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Abstract

Fourier feature approximations have been
successfully applied in the literature for
scalable Gaussian Process (GP) regression.
In particular, Quadrature Fourier Features
(QFF) derived from Gaussian quadrature
rules have gained popularity in recent years
due to their improved approximation accu-
racy and better calibrated uncertainty esti-
mates compared to Random Fourier Feature
(RFF) methods. However, a key limitation
of QFF is that its performance can suffer
from well-known pathologies related to highly
oscillatory quadrature, resulting in mediocre
approximation with limited features. We ad-
dress this critical issue via a new Trigono-
metric Quadrature Fourier Feature (TQFF)
method, which uses a novel non-Gaussian
quadrature rule specifically tailored for the
desired Fourier transform. We derive an ex-
act quadrature rule for TQFF, along with
kernel approximation error bounds for the re-
sulting feature map. We then demonstrate
the improved performance of our method
over RFF and Gaussian QFF in a suite of
numerical experiments and applications, and
show the TQFF enjoys accurate GP approx-
imations over a broad range of length-scales
using fewer features.

1 INTRODUCTION

Gaussian Processes (GPs) (Rasmussen and Williams,
2005) are a popular class of Bayesian non-parametric
models. Unfortunately, for large sample sizes n ≫
1000, the O(n3) cost for GP training and prediction
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can be prohibitive in applications. There has been
much work on addressing this critical issue, including
inducing points (Titsias, 2009; Hensman et al., 2013;
Snelson and Ghahramani, 2005), nearest-neighbor ap-
proximations (Wu et al., 2022; Cao et al., 2023; Katz-
fuss and Guinness, 2021), iterative numerical methods
(Gardner et al., 2018; Lin et al., 2023; Wang et al.,
2019), and divide-and-conquer approaches (Deisenroth
and Ng, 2015; Zhang and Williamson, 2019).

Our paper will focus the use of Fourier feature approx-
imations (Rahimi and Recht, 2007), which have shown
promise in recent work. The key idea is to construct
a low-rank approximation of the covariance matrix for
a stationary GP, using a finite set of Fourier features
dervied from the kernel’s spectral density. Fourier ap-
proximations have three key advantages for GP regres-
sion: they allow for kernel covariance approximation
error bounds, reduce the non-parametric regression
problem to linear regression, and exploit the spectral
representation of covariance kernels. As such, such
approximations are increasingly popular in broad ap-
plications, including generalized Bayesian quadrature
(Warren et al., 2022), deep GPs (Cutajar et al., 2017),
latent variable models (Zhang et al., 2023), differen-
tial privacy (Dubey, 2021; Dai et al., 2021), feder-
ated learning (Dai et al., 2020), Bayesian optimization,
(Deng et al., 2022; Mutny and Krause, 2018), and spa-
tial statistics (Ton et al., 2018).

For GPs, there has been two main directions for
Fourier feature approximation. The first direction,
Random Fourier Features (RFF; Rahimi and Recht,
2007), uses Monte Carlo sampling to generate features.
The integration of RFF for GP regression is easy-to-
implement and scales nicely to high dimensions. How-
ever, RFF methods are known to suffer from a phe-
nomenon called variance starvation, which can lead
to poorly calibrated uncertainty estimates and erratic
predictive mean behavior (Wilson et al., 2020, 2021;
Mutny and Krause, 2018; Wang et al., 2018).

The second direction, Quadrature Fourier Features
(QFF; Dao et al., 2017; Mutny and Krause, 2018;
Shustin and Avron, 2022), aims to alleviate vari-



ance starvation via a deterministic Gaussian quadra-
ture rule for the Fourier transform integral. This
has been successfully applied for lower-dimensional
GP applications, including Bayesian optimization (Dai
et al., 2021; Dubey, 2021; Mutny and Krause, 2018;
Ray Chowdhury and Gopalan, 2019), robust inference
(Qing et al., 2022), spatial-temporal data (Shustin and
Avron, 2022), and derivative modeling (Angelis et al.,
2020). Compared to RFF, the deterministic quadra-
ture rules in QFF permit quicker error decay and can
thus avoid variance starvation. In practice, however,
achieving this improved performance over RFF can re-
quire an undesirably large number of features, partic-
ularly with small length-scales for the underlying GP
(Mutny and Krause, 2018; Shustin and Avron, 2022).

This paper proposes a new Trigonometric Quadrature
Fourier Features (TQFF) that addresses the aforemen-
tioned limitations of existing RFF and QFF methods.
We show that the use of Gaussian quadrature rules in
QFF (which rely on polynomial interpolants) can lead
to poor performance with small length-scales when ap-
proximating the highly oscillatory Fourier transform.
Motivated by this, the TQFF uses a novel quadrature
rule that relies on a trigonometric interpolant, tailored
specifically for the desired Fourier transform. In doing
so, we show empirically that the TQFF enjoys accu-
rate GP approximations over a broad range of length-
scales using fewer features. We also provide a code
implementation1.

2 BACKGROUND

2.1 Gaussian Process Regression

A Gaussian process f(·) is a stochastic process for
which its evaluation on any finite subset of inputs fol-
lows a multivariate Gaussian distribution. Here, we
assume the standard regression set-up, with observed
data D = {xi, yi}ni=1 where xi ∈ Rd and yi ∈ R. The
standard GP regression framework then follows:

yi = f(xi) + ϵi, ϵi
i.i.d.∼ N (0, σ2),

where f(·) ∼ GP(0, kΘ(·, ·)) follows a zero-mean GP
with kernel kΘ. Here, Θ consists of all kernel hyper-
parameters, including length-scale and scale parame-
ters. Training of these kernel hyperparameters Θ and
the noise variance σ2 can proceed via maximizing the
following log-marginal likelihood of y = (yi)

n
i=1:

log p(y|X,Θ) = log ϕ(y;0,KXX + In×nσ
2),

where ϕ(·;µ,Σ) is the multivariate Gaussian density.
Here, KXX ∈ Rn×n is the covariance matrix with

1https://github.com/kevinli1324/TQFF

(i, k)-th entry kΘ(xi,xk). Model inference and pre-
diction thus requires the inversion of a n × n matrix,
which requires O(n3) operations and can thus be pro-
hibitive for large n ≫ 1000.

2.2 Gaussian Quadrature

We provide a brief review of classical Gaussian quadra-
ture; for details, see Chapter 7 in Conte and Boor
(1980). Gaussian quadrature approximates integrals
of the form:∫ b

a

p(ω)h(ω)dω, −∞ ≤ a < b ≤ ∞,

where p(ω) is the weight function and h(ω) is the in-
tegrand. Different weight functions give rise to dif-
ferent quadrature rules. Gaussian quadrature makes
the approximation h(ω) ≈ PL−1(ω) where PL−1(ω) is
an L − 1 degree polynomial interpolating h(ω) at L
quadrature nodes {ωl}Ll=1, ωl ∈ [a, b]. With this ap-
proximation, the quadrature rule becomes:∫ b

a

p(ω)h(ω)dω ≈
L∑

l=1

alh(ωl) := QL(h), (1)

where al =
∫ b

a
h(ω)tl(ω)dω and tl(ω) are the L − 1-

degree Lagrange interpolating polynomials (Conte and
Boor, 1980). This quadrature rule thus requires the set
of quadrature nodes {ωl}Ll=1 and quadrature weights
{al}Ll=1. Gaussian quadrature rules select these nodes
such that Equation (1) is exact for polynomial h(ω) of
degree up to 2L − 1. However, the accuracy of such
quadrature rules (and polynomially-exact quadrature
rules in general) depends on how well the polynomial
interpolant approximates the integrand h(ω).

The above 1-dimensional quadrature rules can directly
be extended for multiple dimensions via tensor prod-
ucts; details of this in Appendix 7. We do note that,
with tensor product rules, the number of nodes grows
exponentially with dimensions, which can limit such
approaches to problems in low dimensions or with low-
dimensional structure.

2.3 Fourier Feature Approximation

We now briefly review the general Fourier feature ap-
proximation approach. Using Bochner’s theorem any
stationary covariance function kΘ(x,x′) = kΘ(x− x′)
can be represented as the Fourier transform of a non-
negative measure pΘ(ω) (Rasmussen and Williams
(2005) Section 4.2.1):

kΘ(x− x′) =

∫
pΘ(ω) exp(iωT (x− x′))dω (2)

=

∫
pΘ(ω) cos(ωT (x− x′))dω,
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where the last line assumes both data and kernel are
real-valued. Fourier feature methods then use the fol-
lowing finite feature approximation:

kΘ(x,x′) ≈
S∑

s=1

as cos(ω
T
s (x− x′)) = Φ(x)TΦ(x′),

(3)

where Φ(x) ∈ R2S and

Φ(x)(s) =

{√
as cos(ω

T
s x) if 1 ≤ s ≤ S,

√
as sin(ω

T
s x) if S < s ≤ 2S.

Letting Λ = (Φ(x1), . . .Φ(xn)), we have KXX ≈
ΛTΛ. This allows the use of the efficient matrix de-
terminant and inversion updates (e.g., the Woodbury
lemmas (Hager, 1989)) for GP training and prediction
using O(S3+Sn) runtime and O(Sn) space. The num-
ber of features S is pre-set based on computational
concerns, with 100-1000 features typical in applica-
tions (Potapczynski et al., 2021; Lázaro-Gredilla et al.,
2010; Mutny and Krause, 2018).

Existing methods for Fourier feature approximation
differ in their choice of ωs and as. We review two
popular approaches used for GP regression below:

• Random Fourier Features (RFF; Rahimi and
Recht, 2007) approximate the integral in (2) via
Monte Carlo, where ωs is sampled from pΘ(ω) and
as = 1/S so the estimator in (3) is a sample average.

• Gaussian Quadrature Fourier Features (Gaus-
sian QFF) approximate the integral in (3) via Gaus-
sian quadrature, where ωs and as are selected from
numerical quadrature rules. Mutny and Krause
(2018) makes use of Gauss Hermite Fourier feature
(GHFF) maps, defining pΘ(ω) after a change of vari-
able as the weight function and h(ω) = cos(ωT (x−
x′)) as the integrand. Such an approach, however, is
restricted to GPs with the squared exponential (SE)
kernel. Shustin and Avron (2022) make use of Gauss
Legendre Fourier feature (GLFF) maps, where after
sufficient truncation of the integral, the weight func-
tion is constant and h(ω) = pΘ(ω) cos(ωT (x−x′)) is
the integrand. Such choices have significant impact
on approximation accuracy, as we shall see next.

In what follows, we will exploit the symmetry of Gaus-
sian quadrature rules and the Fourier integrand to
eliminate half the nodes when constructing GLFF and
GHFF maps. As such, we will derive Gaussian QFF
maps using S features from the corresponding 2S-
point quadrature rule.

Figure 1: Predictions and 95% predictive intervals
from various Fourier feature approximation methods
with S features (orange), compared to a fitted full GP
(blue). Models share the same hyperparameters opti-
mized from the full GP.

2.4 Drawbacks of Current Fourier Feature
Methods

We illustrate the advantages and drawbacks of current
Fourier Feature methods via a toy example. Figure 1
shows the fits (using n = 5000 training samples) from a
full GP with the SE kernel and its various Fourier fea-
ture approximations2. All methods adopt the same hy-
perparametersΘ obtained via maximization of the full
GP marginal likelihood. We see clearly that the RFF
and GHFF suffer from the aforementioned “variance
starvation” in the data sparse region, whereas GLFF
performs slightly better. Figure 2 shows the corre-
sponding approximations of kΘ(τ) from each method.
RFF has trouble representing near zero covariance val-
ues between distant points (large τ) due to the slow
decay of Monte Carlo error, which results in a severe
underestimation of posterior uncertainty in regions far
away from the data. Therefore, covariance saturation
may be a more accurate term for the deteriorating
performance of RFF. On the other hand, GHFF and
GLFF (the deterministic feature maps) return large
errors when estimating covariances for certain values
of τ . Such discrepancies explain the poorly calibrated
uncertainty quantification properties in Figure 1.

One explanation for the large errors of Gaussian QFF
is its reliance on polynomial interpolation to approx-
imate the sinusoidal integrand in Equation 2, which
becomes increasingly oscillatory with large τ or low
length-scales θ. Figure 3 shows the interpolants and
integrands implied by these quadrature feature maps,
when approximating kΘ(1.75) with S = 15 features.
The GHFF interpolant clearly yields a poor approx-
imation of the integrand, whereas the GLFF inter-
polant performs better; this is not surprising, as

2Experimental details can be found in Appendix 8.



Figure 2: Kernel approximations using various Fourier
feature approximation methods, as a function τ = x−
x′ for the toy example in Figure 1.

Figure 3: Integrands and interpolants implied by the
quadrature rules approximating kΘ(1.75) with S = 15
features.

Gauss-Legendre quadrature incorporates the rapidly
decaying spectral density into the integrand, which
damps the oscillatory behavior. These observations
suggest that QFF can be greatly improved if one fac-
tors in the specific quadrature approximation problem
of interest. In doing so, we show next that we can re-
tain the Gaussian QFF’s ability to express near-zero
covariances (i.e., at small τ) without sacrificing large
errors at large τ or at small length-scales.

3 RELATED WORK

Quadrature of highly oscillatory integrals has
been studied extensively in the applied mathemat-
ics literature (Deaño et al., 2017). Gaussian quadra-
ture is widely known to be sub-optimal for oscillatory
quadrature problems, which has motivated alternate
approaches including Filon (Huybrechs, 2015), Levin
(Huybrechs and Olver, 2009), and steepest descent
quadrature (Deaño et al., 2017). While such meth-
ods are highly accurate, these quadrature rules cannot
be adapted into viable feature maps for kernel approx-
imation. Milovanović et al. (2006, 2008); Da Fies and
Vianello (2012) study quadrature rules that are exact
for trigonometric polynomials. However, such rules in-

volve solving complex systems of equations that may
not have solutions for many weight functions. Fur-
thermore, guaranteeing exactness for all trigonometric
polynomials can be wasteful in our setting, and results
in inefficient feature approximation maps.

Fourier Feature Approximations for GPs Our
work is most related to the GP developments in Mutny
and Krause (2018); Shustin and Avron (2022). Mutny
and Krause (2018) proposed Gauss Hermite QFF for
learning GPs in Bayesian optimization. Recently,
Shustin and Avron (2022) made use of Gauss Legen-
dre QFF (along with a rigorous method for choosing
sample size dependent hyperparameters) to guarantee
spectral equivalence between the full kernel covariance
and its low-rank approximation. Potapczynski et al.
(2021) further analyzed RFF methods, and found they
systematically overfit to data. Significant work has
been done on RFF methods for non-GP-related ker-
nel approximation tasks. Avron et al. (2016) analyze
error bounds for Quasi Monte Carlo sampled feature
maps, while Yu et al. (2016); Munkhoeva et al. (2018)
propose sampling from restricted geometries to achieve
Monte Carlo variance.

4 TRIGONOMETRIC
QUADRATURE FOURIER
FEATURES

To address the aforementioned limitations of existing
RFF and QFF methods, we propose a new Trigono-
metric Quadrature Fourier Feature (TQFF) approach.
The core idea is to derive a quadrature rule via a cosine
interpolant specifically tailored for Fourier transform
integrand in Equation (2). We first derive this quadra-
ture rule, then provide its kernel approximation error
bounds. We defer all proofs to Appendix 11.

4.1 Kernel Assumptions

We first make the following assumptions on the sta-
tionary kernel covariance function kΘ(·, ·):
Assumption 1. The stationary kernel covariance
function kΘ(·, ·) satisfies the following:

(a) The kernel can be written exactly as:

kΘ(x− x′) = g(Θ)

∫
p(ω) exp(iωTD(Θ)(x− x′))dω

for some scalar function g(Θ), matrix-valued
function D(Θ), and density p(ω) with no depen-
dency on Θ.

(b) The density p(ω) in (a) factors over dimensions

such that p(ω) =
∏d

j=1 p
(j)(ω(j)).



The first assumption states that the kernel is the
Fourier dual of a spectral density, and we can per-
form a change-of-variables such that the density does
not depend on kernel hyper-parameters. The second
assumption is quite common, and can be found in sem-
inal works (Dao et al., 2017; Mutny and Krause, 2018;
Avron et al., 2016). Both assumptions are satisfied by
common kernel choices, including the SE, 1-d Matérn,
and the product-Matérn kernels.

4.2 Trigonometrically Exact Quadrature

For exposition, we begin with the one-dimensional
case, which we will later generalize to higher dimen-
sions. From Assumption 1, we can write kΘ as:

kΘ(x, x
′) = g(Θ)

∫ ∞

−∞
p(ω) exp

(
iω

[
x− x′

θ

])
dω

≈ g(Θ)

∫ π

−π

pγ(γω) cos

(
ωγ

[
x− x′

θ

])
dω, (4)

where θ is its length-scale parameter and γ > 0 is a
pre-set truncation parameter. While Gaussian quadra-
ture aims to achieve exact approximation for polyno-
mial integrands, our trigonometrically exact quadra-
ture rules will instead be exact for integrals of the form
of Equation (4) when γ [(x− x′)/θ] is an integer. This
leads us to the following definition of a trigonometri-
cally exact rule for our use-case:

Definition 4.1 (Trigonometric Degree of Exactness).
A quadrature rule Qc

S(f) has trigonometric exactness
of degree K with respect to weight function pγ(γω) if:

Qc
S(cos(ω

Tk)) =

∫
[−π,π]d

pγ(γω) cos(ωTk))dω

for k ∈ Nd and ||k||∞ ≤ K.

We next derive a trigonometrically exact rule
in one-dimension, by interpolating the integrand
cos (ωγ [(x− x′)/θ]) using cosine polynomials and in-
tegrating the interpolant against the weight function.
A cosine polynomial of degree L, pcL(ω), has the form

pcL(ω) = b0 +
∑L

l=1 bl cos(ω)
l. We call a cosine poly-

nomial pcL(x) monic if bL = 1. The unique cosine
polynomial P c

L−1(ω) of degree L− 1 that interpolates
f(ω) at L distinct nodes {ωl}Ll=1, ωl ∈ [0, π) has the

form P c
L−1(ω) =

∑L
l=1 f(ωl)t

c
l (ω), where:

tcl (ω) =
∏

1≤j≤L,j ̸=l

cos(ω)− cos(ωj)

cos(ωl)− cos(ωj)
(5)

Due to the existence of Chebyshev polynomials and
uniqueness of the interpolating polynomial, if f(ω) =
cos(kω) and k ≤ L− 1, k ∈ N, then P c

L(ω) = cos(kω).

As shown in Figure 3, this family of cosine polynomi-
als interpolate the Fourier transform integrand much
better than polynomial interpolants of similar degrees.

This family of interpolants leads to an L-point quadra-
ture rule that achieves a trigonometric exactness of
degree 2L−1. We formalize this rule in a proposition.

Proposition 1 (1-d Trigonometric Quadrature).
Adopt the conditions in Assumption 1. Further let
{qcl (ω)}Ll=0 be a sequence of orthogonal monic cosine
polynomials with degree l such that:∫ π

−π

qcl (ω)q
c
l′(ω)pγ(γω)dω = 0 if and only if l′ ̸= l.

Let {ωi}Li=1 be the L unique, real-valued zeroes of qcL(ω)
in [0, π), and define tci (ω) as in Equation 5. Then,
with al =

∫ π

−π
tcl (γω)p(γω)dω ≥ 0, the quadrature rule

Qc
L(f) =

∑L
l=1 alf(ωl) has trigonometric exactness of

degree 2L− 1.

The kernel approximation derived from the 2L − 1-
degree exact trigonometric quadrature rule will be

equal to the truncated integral when γ
[
x−x′

θ

]
≤ 2L−1

and is an integer. We note that our choice to only con-
sider exactness for cosine polynomials increases the
efficiency of our quadrature. The rules proposed by
Milovanović et al. (2006, 2008) that are exact for gen-
eral trigonometric polynomials require 2L nodes to
achieve degree exactness 2L− 1.

Unlike rules that guarantee general trigonometric de-
gree of exactness, the nodes and weights that satisfy
the conditions of Proposition 1 can be computed via
classical tools from numerical quadrature. In what fol-
lows, we use the the popular Golub-Welsh algorithm
Golub and Welsch (1969) to find such quadrature
nodes and weights (Conte and Boor, 1980). Details on
implementation details and computational complexity
are provided in supplementary materials.

4.3 Multi-dimensional Extension

Exploiting the assumption (Assumption 1(b)) that the
spectral density factors across dimensions, we can use
tensor product quadrature to extend our 1-d rule to a
trigonometrically exact d-dimensional rule:

Proposition 2 (Multi-dimensional TQFF). Let
{(ωi,j , ai,j)}Li=1 denote the L-point trigonometrically
exact quadrature rules in dimension j, j = 1, . . . , d, as
defined by Proposition 1. Define new nodes ω−i,j =
−ωi,j associated with weights a−i,j = ai,j for all
j = 1, . . . , p. Let S be the largest set of multi-
indices i = (i1, . . . , id), ik ∈ {−L, . . . , L} such that

S ⊂
∏d

j=1{−L, . . . , L} but i ∈ S =⇒ −i /∈ S. Then,

with ai =
∏d

j=1
1
2aij ,j and ωk = (ωi1,1, . . . ωid,d)

T , the



Figure 4: Averaged absolute errors of various Fourier
feature maps with S features in approximating the 1-d
SE kernel kΘ(τ). This average is taken over a grid of
τ values over [0, 1], and θ is the kernel length-scale.

quadrature rule QL(f) =
∑

i∈S 2aif(ωi) has trigono-
metric exactness of degree 2L− 1.

Maintaining trigonometric exactness of degree 2K − 1
in d dimensions requires (2K)d/2 total points. Be-
cause of this, our method suffers the same curse-
of-dimensionality present in other tensor product
quadrature methods, and should thus be applied only
to applications in lower dimensions or with lower-
dimensional structures, e.g., GPs with additive kernels
(Duvenaud et al., 2011; Lu et al., 2022).

4.4 Error Bound for Kernel Approximation

We now provide uniform bounds on the approximation
error from TQFF:

Proposition 3 (TQFF Error Bound). Let Φ(x),x ∈
[0, 1]

d
be the feature map derived from the quadra-

ture rule that has trigonometric exactness of degree
2L− 1 in each dimension. Define M = ⌈ γ

minj θj
⌉. Let

Cd(Θ) = g(Θ)d2d−1. Then, for any x,x′ ∈ [0, 1]
d
:

|kΘ(x,x′)−Φ(x)TΦ(x′)| ≤ 2Cd(Θ)

∫ ∞

π

pγ(γω)

+ Cd(Θ)

[
π + 4 + 2 ln

(
2
π (4L− 1)

)]
max{M, 2L− 1}!

2(2L)max{1,2L−M}(M − 1)!
.

The first term in this bound is the truncation error,
and the last term captures quadrature error for the
truncated integral. We note that this truncation error
rapidly decays with γ. For example, with the SE kernel
and its associated Gaussian spectral density, this trun-
cation error can approximately be bounded by floating
point single precision at γ = 1.15.

Another interesting observation is that the TQFF er-
ror bound depends only linearly on the minimum in-
verse length-scale 1/minj{θj}, rather than quadrat-
ically as in the GHFF bound in Mutny and Krause
(2018); Dao et al. (2017). Although the TQFF approx-
imation error decays much faster than RFF, this decay
is asymptotically slightly slower than the exponential
decrease obtained via Gaussian quadrature. However,
we shall see that, empirically, this shortcoming is in-
significant in the single precision setting prevalent in
machine learning.

Explicit error bound comparison with GLFF (Shus-
tin and Avron, 2022) is difficult due to their unique
measure of convergence. We instead compare these
errors empirically. Figure 4 shows the average abso-
lute error3 of these methods when approximating the
SE kernel kΘ(τ) for τ ∈ [0, 1]. Here, γ is set at 1.15
for both TQFF and GLFF so that their error approxi-
mately converges to floating point single precision (sin-
gle precision is used here as it is the default for popular
GP implementations (Gardner et al., 2018; Matthews
et al., 2017), is computationally efficient, and pro-
duces similar accuracy to double precision (Maddox
et al., 2022)). We see that, for each length-scale set-
ting, the average error of the proposed TQFF con-
verges quickest over all methods, with the next best
method (GLFF) requiring at least ≈ 50% more fea-
tures to achieve errors near single precision ϵ. TQFF
yields significantly smaller average errors throughout
the pre-convergence period. GLFF, on the other hand,
yields higher average error than RFF and TQFF for
low S. RFF can be seen to converge slowly, and GHFF
struggles with lower length-scales. Discrepancy be-
tween floating point precision and TQFF/GLFF con-
vergence can be attributed to numerical errors in com-
puting quadrature rules (Laurie, 2001). GHFF does
not suffer as heavily from these errors due to the im-
plementation of specialized algorithms for computing
Gauss-Hermite rules (Townsend et al., 2016).

5 NUMERICAL EXPERIMENTS

We empirically evaluate TQFF against existing
Fourier feature approximations for GP regression.
Such comparisons are focused primarily on Fourier fea-
ture approximation methods, as they possess proper-
ties uniquely desirable in a wide range of applications.
We do, however, include the Sparse Gaussian Process
Regression (SGPR; (Titsias, 2009)) as a standard base-
line. To compare against the popularly-implemented
GHFF approximation, all methods in this section will
use an anisoptric SE kernel. All models are trained

3We provide empirical analysis of maximum absolute
error plots and error distributions in Appendix 9.



Figure 5: Test NLL for the compared methods for the
2-d synthetic function sampled from a GP prior. Error
bars indicate ± 1 standard error over 5 random seeds.

using the Adam optimizer in PyTorch (Kingma and
Ba, 2017; Paszke et al., 2019). For GLFF and TQFF,
γ is fixed at 1.15 to bound truncation error at sin-
gle precision. Discussion of the effect of γ on kernel
approximation error can be found in Appendix 10.

5.1 2-d Synthetic Functions from GP

We explore here the effectiveness of TQFF for 2-d
synthetic functions. We first generate training data
of sample size n = 20, 000, using functions simulated
from a 2-d GP prior with isotropic SE kernels, with dif-
ferent length-scales θ = .05, .025 and .01. Predictions
are made on test sets of 4, 000 samples. We then com-
pare the learned Fourier feature approximations to a
full GP with hyperparameters set as the ground truth.
We evaluate the test negative-log-likelihood (NLL) of
the compared methods for various feature sample sizes
S. This procedure is then replicated 5 times.

Figure 5 shows the test NLL of each method for dif-
ferent length-scales θ. We see that TQFF outper-
forms competing methods for all θ and S by converg-
ing fastest to the full GP performance. For θ = .05,
TQFF requires noticeably less features than GLFF
and RFF to achieve comparable performance to the
full GP. GLFF also performs relatively well for large
S, but is often outperformed by RFF for small S.

5.2 Approximation of Posterior Uncertainty

We now examine the performance of TQFF for ap-
proximating GP posterior uncertainty, which is crucial
for applications such as Bayesian optimization (Chen
et al., 2023) and surrogate modeling (Li et al., 2023;
Ji et al., 2022). We adopt the solar irradiance recon-
struction experiment in Lean et al. (1995); Gal and
Turner (2015); Hensman et al. (2018), where we re-
moved 5 segments from a time series dataset (repre-
senting solar irradiance) and examined the predictive
distribution in these hold-out segments (see Figure 6).
The same methods as before are compared here, with
the quadrature Fourier feature approximation meth-

Figure 6: Posterior predictive means and 95% predic-
tive intervals for the compared methods in the solar
irradiance application. The training data is in marked
in black, while the hold-out data is in red.

Figure 7: KL-divergences of the predictive distribu-
tion of the full GP from the compared approximation
methods, at hold-out data points in the solar irradi-
ance application. Error bars for RFF indicate ±1 stan-
dard error over 5 random seeds.

ods using S = 70 features and RFF using S = 300
features. The SGPR baseline is fit with m = 140 in-
ducing points.

Figure 6 shows the predictions of the compared meth-
ods, with its 95% predictive intervals. We see the pos-
terior predictive distribution from our TQFF is visu-
ally indistinguishable from the desired full GP pos-
terior. GLFF and RFF perform well in regions with
training data, but suffers from variance starvation in
regions with hold-out data, resulting in notable un-
dercoverage. GHFF performs poorly here, due to the
aforementioned difficulty of Gauss-Hermite quadra-
ture at low length-scales. SGPR appears to over-
smooth the true function in regions of high oscillations,
which is undesirable.

We can quantify this performance by examining the
KL-divergence of the full GP predictive distribution
on the hold-out points from the predictive distribution



generated from the Fourier Feature approximations.
Figure 7 shows this KL divergence as a function of the
number of features S, where RFF results are averaged
over 5 random seeds to account for sampling variation.
TQFF yields lower KL-divergence from the full GP
with far fewer features than the other methods. The
KL-divergence of RFF and GHFF appear to converge
slowly in S, while GLFF requires many features (S >
100) to achieve near-zero KL-divergence.

5.3 Regression Benchmarks

We compare TQFF on several commonly-used low-
dimensional GP regression benchmarks. We exam-
ine the time-series dataset of Google daily stock prices
(Ton et al., 2018; Shustin and Avron, 2022), a house-
hold electricity consumption dataset (Hebrail and Be-
rard, 2012), a UK Apartment Housing price dataset
(Hensman et al., 2013), and the commonly-used Schaf-
fer function benchmark (Surjanovic and Bingham,
2010). Each dataset is randomly split into 80% train-
ing and 20% testing. We examine the performance of
the Fourier approximation methods up to S = 1058
features. SGPR is also included with the number of
inducing points set to m = 2S in order to match the
computational compelity of the Fourier feature meth-
ods. Dataset details can be found in Appendix 13.

Figure 8 shows the RMSE and NLL over 5 random
seeds as a function of the number of features S. We
see that, for small S, RFF may outperform the com-
pared quadrature approximation methods. Once a
moderate S is achieved however, the proposed TQFF
yields the lowest RMSE and NLL among the consid-
ered Fourier feature methods across all datasets. We
also see that, for d = 2, the feature efficiency of TQFF
relative to Gaussian QFF increases for larger S, as
the number of total nodes scales quadratically with
the size of the 1-d rules. This is consistent with find-
ings in Shustin and Avron (2022), who noted that
GLFF often requires significantly more than a thou-
sand features before outperforming RFF on real data
with low length-scales. SGPR outperforms TQFF in
terms of RMSE on the very low-length-scale House-
Electric dataset. However, TQFF still significantly
outperforms SPGR in terms of NLL here. This differ-
ence in uncertainty quantification performance is likely
due to the fact that TQFF targets the full GP model
via a numerical approximation of the full covariance
kernel. In contrast, SGPR leverages a variational ap-
proximation to a sparse GP model, which is known in
the literature to sometimes over-estimate uncertainty
(Bauer et al., 2016; Jankowiak et al., 2020).

It may seem peculiar that RFF outperforms QFF
methods for smaller S, when Figure 4 shows that QFF
often has lower average kernel approximation error.

This may be explained by the error distribution dis-
cussed in Appendix 9, which shows that QFF methods
can have larger error tails for small S. Regardless, the
lower average error for the proposed TQFF allows for
improved performance over its Gaussian QFF counter-
parts for smaller S, and its fast convergence enables
superior performance over RFF for larger S.

6 DISCUSSION

We proposed a new trigonometric quadrature Fourier
feature (TQFF) method for scalable GP modeling.
The key idea behind TQFF is the use of a novel
trigonometric quadrature rule, specifically tailored for
the desired Fourier transform in Fourier feature ap-
proximation. In doing so, this addresses the known
limitation of variance starvation for existing Fourier
feature methods in GP approximation. We provide ap-
proximation error bounds for TQFF, and then demon-
strate the improved performance of TQFF over com-
peting methods in a suite of numerical experiments
and applications. In particular, we show the TQFF
enjoys accurate approximations (with well-calibrated
uncertainties) for GPs over a broad range of length-
scales using fewer features.

Our promising results suggest a new class of Fourier
feature maps that can be derived from custom inter-
polants and integrands for the desired Fourier trans-
form integrand. An interesting future direction would
be the use of Bayesian quadrature with a kernel de-
signed for the trigonometric integrand, to achieve
better accuracy in higher dimensions. Applying re-
cent methods for highly-oscillatory quadrature (Deaño
et al., 2017) may also be fruitful for improving accu-
racy.

A drawback of the TQFF (along with general QFF
approaches) is the curse-of-dimensionality. A poten-
tial solution might be to extend the TQFF to higher
dimensions via sparse grid quadrature, as explored in
Dao et al. (2017). This extension would benefit from
the improved efficiency of TQFF over Gaussian QFF,
and we will explore this as future work. The extension
of TQFF for problems with inherent low-dimensional
structure is also of great interest, particularly via ad-
ditive kernels (Duvenaud et al., 2011; Lu et al., 2022).
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Figure 8: Average test RMSE and NLL on different regression benchmark datasets. Error bars indicate ±1
standard error over 5 random seeds. Training sample size n and data dimension d are outlined in plot title.
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7 Tensor Product Quadrature Rule

The 1-dimensional quadrature rules can be extended to higher dimensions via tensor products. If we assume that
a multi-dimensional integral factors across dimensions and we apply a L point quadrature rule in each dimension,
we can write: ∫ b

a

p(ω)h(ω)dω =

d∏
j=1

∫ b

a

p(j)(ω(j))f (j)(ω(j))dω(j)

≈
d∏

j=1

L∑
l=1

al,jh(ωl,j) =
∑

l∈
∏d

j=1{1...L}

alh(ωl)

where al,j , ωl,j are the lth quadrature node and weight in dimension j respectively. al =
∏d

j=1 al(j),j and

ωl = (ωl(1),1, . . . ωl(d),d)
T . Clearly, the number of quadrature nodes grows exponentially with dimensions, which

limits tensor product quadrature to problems in low dimensions or with low dimensional structure.

8 Toy Example Details

In the example in Section 2.4, we draw n = 5000 samples from the set-up

yi = exp(−x2
i ) exp(sin(10(xi − .5))2) + 3xi + ϵ, ϵ ∼ N (0, .12)

The plots shown in the paper are normalized so that the output has unit standard deviation and zero mean. We
draw x ∼ U(0, 1) and make predictions for 1000 x∗ sampled such that x∗ ∼ U(−1, 1). GLFF and TQFF are
given truncation parameter γ = 1.15 to bound truncation error at floating point precision.

9 Maximum Approximation Error and Error Distribution

The average kernel approximation error does not tell the full story. Figure 9 shows the maximum approximation
error of the methods for the SE kernel kΘ(τ). The maximum is taken over a n = 100 grid of τ defined on the
unit intereval. For small L we see that RFF performs better. However, only the QFF methods are able to
quickly converge to near single precision ϵ error. The difference between convergence and single precision ϵ can
be attributed to numerical errors for calculating the quadrature rule and kernels.

We further examine the error distribution for the methods. Figure 10 shows the distribution of absolute errors
for the methods when approximating the SE kernel kΘ(τ) for length-scale θ = .01 using S = 25 features. The
approximations are made on a grid of τ over the unit interval. We see that the QFF methods have long tails,
while RFF does not suffer from the very large errors. However, we see that the errors of TQFF are highly
concentrated around zero, with skinnier error tails relative to the Gaussian QFF methods. TQFF error is also
more concentrated around zero than RFF which is consistent with the lower average error we observe.



Figure 9: Maximum absolute kernel approximation error for SE 1d kΘ(τ).Maximum taken over n = 100 grid of
τ defined on unit interval.

Figure 10: Distribution of absolute errors when approximating an SE kernel kΘ(τ) for length-scale θ = .01 using
S = 25 features. τ is defined over a n = 100 grid on the unit interval



Figure 11: Approximation error as a function of quadrature nodes L for kΘ(1) with θ = .01 for various settings
of truncation parameter γ.

10 Effect of γ on approximation error

We examine the effect of different values of the truncation parameter γ on the kernel covariance approximation
accuracy of TQFF and GLFF. Figure 11 shows the mean absolute approximation error of TQFF and GLFF
for the kernel covariance kΘ(τ). The absolute error is averaged over τ on a n = 100 grid on the unit interval
given various γ. TQFF achieves smaller approximation error across values γ using significantly fewer features.
In addition, as γ decreases the approximation error for both methods converges more quickly to the truncation
error. This behavior is expected as decreasing γ dampens frequency of the oscillatory integrand. However we
also see that lower γ results in convergence to higher errors due to truncation. The fact that TQFF still performs
better across γ is expected as dampening the oscillatory behavior benefits all interpolation strategies.

One could also implement a truncated version of RFF and GHFF to find an optimal balance between quadrature
and truncation error for each Fourier Feature approximation. However, this is beyond the scope of this paper
and we defer this question to future work. For fair comparison, in the remainder of the paper we set γ = 1.15 so
that the truncation error is upper bounded by approximately single precision machine ϵ.

11 Proofs

Note that all the proofs here are in extremely similar flavor to the proofs for standard Gaussian quadrature.A
good reference is Conte and Boor (1980).

11.1 Uniqueness and Exactness of Interpolating Cosine Polynomial

Let P c
L−1(ω) be the degree L − 1 interpolating cosine polynomial of f(ω) through points {ωi}Li=1. Define

polynomial function TL−1(z) of degree L− 1 such that TL−1(cos(ω)) = P c
L−1(ω) which is possible as we restrict

ω ∈ [0, π). Suppose that there exists another polyonmial HL−1(z) such that TL−1(zi) = HL−1(zi) for all
zi = cos(ωi), i = 1 . . . n. Then the polynomial TL−1(zi) − HL−1(zi) has L zeros at cos(ωi). This is impossible
as TL−1(z)−HL−1(z) are degree L− 1. As cos(ω) is injective on [0, π) this contradiction shows that there does
not exist another degree L− 1 polynomial function of cosine that interpolates f(ω) through these L points.

Uniqueness also implies that P c
L−1(ω) = f(ω) when f(ω) is a cosine polynomial of degree L− 1.



11.2 Proof of Proposition 1

First we note that for any choice of quadrature nodes {ωl}Ll=1, the an L point quadrature rule will have trigno-
metric degree of exactness L − 1. To prove exactness note that is f(ω) is a L − 1 degree cosine polynomial we
can write

QL(f) =

L∑
i=1

aif(ωi) =

L∑
i=1

∫ π

−π

tci (ω)f(ωi)pγ(γω)dω =

∫ π

−π

f(ω)pγ(γω)dω

As all functions of form cos(kω), k ∈ N can be written as cosine polynomials the statement follows. Now we
derive the parts of Proposition 1

11.2.1 Existence of zeros of qcL(ω)

First note that by construction qcL(ω) is orthogonal to all cosine polynomials with degree < L, i.e∫ π

−π

qcL(ω)p
c
l (ω)pγ(γω)dω = 0

For all cosine polynomials p
(
lω) with degree l < L. Now we can prove that qcL(ω) has L zeros in [0, π). First by

construction we have that ∫ π

−π

qcL(ω)pγ(γω)dω = 0

Therefore qcL(ω) changes sign for at least one ω in [0, π). Because qcL(ω) is a cosine polynomial, it has at most
L zeroes in [0, π). Assume that qcL(ω) has 1 ≤ m < L distinct zeroes on [0, π) located at ω1 . . . ωm of odd
multiplicity (aka when qcL(ω) changes sign). Define the degree M cosine polynomial:

ZL(ω) =

M∏
i=1

(cos(ω)− cos(ωi))

By construction ZL(ω)q
c
L(ω) does not change sign on the integration interval and therefore∫ π

−π
ZL(ω)q

c
L(ω)p(γω) ̸= 0. However, this is a contradiction as by assumption qcL(ω) is orthogonal to all

cosine polynomials with degree < L. Therefore qcL(ω) has at least L zeroes on [0, π). But because it is a cosine
polynomial it has at most L zeroes there, so we are done.

11.2.2 Exactness

Let f(ω) be a cosine polynomial of degree 2L− 1. We can use standard polynomial division to obtain

f(ω) = qcL(ω)q(ω) + r(ω)

Where q(ω), r(ω) are cosine polynomials of degree ≤ L− 1. Therefore we write the integral∫ π

−π

f(ω)pγ(γω)dω =

∫ π

−π

qcL(ω)q(ω)pγ(γω)dω +

∫ π

−π

r(ω)pγ(γω)dω

=

∫ π

−π

r(ω)pγ(γω)dω

Define our L-point trignometrically exact quadrature rule with nodes located at the zeroes of qcL(γω) in [0, π).
We have that QL(r(ω)) =

∫ π

−π
r(ω)p(γω)dω immediately by the exactness of L-point quadrature. Because



qcL(ωi)q(ωi) = 0 by the choice of quadrature nodes:∫ π

−π

f(ω)pγ(γω)dω =

∫ π

−π

r(ω)pγ(γω)dω =

L∑
i=1

air(ωi) =

L∑
i=1

ai(q
c
L(ωi)q(ωi) + r(ωi))

=

L∑
i=1

aif(ωi) = QL(f)

Which shows exactness.

11.2.3 Positivity of ai

Recall our definition of ai =
∫ π

−π
tcip(γω)dω. If we employ our quadrature rule of exactness degree 2L − 1 we

have that ∫ π

−π

(tci )
2pγ(γω)dω = QL((t

c
i )

2) =

L∑
k=1

ak(t
c
k(xk))

2 = ai

because (tci (ω))
2 has degree 2L− 2 so that clearly ai > 0.

11.3 Proof of Proposition 2

Let QL(f) be defined as in Proposition 2 in d dimensions. Suppose f(ω) = cos(ωTk) for k ∈ Nd and ||k||∞ ≤
L− 1. ω(j) refers to the j-th element of ω ∈ Rd. This is distinct from the ωi ∈ Rd where the elements of ωi are
constructed according to the multi-index i as stated in the proposition.

QL(f) =
∑
i∈S

2aif(ωi) =
∑

i∈
∏d

j=1{−L,...L}

ai exp(iω
T
i k)

=

d∏
j=1

L∑
i=−L,i ̸=0

1

2
ai,j exp(iωi,jk

(j)) =

d∏
j=1

∫ π

−π

pj(γω
(j)) exp(iω(j)k(j))dω(j)

=

∫
[−π,π]d

pγ(γω) exp(iωTk)dω =

∫
[−π,π]d

pγ(γω) cos(ωTk)dω

Giving us the desired notion of trignometric exactness. The equality in the second line follows from the enforced
symmetry of our nodes in each dimension. We write

L∑
i=−L,i ̸=0

1

2
ai,j exp(iωi,jkj) =

L∑
i=−L,i̸=0

1

2
ai,j(cos(ωi,jkj) + i sin(ωi,jkj)) =

L∑
i=−L,i̸=0

1

2
ai,j cos(ωi,jkj)

=

L∑
i=1

ai,j cos(ωi,jkj) =

∫ π

−π

pγ(γωj)cos(ωjkj)dωj =

∫ π

−π

pγ(γω
(j)) exp(iω(j)k(j))dω(j)

11.4 Proof of Proposition 3

11.4.1 Necessary Results

We first state a necessary theorem regarding the error of trignometric interpolation from (Kunitsa, 1970;
V.V Ivanov, 1966)

Proposition 4 (Ivanov 1966). Let f(ω) be a r- times differentiable function. Then for any trigonometric
polynomial pK(ω) of degree K that interpolates f(ω) at K + 1 dinstinct points in [−π, π] we have that

|f(x)− pK(x)| ≤
[
π

2
+ 2 + ln

(
2

π
(2K + 1)

)]
×

sup|z(ω)|=1 |f
(r)
K (z(ω))|

(K + 1)r

Where z(ω) = eiω and p
(r)
K (z(ω)) is the r-th (complex valued) derivative of fL(·) with respect to z(ω).



And a small modification of a relevant theorem for generalizing 1-dimensional quadrature errors to tensor product
quadrature from (Mutny and Krause, 2018)

Proposition 5 (Mutny 2018). Let ω ∈ Rd and k ∈ Rd. Under the assumptions, suppose that the error of a one
dimensional quadrature rule approximation to the integral

∫
pj(ωjγ) cos(ωjkj)dωj can be bounded by ϵ. Then

the tensor product quadrature error for
∫
p(ωγ) cos(ωTk)dω scales as ϵd2d−1.

We can write the original integral as:∫
p(ωγ) cos(ωTk)dω =

∫
p(ωγ) exp(iωTk)dω =

d∏
j=1

∫
pj(ωjγ) cos(ωjkj)

If we can upper bound the error for approximating each integral in the product of the last inequality of ϵ, we can
apply lemma 7 from Mutny and Krause (2018) and the error of approximating the original integral is d2d−1ϵ.

11.4.2 Proof

First we examine the one dimensional case. We want to bound the error of the L point quadrature of trigonometric
degree of exactness K = 2L−1. Error bounds on one dimension can then be extended to the multiple dimensions
by observing that the one dimensional quadratures involved in the multidimensional extension are exactly equal
in value to the standard L point quadrature and therefore we can apply theorem 5.

First we write the form of our feature map/kernel approximation:

kθ(x, x
′) =

∫ ∞

−∞
pΘ(ω) cos(ω(x− x′))dω ≈ g(Θ)

∫ π

−π

pγ(γω) cos

(
ωγ

[
x− x′

θ

])
dω

≈ g(Θ)QL

(
cos

(
ωγ

[
x− x′

θ

]))
dω) = g(Θ)

L∑
i=1

ai(cos(ωi
x

θ
) cos(ωi

x′

θ
) + sin(ωi

x

θ
) sin(ωi

x′

θ
))

= Φ(x)TΦ(x′)

Where

Φ(x)i =

{√
aiγg(Θ)cos(ωiγ

x
θ ) if i ≤ L√

ai−Lγg(Θ)cos(ωi−Lγ
x
θ ) if L < i ≤ 2L

Accuracy of the feature map approximation is clearly exactly the accuracy of the quadrature. Defining pγ(ω) =
γp(ω), we write

kθ(x, x
′) = g(Θ)

∫ π

−π

pγ(γω) cos

(
ωγ

[
x− x′

θ

])
dω + 2g(Θ)

∫ ∞

π

pγ(γω) cos

(
ωγ

[
x− x′

θ

])
dω

From now on, define α = γ
[
x−x′

θ

]
. Given our truncation parameter γ, we will apply quadrature to the first

integral. We can use trigonometric Hermite polynomials (Delvos (1993), Propositions 4.1 and 4.2) to define a
degree K trigonometric polynomial of form

ptK(ω) = c0 +

K∑
l=1

cl cos(lω) + dl sin(lω)

Such that ptK(ωi) = cos(αωi) , i = 1 . . . L where {ωi}Li=1 are the zeros of the monic orthogonal trignometric
polynomial of degree L. ptK(ω) is of degree K = 2L − 1 and the terms involving sin(ω) integrate to zero over
the symmetric domain and weighting function. Therefore the integral and can be exactly integrated by our
quadrature rule:∫ π

−π

pγ(γω) cos (αω) dω =

∫ π

−π

pγ(γω)p
t
K(ω)dω +

∫ π

−π

pγ(γω)(cos(αω)− ptK(ω))dω

= QL(cos(αω)) +

∫ π

−π

pγ(γω)(cos(αω)− ptK(ω))dω



The total error becomes

|kθ(x, x′)−Φ(x)TΦ(x′)| = |γg(Θ)

(∫ ∞

−∞
p(γω)cos(αω)dω −QL(cos(αω))

)
|

= g(Θ)|
∫ π

−π

pγ(γω)(cos(αω)− ptK(ω))dω + 2

∫ ∞

π

pγ(γω)cos(αω)dω|

≤ g(Θ)

(∫ π

−π

pγ(γω)|cos(αω)− ptK(ω)|dω + 2

∫ ∞

π

pγ(γω)dω

)

We need to bound |cos(αω)− ptK(ω)|. Using theorem 4, letting M = ⌈γ
θ ⌉ ≥ α and setting r = max{2L−M, 1}

we have that ptK(ω) also satisfies

|f(ω)− pc2L−1(ω)| ≤
[
π

2
+ 2 + ln

(
2

π
(4L− 1)

)]
×

sup|z(ω)|=1 |f
(r)
L (z(ω))|

(2L)r

Define z(ω) = exp(iω) and notice that

cos(αω) =
1

2
(exp(iω)α + exp(−iω)α) =

1

2
(z(ω)α + z(ω)−α) := f(z(ω))

Note that because we restrict the supremum to ω such that |z(ω)| = 1, repeated differentiation of z(ω)α, z(ω)−α

wrt z(ω) gives us

sup
|z(ω)|=1

|f (r)
L (z(ω))| ≤ (⌈α⌉+ r − 1)!

(⌈α⌉ − 1)!
≤ (M + r − 1)!

(M − 1)!

.

Assuming that x, x′ ∈ [0, 1], α ≤ ⌈γ
θ ⌉ = M . Therefore our final bound can be written, definint H = max{2L −

1,M}

|kθ(x, x′)−Φ(x)TΦ(x′)| ≤ g(Θ)

([
π

2
+ 2 + ln

(
2

π
(4L− 1)

)]
× max{M, 2L− 1}!

(2L)max{1,2L−M}(M − 1)!
+ 2

∫ ∞

π

pγ(γω)

)

The extension to the multi-dimensional case involves the tensor product of one-dimensional rules that produce
identical error to the 1-dimensional quadrature produced here. Therefore we can apply theorem 5 and the result
follows.

12 Computation of Nodes and Weights in the Golub Welsh Algorithm

Recall that we need to compute a monic cosine polynomial of degree L qcL(ω) that is orthogonal to all cosine
polynomials of degree less than L. We can use Three term recurrence relation and the Golub-Welsh algorithm
for this task (Conte and Boor, 1980). The monic orthonormal cosine polynomials {ql(ω)} associated with the
weight function p(ω) on [a, b] satisfy the relation:

q1(ω) = (cos(ω)−B0)q(ω)

qk+1(ω) = (cos(ω)−Bk)qk(ω)−Ak(qk−1(ω))

where Ak = ||qk||2
||qk−1||2 , k ≥ 1 andBk = ⟨cos(ω)qk,qk⟩

||qck||2
, k ≥ 0. Where the inner product is ⟨f, g⟩ =

∫ b

a
f(ω)g(ω)p(ω)dω.

All inner products involve integrals of powers of cos(ω) against the weight function p(ω) and can be calculated
analytically using a software such as Mathematica or Maple. Analytical solutions exist for kernels such as the
RBF and matern.

Because cosine polynomials can be written as polynomials of functions defined on the interval [−1, 1], we can
apply the standard Golub-Welsh algorithm using the eigenvalues/eigen vectors of the tri-diagonal matrix formed



from Bk, Ak to obtain nodes/weights that satisfy the conditions of Proposition 1. Please see Conte and Boor
(1980) or any numerical analysis text for more details. The only difference is we have to take the inverse cosine
transformation of the eigenvalues of the matrix to get our nodes.

Implementation of Golub-Welsh and TTR requires O(L3) complexity to compute L nodes. This computational
cost is not too burdensome as the quadrature rules only have to be computed once independent of any dataset.
We note that this approach works well for obtaining quadrature rules and fourier features up to L ≈ 1000 which
is the upper bound for most applications. Numerical error begins to accumulate at this point and computation is
burdensome. To efficiently produce more features one can easily apply asymptotic type methods from standard
Gaussian quadrature to scale to hundreds of thousands of features (Townsend et al., 2016).

13 Benchmark Data Sources

For the google data we obtained the log daily high stock price from https://finance.yahoo.com/quote/

GOOG?p=GOOG. We took data from 9/11/2004 - 9/13/2023. The Household electricity data-set was taken
from the frist 125,000 observations from the dataset stored in https://archive.ics.uci.edu/dataset/

235/individual+household+electric+power+consumption. UKHousing data was obtained from the 2018
price paid dataset of sale prices filtered for flats (apartments) located at https://www.gov.uk/government/

statistical-data-sets/price-paid-data-downloads. We extracted the prices from May-December. The
Schaffer function is a widely used benchmark function. Specification can be found at https://www.sfu.ca/

~ssurjano/schaffer2.html. We evaluate the function on the hyercube [−3, 3]2.
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