification error. Furthermore, we
propose an algorithmic framework that can
achieve the same order of regret bound with-
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out prior knowledge of ζ, thereby enhancing
its practical applicability.

1 INTRODUCTION

Reinforcement Learning (RL) is a paradigm where
agents learn to interact with an environment through
state and reward feedback. In recent years, RL has
seen significant success across various applications, such
as control (Mnih et al., 2015; Gu et al., 2017), board
games (Silver et al., 2016), video games (Mnih et al.,
2013), and even the training of large language models
like ChatGPT (Ouyang et al., 2022). In these applica-
tions, RL systems use deep neural networks (DNN) to
approximate the policy, value, or models, thereby ad-
dressing the notorious “curse-of-dimensionality” issues
associated with RL systems that have large state-action
spaces (Bellman, 2010).

Despite these successes, the theoretical understanding
of how RL operates in practice, particularly when deep
neural networks are involved, remains incomplete. A
key question that arises is how approximation error, or
misspecification, in function approximators can affect
the performance of a deep RL system. Although deep
networks are known to be universal approximators,
their performance can be influenced by a range of fac-
tors, such as the training algorithm, dropout, normal-
ization, and other engineering techniques. Therefore,
the robustness of RL systems under misspecification
is an important concern, particularly in risk-sensitive
domains.

Theoretical advancements have begun to address the
misspecification issue (Du et al., 2019a; Jin et al., 2020;
Agarwal et al., 2020a; Zanette et al., 2021). For ex-
ample, Du et al. (2019a) demonstrated that a small
misspecification error in a value function approximator
can lead to exponential increases in learning complexity,
even when the function approximator for the optimal
Q-value is a linear function class. In contrast, several
studies have presented positive results for a relaxed
model-class, where the transition probability matrix or
the Bellman operator are close to a function class, mak-
ing the learning system more robust to misspecification
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errors (Jin et al., 2020; Wang et al., 2020b).

However, these studies address misspecification errors
of distinct natural. For instance, studies like (Jin et al.,
2020; Wang et al., 2020b; Ayoub et al., 2020) require the
misspecification error to be globally bounded, i.e., the
function approximators should approximate the transi-
tion probability with a small error for all state-action
pairs. Conversely, studies like Agarwal et al. (2020a);
Zanette et al. (2021) only require the misspecification
error to be locally bounded, where the errors need only
be bounded at relevant state-action pairs, which can
be reached by a policy with a high enough probabil-
ity. Notably, under a locally bounded misspecification
error, the approximation error for certain state-action
pairs (and therefore the global misspecification bound)
can be arbitrarily large, and the analysis in (Jin et al.,
2020; Wang et al., 2020b; Ayoub et al., 2020) would
fail to provide a meaningful learning guarantee.

Existing sample-efficient Reinforcement Learning (RL)
algorithms can be categorized into three main types
based on the targets they approximate: policy-based,
value-based and model-based. Policy-based approaches
distinguish themselves from the other two by utiliz-
ing Monte-Carlo (MC) sampling to estimate policy
values during training. This approach is considered
more robust compared to value bootstrapping in value-
based methods. However, the reliance on MC sampling
makes it challenging to reuse samples since each new
policy necessitates fresh runs and data collection. Con-
sequently, the state-of-the-art policy-based approach
(Zanette et al., 2021) exhibits a statistical error bound
scaling as ∝ 1/ϵ−3 for an error level of ϵ. In contrast,
value-based and model-based approaches offer sample
bounds of ∝ 1/ϵ−2 (Yang and Wang, 2019, 2020; Jin
et al., 2020; Ayoub et al., 2020). This disparity under-
scores the necessity for designing RL algorithms that
are both statistically efficient and robust against mis-
specifications. Recent developments (Vial et al., 2022;
Agarwal et al., 2023) have enhanced the robustness
and practicality of classical value-based method (Jin
et al., 2020). However, these algorithms depend on well-
designed linear feature extractors, significantly limiting
their applicability. In practice, algorithms often specify
a function class (e.g., deep neural networks with a spe-
cific architecture) rather than a linear feature mapping.
To date, a fundamental question concerning RL with
general function approximation remains largely unan-
swered: "Is the policy-based approach inherently more
robust than the value-based and model-based approaches
when dealing with misspecifications?" Or, equivalently,
"Is it possible to design an RL approach with general
function approximation that is both statistically efficient
and robust to misspecifications?"

In this paper, we delve into these fundamental ques-

tions and offer a comprehensive response. We present a
unified and robust algorithm framework, LBM-UCB
(Locally Bounded Misspecification-Upper Confidence
Bound), catering to value-based and model-based meth-
ods with general function approximation, specifically
tailored to handle model misspecifications, particu-
larly in the context of locally-bounded misspecifications.
Unlike the realizable setting, where the ground-truth
model is assumed to be within the function class, our
robust algorithm framework meticulously designs a
high-probability confidence set to encompass the best
approximator within the function class. We demon-
strate that under our framework, classical value-based
algorithm (Wang et al., 2020b) and model-based al-
gorithm (Ayoub et al., 2020) can achieve a level of
robustness similar to policy-based methods in the pres-
ence of locally bounded misspecifications. Importantly,
they maintain a statistical rate scaling as ∝ 1/ϵ−2. To
be specific, for episodic RL with a total of K episodes,
a horizon length of H, a function class complexity of
d, and a locally bounded misspecification error bound
of ζ, our regret bound is Õ

(
poly(dH) · (

√
K +K · ζ)

)
.

This bound is almost optimal in terms of ζ and K, and
provides a regret bound of O(ζK) even when the mis-
specification error for certain states is on the order of
O(1). Furthermore, we devise a meta-algorithm within
our framework that does not require prior knowledge
of the misspecification parameter ζ. This enhancement
increases its potential practical applicability, making it
more accessible and versatile in real-world applications.

A core novelty of our analysis is that instead of making
rough assumptions about all state-action pairs having a
uniform upper bound with respect to misspecification,
we carefully study which state-action pairs genuinely
impact the algorithm’s robustness. Interestingly, we
find that, within the same episode, those state-action
pairs that truly influence the algorithm’s performance
are drawn from the same policy-induced distribution.
This allows us to obtain better bounds in average sense
under the distribution of policies. Furthermore, since
there is no global upper bound on misspecification er-
rors, the global optimism (or near-optimism) property
described in (Jin et al., 2020; Wang et al., 2020b; Ayoub
et al., 2020) no longer holds. To address this, we intro-
duce a new method where we attach a virtual random
process to utilize the optimal policy for data collection.
This approach enables us to achieve near-optimism in
the average sense, considering the distribution induced
by the optimal policy.

2 RELATED WORK

In this section, we present the recent works that are
relevant to our paper.
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Misspecified Bandit In the context of misspeci-
fied linear bandit problems, where the reward function
can be approximated by a linear function with some
worst-case error, a number of papers, including those
(Ghosh et al., 2017; Foster and Rakhlin, 2020; Latti-
more et al., 2020; Takemura et al., 2021; Zhang et al.,
2023b), have explored the notion of a uniform upper
bound on misspecification errors across all actions. Ad-
ditionally, Foster et al. (2020a) have introduced a more
lenient average-case concept of misspecification, which
assesses the error associated with the specific sequence
being considered. It is noteworthy that several other
papers, such as those by (Lykouris et al., 2018; Gupta
et al., 2019; Zhao et al., 2021; Wei et al., 2022; Ding
et al., 2022; Ye et al., 2023), delve into the analysis of
cumulative misspecification errors, often referred to as
"corruption," within the context of bandit problems.

RL with Function Approximations. Sample-
efficient reinforcement learning (RL) algorithms em-
ploying function approximations can be classified into
three primary categories, each based on the specific
target they aim to approximate: value-based, model-
based, and policy-based.

With regards to recent value-based methods, there
are rich literature designing and analyzing algorithms
for RL with linear function approximation (Du et al.,
2019b; Wang et al., 2019; Zanette et al., 2019; Yang
and Wang, 2020; Modi et al., 2020; Wang et al., 2020a;
Agarwal et al., 2020b; He et al., 2022; Zhang et al.,
2023a). However, these papers heavily rely on the as-
sumption that the value function or the model can
be approximated by a linear function or a generalized
linear function of the feature vectors and do not discuss
when model misspecification happens. On the other
hand, these papers (Yang and Wang, 2019; Jin et al.,
2020; Jia et al., 2019; Vial et al., 2022) consider the
model misspecification using the globally-bounded mis-
specification error, making their algorithms robust to
a small range of misspecified linear models. Further-
more, Vial et al. (2022) has introduced an algorithm
with the notable attribute of being parameter-free in
relation to the global bound of the misspecification
parameter. In a similar vein, Agarwal et al. (2023) has
demonstrated that the classical algorithm LSVI-UCB
(Jin et al., 2020) remains effective even in the presence
of locally-bounded misspecification error. For recent
general function approximations, complexity measures
are essential for non-linear function class, and Russo
and Van Roy (2013) proposed the concept of eluder
dimension. Recent papers have extended it to more
general framework (Jiang et al., 2017; Du et al., 2021;
Jin et al., 2021; Foster et al., 2020b; Chen et al., 2022;
Zhong et al., 2022; Liu et al., 2023). However, the
use of eluder dimension allows computational tractable

optimization methods. Based on the eluder dimension,
Wang et al. (2020b) describes a UCB-VI style algo-
rithm that can explore the environment driven by a
well-designed width function and Kong et al. (2021)
devises an online sub-sampling method which largely
reduces the average computation time of Wang et al.
(2020b). However, when considering the misspecified
case, their work can only tolerate the approximation
error between the assumed general function class and
the truth model to have a uniform upper bound for all
state-action pairs. In this paper, we analyze the regret
bound of value-based methods under locally bounded
misspecified MDP.

In the realm of model-based methods, several notable
papers (Jia et al., 2020; Ayoub et al., 2020; Modi et al.,
2020) have provided valuable statistical guarantees,
primarily focusing on linear function approximation.
These works concentrate on scenarios where the un-
derlying transition probability kernel of the MDP is
represented as a linear mixture model. Notably, (Zhou
et al., 2021) has introduced an algorithm that achieves
nearly minimax optimality for linear mixture MDPs,
incorporating Bernstein-type concentration techniques.
Furthermore, (Zhou and Gu, 2022) has designed com-
putationally efficient horizon-free RL algorithms within
the same linear mixture MDP framework. In the con-
text of reward-free settings, (Zhang et al., 2021) has
presented an algorithm based on the linear mixture
MDP assumption. On a broader scale, (Ayoub et al.,
2020) has delved into general function approximation
for model-based methods, using the concept of value-
targeted regression. However, among the aforemen-
tioned papers, only (Jia et al., 2020) and (Ayoub et al.,
2020) have ventured into the realm of model misspecifi-
cation, although their assumptions remain confined to
scenarios featuring globally-bounded misspecification
error. In this paper, we analyze the regret bound of
model-based methods under locally bounded misspeci-
fied MDP.

For recent policy-based methods with function approxi-
mation, a series of papers provide statistical guarantees
(Cai et al., 2020; Duan et al., 2020; Agarwal et al.,
2021; Feng et al., 2021; Zanette et al., 2021). Among
them, Agarwal et al. (2020a, 2021); Feng et al. (2021);
Zanette et al. (2021) consider model misspecification
using locally-bounded misspecification error but suf-
fer from poor sample complexity due to policy eval-
uations. Specifically, Agarwal et al. (2020a) uses a
notion called transfer error to measure the model mis-
specification in the linear setting, where they assume
a good approximator under some policy cover has a
bounded error in average sense when transferred to an
arbitrary policy-induced distribution. Moreover, Feng
et al. (2021) proposes a model-free algorithm applying
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the indicator of width function (Wang et al., 2020b)
under the bounded transfer error assumption which
allows the use of general function approximation. To
improve the poor sample complexity of Agarwal et al.
(2020a), Zanette et al. (2021) uses the doubling trick
for determinant of empirical cumulative covariance and
importance sampling technique.

3 PRELIMINARIES

In this paper, we focus on the episodic RL with setting
modeled by a finite-horizon Markov Decision Process.
Below we present a brief introduction of problem set-
tings.

3.1 Episodic RL with Finite-Horizon Markov
Decision Process

We consider a finite-horizon Markov Decision Process
(MDP) M = (S,A, H,P, r, µ), where S is the state
space, A is the action space which has a finite size1,
P : S × A → ∆(S) is the transition operator, r :
S ×A → [0, 1] is the deterministic reward function, H
is the planning horizon, i.e. episode length, and µ is
the initial distribution.

An agent interacts with the environment episodically as
follows. For each H-length episode, the agent adopts
a policy π. To be specific, a policy π = {πh}Hh=1,
where for each h ∈ [H], πh : S → A chooses an
action a from the action space based on the cur-
rent state s. The policy π induces a trajectory
s1, a1, r1, s2, a2, r2, · · · sH , aH , rH , where s1 ∼ µ, a1 =
π1(s1), r1 = r(s1, a1), s2 ∼ P (·|s1, a1), a2 = π2(s2),
etc.

We use V -function and Q-function to evaluate the long-
term expected cumulative reward under the policy π
with respect to the current state (state-action) pair.
They are defined as:

Qπ
h(s, a) = E

[
H∑

h′=h

r(sh′ , ah′)|sh = s, ah = a, π

]

and

V π
h (s) = E

[
H∑

h′=h

r(sh′ , ah′)|sh = s, π

]

For MDP, there always exists an optimal deterministic
policy π∗, such that V π∗

h (s) = supπ V
π
h (s) for all s ∈ S

and all h ∈ [H] (Puterman, 2014). To simplify our

1Our approach can be extended to infinite-sized or con-
tinuous action space with an efficient optimization oracle
for computing the argmax operation.

notation, we denote the optimal Q-function and V -
function as Q∗

h(s, a) = Qπ∗

h (s, a) and V ∗
h (s) = V π∗

h (s).
We also denote [PVh+1](s, a) := Es′∼P(·|s,a)Vh+1(s

′),
and the Bellman equation can be written as :

Qπ
h(s, a) = r(s, a) + PV π

h+1(s, a)

and
V π
h (s) = Qπ

h(s, πh(s))

Besides values, we also consider the state-action distri-
bution generated by a policy. Without loss of generality,
we assume that the agent always starts from a fixed
point s1 for each episode k. Concretely, for each time
step h ∈ [H], we define the state-action distribution
induced by a policy π as

dπh(s, a) = Pπ(sh = s, ah = a|s1)

where Pπ(sh = s, ah = a|s1) is the probability of
reaching (s, a) at the h-th step starting from s1 un-
der policy π. We also define the average distribution

dπ = 1
H

H∑
h=1

dπh.

The goal of the agent is to improve its performance with
the environment. One way to measure the effectiveness
of a learning algorithm is using the notion of regret.
For k ∈ [K], suppose the agent starts from state sk1
and chooses the policy πk to collect a trajectory. Then
the regret is defined as

Regret(K) =

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)

3.2 Function Approximation

In addressing optimization challenges within MDPs
featuring large state-action spaces, we introduce func-
tion approximation methods. These methods can be
categorized into two key groups: value-based (approxi-
mating the optimal value function) and model-based
(approximating the MDP’s transition kernel) function
approximation. We will now provide detailed explana-
tions of both approaches.

Value-based Function Approximation For the
value-based setting, the function class F contains the
approximators of optimal state-action value function
of the MDP, which means F ⊂ {f : S ×A → R}.

• We denote corresponding state-action value func-
tion Qf = f .

• We denote corresponding value function Vf (·) =
maxa∈A Qf (·, a). Moreover, we denote the cor-
responding optimal policy πf with πf (·) =
argmaxa∈A Qf (·, a).
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• We denote f∗ as the optimal state-action value
function based on the ground-truth model, and it
is possible that f∗ does not belong to the set F .

Model-based Function Approximation For the
model-based setting, the function class F contains the
approximators of transition kernels, for which we de-
note f = Pf ∈ F .

• We denote V π
f as the value function induced by

model Pf and policy π.

• We denote Vf as the optimal value function under
model Pf , i.e., Vf = supπ∈Π V π

f . Moreover, we
denote πf as the corresponding optimal policy, i.e.
πf = argmaxπ∈Π V π

f .

• We denote the ground-truth model as f∗, and f∗

may not belong to the function class F .

Notation We use [n] to represent index set {1, · · ·n}.
For x ∈ R, ⌊x⌋ represents the largest integer not exceed-
ing x and ⌈x⌉ represents the smallest integer exceeding
x. Given a, b ∈ Rd, we denote by a⊤b the inner product
between a and b and ||a||2 the Euclidean norm of a.
Given a matrix A, we use ||A||2 for the spectral norm
of A, and for a positive definite matrix Σ and a vector
x, we define ||x||Σ =

√
x⊤Σx. We use O to represent

leading orders in asymptotic upper bounds and Õ to
hide the polylog factors. For a finite set A, we denote
the cardinality of A by |A|, all distributions over A by
∆(A), and especially the uniform distribution over A
by Unif(A). For a function f : S × A → R, we define
∥f∥∞ = max(s,a)∈S×A |f(s, a)|. Similarly, for a func-
tion v : S → R, we define ∥v∥∞ = maxs∈S |v(s)|. For
a set of state-action pairs Z ⊆ S × A, for a func-
tion f : S × A → R, we define the Z-norm of f

as ∥f∥Z =
(∑

(s,a)∈Z(f(s, a))
2
)1/2

. Given a dataset

D = {(si, ai, qi)}|D|
i=1 ⊂ S × A × R, for a function f :

S×A → R, define ||f ||D =

(
|D|∑
t=1

(f(st, at)− qt)
2

)1/2

.

4 ROBUST RL ALGORITHMS
WITH GENERAL FUNCTION
APPROXIMATION

4.1 Generic Framework: LBM-UCB

In this section, we provide a generic robust RL frame-
work, LBM-UCB (Locally Bounded Misspecification-
Upper Confidence Bound), with general function ap-
proximation when locally-bounded misspecifications
appear.

At the outset of each episode, denoted as k =
1, 2, · · · ,K, our algorithm identifies the optimal empir-
ical approximator, denoted as fk, from the hypothesis
class F . This selection is made by minimizing the loss
function Lk−1 with the current dataset Dk−1. The
form of the loss function Lk−1 varies depending on the
type of function approximation, typically employing
the two-norm distance to measure the fitting error of
the function within the hypothesis class.

In the conventional approach, a high-probability confi-
dence set is constructed to encompass the ground-truth.
However, in our misspecified setting, we cannot assume
realizability, meaning that f∗ may not belong to the
hypothesis class F . Consequently, we construct a confi-
dence set designed to encompass the best ground-truth
approximator with high probability. This confidence
set, denoted as Bk, is centered around the best empir-
ical approximator fk. Its radius consists of two com-
ponents: Ekstat and Ekbias. Here, Ekstat accounts for the
statistical error arising from dataset randomness, while
Ekbias represents the error stemming from the mismatch
between the ground-truth and the best ground-truth
approximator.

Subsequently, the algorithm selects the optimistic ap-
proximator fk

op from the confidence set Bk. Unlike real-
izable or globally-bounded misspecified settings, which
achieve optimism, our locally-bounded misspecified set-
ting only allows us to establish average optimism. The
algorithm then determines the optimal policy πk based
on the optimistic approximator fk

op and collects new
data denoted as Zk by executing that policy. Finally,
the newly collected data is merged into the dataset,
and the empirical loss function is updated for the sub-
sequent training episode.

4.2 LBM-UCB for Value-based Algorithm

In the context of value-based function approxi-
mation, our algorithm’s objective is to learn the
optimal state-value function. In this case, our
LBM-UCB becomes Algorithm 3 (Robust-LSVI).
Consequently, the loss function takes the form:
Lk−1(Dk−1, f) = ||f ||2Dk

h

where Dk
h = {(sk′

h′ , ak
′

h′ , rk
′

h′ +

V k
h+1(s

k′

h′+1))}(k′,h′)∈[k−1]×[H].

Before we proceed with constructing the confidence set,
we adopt the sensitivity sampling technique as outlined
in (Wang et al., 2020b). This technique enables us
to substantially reduce the size of the dataset while
approximately preserving the confidence region.

In our efforts to encompass the best ground-truth ap-
proximator within the confidence set, we meticulously
design the radius of the confidence set, denoted as
β(F , δ). This radius is expressed as:
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Algorithm 1 LBM-UCB
1: Input: The hypothesis class F .
2: for episode k = 1, · · · ,K do
3: Find the best empirical approximator fk in the

hypothesis class F by solving the problem (1).

fk = argmin
f∈F

Lk−1(Dk−1, f) (1)

4: Construct the high probability confidence set to
contain the best ground-truth approximator.

Bk = {f ∈ F| d(f, fk) ≤ Ekstat + Ekbias} (2)

5: Get the optimistic approximator fk
op in the confi-

dence set Bk and the corresponding optimal policy
πk = πfk

op
.

6: Execute the policy πk to collect new data Zk =
{Zk

h}h∈[H], where Zk
h = {(skh, akh, rkh, skh+1)}.

7: Update the dataset Dk ← Dk−1 ∪ Zk and the
empirical loss funtion Lk.

β(F , δ) = L(d,K,H, δ) ·

√kHζ︸ ︷︷ ︸
Ek
bias

+ dH2︸︷︷︸
Ek
stat

 (3)

Here, ζ denotes locally bounded misspecification error,
and its specific definition is detailed in the section 5,
L(d,K,H, δ) is a function that exhibits logarithmic
scaling with respect to all the involved variables.

4.3 LBM-UCB for Model-based Algorithm

In the model-based setting, our algorithm’s primary ob-
jective is to learn the transition kernel of the underlying
MDP. In this context, our LBM-UCB becomes Algo-
rithm 4 (Robust-UCRL-VTR). To design the loss
function, we incorporate the concept of value-targeted
regression from (Ayoub et al., 2020). Specifically,

P̂ (k) = argmin
P∈P

Lk−1(Dk−1, P ) (4)

where

Lk−1(Dk−1, P ) =

k−1∑
k′=1

H∑
h=1

(
PV k′

h+1(s
k′

h , ak
′

h )− V k′

h+1(s
k′

h+1)
)2

(5)
Subsequently, we define the model distance in relation
to the estimated value functions as

dk(P, P̂
(k)) =

k−1∑
k′=1

H∑
h=1

(
PV k′

h+1(s
k′
h , ak′

h )− P̂ (k)V k′
h+1(s

k′
h , ak′

h )
)2

(6)

We then define the confidence set as

Bk = {P ′ ∈ P| dk(P ′, P̂ (k)) ≤ βk} (7)

The selection of the radius of the confidence set is simi-

lar to (3), where βk = L′(d,K,H, δ) ·

√kHζ︸ ︷︷ ︸
Ek
bias

+ dH2︸︷︷︸
Ek
stat

.

Here, ζ denotes locally bounded misspecification error,
L′(d,K,H, δ) is a function that exhibits logarithmic
scaling with respect to all the involved variables.

To obtain the optimistic approximator, the algorithm
identifies the model that maximizes the optimal value.
In other words,

P (k) = argmax
P ′∈Bk

V ∗
P ′,1(s

k
1) (8)

where sk1 is the initial state at the beginning of episode
k, and V ∗

P ′,1 represents the optimal value function at
stage one under transition kernel P ′. After that, the
algorithm will calculate the corresponding optimal pol-
icy for P (k) using dynamic programming. In particular,
for each h ∈ [1, H + 1], and all (s, a) ∈ S ×A,

Qk
H+1(s, a) = 0

V k
h (s) = max

a∈A
Qk

h(s, a)

Qk
h(s, a) = rh(s, a) + P (k)V k

h+1(s, a)

(9)

5 THEORETICAL ANALYSIS OF
ROBUST RL ALGORITHMS
WITH GENERAL FUNCTION
APPROXIMATION

In this section, we will provide our theoretical anal-
ysis of Robust RL Algorithms with general function
approximation in Section 4 under the locally-bounded
misspecification assumptions.

First of all, the sample complexity of algorithms with
function approximation depends on the complexity of
the function class. To measure this complexity, we
adopt the notion of eluder dimension which is first
mentioned in Russo and Van Roy (2013).

Definition 5.1 (Eluder dimension). Let ε ≥ 0 and
Z = {(si, ai)}ni=1 ⊆ S×A be a sequence of state-action
pairs.

• A state-action pair (s, a) ∈ S ×A is ε-dependent
on Z with respect to F if any f, f ′ ∈ F satisfying
∥f − f ′∥Z ≤ ε also satisfies |f(s, a)− f ′(s, a)| ≤
ε.
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• An (s, a) is ε-independent of Z with respect to F
if (s, a) is not ε-dependent on Z.

• The eluder dimension dimE(F , ε) of a function
class F is the length of the longest sequence of
elements in S × A such that, for some ε′ ≥ ε,
every element is ε′-independent of its predecessors.

Next, we discuss the regret bound of these two algo-
rithms respectively.

5.1 Regret Bound of Robust-LSVI

First, we give a theorectical analysis for Robust-LSVI
with general function approximation. We assume that
the function class F and the state-actions S ×A have
bounded covering numbers.

Assumption 1 (ε-cover). For any ε > 0, the following
holds:

1. there exists an ε-cover C(F , ε) ⊆ F with size
|C(F , ε)| ≤ N (F , ε), such that for any f ∈ F , there
exists f ′ ∈ C(F , ε) with ∥f − f ′∥∞ ≤ ε;

2. there exists an ε-cover C(S × A, ε) with size
|C(S × A, ε)| ≤ N (S × A, ε), such that for any
(s, a) ∈ S × A, there exists (s′, a′) ∈ C(S × A, ε) with
maxf∈F |f(s, a)− f (s′, a′)| ≤ ε.

Remark 5.2. Assumption 1 is rather standard. Since
our algorithm complexity depends only logarithmically
on N (F , ·) and N (S × A, ·), it is even acceptable to
have exponential size of these covering numbers.

Assumption 2 (General value function approxima-
tion with LBM). Given the ground-truth MDP M
with the transition model P and the reward func-
tion r, we assume that there exists a function class
F ⊂ {f : S × A → [0, H + 1]} and a real number
ζ ∈ [0, 1], such that for any V : S → [0, H], there exists
a non-empty function class F̄V ⊂ F , which satisfies :
for all f ∈ F̄V , and all β ∈ [4],

sup
π

E(s,a)∼dπ |f(s, a)− (r(s, a) + PV (s, a))|β ≤ ζβ

Theorem 5.3 (Regret bound with known
ζ). Under our Assumption 1 and 2, for any
fixed δ ∈ (0, 1), with probability at least 1 − δ,
the total regret of Algorithm 3 is at most
Õ
(√

dEH3Kζ log(1/δ) +
√
d2EKH3 log(1/δ)

)
, where

dE represents the eluder dimension of the function
class.

The comprehensive proof is presented in Appendix C.

Remark 5.4. Our assumption is strictly weaker
than the globally-bounded misspecification error in

(Wang et al., 2020b), where they assumed that, for
all (s, a) ∈ S × A, and V : S → [0, H], |f(s, a) −
(r(s, a) + PV (s, a)) | ≤ ζ.

In other words, our Assumption 2 only needs the mis-
specification error to be locally bounded at relevant
state-action pairs, which can be reached by some policies
with sufficiently high probability, whereas Wang et al.
(2020b) requires the misspecification error to bounded
globally in all state-action pairs, including those not
even relevant to the learning.
Remark 5.5. A classical special case of the general
function approximation setting is the linear MDP (Yang
and Wang, 2019; Jin et al., 2020). In this case, (Agar-
wal et al., 2023) initially demonstrated the effectiveness
of LSVI-UCB (Jin et al., 2020) even under conditions
of locally-bounded misspecification error. Our assump-
tions and findings serve as a more general version of
(Agarwal et al., 2023), extending the utility of function
approximation from a linear setting to a more general
context. For the reader’s convenience, we present the
result below. Under Assumption 5 and 6 , for any fixed
δ ∈ (0, 1), with probability at least 1− δ, the total re-
gret of the algorithm Robust-LSVI (Algorithm 6) is at
most Õ

(
dKH2ζ log(1/δ) +

√
d3KH4 log(1/δ)

)
. Here,

d represents the dimensionality of the linear features.
The comprehensive proof is elaborated upon in Appendix
B.

5.2 Regret Bound of Robust-UCRL-VTR

Next, we provide our assumption and the main theo-
retical result for Robust-UCRL-VTR. Let V be the
set of optimal value functions under some model in the
hypothesis class P: V = {V ∗

P ′ : P ′ ∈ P}. We define
X = S ×A× V, and choose

F =
{
f : X → R : ∃P̃ ∈ P s.t.

f(s, a, V ) = P̃V (s, a), ∀(s, a, V ) ∈ X
} (10)

Similar to Assumption 1, we assume the function class
F defined in (10) has bounded covering numbers.
Assumption 3 (ε-cover). For any ε > 0, the following
holds:

There exists an ε-cover C(F , ε) ⊆ F with size
|C(F , ε)| ≤ N (F , ε), such that for any f ∈ F , there
exists f ′ ∈ C(F , ε) with ∥f − f ′∥∞ ≤ ε

Assumption 4 (General model function approxima-
tion with LBM). Given the ground-truth MDP M with
the transition model P, we assume that there exists a
real number ζ ∈ [0, 1], and f̄ ∈ F (defined in 10), such
that for any V ∈ V, and any β ∈ [4],

sup
π

E(s,a)∼dπ

∣∣f̄(s, a, V )− PV (s, a)
∣∣β ≤ ζβ
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Algorithm 2 Meta-algorithm for unknown misspeci-
fied parameter ζ

1: Input: The base algorithm Alg., the total number
of episodes K, the length of one episode H, failure
probability δ > 0.

2: for epoch i = 0, 1, 2, · · · , ⌊log2
(√

3K + 1
)
⌋ do

3: ζ(i) ← 1
2i , K

(i) ← 1
(ζ(i))2

,

4: (V1
(i)
, π(i))← Algorithm 5 (Alg.,K(i), H, δ, ζ(i))

5: if i ≥ 1 then
6: if |V1

(i) − V1
(i−1)| > C(d,H, δ) · ζ(i) then

7: j ← i− 1,
8: break;

9: for the rest episodes t = 1, 2, · · ·K −
j+1∑
i=0

K(i) do

10: for step h = 1, · · · , H do
11: Take action ath ← π(j)(sth), and observe sth+1.

Now we present the main theorem of our algorithm
and the in-depth proof is showcased in Appendix D.

Theorem 5.6 (Regret bound with known ζ). Under
our Assumption 3 and 4, for any fixed δ ∈ (0, 1), with
probability at least 1−δ, the total regret of Algorithm 4 is
at most Õ

(√
dEKHζ log(1/δ) +

√
d2EKH3 log(1/δ)

)
,

where dE represents the eluder dimension of the func-
tion class.

Remark 5.7. Our assumption is strictly weaker than
that in (Ayoub et al., 2020), where they assume that
given the truth model P, there exists an approxi-
mator P̄ ∈ P such that for all (s, a) ∈ S × A,
||P̄ (·|s, a)− P(·|s, a)||TV ≤ ζ. To clarify, our Assump-
tion 4 merely necessitates the misspecification error to
be locally bounded at the relevant state-action pairs.
These pairs are those that can be reached by certain
policies with a high probability.

Remark 5.8. A direct corollary of our result is for the
Linearly-Parametrized Transition Model. Specifically,
we assume there are d transition models, P1, P2, · · · , Pd,
Θ ⊂ Rd is a bounded and nonempty set, and let P ={∑

j

θjPj : θ ∈ Θ

}
. Given the ground-truth model P

, if there exists a d-dimension vector α ∈ Θ, such

that E(s,a)∼dπ ||P(·|s, a)−
d∑

j=1

αjPj(·|s, a)||α1 ≤ ζα, ∀α ∈

[4]. Then for any fixed δ ∈ (0, 1), with probability at
least 1 − δ, the total regret of Algorithm 4 is at most
Õ
(√

dKHζ log(1/δ) +
√
d2KH3 log(1/δ)

)
.

6 META ALGORITHM WITHOUT
KNOWING THE MISSPECIFIED
PARAMETER

In real-world environments, we cannot assume that
the misspecified parameter ζ is provided. This issue
serves as motivation for our meta algorithm (Algorithm
2), which makes the base algorithm (e.g., Algorithm
3,4,6) have the parameter-free property by employing
exponentially decreasing misspecified parameters and
increasing training episodes. Without loss of generality,
we assume the initial state s1 remains fixed across all
episodes. The entire training process is divided into
multiple epochs. In each epoch, the meta algorithm
interacts with the environment (using a small variation
of the base algorithm, Algorithm 5 in Appendix A,
which is almost the same as the base algorithm except
that it outputs the policy and value of each round) a
total of K(i) = 1/(ζ(i))2 times, where ζ(i) = 1/2i is
the exponentially decreasing misspecified parameter.
After each epoch, the real-time reward data is utilized
to estimate the value function of the average policy for
that round. Notably, when training with misspecified
parameter that is roughly the true value (i.e., ζ(i) ≳ ζ),
the value estimates from adjacent epochs exhibit mini-
mal variation. However, as the misspecified parameter
ζ(i) decreases below the ground-truth parameter ζ, the
obtained policy may deteriorate since the base algo-
rithms do not guarantee optimism in this scenario.
Hence, when our stability condition is violated, defined
as |V1

(i) − V1
(i−1)| > C(d,H, δ) · ζ(i) (where C(d,H, δ)

is a constant dependent on d,H, δ, see definition in
Appendix E), we break out of the loop and execute
the last average policy for the remaining episodes. Ac-
cording to our selection of the misspecified parameters,
there must exist an accurate parameter ζ(s) close to
the true ζ (ζ ≤ ζ(s) < 2ζ). As the last executed policy
still satisfies the stability condition, it can serve as an
approximate good policy for the previous policy with
the parameter ζ(s).

Based on the above analysis, our formal guarantee of
Algorithm 2 for the unknown ζ case is presented as
follows. The detailed proof is displayed in Appendix E.

Theorem 6.1 (Regret bound with unknown ζ). Sup-
pose the input base algorithm Alg. which needs to
know the locally-bounded misspecified parameter ζ has
a regret bound of Õ

(
dαHβ(

√
K +K · ζ)

)
, then our

meta-algorithm (Algorithm 2) can achieve the same
order of regret bound Õ

(
dαHβ(

√
K +K · ζ)

)
without

knowing the misspecified parameter ζ.



Yunfan Li, Lin Yang

7 CONCLUSION

In this paper, we have proposed a robust RL algorithm
framework for value-based and model-based methods
under locally-bounded misspecification error. Through
a careful design of the high-probability confidence set
and a refined analysis, we have significantly improved
the regret bound of (Wang et al., 2020b; Ayoub et al.,
2020) when the misspecification error is not globally
bounded. Furthermore, we have developed a provably
efficient meta algorithm to address scenarios where the
misspecified parameter is unknown.
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A Remaining Algorithm Pseudocodes

We provide the remaining algorithms in this section.

Algorithm 3 Robust-LSVI with general function approximation (ζ is known)
1: Input: The function class F , the number of episodes K, the length of one episode H, failure probability

δ > 0, misspecified parameter ζ.
2: for episode k = 1, · · · ,K do
3: Receive the initial state sk1 .
4: Initialize Qk

H+1(·, ·)← 0, V k
H+1(·)← 0.

5: Zk ← {(sk′

h′ , ak
′

h′)}(k′,h′)∈[k−1]×[H]

6: for step h = H,H − 1, · · · , 1 do
7: Find the best empirical approximator:

fk
h ← argmin

f∈F
||f ||2Dk

h

where
Dk

h = {(sk
′

h′ , ak
′

h′ , rk
′

h′ + V k
h+1(s

k′

h′+1))}(k′,h′)∈[k−1]×[H]

8: (f̂k
h , Ẑk)← Sensitivity-Sampling(F , fk

h ,Zk, δ)
9: Construct the confidence set

F̂ =
{
f ∈ F : ||f − f̂k

h ||Ẑk ≤ β(F , δ)
}

where β(F , δ) = L(d,K,H, δ) ·

√kHζ︸ ︷︷ ︸
Ek
bias

+ dH2︸︷︷︸
Ek
stat


10: Get the optimistic approximator

Qk
h(·, ·)← min{fk

h (·, ·) + bkh(·, ·), H}, V k
h (·) = max

a∈A
Qk

h(·, a)

, where
bkh(·, ·) = sup

f1,f2∈F̂
|f1(·, ·)− f2(·, ·)|

11: Get the corresponding optimal policy

πk
h(·)← argmaxa∈AQ

k
h(·, a)

12: for step h = 1, · · · , H do
13: Take action akh ← πk

h(s
k
h), and observe skh+1 and rkh = r(skh, a

k
h).
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Algorithm 4 Robust-UCRL-VTR with general function approximation (ζ is known)
1: Input: Family of MDP models P , The number of episodes K, the length of one episode H, failure probability

δ > 0, misspecified parameter ζ.
2: B1 = P
3: for episode k = 1, · · · ,K do
4: Receive the initial state sk1 . Find the best empirical approximator:

P̂ (k) ← argmin
P∈P

Lk−1(Dk−1, P ) (5)

5: Construct the confidence set:

Bk = {P ′ ∈ P| dk(P ′, P̂ (k)) ≤ βk} (6)

where
βk = L′(d,K,H, δ) · (

√
kHζ︸ ︷︷ ︸
Ek
bias

+ H︸︷︷︸
Ek
stat

)

6: Get the optimistic approximator

P (k) = argmaxP ′∈Bk
V ∗
P ′,1(s

k
1)

Compute Qk
1 , Q

k
2 , · · · , Qk

H for P (k) using dynamic programming (9).
7: Get the corresponding optimal policy

πk
h(·)← argmax

a∈A
Qk

h(·, a) , h = 1, 2, · · · , H

8: for step h = 1, 2, · · · , H do
9: Take action akh ← πk

h(s
k
h), and observe skh+1 and rkh = r(skh, a

k
h).
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Algorithm 5 Single-epoch-Algorithm
1: Input: The base algorithm Alg., The number of episodes K in a single epoch, the length of one episode H,

failure probability δ > 0, misspecified parameter ζ.
2: for k = 1, · · · ,K do
3: Update the policy {πk

h}h∈[H] by using Alg.
4: for step h = 1, · · · , H do
5: Take action akh ← πk

h(s
k
h), and observe skh+1.

6: Calculate Rk ← Rk + rh(s
k
h, a

k
h).

7: Output: value : V1 ← 1
K

K∑
k=1

Rk

8: policy : Unif(π1, π2, · · · , πK)
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B Analysis of Robust Value-based Algorithm with Linear Function Approximation
for Locally-bounded Misspecified MDP

Algorithm 6 Robust-LSVI with linear function approximation (ζ is known)
1: Input: The number of episodes K, the length of one episode H, failure probability δ > 0, misspecified

parameter ζ.
2: for episode k = 1, · · · ,K do
3: Receive the initial state sk1 .
4: Initialize Qk

H+1(·, ·)← 0, V k
H+1(·)← 0.

5: Update the bonus parameter βk ← cβ

(
4
√
kdζ +

√
(λ+ 1)d2 log

(
4dKH

δ

))
H.

6: for step h = H,H − 1, · · · , 1 do

7: Λk
h ←

k−1∑
τ=1

ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤ + λ · I.

8: wk
h ← (Λk

h)
−1

k−1∑
τ=1

ϕ(sτh, a
τ
h)[rh(s

τ
h, a

τ
h) + V k

h+1(s
τ
h+1)].

9: Qk
h(·, ·)← min{(wk

h)
⊤ϕ(·, ·) + βk[ϕ(·, ·)⊤(Λk

h)
−1ϕ(·, ·)]1/2, H}.

10: V k
h (·)← maxa∈A Qk

h(·, a).
11: πk

h(·)← argmaxa∈AQ
k
h(·, a).

12: for step h = 1, · · · , H do
13: Take action akh ← πk

h(s
k
h), and observe skh+1.

In order to let readers better understand the core idea of our paper, we first give the proof for the linear case before
giving the proof for the general case. We study the linear function approximation setting for MDPs introduced in
Yang and Wang (2019); Jin et al. (2020), where the probability transition matrix can be approximated by a linear
function class. To enable a much stronger locally bounded misspecification error, we consider the following notion
of ζ-Average-Approximate Linear MDP. It is worth mentioning that Agarwal et al. (2023) also gives a positive
result of LSVI-UCB (Jin et al., 2020) under average-misspecification, and here we present another version of the
proof.
Assumption 5. (ζ-Average-Approximate Linear MDP). For any ζ ≤ 1, we say that the MDP M = (S,A, H,P, r)
is a ζ-Average-Approximate Linear MDP with a feature map ϕ : S ×A → Rd, if for any h ∈ [H], there exists a
d-dimension measures µh = (µ

(1)
h , · · · , µ(d)

h ) over S, and an vector θh ∈ Rd, such that for any policy π, and any
α ∈ [4], we have

E(s,a)∼dπ
h
||Ph(·|s, a)− ⟨ϕ(s, a),µh(·)⟩ ||αTV ≤ ζα and E(s,a)∼dπ

h
|rh(s, a)− ⟨ϕ(s, a),θh⟩ |α ≤ ζα

Remark B.1. We note that the assumption on the boundedness of the 4-th moments is minor: E(s,a)∼dπ
h
|f(s, a)|α

is bounded for any α > 1 as long as f is bounded and E(s,a)∼dπ
h
|f(s, a)| is bounded. We choose a 4-th moment

bound for the ease of presentation and fair comparison with existing results.
Remark B.2. Our assumption is strictly weaker than the ζ-Approximate Linear MDP in Jin et al. (2020), where
they assumed that, for all (s, a) ∈ S ×A: ||Ph(·|s, a)− ⟨ϕ(s, a),µh(·)⟩ ||TV ≤ ζ, |rh(s, a)− ⟨ϕ(s, a),θh⟩ | ≤ ζ.

In other words, ζ-Average-Approximate Linear MDP only needs the misspecification error to be locally bounded
at relevant state-action pairs, which can be reached by some policies with sufficiently high probability, whereas
ζ-Approximate Linear MDP requires the misspecification error to bounded globally in all state-action pairs,
including those not even relevant to the learning.

We will also need the following standard assumptions for the regularity of the feature map:
Assumption 6. (Boundness) Without loss of generality, we assume that ||ϕ(s, a)|| ≤ 1, and
max{||µh(S)||, ||θh||} ≤

√
d, ∀(s, a, h) ∈ S ×A× [H].

The following analysis in Section B are based on Assumption 5 and 6.

To simplify our notation, for each (s, a, h) ∈ S ×A× [H], we denote

ξh(s, a) = ||Ph(·|s, a)− P̃h(·|s, a)||TV
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ηh(s, a) = |rh(s, a)− r̃h(s, a)|

where P̃h(·|s, a) := ⟨ϕ(s, a),µh(·)⟩, and r̃h(s, a) := ⟨ϕ(s, a),θh⟩.

With the above notation, ξh(s, a), ηh(s, a) denotes the model misspecification error for transition kernel Ph and
reward function rh of a fixed state-action pair (s, a).

Moreover, for all (k, h) ∈ [K]× [H], we denote ϕk
h := ϕ(skh, a

k
h).

In the following analysis, we consider an auxiliary stochastic process, which, although unattainable in reality,
proves valuable for our analysis.

Auxiliary Stochastic Process For each episode, denoted by k ∈ [K], we collect the dataset Dk = {(skh, akh)}Hh=1

using policies {πk
h}Hh=1 trained by the algorithm in the last k episodes. Additionally, we allow the agent to gather

data D∗
k = {(sk∗h , ak∗h )}Hh=1 using optimal policies {π∗

h}Hh=1 within the MDP.

It is worth observing that this auxiliary stochastic process closely resembles the original training process,
with the sole addition being a dataset sampled under optimal policies. However, it is crucial to emphasize
that this additional dataset does not influence our training course. Consequently, the results obtained from
the original stochastic process remain valid in this auxiliary stochastic process. To formalize this concept,
we define the following filtration: F0 = {∅,Ω}, F1 = σ ({D1, D

∗
1}) , · · · , Fk = σ ({D1, D

∗
1 , · · · , Dk, D

∗
k}) , · · · ,

FK = σ ({D1, D
∗
1 , · · · , DK , D∗

K}). Here, σ(D) represents the filtration induced by the dataset D.

B.1 Proof of Theorem 5.3

In this section, we present the comprehensive proof of Theorem 5.3. Prior to providing the proof for the main
theorem (Theorem B.11), it is necessary to establish the foundation through the following lemmas.

Lemma B.3. (Misspecification Error for Q-function). For a ζ-Average-Approximate Linear MDP (Assumption
5), for any fixed policy π, any h ∈ [H], there exists weights {wπ

h}h∈[H], where wπ
h = θh +

∫
V π
h+1(s

′)dµh(s
′), such

that for any (s, a) ∈ S ×A,

|Qπ
h(s, a)− ⟨ϕ(s, a),wπ

h⟩ | ≤ ηh(s, a) +H · ξh(s, a)

Proof. This proof is straightforward by using the property of Q-function.

|Qπ
h(s, a)− ⟨ϕ(s, a),wπ

h⟩ | =
∣∣∣∣rh(s, a) + PhV

π
h+1(s, a)−

〈
ϕ(s, a),θh +

∫
V π
h+1(s

′)dµh(s
′)

〉∣∣∣∣
≤ |rh(s, a)− ⟨ϕ(s, a),θh⟩|+

∣∣∣∣PhV
π
h+1(s, a)−

〈
ϕ(s, a),

∫
V π
h+1(s

′)dµh(s
′)

〉∣∣∣∣
≤ ηh(s, a) +H · ξh(s, a)

(11)

Lemma B.4. For any h ∈ [H],

||wπ
h || ≤ 2H

√
d

Proof. For any policy π, wπ
h = θh +

∫
V π
h+1(s

′)dµh(s
′), therefore, under Assumption 6, we have:

||wπ
h || ≤ ||θh||+ ||

∫
V π
h+1(s

′)dµh(s
′)|| ≤

√
d+H

√
d ≤ 2H

√
d
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Lemma B.5. Let cβ be a constant in the definition of βk, where βk = cβ

(
4
√
kdζ +

√
(λ+ 1)d2 log

(
4dKH

δ

))
H.

Then under Assumption 5, 6, there exists an absolute constant C that is independent of cβ such that for any fixed
δ ∈ [0, 1], we have for all (k, h) ∈ [K]× [H], with probability at least 1− δ,∣∣∣∣∣

∣∣∣∣∣
k−1∑
τ=1

ϕτ
h[V

k
h+1(s

τ
h+1)− PhV

k
h+1(s

τ
h, a

τ
h)]

∣∣∣∣∣
∣∣∣∣∣
(Λk

h)
−1

≤ C · dH
√
log [2(cβ + 1)dKH/δ]

Proof. Lemmas G.3 and Lemma G.5 together imply that for all (k, h) ∈ [K]× [H], with probability at least 1− δ,∣∣∣∣∣
∣∣∣∣∣
k−1∑
τ=1

ϕτ
h[V

k
h+1(s

τ
h+1)− PhV

k
h+1(s

τ
h, a

τ
h)]

∣∣∣∣∣
∣∣∣∣∣
2

(Λk
h)

−1

≤ 4H2

(
d

2
log(

k + λ

λ
) + d log

(
1 +

8H
√
dk

ϵ
√
λ

)
+ d2 log

[
1 + 8d1/2B2/(λϵ2)

]
+ log(

1

δ
)

)
+

8k2ϵ2

λ

(12)

We let ϵ = dH/k, and B = maxk βk = cβ

(
4
√
Kdζ +

√
(λ+ 1)d2 log

(
4dKH

δ

))
H, then from Eq.(12), there exists

a constant C which is independent of cβ such that∣∣∣∣∣
∣∣∣∣∣
k−1∑
τ=1

ϕτ
h[V

k
h+1(s

τ
h+1)− PhV

k
h+1(s

τ
h, a

τ
h)]

∣∣∣∣∣
∣∣∣∣∣
(Λk

h)
−1

≤ C · dH
√
log [2(cβ + 1)dKH/δ]

Lemma B.6. During the course of training, we define the mixed misspecification error ϵτh = (rh − r̃h)(s
τ
h, a

τ
h) +(

Ph − P̃h

)
V k
h+1(s

τ
h, a

τ
h), ∀(τ, h) ∈ [K]× [H] , then for any fixed policy π, conditioned on the event in Lemma

B.5, we have for all (s, a, h, k) ∈ S ×A× [H]× [K], that

|
〈
ϕ(s, a),wk

h

〉
−Qπ

h(s, a)− Ph(V
k
h+1 − V π

h+1)(s, a)|

≤ λk
h

√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a) + 3H · ξh(s, a) + ηh(s, a)

(13)

where

λk
h = 4H

√
λd+ C · dH

√
log [2(cβ + 1)dKH/δ] +

√
d

√√√√k−1∑
τ=1

(ϵτh)
2

Proof. For any (s, a) ∈ S ×A, we have ⟨ϕ(s, a),wπ
h⟩ = ⟨ϕ(s, a),θh⟩+ P̃hV

π
h+1(s, a). Therefore, we have

wk
h −wπ

h = (Λk
h)

−1
k−1∑
τ=1

ϕτ
h[r

τ
h + V k

h+1(s
τ
h+1)]−wπ

h

= (Λk
h)

−1{−λwπ
h +

k−1∑
τ=1

ϕτ
h[r

τ
h + V k

h+1(s
τ
h+1)− (ϕτ

h)
⊤θh − P̃hV

π
h+1(s

τ
h, a

τ
h)]}

= −λ(Λk
h)

−1wπ
h︸ ︷︷ ︸

p1

+(Λk
h)

−1
k−1∑
τ=1

ϕτ
h[V

k
h+1(s

τ
h+1)− PhV

k
h+1(s

τ
h, a

τ
h)]︸ ︷︷ ︸

p2

+ (Λk
h)

−1
k−1∑
τ=1

ϕτ
hP̃h(V

k
h+1 − V π

h+1)(s
τ
h, a

τ
h)︸ ︷︷ ︸

p3

+(Λk
h)

−1
k−1∑
τ=1

ϕτ
h[r

τ
h − (ϕτ

h)
⊤θh +

(
Ph − P̃h

)
V k
h+1(s

τ
h, a

τ
h)]︸ ︷︷ ︸

p4

(14)
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For the last term, according to our definition in Lemma B.6, rτh − (ϕτ
h)

⊤θh +
(
Ph − P̃h

)
V k
h+1(s

τ
h, a

τ
h) = ϵτh, and

notice that |ϵτh| ≤ ηh(s
τ
h, a

τ
h) +H · ξh(sτh, aτh).

For the first term p1, by Lemma B.4, we have

| ⟨ϕ(s, a), p1⟩ | = |λ
〈
ϕ(s, a), (Λk

h)
−1wπ

h

〉
| ≤
√
λ||wπ

h ||
√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a) ≤ 2H

√
λd
√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a)

Conditioned on Lemma B.5, we have

| ⟨ϕ(s, a), p2⟩ | ≤ C · dH
√

log [2(cβ + 1)dKH/δ] ·
√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a)

For the third term,

⟨ϕ(s, a), p3⟩ =

〈
ϕ(s, a), (Λk

h)
−1

k−1∑
τ=1

ϕτ
hP̃h(V

k
h+1 − V π

h+1)(s
τ
h, a

τ
h)

〉

=

〈
ϕ(s, a), (Λk

h)
−1

k−1∑
τ=1

ϕτ
h(ϕ

τ
h)

⊤
∫

(V k
h+1 − V π

h+1)(s
′)dµh(s

′)

〉

=

〈
ϕ(s, a),

∫
(V k

h+1 − V π
h+1)(s

′)dµh(s
′)

〉
︸ ︷︷ ︸

t1

−λ
〈
ϕ(s, a), (Λk

h)
−1

∫
(V k

h+1 − V π
h+1)(s

′)dµh(s
′)

〉
︸ ︷︷ ︸

t2

(15)

Notice that t1 = P̃h(V
k
h+1 − V π

h+1)(s, a), |t2| ≤ 2H
√
dλ
√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a), and∣∣t1 − Ph(V

k
h+1 − V π

h+1)(s, a)
∣∣ = ∣∣∣(P̃h − Ph)(V

k
h+1 − V π

h+1)(s, a)
∣∣∣ ≤ 2H · ξh(s, a)

For the last term p4,

| ⟨ϕ(s, a), p4⟩ | =

∣∣∣∣∣
〈
ϕ(s, a), (Λk

h)
−1

k−1∑
τ=1

ϕτ
hϵ

τ
h

〉∣∣∣∣∣
≤

k−1∑
τ=1

|(ϵτhϕ)⊤(Λk
h)

−1ϕτ
h|

≤

√√√√(k−1∑
τ=1

(ϵτhϕ)
⊤(Λk

h)
−1(ϵτhϕ)

)(
k−1∑
τ=1

(ϕτ
h)

⊤(Λk
h)

−1ϕτ
h

)

=

√√√√k−1∑
τ=1

(ϵτh)
2 ·
√

ϕ(s, a)⊤(Λk
h)

−1ϕ(s, a) ·

√√√√k−1∑
τ=1

(ϕτ
h)

⊤(Λk
h)

−1ϕτ
h

≤

√√√√k−1∑
τ=1

(ϵτh)
2 ·
√

ϕ(s, a)⊤(Λk
h)

−1ϕ(s, a) ·
√
d (By Lemma G.1)

(16)

Finally, Combined with the result in Lemma B.3, we have

|
〈
ϕ(s, a),wk

h

〉
−Qπ

h(s, a)− Ph(V
k
h+1 − V π

h+1)(s, a)|
≤ |
〈
ϕ(s, a),wk

h −wπ
h

〉
− Ph(V

k
h+1 − V π

h+1)(s, a)|+ |Qπ
h(s, a)− ⟨ϕ(s, a),wπ

h⟩ |

≤

4H
√
λd+ C · dH

√
log [2(cβ + 1)dKH/δ] +

√
d

√√√√k−1∑
τ=1

(ϵτh)
2

︸ ︷︷ ︸
λk
h

√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a) + 3H · ξh(s, a) + ηh(s, a)

(17)
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Lemma B.7. (Recursive formula). We define δkh = V k
h (skh)− V πk

h (skh), and ζkh+1 = E[δkh+1|skh, akh]− δkh+1. Then,
conditioned on the event in Lemma B.5, we have for any (k, h) ∈ [K]× [H]:

δkh ≤ δkh+1 + ζkh+1 + (λk
h + βk)

√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h + 3H · ξh(skh, akh) + ηh(s
k
h, a

k
h) (18)

Proof. By Lemma B.6, we have for any (s, a, h, k) ∈ S ×A× [H]× [K]:

Qk
h(s, a)−Qπk

h (s, a) ≤
〈
ϕ(s, a),wk

h

〉
+ βk

√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a)−Qπk

h (s, a)

≤ Ph(V
k
h+1 − V πk

h+1)(s, a) + (λk
h + βk)

√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a) + 3H · ξh(s, a) + ηh(s, a)

(19)
Notice that δkh = Qk

h(s
k
h, a

k
h)−Qπk

h (skh, a
k
h), and Ph(V

k
h+1 − V πk

h+1)(s
k
h, a

k
h) = E[δkh+1|skh, akh],

which finishes the proof.

Lemma B.8. (Bound of cumulative misspecification error). With probability at least 1− δ,

K∑
k=1

H∑
h=1

ξh(s
k
h, a

k
h) ≤

√
8KH2 log(

4

δ
) +KHζ (20)

and

K∑
k=1

H∑
h=1

ηh(s
k
h, a

k
h) ≤

√
32dKH2 log(

4

δ
) +KHζ (21)

Proof. We define Xk =
H∑

h=1

ξh(s
k
h, a

k
h), Z0 = 0, Zk =

k∑
i=1

Xi −
k∑

i=1

E[Xi|Fi−1], k = 1, 2, · · · ,K. Notice that

{Zk}Kk=1 is a martingale, and |Zk − Zk−1| = |Xk − E[Xk|Fk−1]| ≤ 2H, ∀k ∈ [K].

Then by Azuma-Hoeffding’s inequality: For any ϵ > 0,

P (|ZK − Z0| ≥ ϵ) ≤ 2 exp
{

−ϵ2

2K · 4H2

}
which means that, with probability at least 1− δ,

|
K∑

k=1

Xk −
K∑

k=1

E[Xk|Fk−1]| ≤
√
8KH2 log(

2

δ
)

For the term
K∑

k=1

E[Xk|Fk−1], notice that

E[Xk|Fk−1] =

H∑
h=1

E[ξh(skh, akh)|Fk−1] =

H∑
h=1

E(s,a)∼d
πk
h
[ξh(s, a)] ≤ Hζ (By Assumption 5)

Therefore,
K∑

k=1

E[Xk|Fk−1] ≤ KHζ

Finally, with probablity at least 1− δ,

K∑
k=1

H∑
h=1

ξh(s
k
h, a

k
h) ≤

√
8KH2 log(

2

δ
) +KHζ
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and similarly, with probability at least 1− δ,

K∑
k=1

H∑
h=1

ηh(s
k
h, a

k
h) ≤

√
32dKH2 log(

2

δ
) +KHζ

By taking the union bound, we achieve the result.

Lemma B.9. (Bound of bonus parameter). With probability at least 1− δ, for all (k, h) ∈ [K]× [H], it holds that

λk
h ≤ βk

where

βk = cβ

(
4
√
kdζ +

√
(λ+ 1)d2 log

(
4dKH

δ

))
H

Proof. For any fixed (k, h) ∈ [K]× [H], we have

(λk
h)

2 =

4H
√
λd+ C · dH

√
log [2(cβ + 1)dKH/δ] +

√
d

√√√√k−1∑
τ=1

(ϵτh)
2

2

≤ 2

((
4H
√
λd+ C · dH

√
log [2(cβ + 1)dKH/δ]

)2

+ d

k−1∑
τ=1

(ϵτh)
2

) (22)

Notice that
k−1∑
τ=1

(ϵτh)
2 ≤

k−1∑
τ=1

(ηh(s
τ
h, a

τ
h) +H · ξh(sτh, aτh))

2

≤ 2

k−1∑
τ=1

(
η2h(s

τ
h, a

τ
h) +H2ξ2h(s

τ
h, a

τ
h)
) (23)

Case 1 k ≥ 64d2 log( 4
δ )

ζ4 By applying Azuma-Hoeffding’s inequality, with probability at least 1− δ/2, we have

k−1∑
τ=1

ξ2h(s
τ
h, a

τ
h) ≤

k−1∑
τ=1

E
[
ξ2h(s

τ
h, a

τ
h)|Fτ−1

]
+

√
8k log(

4

δ
)

≤
k∑

τ=1

E(sτh,a
τ
h)∼dπτ

h
[ξ2h(s

τ
h, a

τ
h)] +

√
8k log(

4

δ
)

≤ kζ2 +

√
8k log(

4

δ
) (By Assumption 5)

(24)

In the same way, with probability at least 1− δ/2, we have

k−1∑
τ=1

η2h(s
τ
h, a

τ
h) ≤ kζ2 +

√
128kd2 log(

4

δ
) (25)

Therefore, with probability at least 1− δ,

k−1∑
τ=1

(ϵτh)
2 ≤ 2

(
kζ2 +

√
128kd2 log(

4

δ
)

)
+ 2H2

(
kζ2 +

√
8k log(

4

δ
)

)

≤ 4kH2ζ2 + 32dH2

√
k log(

4

δ
)

≤ 8kH2ζ2

(26)
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Case 2 k <
64d2 log( 4

δ )

ζ4 We denote Xτ = ξ2h(s
τ
h, a

τ
h) − E[ξ2h(sτh, aτh)|Fτ−1], and Y0 = 0, Yτ =

τ∑
i=1

Xi, τ =

1, 2, · · · , k − 1.

Notice that {Yτ}k−1
τ=1 is a martingale.

k−1∑
τ=1

E[X2
τ |Fτ−1] =

k−1∑
τ=1

E
[(
ξ2h(s

τ
h, a

τ
h)− E[ξ2h(sτh, aτh)|Fτ−1]

)2 |Fτ−1

]
≤

k−1∑
τ=1

E
[
ξ4h(s

τ
h, a

τ
h) +

(
E[ξ2h(sτh, aτh)|Fτ−1]

)2 |Fτ−1

]
=

k−1∑
τ=1

E
[
ξ4h(s

τ
h, a

τ
h)|Fτ−1

]
+

k−1∑
τ=1

(
E[ξ2h(sτh, aτh)|Fτ−1]

)2
≤ 2

k−1∑
τ=1

E
[
ξ4h(s

τ
h, a

τ
h)|Fτ−1

]
(By Jensen’s inequality)

≤ 2kζ4 (By Assumption 5)

(27)

By applying Freedman’s inequality (Lemma G.6), we have for any t ≥ 0, that

P (|Yk − Y0| ≥ t) ≤ 2 exp

{
− t2/2

2kζ4 + 2t/3

}
≤ 2 exp

{
− t2/2

128d2 log
(
4
δ

)
+ 2t/3

}
We let the rightmost term in the above formula to be δ/2, and by solving the quadratic equation with respect to
t, we get t = C1 · d log( 4δ ), where C1 is some constant. Therefore, we have with probability at least 1− δ/2,

k−1∑
τ=1

ξ2h(s
τ
h, a

τ
h) ≤ kζ2 + C1 · d log(

4

δ
)

Similarly, with probability at least 1− δ/2,

k−1∑
τ=1

η2h(s
τ
h, a

τ
h) ≤ kζ2 + C2 · d log(

4

δ
)

where C2 is some constant. Therefore, in this case, with probability at least 1− δ,

k−1∑
τ=1

(ϵτh)
2 ≤ 4kH2ζ2 + C ′dH2 log(

4

δ
)

where C ′ = 2(C1 + C2) is also some constant.

Combining two cases, we have for any fixed (k, h) ∈ [K]× [H], with probability at least 1− δ,

k−1∑
τ=1

(ϵτh)
2 ≤ 8kH2ζ2 + C ′dH2 log(

4

δ
) (28)

Finally, by taking the union bound of all (k, h) ∈ [K]× [H], we have with probability at least 1− δ,

(λk
h)

2 ≤ 32dH2λ+ 4C2d2H2 log

(
2(cβ + 1)dKH

δ

)
+ 16dkH2ζ2 + 2C ′d2H2 log(

4KH

δ
)

≤ 16dkH2ζ2 + 32(λ+ 1)(C + C ′)2d2H2 log

(
4(cβ + 1)dKH

δ

) (29)

This means that

λk
h ≤ 4

√
kdHζ +

√
32(λ+ 1)(C + C ′)2dH

√
log

(
4(cβ + 1)dKH

δ

)
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By choosing an appropriate cβ , we have

λk
h ≤ cβ

(
4
√
kdζ +

√
(λ+ 1)d2 log

(
4dKH

δ

))
H = βk

Lemma B.10. (Near-Optimism) Given K initial points {sk1}Kk=1, we use {(sk∗h , ak∗h )}(k,h)∈[K]×[H] (where sk∗1 = sk1 ,
∀k ∈ [K]) to represent the dataset sampled by the optimal policy π∗ in the true environment (This dataset is
impossible to obtain in reality, but it can be used for our analysis), and we denote δk∗h = V ∗

h (s
k∗
h )− V k

h (sk∗h ), and
ζk∗h = E

[
δk∗h+1|sk∗h , ak∗h

]
− δk∗h+1. Then conditioned on the event in Lemma B.9, with probability at least 1− δ, we

have
K∑

k=1

[V ∗
1 (s

k
1)− V k

1 (sk1)] ≤ 4KH2ζ + 12H2

√
dK log(

8

δ
) (30)

Proof. First of all, by the definition of V k
1 , we have

V k
1 (sk∗1 ) = max

a∈A
Qk

1(s
k∗
1 , a) ≥ Qk

1(s
k∗
1 , ak∗1 )

Therefore,
K∑

k=1

[V ∗
1 (s

k∗
1 )− V k

1 (sk∗1 )] ≤
K∑

k=1

(
Q∗

1(s
k∗
1 , ak∗1 )−Qk

1(s
k∗
1 , ak∗1 )

)
(31)

Notice that if we have Qk
1(s

k∗
1 , ak∗1 ) = H for some k, then Q∗

1(s
k∗
1 , ak∗1 ) ≤ Qk

1(s
k∗
1 , ak∗1 ), which means we achieve

an optimistic estimate, and this term will less than or equal to 0 in Eq.(31). Therefore, we only need to consider
the situation when Qk

1(s
k∗
1 , ak∗1 ) < H, ∀k ∈ [K].

In this case,

Qk
1(s

k∗
1 , ak∗1 ) =

〈
ϕ(sk∗1 , ak∗1 ),wk

1

〉
+ βk

√
ϕ(sk∗1 , ak∗1 )⊤(Λk

1)
−1ϕ(sk∗1 , ak∗1 )

Then we have

K∑
k=1

(
Q∗

1(s
k∗
1 , ak∗1 )−Qk

1(s
k∗
1 , ak∗1 )

)
=

K∑
k=1

(
Q∗

1(s
k∗
1 , ak∗1 )−

〈
ϕ(sk∗1 , ak∗1 ),wk

1

〉
− βk

√
ϕ(sk∗1 , ak∗1 )⊤(Λk

1)
−1ϕ(sk∗1 , ak∗1 )

)

≤
K∑

k=1

(
(λk

h − βk)
√

ϕ(sk∗1 , ak∗1 )⊤(Λk
1)

−1ϕ(sk∗1 , ak∗1 ) + 3Hξ1(s
k∗
1 , ak∗1 ) + η1(s

k∗
1 , ak∗1 )− P1(V

k
2 − V ∗

2 )(s
k∗
1 , ak∗1 )

)
(32)

where the last inequality is derived by Lemma B.6.

By conditioning on the event in Lemma B.9, we know that λk
h ≤ βk, ∀(k, h) ∈ [K]× [H].

In addition,
P1(V

∗
2 − V k

2 )(sk∗1 , ak∗1 ) = Esk∗
2 ∼P1(·|sk∗

1 ,ak∗
1 )

[
V ∗
2 (s

k∗
2 )− V k

2 (sk∗2 )
]

(33)

and
V ∗
2 (s

k∗
2 )− V k

2 (sk∗2 ) ≤ Q∗
2(s

k∗
2 , ak∗2 )−Qk

2(s
k∗
2 , ak∗2 )

Similar to Eq.(31), we only need to consider the case when Qk
2(s

k∗
2 , ak∗2 ) < H, ∀k ∈ [K]. In this way, we can

recursively use Lemma B.6.
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Therefore,

K∑
k=1

(
Q∗

1(s
k∗
1 , ak∗1 )−Qk

1(s
k∗
1 , ak∗1 )

)
≤

K∑
k=1

(
3H · ξ1(sk∗1 , ak∗1 ) + η1(s

k∗
1 , ak∗1 ) + δk∗2 + ζk∗1

)
≤

K∑
k=1

(
3H · ξ1(sk∗1 , ak∗1 ) + η1(s

k∗
1 , ak∗1 ) + 3H · ξ2(sk∗2 , ak∗2 ) + η2(s

k∗
2 , ak∗2 ) + δk∗3 + ζk∗2 + ζk∗1

)
≤ · · · ≤ 3H

K∑
k=1

H∑
h=1

ξh(s
k∗
h , ak∗h ) +

K∑
k=1

H∑
h=1

ηh(s
k∗
h , ak∗h ) +

K∑
k=1

H∑
h=1

ζk∗h

(34)

Similar to Lemma B.8, We define X∗
k =

H∑
h=1

ξh(s
k∗
h , ak∗h ), Z∗

0 = 0, Z∗
k =

k∑
i=1

X∗
i −

k∑
i=1

E[X∗
i |Fi−1], k = 1, 2, · · · ,K.

Notice that {Z∗
k}Kk=1 is a martingale, and |Z∗

k − Z∗
k−1| = |X∗

k − E[X∗
k |Fk−1]| ≤ 2H, ∀k ∈ [K].

Then by Azuma-Hoeffding’s inequality: For any ϵ > 0,

P (|Z∗
K − Z∗

0 | ≥ ϵ) ≤ 2 exp
{

−ϵ2

2K · 4H2

}
which means that, with probability at least 1− δ,

|
K∑

k=1

X∗
k −

K∑
k=1

E[X∗
k |Fk−1]| ≤

√
8KH2 log(

2

δ
)

For the term
K∑

k=1

E[X∗
k |Fk−1], notice that

E[X∗
k |Fk−1] =

H∑
h=1

E[ξh(sk∗h , ak∗h )|Fk−1] =

H∑
h=1

E(s,a)∼dπ∗
h
[ξh(s, a)] ≤ Hζ (By Assumption 5)

Therefore,
K∑

k=1

E[X∗
k |Fk−1] ≤ KHζ

Then, with probability at least 1− δ,

K∑
k=1

H∑
h=1

ξh(s
k∗
h , ak∗h ) ≤

√
8KH2 log(

2

δ
) +KHζ

and similarly, with probability at least 1− δ,

K∑
k=1

H∑
h=1

ηh(s
k∗
h , ak∗h ) ≤

√
32dKH2 log(

2

δ
) +KHζ

For the last term
K∑

k=1

H∑
h=1

ζk∗h , notice that {ζk∗h } is a martingale difference sequence, and each term is upper

bounded by 2H. By using Azuma-Hoeffding’s inequality, with probability at least 1− δ/4, the following inequality
holds:

K∑
k=1

H∑
h=1

ζk∗h ≤
√

8KH3 · log(8/δ) (35)
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Finally, with probability at least 1− δ,

K∑
k=1

[V ∗
1 (s

k
1)− V k

1 (sk1)] ≤ 3H

K∑
k=1

H∑
h=1

ξh(s
k∗
h , ak∗h ) +

K∑
k=1

H∑
h=1

ηh(s
k∗
h , ak∗h ) +

K∑
k=1

H∑
h=1

ζk∗h

≤ 4KH2ζ + 12H2

√
dK log(

8

δ
)

(36)

Theorem B.11. (Regret Bound under ζ-Average-Approximate Linear MDP).

Under our Assumption 5, 6 , for any fixed δ ∈ (0, 1), with probability at least 1− δ, the total regret of the algorithm
Robust-LSVI (Algorithm 6) is at most Õ

(
dKH2ζ +

√
d3KH4

)
.

Proof. First of all, we do the following decomposition.

Regret(K) =

K∑
k=1

[V ∗
1 (s

k
1)− V πk

1 (sk1)] =

K∑
k=1

[V ∗
1 (s

k
1)− V k

1 (sk1)]︸ ︷︷ ︸
A

+

K∑
k=1

[V k
1 (sk1)− V πk

1 (sk1)]︸ ︷︷ ︸
B

(37)

For the term A, from Lemma B.10 (Near-Optimism), we have with probability at least 1− δ
2 ,

K∑
k=1

[V ∗
1 (s

k
1)− V k

1 (sk1)] ≤ 4KH2ζ + 12H2

√
dK log(

16

δ
) (38)

For the term B, from Lemma B.7 (Recursive formula), we have

K∑
k=1

[V k
1 (sk1)− V πk

1 (sk1)] =

K∑
k=1

δk1

≤
K∑

k=1

H∑
h=1

ζkh +

K∑
k=1

βk

H∑
h=1

√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h +

K∑
k=1

H∑
h=1

λk
h

√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h

+ 3H

K∑
k=1

H∑
h=1

ξh(s
k
h, a

k
h) +

K∑
k=1

H∑
h=1

ηh(s
k
h, a

k
h)

(39)

Notice that {ζkh} is a martingale difference sequence, and each term is upper bounded by 2H. By using
Azuma-Hoeffding’s inequality, with probability at least 1− δ/4, the following inequality holds:

K∑
k=1

H∑
h=1

ζkh ≤
√

8KH3 · log(8/δ) (40)

By Lemma B.9, we have

K∑
k=1

H∑
h=1

λk
h

√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h ≤
K∑

k=1

βk

H∑
h=1

√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h (41)

and by using Cauchy-Schwarz inequality, we have

K∑
k=1

βk

√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h ≤

[
K∑

k=1

β2
k

] 1
2

·

[
K∑

k=1

(ϕk
h)

⊤(Λk
h)

−1ϕk
h

] 1
2

(42)
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and
K∑

k=1

β2
k =

K∑
k=1

c2β

(
4
√
kdζ +

√
(λ+ 1)d2 log

(
4dKH

δ

))2

H2


≤ 2

K∑
k=1

c2βH
2

(
16kdζ2 + (λ+ 1)d2 log

(
4dKH

δ

))
≤ 32c2βK

2H2dζ2 + 2c2β(λ+ 1)KH2d2 log

(
4dKH

δ

)
(43)

Therefore, [
K∑

k=1

β2
k

] 1
2

≤ 8cβ
√
dKHζ + 2cβ(λ+ 1)Hd

√
K log

(
4dKH

δ

)
(44)

By Lemma G.2, we have for any h ∈ [H],

K∑
k=1

(ϕk
h)

⊤(Λk
h)

−1ϕk
h ≤ 2 log

[
det(Λk+1

h )

det(Λ1
h)

]
≤ 2d log

[
λ+ k

λ

]
≤ 2d log

(
2dKH

δ

)
thus [

K∑
k=1

(ϕk
h)

⊤(Λk
h)

−1ϕk
h

] 1
2

≤

√
2d log

(
2dKH

δ

)
(45)

By combining (42), (44), and (45), we have

K∑
k=1

βk

H∑
h=1

√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h ≤ 16cβdKH2ζ

√
log

(
2dKH

δ

)
+ 4cβ(λ+ 1)

√
Kd3H4 · log

(
4dKH

δ

)
(46)

Using Lemma B.8 (Bound of cumulative misspecification error), (40), (41), and (46), we can give a bound of (39),
that with probability at least 1− δ/2,

K∑
k=1

[V k
1 (sk1)− V πk

1 (sk1)] ≤ 36cβdKH2ζ

√
log

(
2dKH

δ

)
+ 20cβ(λ+ 1)

√
Kd3H4 · log

(
4dKH

δ

)
(47)

Finally, by combining (38) and (47), we get the regret bound:

Regret(K) ≤ 40cβdKH2ζ

√
log

(
2dKH

δ

)
+ 32cβ(λ+ 1)

√
Kd3H4 · log

(
4dKH

δ

)
(48)

This indicates that our regret bound is Õ(dKH2ζ +
√
d3KH4), which finishes our proof.

C Analysis of Robust Value-based Algorithm with General Function
Approximation for Locally-bounded Misspecified MDP

Assumption 7. (General function approximation with locally-bounded misspecification error)

Given the MDP M with the transition model P , we assume that there exists a function class F ⊂ {f : S ×A →
[0, H]} and a real number ζ ∈ [0, 1], such that for any V : S → [0, H], there exists f̄V ∈ F , which satisfies :
∀β ∈ [4],

sup
π

E(s,a)∼dπ

∣∣f̄V (s, a)− (r(s, a) + PV (s, a))
∣∣β ≤ ζβ
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To simplify the notation, for a fixed k ∈ [K], we let Zk = {(sk′

h , ak
′

h )}(k′,h)∈[k−1]×[H].

For any V : S → [0, H], define

Dk
V := {(sk

′

h , ak
′

h , rk
′

h + V (sk
′

h+1))}(k′,h)∈[k−1]×[H]

and the accordingly minimizer
f̂V := argmin

f∈F
||f ||2Dk

V

Lemma C.1. For any fixed f ∈ F , and fixed V : S → [0, H], with probability at least 1 − δ, we have for all
k ∈ [K] that

||f̄V ||2Dk
V
− ||f ||2Dk

V
− 2

3
H2 log(

1

δ
)− ||f − f̄V ||Zk ·

√
kHζ2 + C ′H · log(4KH

δ
) +

1

4
||f − f̄V ||2Zk ≤ 0 (49)

Proof. For each (k, h) ∈ [K]× [H], and a fixed f ∈ F , we define

Zk
h =

(
f̄V (s

k
h, a

k
h)− r(skh, a

k
h)− V (skh+1)

)2 − (f(skh, akh)− r(skh, a
k
h)− V (skh+1)

)2
ϵkh = V (skh+1)− PV (skh, a

k
h), ξkh = r(skh, a

k
h) + PV (skh, a

k
h)− f̄V (s

k
h, a

k
h)

and set Fk
h be the σ-algebra generated by {(sk′

h′ , ak
′

h′)}(h′,k′)∈[H]×[k−1] ∪ {(sk1 , ak1), (sk2 , ak2), · · · , (skh, akh)}.

Actually,
k−1∑
k′=1

H∑
h=1

Zk′

h = ||f̄V ||2Dk
V
− ||f ||2Dk

V
, and after a simple calculation, we have

Zk
h = −

(
f(skh, a

k
h)− f̄V (s

k
h, a

k
h)
)2

+ 2
(
f(skh, a

k
h)− f̄V (s

k
h, a

k
h)
)r(skh, a

k
h) + V (skh+1)− f̄V (s

k
h, a

k
h)︸ ︷︷ ︸

ϵkh+ξkh


Notice that E[ϵkh|Fk

h] = 0, and since ϵkh is bounded in [−H,H], hence, ϵkh is H-subguassian. That is to say, for any
λ ∈ R, we have E[exp{λϵkh}|Fk

h] ≤ exp{λ
2H2

8 }.

Moreover, under Assumption 2, using the same argument in Lemma B.9, with probability at least 1− δ/2, for all
(k, h) ∈ [K]× [H], we have

k∑
k′=1

H∑
h=1

(ξk
′

h )2 ≤ kHζ2 + C ′H · log(8KH

δ
) (50)

where C ′ is some constant.

Therefore, the conditional mean and the conditional cumulant generating function of the centered random variable
can be calculated.

µk
h = E[Zk

h |Fk
h] = −

(
f(skh, a

k
h)− f̄V (s

k
h, a

k
h)
)2

+ 2
(
f(skh, a

k
h)− f̄V (s

k
h, a

k
h)
)
ξkh

and
ϕk
h(λ) = logE

[
exp{λ(Zk

h − µk
h)}|Fk

h

]
= logE

[
exp{2λ

(
f(skh, a

k
h)− f̄V (s

k
h, a

k
h)
)
ϵkh}|Fk

h

]
≤

λ2
(
f(skh, a

k
h)− f̄V (s

k
h, a

k
h)
)2

H2

2

(51)
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By using Lemma G.7, we have for any x ≥ 0, λ ≥ 0,

P
(
λ

k−1∑
k′=1

H∑
h=1

Zk′

h ≤ x− λ

k−1∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h )− f̄V (s
k′

h , ak
′

h )
)2

+ 2λ

k−1∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h )− f̄V (s
k′

h , ak
′

h )
)
ξk

′

h

+
λ2H2

2

k−1∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h )− f̄V (s
k′

h , ak
′

h )
)2

,∀(k, h) ∈ [K]× [H]
)
≥ 1− e−x

(52)

After setting x = log( 2δ ), λ = 3
2H2 , and conditioned the event that Eq.(50) holds, that is to say,

k−1∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h )− f̄V (s
k′

h , ak
′

h )
)
ξk

′

h

≤

√√√√ k−1∑
k′=1

H∑
h=1

(
f(sk

′
h , ak

′
h )− f̄V (sk

′
h , ak

′
h )
)2 ·

√√√√ k−1∑
k′=1

H∑
h=1

(ξk
′

h )2

≤

√√√√ k−1∑
k′=1

H∑
h=1

(
f(sk

′
h , ak

′
h )− f̄V (sk

′
h , ak

′
h )
)2 ·√kHζ2 + C ′H · log(8KH

δ
)

(53)

Then we can derive the following result by using Eq.(52) :

P
(
||f̄V ||2Dk

V
− ||f ||2Dk

V
− 2

3
H2 log(

2

δ
)− ||f − f̄V ||Zk ·

√
kHζ2 + C ′H · log(8KH

δ
)

+
1

4
||f − f̄V ||2Zk ≤ 0,∀k ∈ [K]

)
≥ 1− δ

(54)

Lemma C.2. (Discretization error) If g ∈ C(F , 1/T ) satisfies ||f − g||∞ ≤ 1/T , then

∣∣∣1
4
||g − f̄V ||2Zk −

1

4
||f − f̄V ||2Zk + ||f − f̄V ||Zk ·

√
kHζ2 + C ′H · log(8KHN (F , 1/T )

δ
)

− ||g − f̄V ||Zk ·
√
kHζ2 + C ′H · log(8KHN (F , 1/T )

δ
) + ||f ||2Dk

V
− ||g||2Dk

V

∣∣∣
≤ 5(H + 1) + 2

√
kH2ζ2 + C ′H2 · log(8KHN (F , 1/T )

δ
)

(55)

Proof. For any (s, a) ∈ S ×A, ∣∣∣(g(s, a)− f̄V (s, a)
)2 − (f(s, a)− f̄V (s, a)

)2∣∣∣
≤
∣∣[g(s, a) + f(s, a)− 2f̄V (s, a)

]
· [g(s, a)− f(s, a)]

∣∣
≤ 4H · 1

T

(56)

Therefore, ∣∣||f − f̄V ||2Zk − ||g − f̄ ||2Zk

∣∣ ≤ 4H · 1
T
· |Zk| = 4H (57)
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∣∣∣||f ||2Dk
V
− ||g||2Dk

V

∣∣∣
=

∣∣∣∣∣
k−1∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h )− r(sk
′

h , ak
′

h )− V (sk
′

h+1)
)2
−

k−1∑
k′=1

H∑
h=1

(
g(sk

′

h , ak
′

h )− r(sk
′

h , ak
′

h )− V (sk
′

h+1)
)2∣∣∣∣∣

≤

∣∣∣∣∣
k−1∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h ) + g(sk
′

h , ak
′

h )− 2r(sk
′

h , ak
′

h )− 2V (sk
′

h+1)
)(

f(sk
′

h , ak
′

h )− g(sk
′

h , ak
′

h )
)∣∣∣∣∣

≤ 4(H + 1) · |Zk| · 1
T

= 4(H + 1)

(58)

Moreover,

∣∣||f − f̄V ||Zk − ||g − f̄V ||Zk

∣∣ ≤√∣∣||f − f̄V ||2Zk − ||g − f̄ ||2Zk

∣∣ ≤ 2
√
H (59)

By combining (57), (58) and (59), we have (55).

Lemma C.3. For a fixed V : S → [0, H], with probability at least 1− δ, for all k ∈ [K] and all f ∈ F , that

||f ||2Dk
V
− ||f̄V ||2Dk

V
≥ 1

4
||f − f̄V ||2Zk − ||f − f̄V ||Zk ·

√
kHζ2 + C ′H · log(8KHN (F , 1/T )

δ
)

− 2

3
H2 log(

2N (F , 1/T )
δ

)− 5(H + 1)− 2

√
kH2ζ2 + C ′H2 · log(8KHN (F , 1/T )

δ
)

(60)

We define the above event to be εV,δ.

Proof. For any f ∈ F , there exists a g ∈ C(F , 1/T ), such that ||f − g||∞ ≤ 1
T . By taking a union bound on all

g ∈ C(F , 1/T ) and using the result from Lemma C.1, we have, with probability at least 1−δ, for all g ∈ C(F , 1/T ),
any k ∈ [K], that

||f̄V ||2Dk
V
− ||g||2Dk

V
− 2

3
H2 log(

2N (F , 1/T )
δ

)−

||g − f̄V ||Zk ·
√
kHζ2 + C ′H · log(8KHN (F , 1/T )

δ
) +

1

4
||g − f̄V ||2Zk ≤ 0

(61)
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Therefore, with probability at least 1− δ, for all k ∈ [K], and all f ∈ F , we have:

||f ||2Dk
V
− ||f̄V ||2Dk

V
≥ 1

4
||f − f̄V ||2Zk −

2

3
H2 log(

2N (F , 1/T )
δ

)

− ||f − f̄V ||Zk ·
√
kHζ2 + C ′H · log(8KHN (F , 1/T )

δ
)

+
{1
4
||g − f̄V ||2Zk −

1

4
||f − f̄V ||2Zk

+ ||f − f̄V ||Zk ·
√
kHζ2 + C ′H · log(8KHN (F , 1/T )

δ
)

− ||g − f̄V ||Zk ·
√

kHζ2 + C ′H · log(8KHN (F , 1/T )
δ

)

+ ||f ||2Dk
V
− ||g||2Dk

V

}
≥ 1

4
||f − f̄V ||2Zk −

2

3
H2 log(

2N (F , 1/T )
δ

)

− ||f − f̄V ||Zk ·
√
kHζ2 + C ′H · log(8KHN (F , 1/T )

δ
)

− 5(H + 1)− 2

√
kH2ζ2 + C ′H2 · log(8KHN (F , 1/T )

δ
) (By (55))

(62)

Lemma C.4. Conditioned on the event εV,δ (defined in Lemma C.3), then for any V ′ : S → [0, H] with
||V ′ − V ||∞ ≤ 1

T , we have for any k ∈ [K],

||f̂V ′ − f̄V ||Zk ≤ C ′ ·
√
kHζ2 +H2 log(

KHN (F , 1/T )
δ

) (63)

Proof. For a fixed V : S → [0, H], we consider any V ′ : S → [0, H] with ||V ′ − V ||∞ ≤ 1
T .

Then for any f ∈ F ,

||f ||2Dk
V ′
− ||f̄V ||2Dk

V ′
= ||f − f̄V ||2Zk + 2

k−1∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h )− f̄V (s
k′

h , ak
′

h )
)
·
(
f̄V (s

k′

h , ak
′

h )− rk
′

h − V ′(sk
′

h+1)
)

= ||f − f̄V ||2Zk + 2

k−1∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h )− f̄V (s
k′

h , ak
′

h )
)
·
(
f̄V (s

k′

h , ak
′

h )− rk
′

h − V (sk
′

h+1)
)

︸ ︷︷ ︸
term A

− 2

k−1∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h )− f̄V (s
k′

h , ak
′

h )
)(

V ′(sk
′

h+1)− V (sk
′

h+1)
)

︸ ︷︷ ︸
term B

(64)

For the term A, by using (60), we have

term A = ||f ||2Dk
V
− ||f̄V ||2Dk

V
− ||f − f̄V ||2Zk

≥ 1

4
||f − f̄V ||2Zk − ||f − f̄V ||Zk ·

√
kHζ2 + C ′H · log(8KHN (F , 1/T )

δ
)

− 2

3
H2 log(

2N (F , 1/T )
δ

)− 5(H + 1)− 2

√
kH2ζ2 + C ′H2 · log(8KHN (F , 1/T )

δ
)− ||f − f̄V ||2Zk

(65)
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By using Cauchy-Schwarz’s inequality, we can derive the upper bound for term B.

term B ≤ 2||f − f̄V ||Zk ·

√√√√ k−1∑
k′=1

H∑
h=1

(
V ′(sk

′
h+1)− V (sk

′
h+1)

)2 ≤ 2||f − f̄V ||Zk (66)

Therefore, Eq.(64) can be bounded by

||f ||2Dk
V ′
− ||f̄V ||2Dk

V ′
≥ ||f − f̄V ||2Zk +

1

4
||f − f̄V ||2Zk − ||f − f̄V ||Zk ·

√
kHζ2 + C ′H · log(8KHN (F , 1/T )

δ
)

− 2

3
H2 log(

2N (F , 1/T )
δ

)− 5(H + 1)− 2

√
kH2ζ2 + C ′H2 · log(8KHN (F , 1/T )

δ
)− ||f − f̄V ||2Zk

− 2||f − f̄V ||Zk

(67)

Notice that
f̂V ′ := argmin

f∈F
||f ||2Dk

V ′

, and by solving the quadratic equation for ||f̂V ′ − f̄V ||Zk , we have

||f̂V ′ − f̄V ||Zk ≤ C ′ ·
√

kHζ2 +H2 log(
KHN (F , 1/T )

δ
) (68)

where C ′ is an absolute constant.

Lemma C.5. Let Fk
h be the confidence region defined as

Fk
h =

{
f ∈ F : ||f − fk

h ||Zk
h
≤ β(F , δ)

}
where

β(F , δ) = C ′ ·

√
kHζ2 +H2

(
log(

4T 2

δ
) + 2 logN (F , 1/T ) + log |W|+ 1

)
Then with probability at least 1− δ

4 , we have for all (k, h) ∈ [K]× [H],

f̄(V k
h+1)

† ∈ Fk
h (69)

where (V )† denotes the closest function to V in the set V (the 1/T -net of {V k
h }).

Proof. We denote
Q := {min{f(·, ·) + ω(·, ·), H}| ω ∈ W, f ∈ C(F , 1/T ) ∪ {0}} (70)

Notice that Q is a (1/T )-cover of Qk
h+1(·, ·). This implies that

V :=

{
max
a∈A

q(·, a)|q ∈ Q
}

(71)

is also a (1/T )-cover of V k
h+1, and we have log(|V|) ≤ log |W|+ logN (F , 1/T ) + 1.

By taking the union bound for all V ∈ V in the event defined in Lemma C.3, we have Pr(
⋂

V ∈V εV,δ/(4|V|T )) ≥
1− δ/(4T ). We condition on

⋂
V ∈V εV,δ/(4|V|T )) in the rest part of the proof.

Recall that fk
h is the minimizer of the empirical loss, i.e., fk

h = argminf∈F ||f ||2Dk
h

. Let (V k
h+1)

† ∈ V such that

||V k
h+1 − (V k

h+1)
†||∞ ≤ 1/T . Then, by lemma C.4, we have

||fk
h − f̄(V k

h+1)
† ||Zk ≤ C ′ ·

√
kHζ2 +H2 log(

4N (F , 1/T )|V|T 2

δ
)

≤ C ′ ·

√
kHζ2 +H2

(
log(

4T 2

δ
) + 2 logN (F , 1/T ) + log |W|+ 1

) (72)



On the Model-Misspecification in Reinforcement Learning

This completes the proof.

Lemma C.6. (Proposition 2 in (Wang et al., 2020b)) With probability at least 1− δ/8, for all (s, a) ∈ S ×A,

ω(Fk
h , s, a) ≤ bkh(s, a)

Lemma C.7. (Lemma 10 in (Wang et al., 2020b)) With probability at least 1− δ/8,

K∑
k=1

H∑
h=1

bkh(s
k
h, a

k
h) ≤ 1 + 4H2dimE(F , 1/T ) +

√
c · dimE(F , 1/T ) · T · β(F , δ) (73)

Theorem C.8. (Regret bound of robust value-based methods) Under our Assumption 1 and 2, for
any fixed δ ∈ (0, 1), with probability at least 1 − δ, the total regret of Algorithm 3 is at most
Õ
(√

dEH3Kζ log(1/δ) +
√
d2EKH3 log(1/δ)

)
, where dE represents the eluder dimension of the function class.

Proof. First of all, we do the following decomposition.

Regret(K) =

K∑
k=1

[V ∗
1 (s

k
1)− V πk

1 (sk1)] =

K∑
k=1

[V ∗
1 (s

k
1)− V k

1 (sk1)]︸ ︷︷ ︸
A

+

K∑
k=1

[V k
1 (sk1)− V πk

1 (sk1)]︸ ︷︷ ︸
B

(74)

We denote E to be the event that (69) holds, and E ′ to be the event that for all (k, h) ∈ [K]× [H], all (s, a) ∈ S×A,
bkh(s, a) ≥ ω(Fk

h , s, a). From Lemma C.5 and Lemma C.6, we have Pr(E ∩ E ′) ≥ 1− δ
2 . For the rest of the proof,

we condition on the above event.

Note that
max
f∈Fk

h

|f(s, a)− fk
h (s, a)| ≤ ω(Fk

h , s, a) ≤ bkh(s, a)

Since f̄(V k
h+1)

† ∈ Fk
h for all (k, h) ∈ [K]× [H], we have for all (s, a) ∈ S ×A, all (k, h) ∈ [K]× [H],

|f̄(V k
h+1)

†(s, a)− fk
h (s, a)| ≤ ω(Fk

h , s, a) ≤ bkh(s, a) (75)

To simplify our notation, for each (k, h) ∈ [K]× [H], we denote

ξ†
V k
h+1

(s, a) := f̄(V k
h+1)

†(s, a)− r(s, a)− PV k
h+1(s, a)

,

ζkh+1 = P(V k
h+1 − V πk

h+1)(s
k
h, a

k
h)−

(
V k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
and

ζk∗h+1 = P(V k
h+1 − V πk

h+1)(s
k∗
h , ak∗h )−

(
V k
h+1(s

k
h+1)− V πk

h+1(s
k∗
h+1)

)
For the term

K∑
k=1

H∑
h=1

ζkh+1 and
K∑

k=1

H∑
h=1

ζk∗h+1, notice that {ζk∗h+1} and {ζkh+1} are martingale difference sequences,

and each term is upper bounded by 2H. By using Azuma-Hoeffding’s inequality, with probability at least 1− δ/4,
the following inequality holds:

K∑
k=1

H∑
h=1

ζkh+1 ≤
√

8KH3 · log(8/δ) (76)
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K∑
k=1

H∑
h=1

ζk∗h+1 ≤
√

8KH3 · log(8/δ) (77)

Notice that for all (s, a) ∈ S ×A,

|ξ†
V k
h+1

(s, a)| =
∣∣∣f̄(V k

h+1)
†(s, a)− r(s, a)− P(V k

h+1)
†(s, a) + P(V k

h+1)
†(s, a)− PV k

h+1(s, a)
∣∣∣

≤
∣∣∣ξ(V k

h+1)
†(s, a)

∣∣∣+ 1/T
(78)

Therefore, ∣∣∣∣∣
K∑

k=1

H∑
h=1

ξ†
V k
h+1

(skh, a
k
h)

∣∣∣∣∣ ≤
K∑

k=1

H∑
h=1

∣∣∣ξ(V k
h+1)

†(skh, a
k
h)
∣∣∣+ 1 (79)

By using Assumption 2 and Azuma-Hoeffding’s inequality, we have with probability at least 1− δ/4,

K∑
k=1

H∑
h=1

∣∣∣ξ(V k
h+1)

†(skh, a
k
h)
∣∣∣ ≤√8KH2 log(

16

δ
) +KHζ (80)

K∑
k=1

H∑
h=1

∣∣∣ξ(V k
h+1)

†(sk∗h , ak∗h )
∣∣∣ ≤√8KH2 log(

16

δ
) +KHζ (81)

For the term A, we only need to consider when V k
h = fk

h + bkh, for all (k, h) ∈ [K]× [H].

A =

K∑
k=1

(
r(sk∗1 , ak∗1 ) + PV ∗

2 (s
k∗
1 , ak∗1 )− fk

1 (s
k∗
1 , ak∗1 )− bk1(s

k∗
1 , ak∗1 )

)
=

K∑
k=1

(
r(sk∗1 , ak∗1 ) + PV k

2 (sk∗1 , ak∗1 )− f̄(V k
2 )†(s

k∗
1 , ak∗1 )

+ f̄(V k
2 )†(s

k∗
1 , ak∗1 )− fk

1 (s
k∗
1 , ak∗1 )− bk1(s

k∗
1 , ak∗1 ) + P(V ∗

2 − V k
2 )(sk∗1 , ak∗1 )

)
≤

K∑
k=1

(
−ξ†

V k
2
(sk∗1 , ak∗1 ) + P(V ∗

2 − V k
2 )(sk∗1 , ak∗1 )

)
≤

K∑
k=1

(
−ξ†

V k
2
(sk∗1 , ak∗1 ) + V ∗

2 (s
k∗
2 )− V k

2 (sk∗2 ) + ζk∗2

)
≤ · · ·

≤
K∑

k=1

H∑
h=1

|ξ†
V k
h+1

(sk∗h , ak∗h )|+
K∑

k=1

H∑
h=1

ζk∗h+1

(82)
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For the term B,

B =

K∑
k=1

(
Qk

1(s
k
1 , a

k
1)−Qπk

1 (sk1 , a
k
1)
)

≤
K∑

k=1

(
fk
1 (s

k
1 , a

k
1) + bk1(s

k
1 , a

k
1)− r(sk1 , a

k
1)− PV πk

2 (sk1 , a
k
1)
)

≤
K∑

k=1

(
f̄(V k

2 )†(s
k
1 , a

k
1) + 2b11(s

k
1 , a

k
1)− r(sk1 , a

k
1)− PV πk

2 (sk1 , a
k
1)
)

(By Eq.(75))

=

K∑
k=1

(
f̄(V k

2 )†(s
k
1 , a

k
1)− r(sk1 , a

k
1)− PV k

2 (sk1 , a
k
1) + PV k

2 (sk1 , a
k
1)− PV πk

2 (sk1 , a
k
1) + 2b11(s

k
1 , a

k
1)
)

=

K∑
k=1

(
ξ†
V k
2
(sk1 , a

k
1) + 2b11(s

k
1 , a

k
1) + V k

2 (sk2)− V πk
2 (sk2) + ζk2

)
≤ · · ·

≤
K∑

k=1

H∑
h=1

|ξ†
V k
h+1

(skh, a
k
h)|+ 2

K∑
k=1

H∑
h=1

bkh(s
k
h, a

k
h) +

K∑
k=1

H∑
h=1

ζkh+1

(83)

By using (73), (76), (77), (79), (80), and (81), we complete our proof.

D Analysis of Robust Model-based Algorithm with General Function
Approximation for Locally-bounded Misspecified MDP

In this section, we will provide the theoretical analysis for Algorithm 4 under locally-bounded misspecification
error assumption (Assumption 4).

Confidence sets for non-linear regression with locally-bounded misspecification error

Let V be the set of optimal value functions under some model in P : V = {V ∗
P ′ : P ′ ∈ P}. We define X = S×A×V ,

and choose
F =

{
f : X → R : ∃P̃ ∈ P s.t. f(s, a, V ) = P̃V (s, a), ∀(s, a, V ) ∈ X

}
(84)

Let ϕ : P → F be the natural surjection to F : ϕ(P ) = f , such that f(s, a, V ) = PV (s, a), ∀(s, a, V ) ∈ X . In
fact, ϕ is a bijection, and for convenience to the reader, we denote fP = ϕ(P ).

For any f ∈ F , we define the empirical loss as

L2,k(f) =

k∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h , V k′

h+1)− V k′

h+1(s
k′

h+1)
)2

and the minimizer f̂k+1 = argminf∈F L2,k(f). Since ϕ is a bijection, f̂k+1 = ϕ(P̂ (k+1)) = fP̂ (k+1) , where P̂ (k+1)

is defined in (4).

We also define the norm

||f ||Dk
h
=

√√√√ k∑
k′=1

h∑
h′=1

(
f(sk

′
h′ , ak

′
h′ , V k′

h′+1)
)2

Now we are able to define the confidence set for each episode, which is also introduced in (6).

Bk = {P̃ ∈ P : Lk(P̃ , P̂ (k)) ≤ β2
k} = {ϕ−1(f) : f ∈ F and ||f − f̂k||Dk

H
≤ βk}
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We set Fk
h to be the σ-algebra generated by {(sk′

h′ , ak
′

h′)}(h′,k′)∈[H]×[k−1] ∪ {(sk1 , ak1), (sk2 , ak2), · · · , (skh, akh)}. For
each (h, k) ∈ [H]× [K], we define Zk

h =
(
f̄(skh, a

k
h, V

k
h+1)− V k

h+1(s
k
h+1)

)2 − (f(skh, akh, V k
h+1)− V k

h+1(s
k
h+1)

)2
Lemma D.1. Under Assumption 4, for any fixed f ∈ F , with probability at least 1− δ, we have for all k ∈ [K]
that

L2,k(f̄)− L2,k(f)−H2 log(
1

δ
)− ||f − f̄ ||Dk

H
·
√
kHζ2 + C ′H · log(4KH

δ
) +

1

2
||f − f̄ ||2Dk

H
≤ 0 (85)

Proof. According to the definition of Zk
h ,

k∑
k′=1

H∑
h=1

Zk′

h = L2,k(f̄)− L2,k(f). After a simple calculation, we have

Zk
h = −

(
f(skh, a

k
h, V

k
h+1)− f̄(skh, a

k
h, V

k
h+1)

)2
+2
(
f(skh, a

k
h, V

k
h+1)− f̄(skh, a

k
h, V

k
h+1)

)V k
h+1(s

k
h+1)− f̄(skh, a

k
h, V

k
h+1)︸ ︷︷ ︸

ϵkh+ξkh


where ϵkh = V k

h+1(s
k
h+1)− PhV

k
h+1(s

k
h, a

k
h), ξ

k
h = PhV

k
h+1(s

k
h, a

k
h)− f̄(skh, a

k
h, V

k
h+1).

Notice that E[ϵkh|Fk
h] = 0, and since ϵkh is bounded in [0, H], hence, ϵkh is H

2 -subgaussian. That is to say, for any
λ ∈ R, we have E[exp{λϵkh}|Fk

h] ≤ exp{λ
2H2

8 }.

Moreover, under Assumption 4, using the same argument in Lemma B.9, with probability at least 1− δ, for all
(k, h) ∈ [K]× [H], we have

k∑
k′=1

H∑
h=1

(ξk
′

h )2 ≤ kHζ2 + C ′H · log(4KH

δ
) (86)

where C ′ is some constant.

Therefore,

µk
h = E[Zk

h |Fk
h] = −

(
f(skh, a

k
h, V

k
h+1)− f̄(skh, a

k
h, V

k
h+1)

)2
+ 2

(
f(skh, a

k
h, V

k
h+1)− f̄(skh, a

k
h, V

k
h+1)

)
ξkh

and

ϕk
h(λ) = logE

[
exp{λ(Zk

h − µk
h)}|Fk

h

]
= logE

[
exp{2λ

(
f(skh, a

k
h, V

k
h+1)− f̄(skh, a

k
h, V

k
h+1)

)
ϵkh}|Fk

h

]
≤

λ2
(
f(skh, a

k
h, V

k
h+1)− f̄(skh, a

k
h, V

k
h+1)

)2
H2

2

(87)

By using Lemma G.7, we have for any x ≥ 0, λ ≥ 0,

P
(
λ

k∑
k′=1

H∑
h=1

Zk′

h ≤ x− λ

k∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h , V k′

h+1)− f̄(sk
′

h , ak
′

h , V k′

h+1)
)2

+ 2λ

k∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h , V k′

h+1)− f̄(sk
′

h , ak
′

h , V k′

h+1)
)
ξk

′

h

+
λ2H2

2

k∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h , V k′

h+1)− f̄(sk
′

h , ak
′

h , V k′

h+1)
)2

,∀(k, h) ∈ [K]× [H]
)
≥ 1− e−x

(88)
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After setting x = log( 1δ ), λ = 1
H2 , and conditioned the event that Eq.(86) holds, that is to say,

k∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h , V k′

h+1)− f̄(sk
′

h , ak
′

h , V k′

h+1)
)
ξk

′

h

≤

√√√√ k∑
k′=1

H∑
h=1

(
f(sk

′
h , ak

′
h , V k′

h+1)− f̄(sk
′

h , ak
′

h , V k′
h+1)

)2 ·
√√√√ k∑

k′=1

H∑
h=1

(ξk
′

h )2

≤

√√√√ k∑
k′=1

H∑
h=1

(
f(sk

′
h , ak

′
h , V k′

h+1)− f̄(sk
′

h , ak
′

h , V k′
h+1)

)2 ·√kHζ2 + C ′H · log(4KH

δ
)

(89)

Then we can derive the following result by using Eq.(88) :

P
(
L2,k(f̄)− L2,k(f)−H2 log(

1

δ
)−

√√√√ k∑
k′=1

H∑
h=1

(
f(sk

′
h , ak

′
h , V k′

h+1)− f̄(sk
′

h , ak
′

h , V k′
h+1)

)2 ·√kHζ2 + C ′H · log(4KH

δ
)

+
1

2

k∑
k′=1

H∑
h=1

(
f(sk

′

h , ak
′

h , V k′

h+1)− f̄(sk
′

h , ak
′

h , V k′

h+1)
)2
≤ 0,∀k ∈ [K]

)
≥ 1− δ

(90)

which finishes the proof.

Lemma D.2. (Discretization error)

We denote Fα as the α-cover of function class F . If fα ∈ Fα satisfies ||f − fα||∞ ≤ α, then

∣∣∣1
2
||fα − f̄ ||2Dk

H
− 1

2
||f − f̄ ||2Dk

H
+ ||f − f̄ ||Dk

H
·
√
kHζ2 + C ′H · log(4KH|Fα|

δ
)

− ||fα − f̄ ||Dk
H
·
√
kHζ2 + C ′H · log(4KH|Fα|

δ
) + L2,k(f)− L2,k(f

α)
∣∣∣

≤ 4αkH2 +
√
4αkH2 ·

√
kHζ2 + C ′H · log(4KH|Fα|

δ
) ,∀(k, h) ∈ [K]× [H]

(91)

Proof. If fα ∈ Fα satisfies ||f − fα||∞ ≤ α, then for any (s, a, V ) ∈ S ×A× V, we have

∣∣(fα)2(s, a, V )− (f)2(s, a, V )
∣∣ ≤ 2αH (92)

This implies that

∣∣∣(fα(s, a, V )− f̄(s, a, V )
)2 − (f(s, a, V )− f̄(s, a, V )

)2∣∣∣
=
∣∣[(fα)(s, a, V )2 − f(s, a, V )2] + 2f̄(s, a, V ) (f(s, a, V )− fα(s, a, V ))

∣∣
≤ 2αH + 2αH = 4αH

(93)

and for any (k, h) ∈ [K]× [H],

∣∣(V k
h+1(s

k
h+1)− f(s, a, V ))2 − (V k

h+1(s
k
h+1)− fα(s, a, V ))2

∣∣
=
∣∣2V k

h+1(s
k
h+1) (f

α(s, a, V )− f(s, a, V )) + f(s, a, V )2 − fα(s, a, V )2
∣∣

≤ 2αH + 2αH = 4αH

(94)



Yunfan Li, Lin Yang

Moreover,

∣∣∣||f − f̄ ||Dk
H
− ||fα − f̄ ||Dk

H

∣∣∣ ≤√∣∣∣||f − f̄ ||2
Dk

H

− ||fα − f̄ ||2
Dk

H

∣∣∣ (95)

By taking the sum over k and H, we can find that the left hand side of (91) is bounded by

4αkH2 +
√
4αkH2 ·

√
kHζ2 + C ′H · log(4KH|Fα|

δ
)

Lemma D.3. With probability at least 1− δ, for all k ∈ [K], we have

||f̂k+1 − f̄ ||Dk
H
≤ βk (96)

where

βk = 3
√
kHζ + 5

√
C ′H2 · log(4KH|Fα|

δ
) + 4

√
αkH2 (97)

Remark D.4. Since the mapping ϕ : P → F is a bijection, P̄ = ϕ−1(f̄) satisfies

P

P̄ ∈
⋂

k∈[K]

Bk

 ≥ 1− δ (98)

Proof. Let Fα ⊂ F be an α-cover of F in the sup-norm. In other words, for any f ∈ F , there is an fα ∈ Fα,
such that ||fα − f ||∞ ≤ α. By a union bound and from Lemma D.1, with probability at least 1− δ, we have for
any fα ∈ Fα, any k ∈ [K], that

L2,k(f
α)− L2,k(f̄) ≥ −H2 log(

|Fα|
δ

)− ||fα − f̄ ||Dk
H
·
√
kHζ2 + C ′H · log(4KH|Fα|

δ
) +

1

2
||fα − f̄ ||2Dk

H

(99)

Therefore, with probability at least 1− δ, for all k ∈ [K], and all f ∈ F , we have:

L2,k(f)− L2,k(f̄) ≥
1

2
||f − f̄ ||2Dk

H
−H2 log(

|Fα|
δ

)− ||f − f̄ ||Dk
H
·
√
kHζ2 + C ′H · log(4KH|Fα|

δ
)

+
{1
2
||fα − f̄ ||2Dk

H
− 1

2
||f − f̄ ||2Dk

H

+ ||f − f̄ ||Dk
H
·
√
kHζ2 + C ′H · log(4KH|Fα|

δ
)− ||fα − f̄ ||Dk

H
·
√
kHζ2 + C ′H · log(4KH|Fα|

δ
)

+ L2,k(f)− L2,k(f
α)
}

(100)

For the last term in (100), it can be bounded by Lemma D.2. Moreover, since f̂k+1 = argminf∈F L2,k(f),
L2,k(f̂k+1)− L2,k(f̄) ≤ 0.

Therefore we have: with probability at least 1− δ, for all k ∈ [K] and all f ∈ F , that

1

2
||f̂k+1 − f̄ ||2Dk

H
−
√
kHζ2 + C ′H · log(4KH|Fα|

δ
) · ||f̂k+1 − f̄ ||Dk

H

−H2 log(
|Fα|
δ

)− 4αkH2 −
√
4αkH2 ·

√
kHζ2 + C ′H · log(4KH|Fα|

δ
) ≤ 0

(101)
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By solving the quadratic equation for ||f̂k+1 − f̄ ||Dk
H

, we can get

||f̂k+1 − f̄ ||Dk
H
≤
√
kHζ2 + C ′H · log(4KH|Fα|

δ
)

+

√
kHζ2 + C ′H · log(4KH|Fα|

δ
) + 2H2 log(

|Fα|
δ

) + 8αkH2 + 4
√
αkH2 ·

√
kHζ2 + C ′H · log(4KH|Fα|

δ
)

≤
√
kHζ +

√
C ′H · log(4KH|Fα|

δ
) +H

√
2 log(

|Fα|
δ

) +

√
2

(
kHζ2 + C ′H · log(4KH|Fα|

δ
) + 8αkH2

)

≤
√
kHζ +

√
C ′H · log(4KH|Fα|

δ
) +H

√
2 log(

|Fα|
δ

) + 2
√
kHζ + 2

√
C ′H · log(4KH|Fα|

δ
) + 4

√
αkH2

≤ 3
√
kHζ + 5

√
C ′H2 · log(4KH|Fα|

δ
) + 4

√
αkH2

(102)

Lemma D.5. (Near-optimism) Given K initial points {sk1}Kk=1, we use {(sk∗h , ak∗h )}(k,h)∈[K]×[H] (where sk∗1 = sk1 ,
∀k ∈ [K]) to represent the dataset sampled by the optimal policy π∗ in the true model. For each (k, h) ∈ [K]×[H−
1], we define ζk∗h+1 = Ph

(
(V ∗

h+1 − V ∗
P̄ ,h+1

)(sk∗h , ak∗h )
)
−
(
(V ∗

h+1 − V ∗
P̄ ,h+1

)(sk∗h+1)
)
, and ξk∗h = PhV

∗
P̄ ,h+1

(sk∗h , ak∗h )−
f̄h(s

k∗
h , ak∗h , V ∗

P̄ ,h+1
). Conditioned on the event that P̄ ∈ ∩Kk=1Bk (98) holds. Then we have

K∑
k=1

(
V ∗
1 (s

k∗
1 )− V k

1 (sk∗1 )
)
≤

K∑
k=1

H−1∑
h=1

ζk∗h+1 +

K∑
k=1

H∑
h=1

ξk∗h

Proof. First, according to the definition of P (k) (defined in 8), and since we condition on Eq.(98), P̄ ∈ ∩Kk=1Bk,
we have V k

1 (sk1) ≥ V ∗
P̄ ,1

(sk1), ∀k ∈ [K].

K∑
k=1

(
V ∗
1 (s

k∗
1 )− V k

1 (sk∗1 )
)

≤
K∑

k=1

(
V ∗
1 (s

k∗
1 )− V ∗

P̄ ,1(s
k∗
1 )
)

≤
K∑

k=1

(
Q∗

1(s
k∗
1 , ak∗1 )−Q∗

P̄ ,1(s
k∗
1 , ak∗1 )

)
=

K∑
k=1

(
r1(s

k∗
1 , ak∗1 ) + P1V

∗
2 (s

k∗
1 , ak∗1 )−

[
r1(s

k∗
1 , ak∗1 ) + P̄1V

∗
P̄ ,2(s

k∗
1 , ak∗1 )

])
=

K∑
k=1

(
P1V

∗
2 (s

k∗
1 , ak∗1 )− P1V

∗
P̄ ,2(s

k∗
1 , ak∗1 ) + P1V

∗
P̄ ,2(s

k∗
1 , ak∗1 )− P̄1V

∗
P̄ ,2(s

k∗
1 , ak∗1 )

)
=

K∑
k=1

(
V ∗
2 (s

k∗
2 )− V ∗

P̄ ,2(s
k∗
2 ) + ζk∗2 + P1V

∗
P̄ ,2(s

k∗
1 , ak∗1 )− f̄1(s

k∗
1 , ak∗1 , V ∗

P̄ ,2)
)
≤ · · ·

≤
K∑

k=1

H−1∑
h=1

ζk∗h+1 +

K∑
k=1

H∑
h=1

ξk∗h

(103)
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Lemma D.6. For each (k, h) ∈ [K] × [H − 1], we define ζkh+1 = Ph

(
(V k

h+1 − V πk

h+1)(s
k
h, a

k
h)
)
−(

(V k
h+1 − V πk

h+1)(s
k
h+1)

)
, and Wk = supP̃k∈Bk

H−1∑
h=1

(
P̃k
h − Ph

)
V k
h+1(s

k
h, a

k
h). Then we have

K∑
k=1

(
V k
1 (sk1)− V πk

1 (sk1)
)
≤

K∑
k=1

H−1∑
h=1

ζkh+1 +

K∑
k=1

Wk

Proof. First, for any k ∈ [K], we have the following decomposition:

V k
1 (sk1)− V πk

1 (sk1)

= r1(s
k
1 , a

k
1) + P(k)

1 V k
2 (skh, a

k
h)−

(
r1(s

k
1 , a

k
1) + P1V

πk
2 (sk1 , a

k
1)
)

= (P(k)
1 − P1)V

k
2 (sk1 , a

k
1) + P1(V

k
2 − V πk

2 )(sk1 , a
k
1)

= (P(k)
1 − P1)V

k
2 (sk1 , a

k
1) + ζk2 + V k

2 (sk2)− V πk
2 (sk2) = · · ·

=

H−1∑
h=1

(
P(k)
h − Ph

)
V k
h+1(s

k
h, a

k
h) +

H−1∑
h=1

ζkh+1

≤Wk +

H−1∑
h=1

ζkh+1

(104)

Therefore, we have
K∑

k=1

(
V k
1 (sk1)− V πk

1 (sk1)
)
≤

K∑
k=1

H−1∑
h=1

ζkh+1 +

K∑
k=1

Wk

Lemma D.7. Let α > 0, and d := dimE(F , α), where F is the function class the algorithm used to approximate
the ground-truth model (84). Then for any non-decreasing sequences (β2

k)
K
k=1, conditioned on the event that

P̄ ∈
⋂

k∈[K] Bk, where Bk = {P̃ ∈ P : Lk(P̃ , P̂ (k)) ≤ β2
k}, we have:

K∑
k=1

Wk ≤ α+H(d ∧K(H − 1)) + 4βK

√
dK(H − 1) +

√
8KH2 log(

2

δ
) +KHζ (105)

Proof. First, we denote

Ft(βk) = {f ∈ F : ||f − f̂k||Dk
H
≤ βk} = {ϕ(P ) : P ∈ Bk} (106)

and for the convenience of notation, we denote

F̃t = Ft(βk) for t ∈ [(k − 1)(H − 1) + 1, k(H − 1)]

and

x1 = (s11, a
1
1, V

1
2 ), x2 = (s12, a

1
2, V

1
3 ), · · · , xH−1 = (s1H−1, a

1
H−1, V

1
H)

xH = (s21, a
2
1, V

2
2 ), xH+1 = (s22, a

2
2, V

2
3 ), · · · , x2H = (s2H−1, a

2
H−1, V

2
H)

· · · · · ·
x(K−1)(H−1)+1 = (sK1 , aK1 , V K

2 ), x(K−1)(H−1)+2 = (sK2 , aK2 , V K
3 ), · · · , xK(H−1) = (sKH−1, a

K
H−1, V

K
H )

(107)
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According to the definition of Wk, we have

K∑
k=1

Wk ≤
K∑

k=1

sup
P̃k∈Bk

H−1∑
h=1

(
P̃k
h − Ph

)
V k
h+1(s

k
h, a

k
h)

=

K∑
k=1

sup
P̃k∈Bk

H−1∑
h=1

(
fP̃k(s

k
h, a

k
h, V

k
h+1)− f̄(skh, a

k
h, V

k
h+1) + f̄(skh, a

k
h, V

k
h+1)− PhV

k
h+1(s

k
h, a

k
h)
)

≤
K∑

k=1

sup
P̃k∈Bk

H−1∑
h=1

(
fP̃k(s

k
h, a

k
h, V

k
h+1)− f̄(skh, a

k
h, V

k
h+1)

)
+

K∑
k=1

H−1∑
h=1

(
f̄(skh, a

k
h, V

k
h+1)− PhV

k
h+1(s

k
h, a

k
h)
)

≤
K(H−1)∑

t=1

wFt
(xt) +

K∑
k=1

H−1∑
h=1

ξh(s
k
h, a

k
h)

(108)

For the last line of (108), wF̃ (x) = sup
f1,f2∈F̃

(f1(x)− f2(x)) represents the width function.

By using Lemma G.8, the first term of the above equation can be upper bounded by

K(H−1)∑
t=1

wFt(xt) ≤ α+H(d ∧K(H − 1)) + 4βK

√
dK(H − 1) (109)

For the second term, by using Assumption 4 and Azuma-Hoeffding’s inequality, we have with probability at least
1− δ,

K∑
k=1

H−1∑
h=1

|ξh(skh, akh)| ≤
√
8KH2 log(

2

δ
) +KHζ (110)

By combining (108), (109), (110), we have

K∑
k=1

Wk ≤ α+H(d ∧K(H − 1)) + 4βK

√
dK(H − 1) +

√
8KH2 log(

2

δ
) +KHζ (111)

Now we are able to analyze the regret bound of Robust-UCRL-VTR. We define the regret of the algorithm as

RK =

K∑
k=1

(V ∗
1 (s

k
1)− V πk

1 (sk1)).

Theorem D.8. (Regret bound of robust model-based methods)

Let Assumption 3 and 4 hold and α ∈ (0, 1). For each k ∈ [K], let βk be

βk = 3
√
kHζ + 5

√
C ′H2 · log

(
4KHN (F , α)

δ

)
+ 4
√
αkH2 (112)

then with probability at least 1 − δ, the total regret of Algorithm 4 is at most
Õ
(√

dEKHζ log(1/δ) +
√
d2EKH3 log(1/δ)

)
, where dE represents the eluder dimension of the function

class.

Proof. First, for any k ∈ [K], and h ∈ [H − 1], ζkh+1 ∈ [−H,H], and {ζkh+1}(k,h)∈[K]×[H−1] is a martingale

difference sequence. Thus, with probability at least 1− δ/2,
K∑

k=1

H−1∑
h=1

ζkh+1 ≤
√

2KH3 log( 2δ ). In the same way,
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with probability at least 1− δ/2,
K∑

k=1

H−1∑
h=1

ζk∗h+1 ≤
√

2KH3 log( 2δ ). Then conditioned on the event in Lemma D.3,

we can obtain the regret bound by applying Lemma D.5, D.6, and D.7:

RK =

K∑
k=1

(V ∗
1 (s

k
1)− V πk

1 (sk1))

≤
K∑

k=1

(V ∗
1 (s

k
1)− V k

1 (sk1)) +

K∑
k=1

(V k
1 (sk1)− V πk

1 (sk1))

≤
K∑

k=1

H−1∑
h=1

ζk∗h+1 +

K∑
k=1

H∑
h=1

ξk∗h +

K∑
k=1

H−1∑
h=1

ζkh+1 +

K∑
k=1

Wk

≤ 2

√
KH3 log(

2

δ
) + α+H(d ∧K(H − 1)) + 4βK

√
dK(H − 1) + 2

(√
8KH2 log(

2

δ
) +KHζ

)

≤ α+H(d ∧K(H − 1)) + 4βK

√
dK(H − 1) + 2KHζ + 8

√
KH3 log(

2

δ
)

(113)

By applying the definition of βK in (112), we complete our proof.

E Proof of Theorem 6.1

In this section, we present the complete proof of Theorem 6.1. Prior to providing the proof of the theorem itself
(Theorem E.2), we first establish the groundwork by introducing the following lemmas.

Lemma E.1. (Estimation error of Single-epoch-Algorithm)

For the Single-epoch-Algorithm (Algorithm 5), with probability at least 1− δ, we have

|V1(s1)− V πave
1 (s1)| ≤

√
8H2 log( 2δ )

K

where πave = Unif {π1, π2, · · · , πK}.

Proof. For k = 1, 2, · · · ,K, Rk =
H∑

h=1

rh(s
k
h, a

k
h), where {(skh, akh)}h∈[H] is sampled under policy πk. Next we

define Z0 = 0, Zl =
l∑

k=1

Rk −
l∑

k=1

V πk

, l = 1, 2, · · · ,K. Then we have

E[Zl|Fl−1] =

l−1∑
k=1

Rk + E[Rl|Fl−1]−
l∑

k=1

V πk

=

l−1∑
k=1

Rk + V πl

−
l∑

k=1

V πk

=

l−1∑
k=1

Rk −
l−1∑
k=1

V πk

= Zl−1

(114)

This shows that {Zl}Kl=1 is a martingale. Moreover, |Zl−Zl−1| ≤ 2H, ∀l ∈ [K]. By Azuma-Hoeffding’s inequality,
we have for any ϵ ≥ 0,

P

(
| 1
K

K∑
k=1

Rk −
1

K

K∑
k=1

V πk | ≥ ϵ

K

)
≤ 2 exp

{
− ϵ2

8KH2

}
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By using the fact that V1(s1) =
1
K

K∑
k=1

Rk, and V πave
1 (s1) =

1
K

K∑
k=1

V πk , we complete our proof.

For the analysis of Algorithm 2, we need the following high probability events to represent that we get a good
policy π(i) in epochs with correct misspecified parameter setting (i.e. ζ(i) ≥ ζ):

For each epoch i ∈
{
0, 1, 2, · · · , ⌊log2

(
1
ζ

)
⌋ ∧ ⌊log2

(√
3K + 1

)
⌋
}

, we define:

Ei(δ) =
{
V ∗
1 (s1) ≥ V π(i)

1 (s1) ≥ V ∗
1 (s1)− L(d,H, δ) ·

(
dαHβ

√
K(i)

+ dαHβζ(i)
)}

where π(i) is the uniform mixture of policies gained from the i-th epoch, and L(d,H, δ) is a function of logarithmic
order on d,H, δ.

We know that for any i ∈
{
0, 1, 2, · · · , ⌊log2

(
1
ζ

)
⌋ ∧ ⌊log2

(√
3K + 1

)
⌋
}
, ζ(i) = 1

2i ≥ ζ, then according to the

property of input base algorithm, i.e., it has a regret bound of Õ
(
dαHβ(

√
K +K · ζ)

)
if the input misspecified

parameter is ζ, we know that Ei(δ) happens with probability at least 1− δ. Next, we define the intersection of all
these events:

E(ζ, δ) =
⌊log2( 1

ζ )⌋∧⌊log2(
√
3K+1)⌋⋂

i=0

Ei

(
δ

2(⌈log2( 1ζ )⌉ ∧ ⌊log2
(√

3K + 1
)
⌋)

)
(115)

By taking the union bound, we have
P (E(ζ, δ)) ≥ 1− δ/2

Moreover, we define the following events to represent we get a good estimator of value function for each epoch
i ∈
{
0, 1, 2, · · · , ⌊log2

(√
3K + 1

)
⌋
}
.

Gi(δ) =

|V1
(i)
(s1)− V π(i)

1 (s1)| ≤

√
8H2 log( 2δ )

K(i)


Although the last few epochs are executed with the same policy, this process can still be regared as a martingale,
and Lemma E.1 still holds. From Lemma E.1, we know that Gi(δ) happens with probability at least 1− δ. Next,
we define the intersection of all these events:

G(δ) =
⌊log2(

√
3K+1)⌋⋂

i=0

Gi

(
δ

2⌈log2
(√

3K + 1
)
⌉

)
(116)

By taking the union bound, we have
P (G(δ)) ≥ 1− δ/2

Therefore,
P
(
E(ζ, δ)

⋂
G(δ)

)
≥ 1− δ (117)

Theorem E.2. (Regret bound under locally-bounded misspecified MDP with unknown misspecified
parameter ζ)

Suppose the input base algorithm Alg. that needs to know the locally-bounded misspecified parameter ζ has a regret
bound of Õ

(
dαHβ(

√
K +K · ζ)

)
, then conditioned on the high probability event E(ζ, δ)

⋂
G(δ) in (117), the total

regret of our meta-algorithm (Algorithm 2) is still Õ
(
dαHβ(

√
K +K · ζ)

)
.

Proof. Conditioned on the event E(ζ, δ)
⋂
G(δ) (The definition is in (115) and (116)), we have a claim here: for

all i such that ζ(i) ≥ ζ,
|V1

(i) − V1
(i−1)| ≤ C(d,H, δ) · ζ(i) (118)
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where

C(d,H, δ) = 3

√√√√8H2 log

(
2⌈log2

(√
3K + 1

)
⌉

δ

)
+ 6L

(
d,H,

2⌈log2
(√

3K + 1
)
⌉

δ

)
· dαHβ (119)

is a function of (d,H, δ), which has an order of Õ(dαHβ).

This is because

|V1
(i) − V1

(i−1)| ≤ |V1
(i) − V π(i)

1 |+ |V π(i)

1 − V π(i−1)

1 |+ |V π(i−1)

1 − V1
(i−1)|

≤

√
8H2 log(

2⌈log2(
√
3K+1)⌉

δ )

K(i)

+ L

(
d,H,

2⌈log2
(√

3K + 1
)
⌉

δ

)
·
(
dαHβ

√
K(i)

+ dαHβ · ζ(i) + dαHβ

√
K(i−1)

+ dαHβ · ζ(i−1)

)

+

√
8H2 log(

2⌈log2(
√
3K+1)⌉

δ )

K(i−1)

≤ C(d,H, δ) · ζ(i)

(120)

The above inequality is derived by using (115), (116), and the fact that K(i) = 1
(ζ(i))2

Then we discuss following two cases with respect to ζ.

Case 1 0 < ζ < 1

2⌊log2(
√

3K+1)⌋ In this case, for all i ∈
{
0, 1, 2, · · · , ⌊log2

(√
3K + 1

)
⌋
}
, ζ(i) ≥ ζ.

This means that the algorithm will not violate the condition |V1
(i) − V1

(i−1)| ≤ C(d,H, δ) · ζ(i) for all
i ∈
{
1, 2, · · · , ⌊log2

(√
3K + 1

)
⌋
}
. Then

Regret(K) =

⌊log2(
√
3K+1)⌋∑

i=0

Õ
(
dαHβ(

√
K(i) +K(i) · ζ(i))

)

≤
⌊log2(

√
3K+1)⌋∑

i=0

Õ
(
dαHβ

√
K(i)

) (
ζ(i) =

√
1

K(i)

)

= Õ(dαHβ) ·
⌊log2(

√
3K+1)⌋∑

i=0

2i

≤ Õ(dαHβ) ·
(√

3K + 1
)

= Õ
(√

KdαHβ
)

(121)

Case 2 1

2⌊log2(
√

3K+1)⌋ ≤ ζ ≤ 1 We have for any i ≥ 1 such that ζ(i) ≥ ζ, |V1
(i) − V1

(i−1)| ≤ C(d,H, δ) · ζ(i). We
denote j to be the first epoch number that violates the condition. This means that

|V1
(j) − V1

(j−1)| > C(d,H, δ) · ζ(j) (122)

while

|V1
(i) − V1

(i−1)| ≤ C(d,H, δ) · ζ(i), ∀i = 1, · · · , j − 1 (123)

According to our claim (118), we know that ζ(j) < ζ. Moreover, according to our exponentially decreasing {ζ(i)},
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there must exist a ζ(s), such that ζ ≤ ζ(s) < 2ζ. For the gap between V1
(j−1)

and V1
(s)

, from (123) we have

|V1
(j−1) − V1

(s)| ≤ |V1
(j−1) − V1

(j−2)|+ |V1
(j−2) − V1

(j−3)|+ · · ·+ |V1
(s+1) − V1

(s)|

≤ C(d,H, δ) ·
(

1

2j−1
+

1

2j−2
+ · · ·+ 1

2s+1

)
≤ C(d,H, δ) · 1

2s
= C(d,H, δ) · ζ(s)

(124)

Then we can bound the gap between V π(j−1)

1 and V π(s)

1

|V π(j−1)

1 − V π(s)

1 | ≤ |V π(j−1)

1 − V1
(j−1)|+ |V1

(j−1) − V1
(s)|+ |V1

(s) − V π(s)

1 |
≤ C(d,H, δ) · ζ(j−1) + C(d,H, δ) · ζ(s) + C(d,H, δ) · ζ(s)

≤ 3C(d,H, δ) · ζ(s)
(125)

Similarly, for any s+ 1 ≤ i ≤ j − 1, we have

|V π(i)

1 − V π(s)

1 | ≤ 3C(d,H, δ) · ζ(s)

Therefore, for any s+ 1 ≤ i ≤ j − 1, we have

V ∗
1 − V π(i)

1 = V ∗
1 − V π(s)

1 + V π(s)

1 − V π(i)

1

≤ C(d,H, δ) · ζ(s) + 3C(d,H, δ) · ζ(s)

= 4C(d,H, δ) · ζ(s)
(126)

Next, we will give the regret bound in this case.

Regret(K) =

s∑
i=0

Õ
(
dαHβ(

√
K(i) +K(i) · ζ(i))

)
+

j−1∑
i=s+1

K(i)(V ∗
1 − V π(i)

1 ) + (K −
j−1∑
i=0

K(i))(V ∗
1 − V π(j−1)

1 )

≤ Õ(dαHβ) ·
s∑

i=0

2i +

[
j−1∑

i=s+1

K(i) + (K −
j−1∑
i=0

K(i))

]
· 4C(d,H, δ) · ζ(s) (By (126))

≤ Õ(dαHβ) ·
⌊log2(

√
3K+1)⌋∑

i=0

2i + 4K · C(d,H, δ) · ζ(s)

≤ Õ(dαHβ) ·
(√

3K + 1
)
+ 4K · C(d,H, δ) · ζ(s)

≤ Õ
(√

KdαHβ
)
+ 4K · C(d,H, δ) · 2ζ ≤ Õ

(
dαHβ(

√
K +K · ζ)

)
(127)

This completes the proof.

F Comparison with Transfer Error in Policy-Based Methods

In those policy-based methods (Agarwal et al., 2020a; Feng et al., 2021; Zanette et al., 2021; Li et al., 2023), they
use a notion called transfer error to measure the model misspecification. They assume that the minimizer θ∗ of
the misspecification error with respect to state-action function with some policy π, Qπ, under the distribution of
policy cover has a bounded transfer error when transferred to an arbitrary distribution dπ induced by a policy π.
Formally, they define: θ∗ = argmin||θ||≤WE(s,a)∼ρcover

[
ϕ(s, a)⊤θ −Qπ(s, a)

]2 then assume that for any policy π,

E(s,a)∼dπ

[
ϕ(s, a)⊤θ∗ −Qπ(s, a)

]2 ≤ ζ2
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While a direct comparison between the bounded transfer error assumption and our Assumption 2 and 4 is not
feasible, they share a common characteristic. Both assumptions measure model misspecification error based on
the average sense of the policy-induced distribution, rather than considering the maximum misspecification error
across all state-action pairs. We consider this shared attribute to be a crucial step in establishing a connection
between value-based (or model-based) and policy-based approaches regarding model misspecification.

G Auxiliary Lemmas

In this section, we provide the necessary auxiliary lemmas that we will utilize in our proof.

Notations Nϵ denotes the ϵ-covering number of the class V with respect to distance d(V1, V2) := sups∈S [V1(s)−
V2(s)].

Lemma G.1. Let Λt = λI +
t∑

i=1

ϕiϕ
⊤
i where ϕi ∈ Rd and λ > 0. Then:

t∑
i=1

ϕ⊤
i (Λt)

−1ϕi ≤ d

Lemma G.2. (Y. Abbasi-Yadkori et al.,2011). Let {ϕt}t≥0 be a bounded sequence in Rd satisfying supt≥0 ||ϕt|| ≥ 1.

Let Λ0 ∈ Rd×d be a positive definite matrix. For any t ≥ 0, we define Λt = Λ0 +
t∑

j=1

ϕjϕ
⊤
j . Then if the smallest

eigenvalue of Λ0 satisfies λmin(Λ0) ≥ 1, we have

log

[
det(Λt)

det(Λ0)

]
≤

t∑
j=1

ϕ⊤
j Λ

−1
j−1ϕj ≤ 2 log

[
det(Λt)

det(Λ0)

]
.

Lemma G.3. (Lemma D.4 in (Jin et al., 2020)). Let {sτ}∞τ=1 be a stochastic process on state space S with
corresponding filtration {Fτ}∞τ=0. Let {ϕτ}∞τ=0 be an Rd-valued stochastic process where ϕτ ∈ Fτ−1, and ||ϕτ || ≤ 1.

Let Λk = λId+
k−1∑
τ=1

ϕτϕ
⊤
τ . Then with probablility at least 1−δ, for all k ≥ 0 and V ∈ V such that sups∈S |V (s)| ≤ H,

we have

∣∣∣∣∣
∣∣∣∣∣

k∑
τ=1

ϕτ (V (sτ )− E[V (sτ )|Fτ−1])

∣∣∣∣∣
∣∣∣∣∣
2

Λ−1
k

≤ 4H2

(
d

2
log

(
k + λ

λ

)
+ log

(
Nϵ

δ

))
+

8k2ϵ2

λ

Lemma G.4. For any ϵ > 0, the ϵ-covering number of Euclidean ball in Rd with radius R > 0 is upper bounded
by (1 + 2R/ϵ)d.

Lemma G.5. (Lemma D.6 in [Jin et al., 2020]). Let V denote a class of functions mapping from S to R with
the following form

V (·) = min{max
a∈A
{w⊤ϕ(·, a) + β

√
ϕ(·, a)⊤Λ−1ϕ(·, a)}, H}

where the parameters (ω, β,Λ) satisfy ||w|| ≤ L, β ∈ [0, B], and the minimum eigenvalue satisfies λmin(Λ) ≥ λ.
Assume for all (s, a), we have ||ϕ(s, a)|| ≤ 1, and let Nϵ be the ϵ-covering number of V with respect to distance
dist(V, V ′) = sups |V (s)− V ′(s)|. Then

logNϵ ≤ d log(1 + 4L/ϵ) + d2 log[1 + 8d1/2B2/(λϵ2)]

Lemma G.6. (Freedman (1975)). Consider a real-valued martingale {Yk : k = 0, 1, 2, · · · } with difference sequence
{Xk : k = 0, 1, 2, · · · }, which is adapted to the filtration {Fk : k = 0, 1, 2, · · · }. Assume that the difference sequence
is uniformly bounded:

|Xk| ≤ R almost surely for k = 1, 2, 3, · · ·
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For a fixed n ∈ N, assume that

n∑
k=1

E
[
X2

k |Fk−1

]
≤ σ2

almost surely. Then for all t ≥ 0,

P {|Yn − Y0| ≥ t} ≤ 2 exp

{
− t2/2

σ2 +Rt/3

}
Lemma G.7. (Lemma 4 in Russo and Van Roy (2013)).

Consider random variables (Zn|n ∈ N) adapted to the filtration (Fn : n = 0, 1, · · · ). Assume E[exp{λZi}] is finite
for all λ. We define the conditional mean µi = E[Zi|Fi−1] and the conditional cumulant generating function of
the centered random variable [Zi − µi] by ϕi(λ) = logE [exp{λ([Zi − µi])}|Fi−1]. Then we have:

For all x ≥ 0, and λ ≥ 0,

P

(
n∑

i=1

λZi ≤ x+

n∑
i=1

[λµi + ϕi(λ)] ,∀n ∈ N

)
≥ 1− e−x

Lemma G.8. (Lemma 2 in Russo and Van Roy (2013)).

Let F ⊂ B∞(X , C) be a set of functions bounded by C > 0. We define the width of a subset F̃ ⊂ F at x ∈ X by
wF̃ (x) = sup

f1,f2∈F̃
(f1(x)− f2(x)). If (βt ≥ 0|t ∈ N) is a non-decreasing sequence, and {xt}t≥1 be the sequences in

X . For all t ∈ N, Ft :=

{
f ∈ F : sup

f1,f2∈F
||f1 − f2||2,Et

≤ 2
√
βt

}
, where the empirical 2-norm || · ||2,Et

is defined

by ||g||22,Et
=

t−1∑
k=1

g2(xk). Then for all T ∈ N, we have

T∑
t=1

wFt
(xt) ≤ α+ C(d ∧ T ) + 4

√
dβTT (128)

where d = dimE(F , α).
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