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Abstract

We study reinforcement learning with linear
function approximation, unknown transition,
and adversarial losses in the bandit feedback
setting. Specifically, we focus on linear mix-
ture MDPs whose transition kernel is a linear
mixture model. We propose a new algorithm
that attains an Õ(d

√
HS3K +

√
HSAK) re-

gret with high probability, where d is the di-
mension of feature mappings, S is the size of
state space, A is the size of action space, H
is the episode length and K is the number
of episodes. Our result strictly improves the
previous best-known Õ(dS2

√
K +

√
HSAK)

result in Zhao et al. (2023a) since H ≤ S
holds by the layered MDP structure. Our ad-
vancements are primarily attributed to (i) a
new least square estimator for the transition
parameter that leverages the visit informa-
tion of all states, as opposed to only one state
in prior work, and (ii) a new self-normalized
concentration tailored specifically to handle
non-independent noises, originally proposed
in the dynamic assortment area and firstly
applied in reinforcement learning to handle
correlations between different states.

1 INTRODUCTION

Reinforcement Learning (RL) studies the problem
where a learner interacts with the environment sequen-
tially and aims to improve the strategy over time. RL
has achieved great success in the fields of games (Mnih
et al., 2013), robotic control (Schulman et al., 2017),
large language models (OpenAI, 2023) and so on.
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One of the most popular models to describe the RL
problem is the Markov Decision Process (MDP) (Put-
erman, 1994). Significant advances have emerged in
learning MDPs with fixed or stochastic loss func-
tions (Jaksch et al., 2010; Azar et al., 2017), however,
in many real-world applications, the losses may not
be fixed or sampled from certain underlying distri-
butions. As such, the pioneering works of Even-Dar
et al. (2009) and Yu et al. (2009) make the first step
to formulate and study adversarial MDPs, where the
loss functions can be chosen adversarially and may
change arbitrarily between each time step. Subse-
quently, many works explore different settings depend-
ing on the knowledge of the transition and the type
of feedback received, whether it is full-information or
bandit feedback (Zimin and Neu, 2013; Rosenberg and
Mansour, 2019a,b; Jin et al., 2020a). More detailed
discussions are presented in Section 2.

Most existing works studying adversarial MDPs fo-
cus on the tabular setting, where the state and action
space are small. Yet, in many problems, the state and
action space can be large or even infinite. To over-
come this challenge, a widely used approach in the
literature is function approximation, which reparam-
eterizes the action-value function as a function over
some feature mapping that maps the state and ac-
tion to a low-dimensional space. In particular, lin-
ear function approximation has gained significant at-
tention (Jin et al., 2020b; Ayoub et al., 2020; Zhou
et al., 2021; Li et al., 2023). Amongst these works,
linear mixture MDPs (Ayoub et al., 2020) and linear
MDPs (Jin et al., 2020b) are two of the most popu-
lar models. In this work, we focus on linear mixture
MDPs whose transition is a linear mixture model.

The exploration of adversarial linear mixture MDPs
remains an emerging area of research. In particu-
lar, Cai et al. (2020) first study adversarial linear
mixture MDPs with the unknown transition and full-
information feedback. They propose a policy opti-
mization algorithm OPPO that achieves Õ(dH2

√
K)
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Table 1: Comparisons of regret bounds for adversarial tabular MDPs and linear mixture MDPs with bandit
feedback and unknown transition in the literature. S is the size of state space, A is the size of action space, K
is the number of episodes and H is the length of each episode, d is the dimension of feature mapping.

Reference Model Regret

Upper bound

Jin et al. (2020a) Tabular MDPs Õ(HS
√
AK)

Zhao et al. (2023a) Linear Mixture MDPs Õ(dS2
√
K +

√
HSAK)

This work Linear Mixture MDPs Õ(d
√
HS3K +

√
HSAK)

Lower bound
Jin et al. (2018) Tabular MDPs Ω(H

√
SAK)

Zhao et al. (2023a) Linear Mixture MDPs Ω(dH
√
K +

√
HSAK)

regret. The subsequent work by He et al. (2022) en-

hances the result to Õ(dH3/2
√
K) and shows it is

minimax optimal. For the more challenging setting
with unknown transition and bandit feedback, Zhao
et al. (2023a) achieve an Õ(dS2

√
K +

√
HSAK) re-

gret, which exhibits a notable gap to the Ω(dH
√
K +√

HSAK) lower bound established therein.

In this work, we study adversarial linear mixture
MDPs with bandit feedback and unknown transition.
We strictly improve the result of Zhao et al. (2023a)
and make a step towards closing the gap between the
upper and lower bound. Specifically, we propose an al-
gorithm that attains Õ(d

√
HS3K +

√
HSAK) regret,

strictly improving the Õ(dS2
√
K +

√
HSAK) regret

of Zhao et al. (2023a) sinceH ≤ S by the layered MDP
structure. As a byproduct, our result improves the
best-known Õ(HS

√
AK) regret of Jin et al. (2020a)

for tabular MDPs when d ≤
√
HA/S. We note that

though the dependence S of our result is suboptimal,
to the best of our knowledge, for this challenging un-
known transition and bandit feedback setting, closing
the gap regarding the dependence on S for the tabular
case is also an open problem. Table 1 summarizes our
result and previous related results.

Our algorithm is similar to that of Zhao et al. (2023a):
we first estimate the unknown transition parameter
and construct corresponding confident sets. Then we
apply Online Mirror Descent (OMD) over the occu-
pancy measure space induced by the estimated transi-
tion. The most natural approach to estimate the un-
known parameter is solving a linear regression problem
with the visit statuses of the next states being the tar-
get. However, since the learner only visits one state
in each step, the visit statuses across different states
are no longer independent. This makes the key self-
normalized concentration in (Abbasi-Yadkori et al.,
2011, Theorem 1), as restated in Lemma 15, not ap-
plicable. To address this issue, Zhao et al. (2023a)
propose to leverage the transition information of only
one state with the largest uncertainty. Though this
technique effectively bypasses the issue of state corre-

lation and serves as the first solution for this problem,
unfortunately, it discards the visit information of other
states, leading to a notable gap to the lower bound.

To enhance the utility of visitation data, we introduce
a new least square estimator for the unknown transi-
tion parameter that leverages the visit information of
all states, as opposed to only a single state in Zhao
et al. (2023a). As stated before, the noises now are
non-independent across different states. We address
this key challenge by introducing a new self-normalized
concentration lemma tailored specifically to accommo-
date non-independent random noises. This lemma was
originally proposed by Périvier and Goyal (2022) for
the dynamic assortment problem, where a seller se-
lects the subset of products to present to the customer
who will then purchase at most one single item. They
use this lemma to manage the product correlations
and we make adaptations to handle the state correla-
tions. This enhancement empowers our algorithm to
explore the orientations of every state simultaneously,
distinguishing our method from the singular direction
approach of Zhao et al. (2023a), and resulting in a
tighter bound. To the best of our knowledge, this is
the first work that bridges the two distinct fields: dy-
namic assortment and RL theory. Our innovative use
of techniques from dynamic assortment problems to
mitigate estimation errors in RL theory is novel and
may provide helpful insights for future research.

Organization. The rest of the paper is organized
as follows. We first discuss the related work in Sec-
tion 2 and formulate the problem setup in Section 3.
We introduce the proposed algorithm in Section 4 and
present the regret guarantee in Section 5. Finally, We
conclude the paper in Section 6. Due to page limits,
we defer all the proofs to the appendices.

Notation. We denote by [n] the set {1, . . . , n} and
use I{·} to denote the indicator function. For a vector
x ∈ Rd and a positive semi-definite matrix Σ ∈ Rd×d,
let ∥x∥Σ =

√
x⊤Σx. Let a∧b = min{a, b} for all a, b ∈

R. The Õ(·)-notation hides all logarithmic factors.
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2 RELATED WORK

In this part, we review related works in the literature.

RL with adversarial losses. Learning tabular RL
with adversarial losses has been well-studied in the lit-
erature (Even-Dar et al., 2009; Yu et al., 2009; Zimin
and Neu, 2013; Rosenberg and Mansour, 2019a,b; Jin
et al., 2020a; Shani et al., 2020; Luo et al., 2021). In
general, these studies can be divided into two cat-
egories based on the type of the algorithm. The
first category solves adversarial MDPs using policy-
optimization-based methods. The pioneering works
of Even-Dar et al. (2009) and Yu et al. (2009) first
study adversarial MDPs under the known transition
and full-information setting. Shani et al. (2020) make
the first step to study the more difficult unknown tran-
sition and bandit feedback setting and propose an algo-
rithm that achieves an Õ(H2S

√
AK2/3) regret. The

subsequent work by Luo et al. (2021) improves the

result to Õ(H2S
√
AK). The second category solves

adversarial MDPs using occupancy-measure-based al-
gorithms. For the known transition setting, Zimin
and Neu (2013) propose the O-REPS algorithm that
achieves near-optimal regret for full-information and
bandit feedback respectively. Rosenberg and Mansour
(2019a) investigate the unknown transition but full-
information setting. When the transition is unknown
and only bandit feedback is available, Rosenberg and
Mansour (2019b) propose an algorithm and prove it

enjoys an Õ(HS
√
AK/α) regret with an addition as-

sumption that all states are reachable with probabil-
ity α > 0 for any policy. Without this assumption,
the regret bound degenerates to Õ(H3/2SA1/4K3/4).

Later, Jin et al. (2020a) achieve Õ(H
√
SAK) regret

without the assumption of Rosenberg and Mansour
(2019b). Finally, we remark that the existing tightest
lower bound of Ω(H

√
SAK) is established by Jin et al.

(2018) for the unknown transition and full-information
feedback, which also serves as a lower bound for the
bandit feedback directly. In this work, we study the
most challenging setting where the transition is un-
known and only bandit feedback is available. More-
over, our solution falls into the second category, i.e.,
the occupancy-measure-based method.

RL with linear function approximation. To per-
mit RL algorithm handling MDPs with large state
and action space, a large body of literature consid-
ers solving MDPs with linear function approximation.
In general, these studies can be categorized into three
lines based on the specific assumption of the under-
lying MDP. The first line of work is according to the
low Bellman-rank assumption (Jiang et al., 2017; Du
et al., 2019), which assumes a low-rank factorization

of the Bellman error matrix. The second line of work
focuses on the linear MDPs (Yang and Wang, 2019;
Jin et al., 2020b), where the transition kernel and loss
function are parameterized as a linear function of a fea-
ture mapping ϕ : S × A → Rd. The last line of work
considers linear mixture/kernel MDPs (Ayoub et al.,
2020; Zhou et al., 2021; Zhao et al., 2023b), where the
transition kernel can be parameterized as a linear func-
tion of a feature mapping ϕ : S × A × S → Rd. Note
that all the above works focus on MDPs with with lin-
ear function approximation under the stochastic loss
functions. In this work, we investigate linear mixture
MDPs but with the adversarial loss functions.

RL with adversarial losses and linear function
approximation. Recent advances have emerged in
learning adversarial RL with linear function approx-
imation (Neu and Olkhovskaya, 2021; Zhong and
Zhang, 2023; Sherman et al., 2023a; Luo et al., 2021;
Dai et al., 2023; Sherman et al., 2023b; Kong et al.,
2023; Liu et al., 2024; Cai et al., 2020; He et al., 2022;
Li et al., 2023, 2024; Zhao et al., 2023a). Generally,
these studies can be divided into two lines. The first
line focuses on the linear MDPs. Neu and Olkhovskaya
(2021) first study adversarial linear MDPs with ban-
dit feedback but under the known transition set-
ting. Zhong and Zhang (2023) first investigate the full-
information and unknown transition setting and this
setting is further studied by Sherman et al. (2023a)
recently. Luo et al. (2021) make the first step to estab-
lish a sublinear regret for the more difficult unknown
transition and bandit feedback setting. The result is
further improved in (Dai et al., 2023; Sherman et al.,
2023b; Kong et al., 2023; Liu et al., 2024). The second
line of work considers the linear mixture MDPs. The
seminal work of Cai et al. (2020) first studies adversar-
ial linear mixture MDPs in the unknown transition and
full-information feedback setting and proposes an op-
timistic proximal policy optimization algorithm. The
subsequent work by He et al. (2022) improves their re-
sults to minimax optimality by using a weighted ridge
regression and a Bernstein-type exploration bonus.
The most recent work of Ji et al. (2024) studies the
same setting and obtains a horizon-free regret which is
independent of H with the assumption that the losses
are upper bounded by 1/H. For the more challenging
unknown transition and bandit feedback setting, the
only existing work of Zhao et al. (2023a) achieves a

regret of Õ(dS2
√
K+

√
HSAK), which exhibits a gap

compared to the Ω(dH
√
K +

√
HSAK) lower bound

established in their work. In our work, we consider the
same unknown transition and bandit feedback setting
as Zhao et al. (2023a) and improve the upper bound

to Õ(d
√
HS3K +

√
HSAK), making a step towards

closing the gap between the upper and lower bounds.
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3 PROBLEM SETUP

In this section, we present the problem setup of
episodic linear mixture MDPs with adversarial losses.

Episodic adversarial MDPs. In this paper, we
consider episodic adversarial MDP, which is denoted
by a tuple M = (S,A, H, {Ph}Hh=1, {ℓk}Kk=1). Here
S is the state space with cardinality |S| = S, A is
the action space with cardinality |A| = A, H is the
length of each episode, K is the number of episodes,
Ph : S × A × S → [0, 1] is the transition kernel with
Ph(s

′ | s, a) is being the probability of transiting to
state s′ from state s and taking action a at stage h,
ℓk : S × A → [0, 1] is the loss function, which may be
chosen in an adversarial manner. Following previous
studies (Zimin and Neu, 2013; Rosenberg and Man-
sour, 2019a; Jin et al., 2020a), we assume the MDP
has a layered structure, satisfying the conditions:

• The state space S consists of H + 1 disjoint layers
such that S = ∪H+1

h=1 Sh and Si ∩ Sj = ∅ for i ̸= j.

• S1 = {s1} and SH+1 = {sH+1} are singletons.

• Transition is possible only between adjacent layers,
that is Ph(s

′ | s, a) = 0 for all s ∈ Sh and s′ /∈ Sh+1.

A policy π = {πh}Hh=1 is a collection of mapping πh,
where each πh : S → ∆(A) is a function maps a state s
to distributions over A at stage h. Define the expected
loss of an policy π at episode k as

Lk(π) = E

[
H∑
h=1

ℓk,h (sh, ah)
∣∣∣ P, π] , (1)

where the expectation is taken over the randomness of
the stochastic transition and policy.

In the online MDP setting, the interaction protocol
between the learner and the environment is given as
follows. The interaction proceeds in K episodes. At
the beginning of episode k, the environment chooses
a loss function ℓk, which may be in an adversarial
manner. Simultaneously, the learner chooses a policy
πk = {πk,h}Hh=1. At each stage h ∈ [H], the learner
observes the state sk,h, chooses an action ak,h sampled
from πk,h(· | sk,h), obtains reward ℓk,h(sk,h, ak,h) and
transits to the next state sk,h+1 ∼ Ph(· | sk,h, ak,h).
In this work, we consider the bandit feedback setting
where the learner can only observe the losses for the
visited state-action pairs: {ℓk(sk,h, ak,h)}Hh=1. The
goal of the learner is to minimize regret, defined as

Reg(K) =

K∑
k=1

Lk(πk)−
K∑
k=1

Lk(π
∗), (2)

where π∗ ∈ argminπ∈Π

∑K
k=1 Lk(π) is the optimal pol-

icy and Π is the set of all stochastic policy.

Linear Mixture MDPs. We focus on a special
class of MDPs named linear mixture MDPs (Ayoub
et al., 2020; Cai et al., 2020; Zhou et al., 2021; He et al.,
2022; Li et al., 2023), where the transition kernel is lin-
ear in a known feature mapping ϕ : S × A × S → Rd
with the following definition.

Definition 1 (Linear Mixture MDPs). An MDP
instance M = (S,A, H, {Ph}Hh=1, {ℓk}Kk=1) is called
an inhomogeneous, episodic B-bounded linear mix-
ture MDP if there exist a known feature mapping
ϕ(s′ | s, a) : S × A × S → Rd with ∥ϕ(s′ | s, a)∥2 ≤ 1
and unknown vectors {θ∗h}Hh=1 ∈ Rd with ∥θ∗h∥2 ≤ B,
such that for all (s, a, s′) ∈ S ×A× S and h ∈ [H], it
holds that Ph(s

′ | s, a) = ⟨ϕ(s′ | s, a), θ∗h⟩.

Occupancy measure. Previous studies (Zimin and
Neu, 2013; Jin et al., 2020a) have shown the impor-
tance of the concept of occupancy measure for solv-
ing adversarial MDPs via online learning techniques.
Specifically, for some policy π and transition kernel P ,
the occupancy measure qP,π is defined as the proba-
bility of visiting the state-action pair (s, a) when exe-
cuting policy π under the transition P , that is

qP,π(s, a) = Pr[(sh, ah) = (s, a) | P, π], (3)

where h = h(s) is the index of the layer that state s be-
longs to. A valid occupancy measure q satisfies the fol-
lowing two properties. First, according to the loop-free
structure, each layer is visited once and only once, and
thus for all h ∈ [H], we have

∑
s∈Sh

∑
a∈A q(s, a) = 1.

Second, the probability of entering a state when com-
ing from a previous layer is equal to the probability
of leaving the state when going to the next layer,
that is for all h = 2, . . . ,H and s ∈ Sh, we have∑

(s′,a′)∈Sh−1×A q(s
′, a′)Ph−1(s |s′, a′) =

∑
a∈A q(s, a).

Clearly, a valid occupancy measure q induce a policy π
such that πq(a|s) = q(s, a)/

∑
a′∈A q(s, a

′). For a fixed
transition kernel P , we denote by ∆(P ) the set of all
valid occupancy measures induced by P . Similarly, we
denote by ∆(P) the set of occupancy measures whose
induced transition belongs to a set of transitions P.

With the concept of occupancy measure, we can re-
duce this problem to the online linear optimization.
Specifically, the expected loss of a policy π at episode
k defined in (1) can be rewritten as

Lk(π) =

H∑
h=1

∑
s∈Sh

∑
a∈A

qP,π(s, a)ℓk(s, a) = ⟨qP,π, ℓk⟩.

Then the regret in (2) can be rewritten as

Reg(K) =

K∑
k=1

⟨qP,πk − qP,π
∗
, ℓk⟩. (4)

We define q∗ ≜ qP,π
∗ ∈ ∆(P ) to simplify the notation.
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4 THE PROPOSED ALGORITHM

This section introduces our proposed VLSUOB-REPS
algorithm (Vector Least Square Upper Occupancy
Bound Relative Entropy Policy Search) for adversar-
ial linear mixture MDPs with unknown transition in
the bandit feedback setting. VLSUOB-REPS consists
of three key components: (i) estimating the unknown
transition parameter and maintaining corresponding
confidence set; (ii) constructing loss estimators; and
(iii) applying online mirror descent over the occupancy
measure space. We introduce the details below.

4.1 Transition Estimator

One of the main difficulties comes from the unknown
transition kernel P . To address this issue, most ex-
isting works (Ayoub et al., 2020; Cai et al., 2020;
Zhou et al., 2021) use the method of value-targeted
regression (VTR) to learn the unknown parameter
θ∗h together with the corresponding confidence set.
Specifically, for any function V : S → R, define
ϕV (sk,h, ak,h) =

∑
s′ ϕ(s

′ |sk,h, ak,h)V (s′). By the def-
inition of linear mixture MDPs in Definition 1, we have

Ph(· | sk,h, ak,h)⊤V (·) = ⟨ϕV (sk,h, ak,h), θ∗h⟩.

Therefore, learning the underlying θ∗h can be regarded
as solving a “linear bandit” problem (Lattimore and
Szepesvári, 2020), where the context is ϕV (sk,h, ak,h),
and the noise is V (sk,h+1) − Ph(· | sk,h, ak,h)⊤V (·).
Thus, previous works (Ayoub et al., 2020; Cai et al.,
2020) set the estimator θk,h as the minimizer of the
least squares linear regression objective:

k−1∑
i=1

[
ϕVi,h+1

(si,h, ai,h)
⊤θ − Vi,h+1(si,h+1)

]2
+ λk∥θ∥22,

where Vk,h is the state value function defined as

Vk,h(s) = E[
∑H
h′=h ℓk,h(sk,h, ak,h) | P, πk, sk,h = s]. A

similar weighted least squares linear regression method
is used in the works (Zhou et al., 2021; He et al., 2022),
which further utilizes the variance information of the
value functions to gain a sharper confidence set.

Although value-targeted regression is the most popular
method to estimate the unknown transition parame-
ter in the literature, it is not applicable in our setting.
The reason is that this method can only guarantee
P̂h(· | s, a)⊤Vk,h+1(·) ≈ Ph(· | s, a)⊤Vk,h+1(·), where P̂
is the estimated transition kernel. This method learns
the transition kernel implicitly and bypasses the need
for fully estimating the transition, which can be viewed
as “model-free” in this sense. However, it is not suffi-
cient for our purpose since the occupancy measure also
depends on the transition kernel, which requires us to

learn the transition kernel explicitly and ensure the
estimated transition is accurate enough, i.e., P̂ ≈ P .

To this end, an alternative way to learn the unknown
transition parameter is using the vanilla transition in-
formation directly. Specifically, denote Φs,a ∈ Rd×S
with Φs,a(:, s

′) = ϕ(s′ | s, a) and let δs ∈ {0, 1}S be the
one-hot vector with δs(s) = 1. Then, we can rewrite
the transition kernel as Ph(· | s, a) = Φ⊤

s,aθ
∗
h. Thus,

to learn the unknown parameter θ∗h, we consider using
Φsk,h,ak,h

as feature and δsk,h+1
as the regression tar-

get. Then, the estimator θk,h is defined as the solution
of the following linear regression problem:

θk,h = argmin
θ∈Rd

k−1∑
i=1

∥∥∥Φ⊤
si,h,ai,h

θ − δsi,h+1

∥∥∥2
2
+ λk∥θ∥22.

(5)

The closed-form solution is θk,h = Λ−1
k,hbk,h with

Λk,h =

k−1∑
i=1

∑
s′∈Sh+1

ϕ(s′|si,h, ai,h)ϕ(s′|si,h, ai,h)⊤ + λkId,

bk,h =

k−1∑
i=1

∑
s′∈Sh+1

δsi,h+1
(s′)ϕ(s′ | si,h, ai,h). (6)

Nonetheless, a significant challenge remains to be
solved. Specifically, let εi,h = Ph(· | si,h, ai,h)− δsi,h+1

be the noise at episode i at stage h due to the transi-
tion. It is clear that εi,h ∈ [−1, 1]S , Ei,h[εi,h] = 0. One
may consider establishing an ellipsoid confidence set
for θ∗h by applying the self-normalized concentration
for vector-valued martingales (Abbasi-Yadkori et al.,
2011, Theorem 1), as restated in Lemma 15 of Ap-
pendix E. However, since the learner only transits to
one state in each layer, the noises across different states
are no longer independent. Concretely, it hold that∑
s∈S εi,h(s) = 0. Thus the noises εi,h(s) of different

states are 1-subgaussian but they are not independent.
This fact makes the key self-normalized concentration
in Lemma 15 no longer applicable.

To address this challenge, Zhao et al. (2023a) propose
to use the transition information of only one certain
state s′i,h+1 in the next layer, which they call the imag-
inary next state. They set the estimator θk,h as the
minimizer of the following linear regression problem:

k−1∑
i=1

[
ϕ(s′i,h+1|si,h, ai,h)⊤θ − δsi,h+1

(s′i,h+1)
]2

+ λk∥θ∥22.

(7)

Note that the imaginary next state s′i,h+1 is not the
actual next state si,h+1 experienced by the learner.
Instead, they choose the imaginary next state s′i,h+1
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as the state with the largest uncertainty, formally,

s′i,h+1 = argmax
s∈S

∥ϕ(s | si,h, ai,h)∥M−1
i,h
,

where Mi,h is the feature covariance matrix, set as

i−1∑
j=1

ϕ(s′j,h+1 | sj,h, aj,h)ϕ(s′j,h+1 | sj,h, aj,h)⊤ + λiI.

With this choice, they can control the uncertainty of
other states by that of the imaginary next state.

Though the method of using one state at each stage
in Zhao et al. (2023a) is novel and provides an initial
solution for this problem, it discards the visit infor-
mation of other states and leads to a notable gap to
the lower bound. To fully utilize the visit informa-
tion, we use the information of all states and con-
struct the estimator as in (5), instead of the only one
state in (7). To address the non-independent noise
issue, we introduce a new self-normalized concentra-
tion lemma tailored specifically for non-independent
random noises. This lemma was originally proposed
by Périvier and Goyal (2022) for the dynamic assort-
ment problem, where a seller selects the subset of
products to present to the customer who will then
purchase one single item. They also face the non-
independent random noises issue as the customer will
only purchase at most one product, which is similar
to our problem where the learner will only visit one
state. Thus, they use this lemma to manage the prod-
uct correlations and we make adaptations to handle
the state correlations. Differently, Périvier and Goyal
(2022, Theorem C.6) establish a variance-aware con-
centration inequality. In our work, we adapt their in-
equality into a simplified variance-independent form,
which is well-suited for our analytical needs.

Lemma 1. Let {Ft}∞t=0 be a filtration. Let {δt}∞t=1

be an RN -valued stochastic process such that δt is
Ft-measurable one-hot vector. Furthermore, assume
E[δt|Ft−1] = pt and define εt = pt− δt. Let {xt}∞t=1 be
a sequence of RN×d-valued stochastic process such that
xt is Ft−1-measurable and ∥xt,i∥2 ≤ 1,∀i ∈ [N ]. Let
{λt}∞t=1 be a sequence of non-negative scalars. Define

Yt =

t∑
i=1

N∑
j=1

xi,jx
⊤
i,j + λtId, St =

t∑
i=1

N∑
j=1

εi,jxi,j .

Then, for any ζ ∈ (0, 1), with probability at least 1−ζ,
we have for all t ≥ 1,

∥St∥Y −1
t

≤
√
λt
4

+
4√
λt

log

(
2d det (Yt)

1
2 λ

− d
2

t

ζ

)
.

With the above lemma, we can build the confidence
set for the unknown parameter θ∗h as follows.

Lemma 2. Let ζ ∈ (0, 1), then for any k ∈ [K] and
simultaneously for all h ∈ [H], with probability at least
1− ζ, it holds that

θ∗h ∈ Ck,h where Ck,h = {θ ∈ Rd | ∥θ − θk,h∥Λk,h
≤ βk}

with βk = (B+ 1
4 )
√
λk+

2√
λk

(2 log(Hζ )+d log(4+
4Sk
λkd

)).

Remark 1. Compared with the confidence set of
∥θ − θk,h∥Mk,h

≤ βk of Zhao et al. (2023a), our con-
fidence set in Lemma 2 is tighter since Mk,h ⪯ Λk,h.
A primary challenge in constructing such a confidence
set is bounding the self-normalized concentration term
∥
∑k
i=1

∑
s′∈Sh+1

εi,h+1(s
′)ϕ(s′ | si,h, ai,h)∥Λ−1

k,h
. Due to

the non-independent noises, we can not apply the self-
normalized concentration in Lemma 15 directly. As a
solution, Zhao et al. (2023a) propose to concentrate on
a singular state per layer, which only need to bound
the term ∥

∑k
i=1 εi,h+1(s

′
i,h+1)ϕ(s

′
i,h+1 |si,h, ai,h)∥M−1

k,h
.

While this approach bypasses the complications intro-
duced by non-independent noises, it discards the visit
information of other states. In contrast, we bound this
challenging term by Lemma 1. This allows us to utilize
the information of all states, leading to an improved
bound. Intuitively, this new concentration lemma em-
powers our algorithm to explore the orientations of
every state simultaneously, as opposed to the singular
direction approach in Zhao et al. (2023a). ◁

Based on the above lemma, we can construct the con-
fidence set Pk = {Pk,h}Hh=1 for the transition P as

Pk,h = {P̂h | ∃θ ∈ Ck,h, P̂h(s′|s, a) = ϕ(s′|s, a)⊤θ} (8)

for all (s, a, s′) ∈ S × A × S. According to Lemma 2,
we have P ∈ Pk with probability at least 1− ζ.

4.2 Loss Estimator

A common technique to deal with the bandit-feedback
setting is to construct a loss estimator ℓ̂k,h for the
true loss function ℓk,h based on historical observations.
When the transition is known, existing works (Zimin
and Neu, 2013; Rosenberg and Mansour, 2019b) con-
struct the unbiased estimator as

ℓ̂k(s, a) =
ℓk(s, a)

qP,πk(s, a)
Ik(s, a), (9)

where Ik(s, a) = 1 if (s, a) is visited at episode k and
Ik(s, a) = 0 otherwise. However, this method can not
be directly applied to the unknown transition setting
since the occupancy measure qP,πk is unknown. Rosen-
berg and Mansour (2019b) directly use the empirical
occupancy measure q̂P,πk in place of qP,πk to construct
the estimator that could be either an overestimate or
an underestimate, leading a loose regret bound.
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To address this issue, Jin et al. (2020a) follow the prin-
ciple of “optimistic in the face of uncertainty” and
builds an underestimate for the loss function ℓk,h to
encourage exploration. Since the true transition P be-
longs to the confidence set Pk with high probability.
To build an underestimate for ℓk,h, they propose to re-
place qP,πk(s, a) in (9) with its upper occupancy bound,
defined as the largest possible probability of visiting
(s, a) under the confidence set Pk. Formally,

uk(s, a) = max
P̂∈Pk

qP̂ ,πk(s, a). (10)

The above step can be computed efficiently by the
Comp-UOB procedure of Jin et al. (2020a). Addi-
tionally, they adopt the idea of implicit exploration
of Neu (2015) to further increase the denominator by
some fixed amount γ > 0, which is for several techni-
cal reasons such as obtaining a high probability bound.
Finally, the estimator is built as

ℓ̂k(s, a) =
ℓk(s, a)

uk(s, a) + γ
Ik(s, a). (11)

Clearly, ℓ̂k(s, a) is an underestimate of ℓk(s, a) since
uk(s, a) ≥ qP,πk(s, a) with high probability.

In our algorithm, we follow the work of Jin et al.
(2020a) and employ the loss estimator defined in (11).

4.3 Online Mirror Descent

Online Mirror Descent (OMD) is a powerful frame-
work for solving online convex optimization prob-
lems (Orabona, 2019; Wei and Luo, 2018; Zhao et al.,
2021). As discussed in Section 3, our problem is closely
related to the online linear optimization problem over
the occupancy measure space. Thus, we utilize OMD
as a key component of our algorithm. We apply OMD
over the occupancy measure space ∆(Pk) induced by
the confidence set Pk. Specifically, we update the oc-
cupancy measure as follows:

q̂k+1 = argmin
q∈∆(Pk)

η⟨q, ℓ̂k⟩+Dψ(q∥q̂k), (12)

where ℓ̂k is the loss estimator defined in (11), η > 0 is
step size, ψ(q) =

∑
s,a q(s, a) log q(s, a) −

∑
s,a q(s, a)

is the unnormalized negative entropy, and Dψ(q∥q′) =∑
s,a q(s, a) log

q(s,a)
q′(s,a) −

∑
s,a(q(s, a) − q′(s, a)) is the

unnormalized KL-divergence. The update procedure
in (12) can also be implemented efficiently, as discussed
in Appendix E of Zhao et al. (2023a).

The detailed algorithm is presented in Algorithm 1.
Line 3 - 9 estimate the unknown transition, Line 10
compute the upper occupancy bound uk, Line 11 con-
structs the loss estimator ℓ̂k, and Line 12 runs OMD
to update the occupancy measure q̂k+1. The learner
execute the policy πk+1 induced by q̂k+1 in Line 13.

Algorithm 1 VLSUOB-REPS

Input: Confidence parameter ζ, step size η, regular-
ization parameter λk, exploration parameter γ.

1: Initialization: Set confidence set P1 as all tran-
sition kernels. For all h ∈ [H] and all s ∈ Sh, set
q̂1(s, a) =

1
Sh×A . Let π1 = πq̂1 , Λ1,h = λ1Id,∀h.

2: for k = 1, . . . ,K do
3: for h = 1, . . . ,H do
4: Take action ak,h ∼ πk,h(· | sk,h).
5: Suffer and observe loss ℓk,h(sk,h, ak,h).
6: Transit to sk,h+1 ∼ Ph(· | sk,h, ak,h).
7: θk,h = Λ−1

k,hbk,h with Λk,h and bk,h as in (6).
8: Construct the confidence set as in (8).
9: end for

10: Compute upper bound uk(s, a) as in (10).

11: Construct loss estimator ℓ̂k,h as in (11).
12: Compute occupancy measure q̂k+1 as in (12).
13: Update policy πk+1 = πq̂k+1 .
14: end for

5 REGRET GUARANTEE

In this section, we present the regret upper bound of
our algorithm and the proof sketch.

5.1 Regret Upper Bound

The regret bound of our algorithm VLSUOB-REPS is
guaranteed by the following theorem.

Theorem 1. Set the step size η and exploration pa-

rameter γ as η = γ =
√

H log(HSA/ζ)
KSA , the regulariza-

tion parameter λk as λ1 = 1, λk = d log(kS), ∀k > 1.
With probability at least 1 − 5ζ, VLSUOB-REPS algo-
rithm ensures the regret Reg(K) is upper bounded by

O

(
d
√
HS3K log2

(dSK
ζ

)
+

√
HSAK log

(HSA
ζ

))
.

Remark 2. Compared with the regret bound of
Õ(dS2

√
K+

√
HSAK) in Zhao et al. (2023a, Theorem

1), our bound is better since H ≤ S by the layered
structure of MDPs. As a byproduct, our result im-
proves the best-known Õ(HS

√
AK) regret for tabular

MDPs (Jin et al., 2020a) when d ≤
√
HA/S. ◁

Remark 3. Compared with the lower bound of
Ω(dH

√
K +

√
HSAK) established in Zhao et al.

(2023a, Theorem 2), our regret is suboptimal in the
dependence on S. However, note that the dependence
on S remains suboptimal even for tabular MDPs (Jin
et al., 2020a). How to close this gap is an important
open question and we leave it as future work. ◁
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5.2 Occupancy Measure Difference

In this part, we introduce a key technical lemma that
bounds the occupancy measure difference induced by
the different transitions in the confidence set and is
critical in our analysis.

Lemma 3 (Occupancy measure difference for linear
mixture MDPs). For any collection of transition ker-
nels {P sk}s∈S such that P sk ∈ Pk for all s ∈ S, if λ ≥ δ,
with probability at least 1− 2ζ, it holds that

K∑
k=1

∥∥∥qP s
k ,πk − qk

∥∥∥
1
≤ O

(
d
√
HS3K log2(dSK/ζ)

)
.

Remark 4. Compared with the occupancy measure
difference Õ(dS2

√
K) of Zhao et al. (2023a, Lemma

2), our bound Õ(d
√
HS3K) in Lemma 3 is better since

H ≤ S by the layed structure of MDPs. This improve-
ment comes from the new self-normalized concentra-
tion for non-independent random noises in Lemma 1,
which allows us to use the transition information of all
states instead of only one as in Zhao et al. (2023a). ◁

Remark 5. Compared with the occupancy measure
difference Õ(HS

√
AK) of Jin et al. (2020a, Lemma

4), our bound Õ(d
√
HS3K) in Lemma 3 is better

when d ≤
√
HA/S. Though our bound gets rid of the

dependence on the action space size A, it still keeps
the dependence on the state space S. As pointed
by Zhao et al. (2023a), the main hardness of simulta-
neously eliminating the dependence of the occupancy
measure difference on both S and A is that though
the transition kernel P of a linear mixture MDP
admits a linear structure, the occupancy measure
still has a complicated recursive form: qk(s, a) =
πk(a|s)⟨θ∗h(s)−1,

∑
(s′,a′)∈Sh(s)−1×A qk (s

′, a′)ϕ (s|s′, a′)⟩.
We leave the question of whether it is possible to
eliminate the dependence on S as future work. ◁

Next, we present the proof sketch of Lemma 3.

Proof Sketch (of Lemma 3). First, we introduce the
following lemma, which bounds the error between the
transition Ph and the estimated transition P̂k,h ∈ Pk,h.
Lemma 4. Let P̂k = {P̂k,h}Hh=1 with P̂k,h ∈ Pk,h such

that P̂k,h(s
′ | s, a) = ϕ(s′ | s, a)⊤θ̂k,h for all (s, a, s′) ∈

Sh×A×Sh+1 for some θ̂k,h ∈ Ck,h. Then for any ζ ∈
(0, 1) and simultaneously for all k ∈ [K] and h ∈ [H],
with probability at least 1− ζ, it holds that

|P̂k,h(s′|s, a)− Ph(s
′|s, a)| ≤ 1 ∧ βk∥ϕ(s′ | s, a)∥Λ−1

k,h
,

where βk is the diameter of confidence set defined in
Lemma 2 and Λk,h is covariance matrix defined in (6).

Then, we present the following lemma, which bounds
the error between the occupancy measure by the esti-
mation error of the transition. For the sake of brevity,

we define ϵk,h(s
′ | s, a) = 1 ∧ βk∥ϕ(s′ | s, a)∥Λ−1

k,h
, then

we have |P̂k,h(s′|s, a) − Ph(s
′|s, a)| ≤ ϵk,h(s

′ | s, a) by
Lemma 4. Then we have the following lemma.

Lemma 5. For any collection of transition kernels
{P sk}s∈S such that P sk ∈ Pk for all s ∈ S, if λ ≥ ζ,
with probability at least 1− 2ζ, it holds that

K∑
k=1

∥∥∥qP s
k ,πk − qk

∥∥∥
1
≤ 2S

∑
k,h,s′

ϵs
′

k,h + 4βKS
2 log

(H
ζ

)
.

Here
∑
k,h,s′ ϵ

s′

k,h ≜
∑
k,h

∑
s′∈Sh+1

ϵk,h(s
′|sk,h, ak,h).

According to Lemma 5, to bound the occupancy mea-
sure difference, it suffices to bound the estimation er-
ror of the transition, that is the cumulative error of
ϵk,h(s

′ | sk,h, ak,h) over all episodes k and all stages
h. Bounding this term is the main difference between
our work and Zhao et al. (2023a). In particular, Zhao
et al. (2023a) only use the transition information of
one state s′k,h+1 with the maximum uncertainty in the
next layer. Thus they can bound the estimation error
of other states by that of s′k,h+1. Specifically, note that
ϵk,h(s

′ |s, a) ≤ βk(1∧∥ϕ(s′ |s, a)∥Λ−1
k,h

), they bound the

cumulative error of transition as below:

K∑
k=1

H∑
h=1

∑
s′∈Sh+1

βk(1 ∧ ∥ϕ(s′ | sk,h, ak,h)∥M−1
k,h

)

≤ βK

K∑
k=1

H∑
h=1

Sh+1(1 ∧ ∥ϕ(s′k,h+1 | sk,h, ak,h)∥M−1
k,h

)

≤ βKS

√√√√K

K∑
k=1

(
1 ∧ ∥ϕ(s′k,h+1 | sk,h, ak,h)∥M−1

k,h

)2
≤ Õ

(
βKS

√
dK
)
.

Here the first inequality holds by the choice that
s′i,h+1 = argmaxs∈S∥ϕ(s | si,h, ai,h)∥M−1

i,h
, the second

inequality holds by the Cauchy-Schwarz inequality, the
last inequality follows from the self-normalized concen-
tration of Abbasi-Yadkori et al. (2011, Lemma 10).

Instead, we use the transition information of all states
and thus can bound this term directly as follows

K∑
k=1

H∑
h=1

∑
s′∈Sh+1

βk(1 ∧ ∥ϕ(s′ | sk,h, ak,h)∥Λ−1
k,h

)

≤ βK

H∑
h=1

√√√√KSh+1

K∑
k=1

∑
s′∈Sh+1

(1 ∧ ∥ϕ(s′ | sk,hak,h)∥Λ−1
k,h

)2

≤ Õ
(
βK

√
dHSK

)
,

which replaces a dependence on
√
S with

√
H, result-

ing the final improvement over Zhao et al. (2023a). ■
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5.3 Proof Sketch of Theorem 1

Finally, we present the proof sketch of Theorem 1.

Define the occupancy measure under the true transi-
tion P and policy πk as qk = qP,πk . Then, the regret
can be written as Reg =

∑K
k=1⟨qk − q∗, ℓk⟩. Following

the work of Jin et al. (2020a), we decompose the regret
as the following four terms:

Reg(K) ≤
K∑
k=1

⟨q̂k − q∗, ℓ̂k⟩︸ ︷︷ ︸
Regret

+

K∑
k=1

⟨qk − q̂k, ℓk⟩︸ ︷︷ ︸
Error

+

K∑
k=1

⟨q̂k, ℓk − ℓ̂k⟩︸ ︷︷ ︸
Bias-I

+

K∑
k=1

⟨q∗, ℓ̂k − ℓk⟩︸ ︷︷ ︸
Bias-II

.

Here, the first Regret term is the regret of the corre-
sponding online linear optimization problem with re-
spect to the loss estimator ℓ̂k, which can be controlled
by OMD via standard analysis and can be bounded
by O(

√
HSAK log(HSA/ζ) +H log(H/ζ)). The last

Bias-II term measures the bias of the loss estimator ℓ̂k
with respect to the true loss ℓk, which can be bounded
byO(

√
HSAK log(SA/ζ)) by the concentration of the

implicit exploration (Neu, 2015). Finally, the remain-
ing two terms Error and Bias-I come from the er-
ror of using q̂k and uk to approximate qk respectively,
which are closely related to the occupancy measure
difference in Lemma 3. We bound these two terms in
the rest. Bounding Regret and Bias-II is relatively
standard and we defer the proofs to Appendix D.

Bounding Error Term. With Lemma 3, we imme-
diately obtain the following bound on Error.

Lemma 6. For any ζ ∈ (0, 1), with probability at least
1− 2ζ, VLSUOB-REPS algorithm ensures that

Error ≤ O
(
d
√
HS3K log2(dKS/ζ)

)
.

Proof. Let P sk = P q̂k ∈ Pk for all s such that q̂k =
qPk,πk . Since ℓk(s, a) ∈ [0, 1] for all k ∈ [K] and

(s, a) ∈ S×A, we have Error ≤
∑K
k=1

∑
s,a|q̂k(s, a)−

qk(s, a)| =
∑K
k=1

∑
s,a|qP

s
k ,πk − qk(s, a)|. The proof is

then completed by applying Lemma 3. ■

Bounding Bias-I Term. To bound this term, we
need to show the loss estimator ℓ̂k is close to the true
loss function ℓk. This is guaranteed by the fact that
the confidence set becomes more and more accurate
for frequently visited state-action pairs.

Lemma 7. For any ζ ∈ (0, 1), with probability at least
1− 3ζ, VLSUOB-REPS algorithm ensures that

Bias-I ≤ O
(
d
√
HS3K log2(dKS/ζ) + γSAK

)
.

Proof. To bound the Bias-I, we first bound the term∑K
k=1⟨q̂k, ℓk − Ek−1,H [ℓ̂k]⟩ as follows.∑

k

〈
q̂k, ℓk − Ek−1,H

[
ℓ̂k

]〉
=
∑
k,s,a

q̂k(s, a)ℓk(s, a)

(
1− Ek−1,H [Ik{s, a}]

uk(s, a) + γ

)

=
∑
k,s,a

q̂k(s, a)ℓk(s, a)

(
1− qk(s, a)

uk(s, a) + γ

)
≤
∑
k,s,a

|uk(s, a)− qk(s, a)|+ γSAK.

Since uk = qP
s
k ,πk where P sk = argmaxP̂∈Pk

qP̂ ,πk(s),
the term

∑
k,s,a |uk(s, a)− qk(s, a)| can be controlled

by Lemma 3 again. It remains to bound the term∑K
k=1⟨q̂k,Ek−1,H [ℓ̂k] − ℓ̂k⟩. Since the fact that P q̂k ∈

Pk and uk(s, a) = maxP̂∈Pk
qP̂ ,πk(s, a), we have∑

s,a q̂k(s, a)ℓ̂k(s, a) ≤
∑
s,a uk(s, a)ℓ̂k(s, a) = H.

Then using the Azuma-Hoeffding inequality, with
probability at least 1− ζ, we have

K∑
k=1

⟨q̂k,Ek−1,H [ℓ̂k]− ℓ̂k⟩ ≤ H
√
2K log (1/ζ).

Applying the union bound finishes the proof. ■

6 CONCLUSION

In this work, we consider learning adversarial linear
mixture MDPs with bandit feedback and unknown
transition. We propose a new algorithm that achieves
an Õ(d

√
HS3K +

√
HSAK) regret with high prob-

ability. Our result strictly improves the previously
best-known Õ(dS2

√
K+

√
HSAK) regret (Zhao et al.,

2023a). As a byproduct, it improves the best-known

Õ(HS
√
AK) result for tabular MDPs (Jin et al.,

2020a) when d ≤
√
HA/S. To achieve this result,

we first propose a new least square estimator for the
unknown transition that leverages the visit informa-
tion of all states, as opposed to only a single state
in Zhao et al. (2023a). Then we introduce a new self-
normalized concentration designed specifically for non-
independent noises to handle the state correlations.

Several questions remain open for future study. First,
the dependence on S of our result is suboptimal, and
how to close this gap is an important open problem.
Moreover, optimizing the dynamic regret of adversar-
ial MDPs is an emerging direction to facilitate algo-
rithms with more robustness in non-stationary envi-
ronments. Recent literature has explored the dynamic
regret of adversarial MDPs with full-information feed-
back (Fei et al., 2020; Zhao et al., 2022; Li et al., 2023).
Extending their results to the bandit feedback setting
is an important future direction.



Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit Feedback and Unknown Trans.

Acknowledgements

This research was supported by NSFC (62206125,
U23A20382, 61921006). Peng Zhao was supported in
part by the Xiaomi Foundation.

References

Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C.
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A Proof of Lemma 1

In this section, we present the proof of Lemma 1, which is a simplified version of the proof of Périvier and Goyal
(2022, Theorem C.6). For self-containedness, we present the proof below.

A.1 Main Proof

Proof. We define a global variable as zi =
∑N
j=1 εi,jxi,j and analyze the concentration of zi. Denote Bd(x, r) the

d-dimensional ℓ2 ball centered at x with radius r. For all ξ ∈ Bd(0, 1/2), we define

M0(ξ) = 1, and Mt(ξ) = exp(ξ⊤zt − ∥ξ∥2Yt
). (13)

We denote by Ft the σ-algebra generated by {{xi, εi}t−1
i=1, xt}. To prove Lemma 1, the crucial step is to demon-

strate that though zi is a combination of non-independent variables, relatively to Ft, Mt(ξ) is still a super
martingale, which is present in the following lemma.

Lemma 8. For all ξ ∈ Bd(0, 1/2), {Mt(ξ)}∞t=0 defined in (13) is a non-negative super martingale.

We present the proof of Lemma 8 in Appendix A.2. Then, the remaining proof follows the proof of Faury et al.
(2020, Theorem 1). The main difference in our analysis is that ξ belongs to Bd(0, 1/2) instead of Bd(0, 1) to
ensure {Mt(ξ)}∞t=0 is a super martingale.

Let h(ξ) be a probability density function with support on Bd(0, 1/2). For t ≥ 0 let:

M̄t ≜
∫
ξ

Mt(ξ)dh(ξ)

By Lemma 20.3 of Lattimore and Szepesvári (2020), M̄t is also a non-negative super-martingale, and E
[
M̄0

]
= 1.

Let τ be a stopping time with respect to the filtration {Ft}∞t=0. We can follow the proof of Lemma 8 in Abbasi-
Yadkori et al. (2011) to justify that M̄τ is well-defined (independently of whether τ <∞ holds or not) and that
E
[
M̄τ

]
≤ 1. Therefore, with ζ ∈ (0, 1) and thanks to the maximal inequality:

Pr

[
log
(
M̄τ

)
≥ log

(
1

ζ

)]
= Pr

[
M̄τ ≥ 1

ζ

]
≤ ζ.

Then, we compute the lower bound of M̄t as follows. Let βt =
√
2λt be a positive scalar and set h to be the

density function of an isotropic normal distribution of precision β2
t truncated on Bd(0, 1/2). Denote N(h) its

normalization constant. Then, we have

M̄t =
1

N(h)

∫
Bd(0,1/2)

exp
(
ξ⊤St − ∥ξ∥2Yt

)
dξ.

To simplify the notation, let f(ξ) := ξ⊤St − ∥ξ∥2Yt
and ξ∗ = argmax∥ξ∥2≤1/4 f(ξ), we obtain

M̄t =
ef(ξ∗)

N(h)

∫
Rd

1∥ξ∥2≤1/2 exp
(
(ξ − ξ∗)

⊤ ∇f (ξ∗)− (ξ − ξ∗)
⊤
Yt (ξ − ξ∗)

)
dξ

=
ef(ξ∗)

N(h)

∫
Rd

1∥ξ+ξ∗∥2≤1/2 exp
(
ξ⊤∇f (ξ∗)− ξ⊤Ytξ

)
dξ

≥ ef(ξ∗)

N(h)

∫
Rd

1∥ξ∥2≤1/4 exp
(
ξ⊤∇f (ξ∗)− ξ⊤Ytξ

)
dξ

=
ef(ξ∗)

N(h)

∫
Rd

1∥ξ∥2≤1/4 exp
(
ξ⊤∇f (ξ∗)

)
exp

(
−1

2
ξ⊤ (2Yt) ξ

)
dξ.

Further, we define g(ξ) as the density of the normal distribution of precision 2Yt truncated on the ball Bd(0, 1/4)
and N(g) its normalization constant. Then, we have

M̄t ≥ exp (f (ξ∗))
N(g)

N(h)
Eg
[
exp

(
ξ⊤∇f (ξ∗)

)]
≥ exp (f (ξ∗))

N(g)

N(h)
exp

(
Eg
[
ξ⊤∇f (ξ∗)

])
≥ exp (f (ξ∗))

N(g)

N(h)
,
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where the last inequality holds by Eg[ξ] = 0. Then, we obtain that for all ξ0 such that ∥ξ0∥2 ≤ 1/4:

Pr

[
M̄t ≥

1

ζ

]
≥ Pr

[
exp (f (ξ∗))

N(g)

N(h)
≥ 1/ζ

]
= Pr

[
log

(
exp (f (ξ∗))

N(g)

N(h)

)
≥ log(1/ζ)

]
= Pr

[
f (ξ∗) ≥ log(1/ζ) + log

(
N(h)

N(g)

)]
= Pr

[
max

∥ξ∥2≤1/4
ξ⊤St − ∥ξ∥2Yt

≥ log(1/ζ) + log

(
N(h)

N(g)

)]
≥ Pr

[
ξ⊤0 St − ∥ξ0∥2Yt

≥ log(1/ζ) + log

(
N(h)

N(g)

)]
.

In particular, we set ξ0 =
Y −1
t St

∥St∥Y
−1
t

βt

4
√
2
≤ 1

4 . Thus, we have

Pr

[
∥St∥Y −1

t
≥ βt

4
√
2
+

4
√
2

βt
log

(
N(h)

ζN(g)

)]
≤ Pr

[
M̄t ≥

1

ζ

]
. (14)

It remains to bound the quantities N(h) and g(h). To this end, we introduce the following lemma in Faury et al.
(2020) which bounds the log of their ratio.

Lemma 9 (Lemma 6 of Faury et al. (2020)). The following inequality holds:

log

(
N(h)

N(g)

)
≤ log

(
2d/2 det (Yt)

1/2

βdt

)
+ d log(2). (15)

Combining (14) and (15), with probability at least 1− ζ, for all t it holds that

∥St∥Y −1
t

≤ βt

4
√
2
+

4
√
2

βt
log

(
2d/2 det (Yt)

1/2

βdt ζ

)
+

4
√
2

βt
d log(2).

Finally, the poof is finished by the definition βt =
√
2λt. ■

A.2 Proof of Lemma 8

Proof. Since δt is a one-hot vector, for all j ∈ [N ], there is a single index j ∈ [0] for which δj = 1 and δj′ = 0 for
all j′ ̸= j. Besides, we have Pr(δi,j = 1|Fi) = pi,j . Hence, conditional on Fi, the variance of ξ⊤zi can be written
as follows. For simplicity, we denote E[·] = E[·|Fi] below.

σ2(ξ⊤zi|Fi)

= E

[( N∑
j=1

(δi,j − pi,j)ξ
⊤xi,j

)2
]
− E

[( N∑
j=1

(δi,j − pi,j)ξ
⊤xi,j

)]2

= E

[( N∑
j=1

(δi,j − pi,j)ξ
⊤xi,j

)2
]

= E

[( N∑
j=1

N∑
k=1

(δi,jξ
⊤xi,j)(δi,kξ

⊤xi,k)

)2
]
− 2E

[
N∑
j=1

δi,jξ
⊤xi,j

]( N∑
j=1

pi,jξ
⊤xi,j

)
+

( N∑
j=1

pi,jξ
⊤xi,j

)2

= E

[
N∑
j=1

δi,j(ξ
⊤xi,j)

2

]
− 2

( N∑
j=1

pi,jξ
⊤xi,j

)2

+

( N∑
j=1

pi,jξ
⊤xi,j

)2

=

N∑
j=1

pi,j(ξ
⊤xi,j)

2 −
( N∑
j=1

pi,jξ
⊤xi,j

)2

≤
N∑
j=1

(ξ⊤xi,j)
2 = ∥ξ∥2Yt

− ∥ξ∥2Yt−1
.
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Then, note that St−1 is Ft-measurable, thus for all t ≥ 1, we have

E
[
exp(ξ⊤St)|Ft

]
= exp(ξ⊤St−1)E

[
exp(ξ⊤zt)|Ft

]
.

Next we apply Lemma 12 to bound the term E
[
exp(ξ⊤zt)|Ft

]
and we need to ensure |ξ⊤zt| ≤ 1. Since δt is an

one-hot vector, let j be the index such that δt,j = 1. Then, we have δt,k = 0 for all k ∈ [N ]\{j}. Note ∥xt,j∥ ≤ 1
for all t, j and ∥ξ∥ ≤ 1/2, thus we have

|ξ⊤zt| ≤ (1− pt,j)|ξ⊤xt,j |+
∑

k∈[N ]\{j}

pt,k|ξ⊤xt,k| ≤
1

2

1 +
∑
j∈[N ]

pt,j

 ≤ 1.

Since |ξ⊤zt| ≤ 1, we can apply Lemma 12 and obtain

E
[
exp(ξ⊤St)|Ft

]
= exp(ξ⊤St−1)E

[
exp(ξ⊤zt)|Ft

]
≤ exp(ξ⊤St−1)(1 + σ2(ξ⊤zt|Ft)) ≤ exp(ξ⊤St−1 + σ2(ξ⊤zt|Ft)),

(16)

where the first inequality holds by Lemma 12 and the last inequality holds by 1 + x ≤ ex.

Finally, we obtain

E [Mt(ξ)|Ft] = E
[
exp(ξ⊤St − ∥ξ∥Yt)|Ft

]
= E

[
exp(ξ⊤St)|Ft

]
exp(−∥ξ∥Yt)

≤ exp(ξ⊤St−1 + σ2(ξ⊤zt|Ft)2 − ∥ξ∥2Yt
)

≤ exp(ξ⊤St−1 + ∥ξ∥2Yt−1
)

= Mt−1(ξ),

where the first equality holds since Yt is Ft-measurable, the first inequality holds by (16) and the second inequality
holds by σ2(ξ⊤zt|Ft)2 ≤ ∥ξ∥2Yt

− ∥ξ∥2Yt−1
. This shows that {Mt(ξ)}∞t=0 is a super martingale. ■

B Proof of Lemma 2

Proof. Recall the closed-form of θk,h is given by

θk,h = Λ−1
k,h

k−1∑
i=1

∑
s′∈Sh+1

δsi,h+1
(s′)ϕ(s′ | si,h, ai,h).

where Λk,h =
∑k−1
i=1

∑
s′∈Sh+1

ϕ(s′|si,h, ai,h)ϕ(s′|si,h, ai,h)⊤ + λkId. We decompose the closed form as follows.

θk,h = Λ−1
k,h

k−1∑
i=1

∑
s′∈Sh+1

δsi,h+1
(s′)ϕ(s′ | si,h, ai,h)

= Λ−1
k,h

k−1∑
i=1

∑
s′∈Sh+1

(Ph(s
′ | si,h, ai,h) + εi,h(s

′))ϕ(s′ | si,h, ai,h)

= Λ−1
k,h

k−1∑
i=1

∑
s′∈Sh+1

Ph(s
′ | si,h, ai,h)ϕ(s′ | si,h, ai,h) + Λ−1

k,h

k−1∑
i=1

∑
s′∈Sh+1

εi,h(s
′)ϕ(s′ | si,h, ai,h)

= Λ−1
k,h

k−1∑
i=1

∑
s′∈Sh+1

ϕh(s
′ | si,h, ai,h)⊤θ∗hϕ(s′ | si,h, ai,h) + Λ−1

k,h

k−1∑
i=1

∑
s′∈Sh+1

εi,h(s
′)ϕ(s′ | si,h, ai,h)

= Λ−1
k,h(Λk,h − λkId)θ

∗
h + Λ−1

k,h

k−1∑
i=1

∑
s′∈Sh+1

εi,h(s
′)ϕ(s′ | si,h, ai,h)

= θ∗h + λkΛ
−1
k,hθ

∗
h + Λ−1

k,h

k−1∑
i=1

∑
s′∈Sh+1

εi,h(s
′)ϕ(s′ | si,h, ai,h).
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Rearranging terms, we obtain for all ζ ∈ (0, 1), with probability at least 1− ζ/H, it holds that

∥θk,h − θ∗h∥Λk,h
= λk∥θ∗h∥Λk,h

+
∥∥∥k−1∑
i=1

∑
s′∈Sh+1

εi,h(s
′)ϕ(s′ | si,h, ai,h)

∥∥∥
Λk,h

≤
√
λkB +

√
λk
4

+
4√
λk

log

(
2d det (Λk,h)

1
2 λ

− d
2

k

ζ/H

)

≤
√
λk(B +

1

4
) +

4√
λk

(
log
(H
ζ

)
+
d

2
log
(
4 +

4Sk

λkd

))
,

where the first inequality holds by the self-normalized concentration of Lemma 1, and the last inequality holds
by the determinant-trace inequality in Lemma 16. This shows with probability at least 1 − ζ/H, it holds that
θ∗h ∈ Ck,h. Applying a union bound over h = 1, . . . ,H finishes the proof. ■

C Proof of Lemma 3

In this section, we present the proof of Lemma 3.

C.1 Main Proof

Proof. By Lemma 4, for any (s, a) ∈ Sm ×A,m ∈ [H], we have∑
s′∈Sm+1

ϵk,m(s′ | s, a) =
∑

s′∈Sm+1

|P̂k,m(s′|s, a)− Pm(s′|s, a)| ≤ 2 ∧
∑

s′∈Sm+1

βk∥ϕ(s′ | s, a)∥Λ−1
k,m

,

where the last inequality holds by the fact ∥P̂k,m(· | s, a)− Pm(· | s, a)∥1 ≤ ∥P̂k,m(· | s, a)∥1 + ∥Pm(· | s, a)∥1 = 2.

Then, with probability at least 1− ζ, it holds that

K∑
k=1

∑
(s,a)∈S×A

|qsk(s, a)− qk(s, a)|

≤ 2S

K∑
k=1

H∑
m=1

∑
s′∈Sm+1

ϵk,h(s
′ | sk,m, ak,m) + 4S2 log

(H
ζ

)

≤ 4S

K∑
k=1

H∑
m=1

βk(1 ∧
∑

s′∈Sm+1

∥ϕ(s′ | sk,m, ak,m)∥Λ−1
k,m

) + 4S2 log
(H
ζ

)

≤ 4βKS

H∑
m=1

K∑
k=1

(1 ∧
∑

s′∈Sm+1

∥ϕ(s′ | sk,m, ak,m)∥Λ−1
k,m

) + 4S2 log
(H
ζ

)

≤ 2βKS

H∑
m=1

√√√√√KSm+1

K∑
k=1

1 ∧
∑

s′∈Sm+1

∥ϕ(s′ | sk,m, ak,m)∥2
Λ−1

k,m

+ 4S2 log
(H
ζ

)

≤ 2βKS

H∑
m=1

√
KSm+1d log

(
λK+1 +

KSm+1

d

)
+ 4S2 log

(H
ζ

)

≤ 2βKS

√√√√KH

H∑
m=1

Sm+1d log

(
λK+1 +

KS

d

)
+ 4S2 log

(H
ζ

)
≤ O

(
(d
√
HS3K + S2) log2

(
dKS

ζ

))
≤ O

(
d
√
HS3K log2

(
dKS

ζ

))
,
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where the first inequality follows from Lemma 5, the fourth and sixth inequality holds by the Cauchy-Schwarz
inequality, the fifth inequality holds by the specifically designed elliptical potential lemma in Lemma 17, the
second last inequality holds by λK+1 = d log((K + 1)S) and βK = O(

√
d log(KS)) and the last bound holds by

S ≤ K (otherwise the bound
√
HSAK becomes vacuous). This completes the proof. ■

C.2 Proof of Lemma 4

Proof. This lemma was first proved in Zhao et al. (2023a, Lemma 3). We present their proof for self-containedness.

By the definition of linear mixture MDPs, for all k ∈ [K], h ∈ [H] and ∀(s, a, s′) ∈ Sh ×A× Sh+1, we have∣∣∣P̂k,h(s′ | s, a)− Ph(s
′ | s, a)

∣∣∣ = ∣∣∣ϕ(s′ | s, a)⊤(θ̂k,h − θ∗h)
∣∣∣

≤ ∥ϕ(s′ | s, a)∥Λ−1
k,h

∥θ̂k,h − θ∗h∥Λk,h

≤ βk∥ϕ(s′ | s, a)∥Λ−1
k,h

≤ 1 ∧ βk∥ϕ(s′ | s, a)∥Λ−1
k,h
,

where the first inequality follows from the Holder’s inequality, the second inequality holds by Lemma 2, and the
last inequality follows from the fact that |P̂k,h(s′ | s, a)− Ph(s

′ | s, a)| ≤ 1. This completes the proof. ■

C.3 Proof of Lemma 5

Proof. The main proof is similar to the proof of Zhao et al. (2023a, Lemma 2). Let qsk = qP
s
k ,πk for simplicity,

and define q(s) =
∑
a∈A q(s, a). For any q and any (s, a), we have

q(s, a) = q(s)πq(a | s)

= πq(s, a)
∑

s′∈Sh(s)−1

q(s′)
∑
a′∈A

πq(a′ | s′)P q(s | s′, a′)

= πq(s | a)
∑

{si,ai}h(s)−1
i=1 ∈

∏h(s)−1
i=1 Si×A

h(s)−1∏
h=1

πq (ah | sh)
h(s)−1∏
h=1

P q (sh+1 | sh, ah) ,

where the last equality holds by expressing q(si+1) using q(si) recursively for i = h(s)−1, . . . , 1. In the following,

we drop the superscript
∏h(s)−1
i=1 Si ×A of {si, ai}h(s)−1

i=1 for simplicity. Then, we have

|qsk(s, a)− qk(s, a)|

= πk(s | a)
∑

{si,ai}h(s)−1
i=1

h(s)−1∏
h=1

πk (ah | sh)

h(s)−1∏
h=1

P sk (sh+1 | sh, ah)−
h(s)−1∏
h=1

P (sh+1 | sh, ah)


Further, we decompose the difference of the transition as follows.

h(s)−1∏
h=1

P sk (sh+1 | sh, ah)−
h(s)−1∏
h=1

P (sh+1 | sh, ah)

=

h(s)−1∏
h=1

P sk (sh+1 | sh, ah)−
h(s)−1∏
h=1

P (sh+1 | sh, ah)±
h(s)−1∑
m=1

m−1∏
h=1

P (sh+1 | sh, ah)
h(s)−1∏
h=m

P sk (sh+1 | sh, ah)

=

h(s)−1∑
m=1

(P sk (sm+1 | sm, am)− P (sm+1 | sm, am))

m−1∏
h=1

P (sh+1 | sh, ah)
h(s)−1∏
h=m+1

P sk (sh+1 | sh, ah)

≤
h(s)−1∑
m=1

ϵk,m(sm+1 | sm, am)

m−1∏
h=1

P (sh+1 | sh, ah)
h(s)−1∏
h=m+1

P sk (sh+1 | sh, ah) ,



Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit Feedback and Unknown Trans.

where ϵk,h(s
′ | s, a) = 1 ∧ βk∥ϕ(s′ | s, a)∥Λ−1

k,h
. Therefore, we have

|qsk(s, a)− qs(s, a)|

≤ πk(s | a)
∑

{si,ai}h(s)−1
i=1

h(s)−1∏
h=1

πk (ah | xh)
h(s)−1∑
m=1

ϵk,m (xm+1 | xm, am)

m−1∏
h=1

P (sh+1 | sh, ah)
h(s)−1∏
h=m+1

P sk (sh+1 | sh, ah)

=

h(s)−1∑
m=1

∑
{si,ai}h(s)−1

i=1

ϵk,m (sm+1 | sm, am)

(
πk (am | sm)

m−1∏
h=1

πk (ah | sh)P (sh+1 | sh, ah)

)

·

πk(s | a) h(s)−1∏
h=m+1

πk (ah | xh)P sk (sh+1 | sh, ah)


=

h(s)−1∑
m=1

∑
sm,am,sm+1

ϵk,m (sm+1 | sm, am)

 ∑
{si,ai}m−1

i=1

πk (am | xm)

m−1∏
h=1

πk (ah | sh)P (sh+1 | sh, ah)


·

∑
am+1

∑
{si,ai}h(s)−1

i=m+2

πk(s | a)
h(s)−1∏
h=m+1

πk (ah | sh)P sk (sh+1 | sh, ah)


=

h(s)−1∑
m=1

∑
sm,am,sm+1

ϵk,m (sm+1 | sm, am) qk (sm, am)πk(a | s)qsk (s | sm+1)

≤ πk(a | s)
h(s)−1∑
m=1

∑
sm,am,sm+1

ϵk,m (sm+1 | sm, am) qk (sm, am) ,

where the last inequality holds by qsk (s | sm+1) ≤ 1.

Let wm = (sm, am, sm+1) to simplify the notation. Then, summing over k ∈ [K] and (s, a) ∈ S ×A, we have

K∑
k=1

∑
(s,a)∈S×A

|qsk(s, a)− qk(s, a)|

≤
∑
k,s,a

πk(a | s)
h(s)−1∑
m=1

∑
wm

ϵk,m (sm+1 | sm, am) qk (sm, am)

=
∑
k

∑
h≤H

h−1∑
m=1

∑
wm

ϵk,m (sm+1 | sm, am) qk (sm, am)
∑

(s,a)∈Sh×A

πk(a | s)

=
∑

1≤m<h≤H

∑
k,wm

ϵk,m (sm+1 | sm, am) qk (sm, am) |Sh|

≤ S
∑

1≤m≤H

∑
k,wm

ϵk,m (sm+1 | sm, am) qk (sm, am) (17)

Then, we focus on
∑
k,wm

ϵk,m (sm+1 | sm, am) qk (sm, am) with a fixed m at first:

∑
k,wm

ϵk,m (sm+1 | sm, am) qk (sm, am)

=
∑
k,wm

Ik{sm, am}ϵk,m (sm+1 | sm, am)︸ ︷︷ ︸
Term-I

+
∑
k,wm

Sm+1

(
qk(sm, am)

Sm+1
− Ik(sm, am)

Sm+1

)
ϵk,m (sm+1 | sm, am)︸ ︷︷ ︸

Term-II

(18)
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For Term-I, since Ik(s, a) is the indicator whether the pair (s, a) is visited in episode k, thus we have∑
k,wm

Ik{sm, am}ϵk,m (sm+1 | sm, am) =

K∑
k=1

∑
s′∈Sm+1

ϵk,h(s
′ | sk,m, ak,m) (19)

To bound Term-II, we first use Lemma 13 to build the connection between Term-I and Term-II. Let

Yk,m =
∑
wm

(
qk (sm, am)

Sm+1
− Ik {sm, am}

Sm+1

)
ϵk,m (sm+1 | sm, am) .

It is easy to verify that Yk,m ≤ 1. Let oi,j = (si,j , ai,j , ℓi(si,j , ai,j)) be the observations in episode i, we denote

Fk,h the σ-algebra generated by {oi,j}k,hi=1,j=1. Then, we have

Ek−1,H

[
Y 2
k,m

]
≤
Ek−1,H

[(∑
wm

Ik (sm, am) ϵk,m (sm+1 | sm, am)
)2]

S2
m+1

=
Ek−1,H

[∑
wm

Ik (sm, am) ϵk,m (sm+1 | sm, am)
2
]

S2
m+1

≤
∑
wm

qk (sm, am) ϵk,m (sm+1 | sm, am)

Sm+1

where the equality follows from the fact that Ik(sm, am) Ik(s′m, a′m) for sm ̸= s′m, and the last inequality holds
by ϵk,m (sm+1 | sm, am) ≤ 1 and ϵk,m is Fk−1,H -measurable. Then, by choosing λ = 1/2 in Lemma 13, with
probability at least 1− ζ/H, we have

K∑
k=1

∑
wm

(
qk (sm, am)

Sm+1
− Ik {sm, am}

Sm+1

)
ϵk,m (sm+1 | sm, am)

≤ 1

2Sm+1

K∑
k=1

∑
wm

qk (sm, am) ϵk,m (sm+1 | sm, am) + 2 log(H/ζ)

By applying with a union bound over m = 1, . . . ,H, we have with probability at least 1− ζ, it holds that

K∑
k=1

∑
wm

(qk (sm, am)− Ik {sm, am}) ϵk,m (sm+1 | sm, am)

≤ 1

2

K∑
k=1

∑
wm

qk (sm, am) ϵk,m (sm+1 | sm, am) + 2Sm+1 log(H/ζ).

This shows that

Term-II ≤
K∑
k=1

∑
wm

Ik {sm, am} ϵk,m (sm+1 | sm, am) + 4Sm+1 log(H/ζ) ≤ Term-I+ 4Sm+1 log(H/ζ). (20)

Combining (17) and (18), we have

K∑
k=1

∑
(s,a)∈S×A

|qsk(s, a)− qk(s, a)|

≤ S
∑

1≤m≤H

(Term-I+Term-II)

≤ S
∑

1≤m≤H

(2Term-I+ 4Sm+1 log(H/ζ))

≤ 2S

K∑
k=1

H∑
m=1

∑
s′∈Sm+1

ϵk,h(s
′ | sk,m, ak,m) + 4S2 log(H/ζ),

where the second inequality holds by (20) and the last inequality holds by (19). This completes the proof. ■



Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit Feedback and Unknown Trans.

D Proof of Theorem 1

In this section, we present the proof of Theorem 1.

D.1 Main Proof

Proof. Define the occupancy measure under the true transition P and policy πk as qk = qP,πk . Then, the regret
can be written as Reg =

∑K
k=1⟨qk − q∗, ℓk⟩. As in Section 5.3, we decompose the regret as the follows:

Reg(K) ≤
K∑
k=1

⟨q̂k − q∗, ℓ̂k⟩︸ ︷︷ ︸
Regret

+

K∑
k=1

⟨qk − q̂k, ℓk⟩︸ ︷︷ ︸
Error

+

K∑
k=1

⟨q̂k, ℓk − ℓ̂k⟩︸ ︷︷ ︸
Bias-I

+

K∑
k=1

⟨q∗, ℓ̂k − ℓk⟩︸ ︷︷ ︸
Bias-II

.

The bounds of Error and Bias-I term are shown in Lemma 6 and Lemma 7 of Section 5, respectively. We
bound the Regret and Bias-II terms below.

Bounding Bias-II Term. For this term, we present the following lemma, whose proof is in Appendix D.2.

Lemma 10. For any ζ ∈ (0, 1), with probability at least 1− 2ζ, VLSUOB-REPS algorithm ensures that

Bias-II ≤ O
(
H log(SA/ζ)

γ

)
.

Bounding Regret Term. For this term, we present the following lemma, whose proof is in Appendix D.3.

Lemma 11. For any ζ ∈ (0, 1), with probability at least 1− 2ζ, VLSUOB-REPS algorithm ensures that

Regret ≤ O
(
H log(SA/ζ)

η
+ ηSAK +

ηH log(H/ζ)

γ

)
.

Combining Lemma 6, Lemma 7, Lemma 10 and Lemma 11 finishes the proof. ■

D.2 Proof of Lemma 10

Proof. For some (s, a) ∈ S×A, using αk(s
′, a′) = 2γ I{(s′, a′) = (s, a)}, we have with probability at least 1− ζ

SA ,

K∑
k=1

(
ℓ̂k(s, a)−

qk(s, a)

uk(s, a)
ℓk(s, a)

)
≤ 1

2γ
log

(
SA

ζ

)

By using a union bound, the above inequality holds for all (s, a) ∈ S × A simultaneously with probability at
least 1− ζ. Further, under the event that θ∗h ∈ Ck,h, we have qk(s, a) ≤ uk(s, a), which implies that

K∑
k=1

〈
q∗, ℓ̂k − ℓk

〉
≤
∑
k,s,a

q∗(s, a)ℓk(s, a)

(
qk(s, a)

uk(s, a)
− 1

)
+
∑
s,a

q∗(s, a) log SA
ζ

2γ

=
∑
k,s,a

q∗(s, a)ℓk(s, a)

(
qk(s, a)

uk(s, a)
− 1

)
+
H log SA

ζ

2γ

≤
H log SA

ζ

2γ
.

The proof is concluded by applying the union bound again. ■
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D.3 Proof of Lemma 11

Proof. The update procedure in (12) can be written as the following two-step procedure.

q̃k+1 = argmin
q∈RSA

+

η
〈
q, ℓ̂k

〉
+Dψ (q, q̂k) ,

q̂k+1 = argmin
q∈∆(Pk+1)

Dψ (q, q̃k+1) ,

The closed form of q̃k+1 is given by q̃k+1(s, a) = q̂k+1(s, a) exp(−ηℓ̂k(s, a)). Then, we have〈
q̂k − q∗, ℓ̂k

〉
=

1

η
(Dψ (q∗, q̂k) +Dψ (q̂k, q̃k+1)−Dψ (q∗, q̃k+1))

≤ 1

η
(Dψ (q∗, q̂k) +Dψ (q̂k, q̃k+1)−Dψ (q∗, q̂k+1)) ,

where the equality holds by the three-point equality, and the inequality holds by the generalized Pythagorean
theorem. Then, summing over k ∈ [K] and using the telescoping argument, we have

K∑
k=1

〈
q̂k − q∗, ℓ̂k

〉
≤ 1

η

(
Dψ (q∗, q̂1)−Dψ (q∗, q̂K+1) +

K∑
k=1

Dψ (q̂k, q̃k+1)

)
.

The first two terms can be rewritten as

Dψ (q∗, q̂1)−Dψ (q∗, q̂K+1) =

H∑
h=1

∑
s∈Sh

∑
a∈A

q∗(s, a) log
q̂K+1(s, a)

q̂1(s, a)
≤

H∑
h=1

∑
s∈Sh

∑
a∈A

q∗(s, a) log (ShA) ≤ H log(SA).

It remains to bound the last term.

Dψ (q̂k, q̃k+1) =

H∑
h=1

∑
s∈Sh

∑
a∈A

(
ηq̂k (s, a) ℓ̂k(s, a)− q̂k (s, a) + q̂k (s, a) exp

(
−ηℓ̂k(s, a)

))

≤ η2
H∑
h=1

∑
s∈Sh

∑
a∈A

q̂k (s, a) ℓ̂k(s, a)
2 = η2

∑
s∈S,a∈A

q̂k(s, a)ℓ̂k(s, a)
2,

where the inequality is due to the fact that e−x ≤ 1− x+ x2 for all x ≥ 0.

Note that due to the definition of ℓ̂k(s, a), we have

q̂k(s, a)ℓ̂k(s, a)
2 =

q̂k(s, a)ℓk(s, a)Ik{s, a}
uk(s, a) + γ

ℓ̂k(s, a) ≤ ℓ̂k(s, a),

which is due to the fact that q̂k(s, a) ≤ uk(s, a) and ℓk(s, a)Ik{s, a} ≤ 1. Furthermore, using Lemma 13 by
setting αk(s, a) = 2γ, with probability at least 1− ζ, we have

∑
k,s,a

q̂k(s, a)ℓ̂k(s, a)
2 ≤

∑
k,s,a

qk(s, a)

uk(s, a)
ℓk(s, a) +

H log(Hζ )

2γ
≤ SAK +

H log(Hζ )

2γ

where the last inequality comes from that qk(s, a) ≤ uk(s, a) and ℓk(s, a) ≤ 1.

Applying a union bound over the above bounds, with probability at least 1− 2ζ, we have

K∑
k=1

〈
q̂k − q∗, ℓ̂k

〉
≤ H log(SA)

η
+ ηSAK +

ηH log(H/ζ)

γ
.

This finishes the proof. ■
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E Supporting Lemmas

In this section, we present some supporting lemmas, which are useful in our proofs.

First, we introduce the following two lemmas, which are used in the analysis of super martingale.

Lemma 12 (Lemma 7 of Faury et al. (2020)). Let ϵ be a centered random variable of variance σ2 such that
|ϵ| ≤ 1 almost surely. Then for all λ ∈ [−1, 1] we have E[exp(λϵ)] ≤ 1 + λ2σ2.

Lemma 13 (Theorem 1 of Beygelzimer et al. (2011)). Let Y1, . . . , YK be a martingale difference sequence with
respect to a filtration F1, . . . ,FK . Suppose that |Yk| ≤ R for all k ∈ [K]. Then, for any ζ ∈ (0, 1) and λ ∈ [0, 1/R],

with probability at least 1− ζ, we have
∑K
k=1 Yk ≤ λ

∑K
k=1 E[Y 2

k |Fk−1] +
log(1/ζ)

λ .

Then, we introduce the lemma that guarantees the biased loss estimator is close to the true loss function.

Lemma 14 (Lemma 11 of Jin et al. (2020a)). For any sequence of functions α1, . . . , αK such that αk ∈ [0, 2γ]S×A

if Fk−1,H-measurable for all k ∈ [k], with probability at least 1− ζ, we have

K∑
k=1

∑
(s,a)∈S×A

αk(s, a)

(
ℓ̂k(s, a)−

qk(s, a)

uk(s, a)
ℓk(s, a)

)
≤ H log

(
H

ζ

)
.

Next, we present the self-normalized concentration and determinant-trace lemma of Abbasi-Yadkori et al. (2011).

Lemma 15 (Theorem 1 of Abbasi-Yadkori et al. (2011)). Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1 be a real-valued
stochastic process such that ηt is Ft-measurable and ηt is conditionally zero-mean R-sub-Gaussian for R ≥ 0
i.e. ∀λ ∈ R,E

[
eληt | Ft−1

]
≤ exp

(
λ2R2/2

)
. Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is

Ft−1-measurable. Assume that V is a d×d positive definite matrix. For any t ≥ 0, define V̄t = V +
∑t
s=1XsX

⊤
s

and St =
∑t
s=1 ηsXs. Then, for any ζ > 0, with probability at least 1− ζ, for all t ≥ 0,

∥St∥2V̄ −1
t

≤ 2R2 log

(
det
(
V̄t
)1/2

det(V )−1/2

ζ

)
.

Lemma 16 (Lemma 10 of Abbasi-Yadkori et al. (2011)). Suppose x1, . . . , xt ∈ Rd and for any 1 ≤ s ≤ t,
∥xs∥2 ≤ L. Let Vt = λId+

∑t
s=1 xsx

⊤
s for some λ ≥ 0. Then, for any 1 ≤ s ≤ t, we have det(Vt) ≤ (λ+ tL2/d)d.

Finally, we introduce the generalized elliptical potential lemma, which is designed specifically for our analysis.

Lemma 17 (Generalized elliptical potential lemma). Suppose x1, . . . ,xt ∈ RN×d and for any 1 ≤ s ≤ t,

∥xs,i∥2 ≤ L. Let Λt = λtId +
∑t−1
s=1

∑N
i=1 xs,ix

⊤
s,i with λt ≥ λt−1 and λ1 = 1. Then, for any 1 ≤ s ≤ t, we have

t∑
s=1

(
1 ∧

N∑
i=1

∥xs,i∥Λ−1
s

)
≤ 2d log

(
λt+1 +

tNL2

d

)
.

Proof. By the definition of Λt, we have

det(Λt+1) = det

(
Λt +

N∑
i=1

xt,ix
⊤
t,i + (λt+1 − λt)Id

)
≥ det

(
Λt +

N∑
i=1

xt,ix
⊤
t,i

)
= det(Λt)

(
1 +

N∑
i=1

∥xt,i∥2Λ−1
t

)
,

where the inequality holds by the fact that λt+1 ≥ λt. Taking log from both sides and summing from s = 1 to t:

t∑
s=1

log

(
1 +

N∑
i=1

∥xs,i∥2Λ−1
s

)
= log

(
det(Λt+1)

det(Λ1)

)
≤ d log(λt+1 +

tNL2

d
)

where the last inequality holds by the determinant-trace inequality in Lemma 16. For any a such that 0 ≤ a ≤ 1,
it holds that a ≤ 2 log(1 + a). Thus, we have

t∑
s=1

(
1 ∧

N∑
i=1

∥xs,i∥Λ−1
s

)
≤ 2

t∑
s=1

log

(
1 +

N∑
i=1

∥xs,i∥2Λ−1
s

)
≤ 2d log

(
λt+1 +

tNL2

d

)
.

This completes the proof. ■
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