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Abstract

We study the problem of computation-
ally and label efficient PAC active learn-
ing d-dimensional halfspaces with Tsybakov
Noise (Tsybakov, 2004) under structured un-
labeled data distributions. Inspired by Di-
akonikolas et al. (2020c), we prove that any
approximate first-order stationary point of a
smooth nonconvex loss function yields a half-
space with a low excess error guarantee.
In light of the above structural result,
we design a nonconvex optimization-based
algorithm with a label complexity of

Õ(d( 1ϵ )
8−6α
3α−1 )1, under the assumption that

the Tsybakov noise parameter α ∈ ( 13 , 1],
which narrows down the gap between the la-
bel complexities of the previously known effi-
cient passive or active algorithms (Diakoniko-
las et al., 2020b; Zhang and Li, 2021) and the
information-theoretic lower bound in this set-
ting.

1 INTRODUCTION

Active learning (Settles, 2009) is a practical machine
learning paradigm motivated by the expensiveness of
label annotation costs and the wide availability of un-
labeled data. Consider the binary classification set-
ting, where given an instance space X and a binary la-
bel space Y = {−1,+1} and a data distributionD over
X×Y, we would like to learn a classifier that accurately
predicts the labels of examples drawn from D. As the
performance measure of a classifier h, we define its

1In the main body of this work, we use Õ(·), Θ̃(·) to
hide factors of the form polylog(d, 1

ϵ
, 1
δ
)
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error rate to be err(h) := P(x,y)∼D(h(x) ̸= y). Given
access to unlabeled examples and the ability to interac-
tively query a labeling oracle (oftentimes a human an-
notator), an active learning algorithm aims to output a

model ĥ from a hypothesis class H that has a low error
rate with a small number of label queries. It has been
shown both theoretically (e.g. Settles, 2009; Dasgupta,
2005; Balcan et al., 2007; Hanneke, 2011, 2014; Bal-
can and Long, 2013; Hanneke and Yang, 2015; Zhang
and Chaudhuri, 2014) and empirically (e.g. Siddhant
and Lipton, 2018; Dor et al., 2020) that, under many
learning settings, by utilizing interaction, active learn-
ing algorithms can enjoy much better label efficiency
compared with conventional supervised learning.

In this work, we study the problem of computation-
ally and label efficient PAC active learning halfs-
paces (Valiant, 1985) with noise under structured un-
labeled data distributions, where the hypothesis class
H :=

{
hw(x) := sign(⟨w, x⟩) : w ∈ Rd

}
is the set of

linear classifiers, and DX , the marginal distribution of
D over X , satisfies certain structural assumptions (Di-
akonikolas et al., 2020c) (see Definition 2 in Section 3).
The goal of the learner is to (ϵ, δ)-PAC learn H and D,

i.e. to output a classifier ĥ such that with probability
at least 1−δ, its excess error, err(ĥ)−minh′∈H err(h′) is
at most ϵ; the total number of label queries the learn-
ers makes as a function of ϵ, δ is referred to as its label
complexity.

In this work, the specific label noise condition we
are interested in is the Tsybakov noise condition
(TNC) (Mammen and Tsybakov, 1999; Tsybakov,
2004), stated below:

Definition 1 (Tsybakov noise condition). Given A >
0 and α ∈ (0, 1], a distribution D over Rd × {−1,+1}
is said to satisfy the (A,α)-Tsybakov noise condition
with respect to halfspace w⋆ ∈ Rd, if for all t ∈ [0, 1

2 ],

PD

(
1
2 − η(x) ≤ t

)
≤ At

α
1−α , where η(x) := PD(y ̸=

sign(⟨w⋆, x⟩) | x) is the label flipping probability on
example x.

Definition 1 has two important implications on the
data distribution D. First, setting t = 0, we get that
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η(x) ≤ 1
2 almost surely, which implies that the halfs-

pace w∗ is Bayes optimal with respect to D. Second,
the fraction of examples x that has a large conditional
label flipping probability ( 12 − η(x) ≤ t) is small (at

most At
α

1−α ). As A decreases and α increases, the
noise assumption on D becomes more benign, and the
learning problem becomes easier. Since the initial def-
inition of TNC, the learning theory community has
witnessed extensive effort in understanding the neces-
sary and sufficient amount of labels for learning under
it, from both statistical and computational perspec-
tives (Hanneke, 2014; Hanneke and Yang, 2015; Bal-
can et al., 2007; Balcan and Long, 2013; Zhang and
Chaudhuri, 2014; Wang and Singh, 2016; Diakoniko-
las et al., 2020d,b; Zhang and Li, 2021). Specialized
to the setting of active learning halfspaces with TNC
under structured unlabeled data distributions:

• From a statistical perspective, a line of
works (Balcan et al., 2007; Balcan and Long,
2013; Zhang and Chaudhuri, 2014; Wang and
Singh, 2016; Huang et al., 2015) propose al-
gorithms that have a label complexity of
Õ(( 1ϵ )

2−2α), which matches information-theoretic
lower bounds (Wang and Singh, 2016) in terms of
target excess error rate ϵ. However, these algo-
rithms rely on explicit enumeration of classifiers
fromH or performing empirical 0-1 loss minimiza-
tion, which is known to be NP-Hard in general.

• To design a computationally efficient algorithm
for active learning halfspaces under Tsybakov
noise, a first natural idea is to combine the
well-known “margin-based active learning” frame-
work (e.g. Balcan and Long, 2013) with convex
surrogate loss minimization. Specifically, we can
have an algorithm that iteratively, for each phase
k: (1) learns a halfspace wk based on labeled
examples Sk using convex surrogate loss mini-
mization; (2) actively collects a new set of la-
beled examples Sk+1 in a region close to the
decision boundary of wk. Although this algo-
rithm design and analysis framework has made
some progress in learning halfspaces under Mas-
sart noise (Awasthi et al., 2015, 2016), extending
it to learning under Tsybakov noise is challenging,
in that the Bayes classifier hw⋆ can behave arbi-
trarily poorly (just better than a random guess)
in a region with a small probability.

• A recent line of pioneering works aim at design-
ing efficient algorithms for passive learning half-
space with Tsybakov noise (Diakonikolas et al.,
2020d,b). Their key insight is that, learning half-
spaces can be reduced to the problem of certify-
ing the non-optimality of a candidate halfspace.

Using this, Diakonikolas et al. (2020d) devel-
oped a quasi-polynomial time learning algorithm

with label complexity dO( 1
α2 log2( 1

ϵ )); and subse-
quent work Diakonikolas et al. (2020b) designed
a polynomial time algorithm with label complex-
ity (dϵ )

O( 1
α ) under well-behaved distributions, and

poly(d) · ( 1ϵ )
O( 1

α2 ) under log-concave distributions

• The first active halfspace learning algorithm for
Tsybakov noise that exhibits nontrivial improve-
ments over passive learning is due to Zhang and Li
(2021). Their algorithm, based on a nonstandard
application of online learning regret inequalities,
iteratively optimizes a proximity measure between
the iterates and w∗. When the Tsybakov noise
parameter α ∈ ( 12 , 1], their algorithm has a label

complexity of Õ(d( 1ϵ )
2−2α
2α−1 ).

In summary, for active learning halfspaces with TNC
under structured unlabeled data distributions, there
still remains a large gap between the label complex-
ity upper bounds achieved by computationally efficient
algorithms and the information-theoretic lower bound
Ω̃(( 1ϵ )

2−2α).

Our contributions. In this work, we narrow the
above gap by providing an efficient active learning al-

gorithm with a label complexity of Õ(d( 1ϵ )
8−6α
3α−1 ), under

the assumption that the noise parameter α ∈ ( 13 , 1].

In the sample complexity (dϵ )
O( 1

α ) of the passive al-
gorithm from Diakonikolas et al. (2020b), the con-
stant hidden in the Big-Oh notation in the exponent
is not clear, and this drawback is more significant in
terms of the dependence on d. On the other hand,
our label complexity has a linear dependence on the
dimensionality d. Compared to the first and only ef-
ficient active algorithm existing in this setting (Zhang
and Li, 2021), our algorithm expands the feasibility
of the noise parameter α from ( 12 , 1] to ( 13 , 1]; when

α ∈ [ 12 , 0.566), (
1
ϵ )

8−6α
3α−1 < ( 1ϵ )

2−2α
2α−1 . So our algorithm

outperforms Zhang and Li (2021) when α ∈ [ 13 , 0.566).
We present the label complexity and computational
efficiency of all algorithms in this setting in Table 1.

Our algorithm relies on a few key technical ideas,
which we elaborate on below.

Key idea 1: Computationally efficient non-
convex optimization for noise tolerance. The
work of Diakonikolas et al. (2020c) shows that, under
the Massart noise condition, optimizing a carefully-
chosen non-convex loss Lσ(w) = E [ℓσ(w, (x, y))] over
the noisy labeled data distribution D yield a classi-
fier with low excess error. Importantly, Diakoniko-
las et al. (2020c) shows that one does not have to
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Table 1: A Comparison Of The State-Of-The-Art Label Complexity And Efficiency On Learning Halfspaces
With TNC Under Structured Unlabeled Data Distributions

Work Label complexity upper bound Passive/Active Efficient?

Balcan and Long (2013) Õ(d( 1ϵ )
2−2α) Passive No

Diakonikolas et al. (2020b) (dϵ )
O( 1

α ) Passive Yes

Zhang and Li (2021) Õ(d( 1ϵ )
2−2α
2α−1 ) for α ∈ ( 12 , 1] Active Yes

this work Õ(d( 1ϵ )
8−6α
3α−1 ) for α ∈ ( 13 , 1] Active Yes

find the global minimum to achieve the above guar-
antee; instead, finding a first-order stationary point
suffices, which admits computationally efficient pro-
cedures (e.g. Ghadimi and Lan, 2013). Inspired by
this, we show that under Tsybakov noise with α > 1

3 ,
for the same nonconvex loss function, a qualitatively-
similar structural result holds (Lemma 4). This, when
combined with standard results on efficient stochas-
tic optimization methods for finding first-order sta-
tionary points Ghadimi and Lan (2013), yields a pas-
sive learning procedure with sample complexity of

T = O(( 1ϵ )
8−4α
3α−1 ) that can output a classifier that is

close to one of {w∗,−w∗} with constant probability.

Key idea 2: Label efficient first-order oracle for
the non-convex objective. Our second insight is
that, the optimization-based learning algorithm out-
lined above can be made more label-efficient in our
active learning setting. At each iteration of the above
algorithm, we call the stochastic gradient oracle of the
population loss once. A naive implementation of this
oracle requires one labeled example per call: draw-
ing one example x from DX , query the labeling oracle
for its label y, and return ∇ℓσ(w, (x, y)), the gradi-
ent of the loss of the model on example (x, y). In-
spired by Guillory et al. (2009), we design a much more
label-efficient implementation of the stochastic gradi-
ent oracle; specifically, each call to the oracle queries

O(σ) = O(ϵ
2α

3α−1 ) ≪ 1 labels in expectation. More-
over, the new implementation of the stochastic gradi-
ent oracle preserves the bound on the expected squared
norm of the stochastic gradient, resulting in the same
iteration complexity T . This yields a learning proce-

dure with label complexity of O(Tσ) = O(( 1ϵ )
8−6α
3α−1 )

that can output a classifier that is close to one of
{w∗,−w∗} with constant probability.

Key idea 3: Label-efficient classifier selection.
The above active learning procedure is yet to achieve
the (ϵ, δ)-PAC learning guarantee, in that: (1) its suc-
cess probability is constant; (2) if it succeeds, it is
possible that its output classifier is close to −w∗ as
opposed to w∗. To address issue (1) and boost the suc-
cess probability to 1− δ, we use a repeat-and-validate

procedure similar to Ghadimi and Lan (2013) to ob-
tain multiple independent outputs {ws : s ∈ [S]} one
of which is close to {w∗,−w∗}, call the stochastic gra-
dient oracle to estimate ∥∇Lσ(ws)∥ for s ∈ [S], and
choose w̃ to be the ws with the smallest gradient es-
timate. Thanks again to the label efficient first-order

oracle, this step has a label complexity of O(d( 1ϵ )
4−2α
3α−1 ).

To address the issue (2), we observe that under Tsy-
bakov noise, w̃ and −w̃’s error rates differ by a con-
stant; therefore, using a simple 0-1 loss based valida-
tion procedure suffices to find a classifier O(ϵ)-close to
w∗, which has an excess error of ϵ.

2 RELATED WORK

Statistical complexity for active learning halfs-
pace under Tsybakov noise condition. The sta-
tistical complexity for active learning halfspaces un-
der Tsybakov noise condition has been largely char-
acterized over the past two decades (Hanneke, 2011,
2014; Hanneke and Yang, 2015). For general minimax
lower bound of active learning under Tsybakov noise
not specific to the hypothesis class of halfspaces, (Han-
neke, 2014) provides a minimax label complexity lower
bound of Ω

(
d( 1ϵ )

2−2α
)

Hanneke and Yang (2015) es-
tablishes minimax label complexity upper and lower
bounds for general hypothesis class, in terms of the
star number and VC dimension. Specific to the class of
homogeneous halfspace, when α ∈ (0, 1

2 ], the minimax
label complexity has a lower bound of Ω

(
d( 1ϵ )

2−2α
)
;

when α ∈ [ 12 , 1), the minimax label complexity has a
lower bound of Ω

(
( 1ϵ )

2−2α(d+ ( 1ϵ )
2α−1)

)
. For a more

specific setting for active learning halfspaces under
well-behaved distributions, (Wang and Singh, 2016)
shows a minimax label complexity lower bound of
Ω
(
( 1ϵ )

2−2α
)
.

On the label complexity upper bound side, as-
suming the unlabeled distribution is isotropic log-
concave, Balcan and Long (2013) and Wang and
Singh (2016)’s active learning algorithms achieve la-
bel complexity of order Õ

(
d( 1ϵ )

2−2α
)
. These works

use a margin-based active learning framework, which
is a celebrated algorithmic idea of inductively learn-
ing halfspaces under benign unlabeled distribution as-
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sumptions. However, these algorithms suffer from
computational intractability, since they perform em-
pirical 0-1 risk minimization, which is known to be
computationally hard (Arora et al., 1997).

Efficient passive learning halfspaces under Tsy-
bakov noise condition. In spite of the extensive
effort for efficiently learning in the presence of Tsy-
bakov noise condition (Mammen and Tsybakov, 1999;
Tsybakov, 2004), it has been an outstanding open
problem to obtain an efficient learning algorithm for
any natural hypothesis class (e.g., parities) until very
recent years , where the first breakthrough is wit-
nessed in passively learning halfspaces under Tsy-
bakov noise condition under well-behaved distribu-
tions (Diakonikolas et al., 2020b,d). Those works
adopt the principle of “reduction from learning to cer-
tifying the non-optimality of a candidate halfspace”,
and developed quasi-polynomial time certificate algo-
rithm or polynomial time certificate algorithm, re-
sulting in quasi-polynomial time halfspace learning

algorithm (with sample complexity dO( 1
α2 log2( 1

ϵ ))) or
polynomial time algorithm (with sample complexity

(dϵ )
O( 1

α )), respectively.

Efficient active learning halfspaces under Tsy-
bakov noise condition. Efficient active learning
under Tsybakov noise condition is conceptually more
difficult than efficient passive learning. The difficulty
largely lies in the ”conflict” between the nature of Tsy-
bakov noise condition - it allows even the Bayes clas-
sifier w⋆ to have an error rate arbitrarily close to 1/2
in a region with a small enough probability - and the
common analysis technique adopted in active learning.
In more detail, the combination of localized sampling
and iterative convex surrogate loss minimization tech-
nique used in many efficient active learning algorithms
is hard to analyze in this setting, as they oftentimes
require learning model with a small constant error rate
in localized regions, which is hard to establish under
Tsybakov noise. Many efficient active learning algo-
rithms (Awasthi et al., 2014, 2015, 2016) adopt the
idea of localization to some extent. To overcome this
barrier and obtain an efficient active algorithm to learn
halfspace, substantially novel algorithmic ideas seem
to be necessary.

In this regard, there are even fewer works along the di-
rection of active learning under Tsybakov noise. One
notable work is Zhang and Li (2021), where an active
learning algorithm is developed for learning halfspaces
under (A,α)−Tsybakov noise condition for α ∈ ( 12 , 1]
and well-behaved distribution, and achieves a label

complexity of Õ(d( 1ϵ )
2−2α
2α−1 ). Although their label com-

plexity results are incomparable to ours, algorithmi-
cally, Zhang and Li (2021) uses an iterative approach

to find near-optimal halfspaces with increasing preci-
sion, each iteration using a different objective function;
in contrast, our algorithm optimizes a fixed nonconvex
objective function using stochastic gradient descent,
and is thus conceptually simpler.

Due to space constraints, we defer the discussions of
additional related works in Appendix A.

3 PRELIMINARIES

A (homogenous) halfspace, or a linear classifier, is
a function hw : Rd 7→ {±1} that is defined as
hw(x) = sign(⟨w, x⟩), where w ∈ Rd. In this paper,
we consider the standard binary classification setting,
where the hypothesis class H is the set of halfspaces{
hw : w ∈ Rd

}
. In the sequel, to ease the notation,

we frequently use w to represent the halfspace hw de-
fined by the vector w ∈ Rd. We denote by D the joint
distribution of labeled examples (x, y) supported on
Rd×{±1} and denote byDX the marginal distribution
of D on x. We define the empirical error rate of h on
S, errS(h) :=

1
|S|
∑

(x,y)∈S 1 (h(x) ̸= y). For N ∈ N+,

let [N ] := {1, 2, . . . , N}. Throughout this paper, for
a, b ∈ Rd, we use ∥a∥ to denote ∥a∥2, the ℓ2 norm of
a, and use ⟨a, b⟩ to denote the inner product of a and

b, and denote by θ(a, b) = arccos
(

⟨a,b⟩
∥a∥∥b∥

)
∈ [0, π] the

angle between them.

Following the distributional assumptions in (Di-
akonikolas et al., 2020b,d; Zhang and Li, 2021), this
work proceeds in developing an efficient algorithm
for active learning halfspace under Tsybakov noise
condition. We assume DX , the marginal distri-
bution over the instance space, lies in the family
of well-behaved distributions, which generalizes the
isotropic log-concave distribution (Balcan and Long,
2013; Awasthi et al., 2014, 2016) and the uniform dis-
tribution on the d-dimensional unit sphere (Awasthi
et al., 2015; Yan and Zhang, 2017; Wang and Singh,
2016). We formally define well-behaved distributions
as follows:

Definition 2 (Well-behaved distributions (Diakoniko-
las et al., 2020b)). Fix L,R,U, β > 0. We say a distri-
bution DX on Rd to be (2, L,R, U, β) well-behaved, or
well-behaved for short, if the following properties are
satisfied: for all x randomly drawn from DX , let xV be
the projected coordinates of x onto any 2-dimensional
linear subspace V of Rd, and pV be the corresponding
probability density function on R2. pV satisfies,

1. pV (z) ≥ L, for all z such that ∥z∥2 ≤ R;

2. pV (z) ≤ U , for all z ∈ R2;

moreover, for any unit vector w in Rd and any t > 0,
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PDX
(|⟨w, x⟩| ≥ t) ≤ exp(1− t

β ).

An important property of the objective function in it-
erative optimization is the smoothness property, which
we define below:

Definition 3. A twice continuous differentiable func-
tion F is L-smooth on D, if ∥∇2F (x)∥op ≤ L, for all
x ∈ D.

4 ALGORITHM

Algorithm 1 Active learning halfspaces under TNC

1: Input: Target excess error ϵ, failure probability δ

2: θ0 ← O
(

1
ln2 1

ϵ

ϵ
2

)
, σ ← Θ

(
( 1
A )

1−α
3α−1 θ

2α
3α−1

0

)
, ρ ←

Θ

(
( 1
A )

2(1−α)
3α−1 θ

2(1−α)
3α−1

0

)
, S ← log 6

δ

3: for s = 1, 2, . . . , S do
4: ws ← Active-PSGD(N = Õ( d

σ2ρ4 ), β =

Θ̃(ρ
2σ2

d )) (see Algorithm 2)
5: end for
6: for s = 1, 2, . . . , S do
7: gs,1, . . . , gs,M1

← Active-FO(ws) (see Algo-
rithm 3)

8: ḡs ← 1
M1

∑M1

i=1 gs,i
9: end for

10: s∗ ← argmins∈[S] ∥ḡs∥
11: w̃ ← ws∗

12: Draw M2 unlabeled examples from DX and query
their labels labeled samples {(xi, yi)}M2

i=1

13: ŵ ← argminw∈{±w̃}
1

M2

∑M2

i=1 1(sign(⟨w, xi⟩) ̸=
yi)

14: Return: ŵ

Our main algorithm (Algorithm 1) consists of three
key components, namely (1) iterative non-convex op-
timization with active label queries (Active-PSGD,
Algorithm 2); (2) label-efficient iterate selection to
boost the success probability (lines 3 to 11); (3) label-
efficient final iterate selection (lines 12 to 13). We now
discuss each component in more detail.

4.1 Efficient non-convex optimization with
active label queries (Algorithm 2)

As we will see in the Appendix A, there are sev-
eral results (Awasthi et al., 2015, 2016; Diakonikolas
et al., 2019) in the literature against the one-shot ap-
plication of convex surrogate loss minimization in ef-
ficient learning halfspaces with noise. One possible
way to get around this is to instead adopt a non-
convex surrogate loss. We denote by ϕσ(t) := 1

1+e
t
σ

the softmax loss function, first proposed by Diakoniko-
las et al. (2020c), which can be viewed as a smooth

Algorithm 2 Active-PSGD: Projected SGD for
finding a stationary point of Lσ using active learning

1: Input: number of steps N , step size β
2: w0 ← e1
3: for i = 1, 2, . . . , N do
4: gi ← Active-FO(wi−1)
5: vi ← wi−1 − βgi
6: wi ← vi

∥vi∥2

7: end for
8: Return: wR, where R is a random variable uni-

formly distributed over {0, . . . , N − 1}

approximation of 0-1 loss. For a halfspace w, we let

Lσ(w) := E(x,y)∼Dϕσ

(
y ⟨w,x⟩

∥w∥

)
be its normalized ex-

pected softmax loss function. Our key observation is
that, in the presence of Tsybakov noise, to find a w
close to w∗, it suffices to find an approximate first-
order stationary point of the softmax loss Lσ. The
technique of using the softmax loss in the optimization
procedure and proving that an approximate stationary
point suffices for the halfspace learning goal is origi-
nally developed in (Diakonikolas et al., 2020c), where
it provides an efficient passive learning algorithm for
learning halfspaces under Massart noise. In this work,
we extend this technique to the setting of learning half-
spaces under Tsybakov noise. Formally, we prove:

Lemma 4. Let DX be a well behaved distribution,
and D satisfies (A,α)-TNC. Denote by Lσ(w) =

ED

[
ϕσ

(
y ⟨w,x⟩

∥w∥2

)]
where ϕσ is softmax loss defined

above. Let w be such that θ(w,w∗) ∈ (θ, π − θ), where

θ ≤ Θ(A). Then for σ = Θ
(
θ

2α
3α−1

)
, we have that

∥∇wLσ(w)∥2 ≥ Ω
(
θ

2(1−α)
3α−1

)
:= 2ρ.

Lemma 4 establishes the connection between 0-1 loss
and the ℓ2 norm of the gradient of a carefully de-
signed non-convex loss function - softmax loss Lσ(w) =

ED

[
ϕσ

(
y ⟨w,x⟩

∥w∥2

)]
. To elaborate, we prove that for any

unit vector w such that θ(w,w∗) ∈ (θ, π− θ), we have,

∥∇wLσ(w)∥2 ≥ Ω

(
σ

1−α
α − σ2

θ2

)
(1)

(see the proof of Lemma 16 in Appendix C); this gen-
eralizes Diakonikolas et al. (2020c)’s result from α = 1
(Massart noise) to α ∈ ( 13 , 1] (Tsybakov noise). Taking
the contrapositive and with a careful choice of the pa-
rameters ρ and σ, this implies that if ∥∇Lσ(w)∥ ≤ 2ρ,
then either w or −w is at an angle at most θ0 :=

O
(

1
ln2 1

ϵ

ϵ
2

)
from w∗. By Lemma 29, either w or −w

has an excess error at most ϵ as desired.

We conjecture that in order to obtain an efficient active
learning algorithm with lower label complexity and
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works for the full range of α ∈ (0, 1], a substantially
new algorithmic idea would be desired. If α < 1/3, the
right-hand side of Eq. (1) can be negative, and such
lower bound becomes vacuous.

To efficiently find an approximate first-order station-
ary point of Lσ, we adapt the iterative procedure of
randomized stochastic gradient (RSG) in Ghadimi and
Lan (2013) to this setting, resulting in Alg. 2. More
precisely, Active-PSGD (Algorithm 2) aims at itera-
tively obtaining a halfspace w such that ∥∇Lσ(w)∥ ≤ ρ
with a constant probability.

In more detail, Active-PSGD takes as input the
number of steps N and a constant stepsize β. w1 is
initialized randomly on the unit ℓ2-ball in Rd. In each
iteration i, Active-PSGD calls function Active-FO
(Algorithm 3), which serves as a first-order stochastic
gradient oracle for Lσ to obtain gi, an unbiased es-
timate of ∇Lσ(wi), and updates the previous iterate
wi−1 with the step size β. As we will see, from item 1
of Lemma 9 that the direction of the stochastic gradi-
ent estimate gi is always perpendicular to the previous
iterate wi−1, hence all vi’s satisfy ∥vi∥2 ≥ 1. The next
step (line 6) is to project vi back to the unit ℓ2-ball
to obtain wi. Lastly, after N iterations, Algorithm 2
output one iterate from {wi : i ∈ {0, . . . , N − 1}} uni-
formly at random. We have the following performance
guarantee of Active-PSGD:

Lemma 5. Let ρ, σ be defined as in line 2 of Algo-
rithm 1. If Algorithm 2 receives inputs N = Õ( d

σ2ρ4 ),

β = Θ̃(ρ
2σ2

d ), then its output wR of Algorithm 2 satis-
fies, with probability at least 1

2 ,

∥∇Lσ(wR)∥ ≤ ρ

Furthermore, during N iterations, with probability at
least 1− δ

6S the total number of label queries is at most

T1 := Õ
(
d( 1ϵ )

8−6α
3α−1

)
Remark 6. Arjevani et al. (2022) shows that under
the assumption of smooth objective and bounded ex-
pected squared norm of the stochastic gradient, RSG
achieves the optimal first-order oracle complexity.
Thus, we speculate that the iteration complexity in
Lemma 5 cannot be improved significantly using some
other algorithm.

The idea of Active-PSGD bears similarity with the
standard iterative optimization method, with some re-
markable innovation. The key insight of stochastic gra-
dient descent is that by obtaining an unbiased stochas-
tic gradient, each iteration is making progress toward
achieving the optimization goal in expectation. In the
passive learning setup, the typical way of implement-
ing the stochastic gradient oracle is to sample (x, y)
from the labeled data distribution D.

Algorithm 3 Active-FO: stochastic gradient oracle
for Lσ exploiting active learning

1: Input:Unit vector w
2: Sample x from DX

3: Draw Z ∼ Bernoulli(q(w, x)), where the query

probability q(w, x) := σ
∣∣∣ϕ′

σ(
〈

w
∥w∥ , x

〉
)
∣∣∣

4: if Z = 1 then
5: y ← query the labeling oracle on example x

6: Return: h(w, x, y) := − 1
σy
(

x
∥w∥2

− ⟨w,x⟩w
∥w∥3

2

)
7: else
8: Return: 0
9: end if

We show that in our active learning setup, the
stochastic gradient oracle can be implemented more
label-efficiently by the Active-FO procedure (Algo-
rithm 3). In Active-FO, we carefully design a func-

tion of query probability q(w, x) := σ
∣∣∣ϕ′

σ(
〈

w
∥w∥ , x

〉
)
∣∣∣ -

not all unlabeled example x are equally important or
equally informative for our optimization purpose. In-
tuitively, the closer the x lies to the decision boundary
of halfspace w, the more informative it is (and as a
consequence, we query the label for this x with higher
probability), because the current w is less confident
in labeling x - this idea coincides with the renowned
margin-based method (Balcan et al., 2007; Balcan and
Long, 2013; Wang and Singh, 2016; Awasthi et al.,
2015, 2016) in the active learning literature.

Whenever Active-FO is invoked with an input unit
vector w, it firstly draws an unlabeled example x from
DX , and computes the label query probability on this
x according to q(w, x). Note that q(w, x) is a valid
probability, i.e., 0 ≤ q(w, x) ≤ 1 for all w, x ∈ Rd,
since |ϕ′

σ(t)| ≤ 1
σ for all t ∈ R. Then it draws a

Bernoulli random variable Z with success probability
q(w, x). If Z = 1, then Active-FO outputs the vec-

tor h(w, x, y) := − 1
σy
(

x
∥w∥2

− ⟨w,x⟩w
∥w∥3

2

)
, otherwise, it

outputs a zero vector.

Remark 7. We show in item 4 of Lemma 9 that
Active-FO is label-efficient; furthermore, although
Active-FO only queries labels for a fraction of un-
labeled examples x it happens to sample, Active-FO
preserves the bound on the expected squared norm of
the stochastic gradient (see Claim 31), resulting in the
same iteration complexity N as passively querying the
labels for all x.

Remark 8. Active-FO is inspired by Guillory et al.
(2009), where it provides sampling rules Query(w, x)
and update rules Update(w, x, y) for several com-
monly used margin-based losses. While this work ex-
hibits some experimental results, it does not provide
a theoretical analysis of this query strategy. The la-
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bel efficient implementation of the first order oracle is
the first time Guillory et al. (2009)’s algorithmic idea
has been formally applied to design provably efficient
active learning algorithms.

Despite being simple the oracle behavior at first sight,
Active-FO enjoys several properties that turn out to
be essential in guaranteeing the desirable performance
in our main algorithm, Algorithm 1. We present
Lemma 9 for the delicate properties of Active-FO.

Lemma 9. Let gw be the random output of
Active-FO(w). We have, for any unit vector w:

1. gw is perpendicular to w;

2. gw is an unbiased estimator of ∇Lσ(w) : E [gw] =
∇Lσ(w);

3. E
[
∥gw∥2

]
≤ Õ( dσ );

4. The expected number of label queries per call to
Active-FO is Õ(σ).

Furthermore, as we will see in the next subsection,
Active-FO is not only utilized in the iterative non-
convex optimization procedure Active-PSGD, but
also in the iterate selection, both of which help reduce
the label complexity of the overall algorithm.

4.2 Label-efficient iterate selection to boost
the success probability (lines 3 to 11)

Recall that Active-PSGD only guarantees that
∥∇Lσ(w)∥ ≤ ρ with a constant probability. To achieve
the (ϵ, δ)-PAC learning goal, lines 3 to 11 in Algo-
rithm 1 boost the above success probability to 1−O(δ).

At a high level, our method follows the classic trick of
re-running an algorithm for multiple independent tri-
als and picking the best output. One naive idea to pick
the best output, is to sample a set of validation exam-
ples fromD and pick the w in {w1,−w1, . . . , wS ,−wS}
that has the lowest validation error. An application of
Hoeffding’s inequality shows that, setting the valida-
tion sample size to Õ

(
1
ϵ2

)
suffices to find a desired half-

space whose excess error at most ϵ. Together with the
labeling cost in the iterative non-convex optimization,

it yields a total label complexity of Õ
(
d( 1ϵ )

8−6α
3α−1 + 1

ϵ2

)
,

which is substantially suboptimal to our current label

complexity Õ
(
d( 1ϵ )

8−6α
3α−1

)
in Theorem 12, when α ≥ 5

6 .

Here, we design a specialized procedure that achieves
better label efficiency by re-utilizing our label-efficient
first-order stochastic gradient oracle Active-FO.

The idea of conducting the iterate selection by the gra-
dient norm instead of the validation error is largely

inspired by the two-phase RSG (2-RSG) in Ghadimi
and Lan (2013), where the analysis on the total num-
ber of first-order oracle calls is under the assumption
of sub-gaussian stochastic gradient. We show that the
output of Active-FO is sub-exponential (Lemma 25)
and re-analyze the oracle complexity.

We re-run Algorithm 2 independently for S times,
which ensures that the probability that no w in
{ws : s ∈ [S]} has ∥∇Lσ(w)∥ ≤ ρ is 2−Θ(S). The se-
lection step using the first-order stochastic gradient
oracle Active-FO (lines 6 to 11) is done as follows.
After we obtain one halfspace candidate ws in each
iteration, we call Active-FO M1 times and take the
average of all outputs, to obtain a good estimate ḡs of
the gradient of Lσ(ws); therefore, ∥ḡs∥ closely approx-
imates ∇Lσ(ws). After we collect gradient estimates
for all S candidate halfspaces, we pick the one with the
smallest gradient norm estimate ∥ḡs∥. We show that
our label-efficient iterate selection procedure (lines 3
to 11) enjoys the following performance guarantee:

Lemma 10. Let ρ, σ be defined as in line 2 of
Algorithm 1. Suppose w1, . . . , wS are such that
mini ∥∇Lσ(wi)∥ ≤ ρ, then after executing lines 6 to 11
of Algorithm 1, with

M1 = c
d

σ2ρ2
ln

S

δ

for some constant c, with probability at least 1 − δ/6,
w̃ satisfies

∥∇Lσ(w̃)∥ ≤ 2ρ.

Furthermore, after M1 calls to Active-FO, with prob-
ability at least 1− δ

6S , the total number of label queries

is at most T2 := Õ(d( 1ϵ )
4−2α
3α−1 ).

Lemma 10 shows that, if there exists w in
{ws : s ∈ [S]} such that ∥∇Lσ(w)∥ ≤ ρ (which is true
with high probability after we re-run Active-PSGD
independently for S times), then after executing lines 6
to 11, we have, with high probability, ∥∇Lσ(w̃)∥ ≤ 2ρ.

To achieve label efficiency in the selection procedure,
we prove in Lemma 25 that the stochastic gradients
output by Active-FO are sub-exponential, and we
apply a large-deviation bound of vector-valued sub-
exponential random variables (Lemma 28, which is
Theorem 2.1 in Juditsky and Nemirovski (2008)) to
prove the performance guarantee of this iterate selec-
tion in Lemma 10. In this way, the labeling cost in the
iterate selection step is of lower order than that in the
iterative non-convex optimization.

4.3 Label-efficient final iterate selection
(lines 12 to 13)

Up to now, combining Lemmas 5 and 10, we have suc-
cessfully shown, with high probability, either w̃ or −w̃
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has an excess error at most ϵ. Our last task is to pick
the right one out of the pair. To this end, we draw
M2 = Õ(1) iid labeled examples from D, and pick the
one from {±w̃} that has a lower empirical error on
this sample set. We have the following lemma on the
performance guarantee on the final iterate selection
phase:

Lemma 11. Suppose w̃ satisfies that ∃w ∈ {±w̃},
such that err(w) − err(w∗) ≤ ϵ with ϵ ≤ 1

2α(
1
A )

1−α
α ,

then after executing lines 12 to 13 of Algorithm 1,

where M2 = O
(
A

2−2α
α

1
α2 ln

1
δ

)
, we have that with

probability at least 1− δ/3, ŵ satisfies

err(ŵ)− err(w∗) ≤ ϵ

Lemma 11 shows that, if the target error ϵ satisfies ϵ ≤
1
2α(

1
A )

1−α
α (a constant), then a constant number M2 of

labeled examples suffice to find, with high probability,
the one with desired excess error guarantee.

5 PERFORMANCE GUARANTEES

Theorem 12. Suppose D satisfies (A,α)-Tsybakov
noise condition with α ∈ ( 13 , 1] and the marginal
distribution DX is well-behaved. For any ϵ ≤
min(Θ̃(A), 1

2α(
1
A )

1−α
α ), and δ ∈ (0, 1), with probability

at least 1− δ, Algorithm 1 outputs a halfspace ŵ, such
that err(ŵ)−err(w∗) ≤ ϵ. In addition, its total number

of label queries is at most Õ
(
dA

9−9α
3α−1 ( 1ϵ )

8−6α
3α−1

)
.

We compare this label complexity to the state-of-the-
art sample/label complexities of passive learning (Di-
akonikolas et al., 2020b) and active learning (Zhang
and Li, 2021) existing in the literature. Our work
achieves a linear dependency on the dimensionality d,
and an explicit exponent on the target error ϵ; how-
ever, in the sample complexity (dϵ )

O( 1
α ) of the pas-

sive algorithm from Diakonikolas et al. (2020b), the
constant hidden in the Big-Oh notation in the expo-
nent is not clear. Compared to the first and only ef-
ficient active algorithm existing in this setting (Zhang
and Li, 2021), our algorithm expands the feasibility
of the noise parameter α from ( 12 , 1] to ( 13 , 1]; when

α ∈ [ 12 , 0.566), (
1
ϵ )

8−6α
3α−1 < ( 1ϵ )

2−2α
2α−1 . So our algorithm

outperforms Zhang and Li (2021) when α ∈ [ 13 , 0.566).

Proof. Recall that at the beginning of Algorithm 1, we

set the parameters σ = Θ

(
θ

2α
3α−1

0

)
, ρ = Θ

(
θ

2(1−α)
3α−1

0

)
,

where θ0 = O
(

1
ln2 1

ϵ

ϵ
2

)
. Given our assumption that

ϵ ≤ Θ̃(A), we have θ0 ≤ Θ(A). Also, recall from

Lemma 5 and Lemma 10 that T1 = Õ
(
d( 1ϵ )

8−6α
3α−1

)
,

T2 = Õ(d( 1ϵ )
4−2α
3α−1 ). We define the following events of

interest,

E1 =

{(
min
s∈[S]

∥∇Lσ(ws)∥ ≤ ρ

)
∧
(
the total number

of label queries at line 4 is at most S · T1

)}

E2 =

{(
min
s∈[S]

∥∇Lσ(ws)∥ ≤ ρ =⇒ ∥∇Lσ(w̃)∥ ≤ 2ρ

)
∧
(
the total number of label queries at line 7

is at most S · T2

)}

E3 =

{(
∃w ∈ {±w̃} s.t. err(w)− err(w∗) ≤ ϵ =⇒

err(ŵ)− err(w∗) ≤ ϵ

)
∧
(
line 12 queries M2 labels

)}

By Lemma 5, for each s ∈ [S], with probability at
least 1

2 , ∥∇Lσ(ws)∥ ≤ ρ. Furthermore, during N it-

erations, with probability at least 1 − δ
6S the total

number of label queries is at most T1. Since Algo-
rithm 2 is executed for S = log 6

δ times, and each run
is independent, we have that with probability at least
1 − δ

6 , mins∈[S] ∥∇Lσ(ws)∥ ≤ ρ. Applying a union
bound on the total number of label queries in S runs
of Algorithm 2, we have that with probability at least
1− δ

6 , the total number of label queries at line 4 is at
most S · T1. Applying again a union bound, we have
P(E1) ≥ 1− δ/3.

By Lemma 10, together with a union bound on the
total number of label queries in S iterations of line 7,
we have P(E2) ≥ 1 − δ/3. By Lemma 11, P(E3) ≥
1 − δ/3. Define E = E1 ∩ E2 ∩ E3. By union bound,
P(E) ≥ 1 − δ. For the rest of the proof, we condition
on event E happening.

Since both E1 and E2 happen, ∥∇Lσ(w̃)∥ ≤ 2ρ. Tak-
ing the contrapositive of Lemma 4, we have that if
∥∇Lσ(w̃)∥ ≤ 2ρ, then min {θ(w̃, w∗), θ(−w̃, w∗)} ≤
θ0.

Applying Lemma 29 with γ = ϵ
2 , we have that if a half-

space w satisfies θ(w,w∗) ≤ θ0, then Px∼DX
(hw(x) ̸=

hw∗(x)) ≤ ϵ, which, in turn, implies such that
err(w)−err(w∗) ≤ ϵ. Hence ∃w ∈ {±w̃} s.t. err(w)−
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err(w∗) ≤ ϵ. By the definition of E3, err(ŵ) −
err(w∗) ≤ ϵ. Therefore, we conclude that with proba-
bility at least 1− δ, the final output ŵ of Algorithm 1
satisfies err(ŵ)− err(w∗) ≤ ϵ.

The total label complexity of Algorithm 1 is at most

S · T1 + S · T2 +M2

=S · Õ
(
d(

1

ϵ
)

8−6α
3α−1

)
+ S · Õ

(
d(

1

ϵ
)

4−2α
3α−1

)
+O(ln

6

δ
)

=Õ

(
d(

1

ϵ
)

8−6α
3α−1

)

6 CONCLUSIONS AND OPEN
PROBLEMS

In this work, we provide a computationally and
label efficient active learning algorithm that suc-
ceeds in learning a halfspace under (A,α)-Tsybakov
noise condition under well-behaved unlabeled distri-
butions. Our algorithm achieves a label complexity

of Õ(d( 1ϵ )
8−6α
3α−1 ), under the assumption that the noise

parameter α ∈ ( 13 , 1].

While our algorithm narrows down the gap between
the label complexities of the previously known pas-
sive or active efficient algorithms (Diakonikolas et al.,
2020b; Zhang and Li, 2021) and the information-
theoretic lower bound, it remains an outstanding open
problem to obtain an efficient active learning algorithm
that can match the label complexity of inefficient ac-
tive algorithms Õ(d( 1ϵ )

2−2α) or information-theoretic

lower bound Ω̃(( 1ϵ )
2−2α) for all α ∈ (0, 1].
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A Additional Related Work

Efficient learning halfspaces under benign noise. Besides Tsybakov noise condition, several other benign
noise models have been proposed and studied in the learning theory literature. Among these, the simplest
one is Random Classification Noise (RCN) (Angluin and Laird, 1988), where at each x, the label is flipped
independently with the same probability. It is known that halfspaces are efficiently learnable under RCN (Blum
et al., 1998).

In addition to RCN, several more realistic noise models are developed and studied, with the most distinguished
one being the Massart noise condition, where at each unlabeled datapoint x, the label flipping probability is
at most η. Several eminent works in learning theory literature are dedicated to developing efficient learning
halfspace algorithms under Massart noise condition (Awasthi et al., 2015, 2016; Yan and Zhang, 2017; Zhang,
2018; Zhang et al., 2020; Diakonikolas et al., 2019, 2020c; Zhang and Li, 2021). To name a few, Awasthi
et al. (2015) is among the earliest works in this thread, where an efficient algorithm is developed under the
assumption that the unlabeled distribution is uniform distribution. However, this analysis is subject to the
restriction that the Massart noise parameter is such that η < 3× 10−6. Since then, subsequent works have made
major improvements in label complexity in efficient learning halfspaces under Massart noise. Zhang et al. (2020)

develops an efficient active learning algorithm with a label complexity of O
(

d
(1−2η)4 polylog(

1
ϵ )
)
, assuming the

unlabeled data distribution is a log-concave distribution. Finally, the label complexity gap compared to the
information-theoretic result is closed in Zhang and Li (2021), whose algorithm achieves a label complexity of

O
(

d
(1−2η)2 polylog(

1
ϵ )
)
under the assumption of well-behaved unlabeled distribution.

Besides distribution-specific setting under Massart noise condition, see more in Awasthi et al. (2016); Yan and
Zhang (2017); Diakonikolas et al. (2020c), there are recent breakthroughs in distribution-free setting (Diakoniko-
las et al., 2019; Chen et al., 2020). Specifically, Diakonikolas et al. (2019) provides an efficient algorithm that
can improperly learn a halfspace with a misclassification error guarantee η + ϵ in poly(d, 1

ϵ ) time. This work
addresses a long-standing open problem of whether there exists a distribution-free weak learner in the presence
of Massart noise. Chen et al. (2020) strengthens this result by providing an efficient proper halfspace learning
algorithm that can achieve the same misclassification error guarantee, with an improved bound on the sample
complexity. It also provides a black-box “distillation” procedure that converts any classifier to a proper halfspace
without losing prediction accuracy.

A line of work studies selective sampling (e.g. Dekel et al., 2012; Wang et al., 2021; Gentile et al., 2022) under
parametric noise models; specifically, they assume P [y = 1 | x] = σ(⟨w∗, x⟩) for some function σ. This assumption
is arguably strong, in that it essentially assumes that all examples at the same distance to the Bayes optimal
halfspace have the same label-flipping probability. In contrast, our work does not make such assumptions, making
the learning problem much more challenging.

Importance weighted sampling for stochastic gradient methods. At a high level, this work adopts the
algorithmic idea of importance-weighted sampling for stochastic gradient methods. Gopal (2016) proposes a new
mechanism for sampling training instances for stochastic gradient descent methods. Specifically, the sampling
weights are proportional to the L2 norm of the gradient. They claim this is the way to minimize the total variance
of the descent direction. Zhao and Zhang (2015) also uses importance sampling with weight proportional to the
norm of the stochastic gradient, to minimize the variance of the stochastic gradient. Needell et al. (2014) shows
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that in SGD for smooth and strongly convex objectives, re-weighting the sampling distribution improves the rate
of convergence, where it proposes to use the weight proportional to the smoothness parameter.

Negative results on efficient learning halfspace with noise. Toward designing efficient algorithms in
learning halfspaces, there have been several notable trials in understanding the possibility via convex surrogate
loss minimization. Unfortunately, it has been found and discussed that such a natural and intuitive approach is
unable to achieve the PAC learning guarantee.

Specifically, Diakonikolas et al. (2019) constructs discrete distribution supported on two points and argues that,
for any decreasing convex loss function, the minimizer of expected loss has a misclassification error lower bound,
even with a margin assumption. The arguments in Awasthi et al. (2015) and Awasthi et al. (2016) assume
uniform distribution on the unit R2 ball, where Awasthi et al. (2015) shows that the excess error of the hinge
loss minimizer will not get arbitrarily small even with unlimited sample complexity under Massart noise condition,
and further, Awasthi et al. (2016) proves that convex surrogate loss minimization does not work under Massart
noise condition, for a family of surrogate losses, including most commonly used loss functions.

Although hardness results have been discovered for convex surrogate loss minimization to learn halfspaces with
excess error arbitrarily close to the error of Bayes optimal halfspace opt, such approaches can achieve “approx-
imate” learning halfspaces. Specifically, Frei et al. (2021) shows that under log-concave distribution, convex

surrogate loss minimization achieves a population risk of Õ(opt
1
2 ), and Ji et al. (2022) provides a matching lower

bound by constructing a well-behaved distribution where the minimizer of logistic loss achieves a misclassification
error of Ω(opt

1
2 ).

Besides the above algorithm-specific hardness results, algorithm-independent results for learning halfspaces with
noise have also been discovered. While in the realizable setting, the hypothesis class of halfspaces is efficiently
learnable (Maass and Turán, 1994), with the presence of noise, the learning problem is tremendously more
challenging. In the agnostic model, where the error of the Bayes classifier is known, and the corruption can
be adversarial, learning halfspaces is known to be computationally hard (Guruswami and Raghavendra, 2009;
Daniely, 2016). Recent results (Diakonikolas et al., 2020a; Goel et al., 2020) establish the computational hardness
in agnostically learning halfspaces by showing Statistical Query lower bounds of dpoly(1/ϵ), even under the Gaus-
sian distribution. With Massart noise, Diakonikolas and Kane (2022) shows a distribution free lower bound that
no efficient Statistical Query algorithm can achieve an error better than Ω(η). This result is later strengthened
in Diakonikolas et al. (2022) where it proves that assuming the subexponential time hardness of the Learning
with Errors (LWE) problem, no efficient algorithm can achieve an error better than Ω(η) in the same setting.
These hardness results motivate us to define and study benign noise and unlabeled distribution conditions for
efficient learning halfspace.

B Additional Notations

Throughout the Appendix Section, we use Õ(·), Θ̃(·) to hide factors of the form polylog(d, 1
ϵ ) and poly(R,U,L).

C Key lemmas

Lemma 13 (Restatement of Lemma 5). Let the expected loss function Lσ(w) = Eϕσ

(
y ⟨w,x⟩

∥w∥

)
. If Algorithm 2

receives inputs N = Õ( d
σ2ρ4 ), β = Θ̃(ρ

2σ2

d ), then its output wR is a unit vector and satisfies that, with probability

at least 1
2 ,

∥∇Lσ(wR)∥ ≤ ρ

Furthermore, during N iterations, with probability at least 1 − δ
6S , the total number of label queries is at most

Õ( d
σρ4 +

√
d

σ2ρ4 ln
6S
δ ).

Proof. Let L = Õ( 1σ ) be such that Lσ is L-smooth; let B2 = Õ( dσ ) be such that E(x,y)∼D

[
∥gw∥2

]
≤ B2; the

existence of L and B is guaranteed by Lemma 24 and item 3 of Lemma 9.

Define a filtration {Fi}Ni=0, where Fi denotes the σ-field σ(g1, g2, . . . , gi). We use Ei[·] to denote the conditional
expectation with respect to Fi.
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Denote by W =
{
w ∈ Rd : ∥w∥ ≥ 1

}
. Note that vi−wi−1 = −βgi. Line 6 of Algorithm 2 ensures that ∥wi∥ = 1,

for all i = 1, . . . , N . Further, by item 1 of Lemma 9, gi is perpendicular to wi−1, hence ∥vi∥2 = ∥wi−1∥2+∥βgi∥2 ≥
1, that is, vi ∈ W. For any t ∈ [0, 1], ∥wi−1 + t(vi − wi−1)∥2 = ∥wi−1∥2 + ∥tβgi∥2 ≥ 1. Therefore, the line
segment between vi and wi−1 lies in W.

Hence we have for i = 1, 2, . . . , N ,

Lσ(vi)− Lσ(wi−1) =

∫ 1

0

⟨∇Lσ (wi−1 + t(vi − wi−1)) , (vi − wi−1)⟩dt

= ⟨∇Lσ (wi−1) , (vi − wi−1)⟩+
∫ 1

0

⟨∇Lσ (wi−1 + t(vi − wi−1))−∇Lσ (wi−1) , (vi − wi−1)⟩dt

≤− β ⟨∇Lσ (wi−1) , gi⟩+
∫ 1

0

Lt∥vi − wi−1∥2 dt

=− β ⟨∇Lσ (wi−1) , gi⟩+
β2L

2
∥gi∥2

where the first equality is by Newton-Leibniz formula, the inequality is by Cauchy-Schwarz inequality and
the following reasoning: by multivariable mean value theorem, ∇Lσ (wi−1 + t(vi − wi−1)) − ∇Lσ (wi−1) =
Mt(vi − wi−1), where M is the Hessian matrix of Lσ evaluated at some point on the line segment between
vi and wi−1. Since the line segment between vi and wi−1 lies in W, together with Lemma 24, we have
∥∇Lσ (wi−1 + t(vi − wi−1))−∇Lσ (wi−1) ∥ = ∥Mt(vi −wi−1)∥ ≤ ∥M∥op∥t(vi −wi−1)∥ ≤ Lt∥vi −wi−1∥, for all
i ∈ [N ].

Since ϕσ is invariant under positive scaling: for any w ̸= 0, α > 0, ϕσ(αw) = ϕσ(w), we have Lσ is invariant
under positive scaling as well. Hence Lσ(wi) = Lσ(

vi
∥vi∥2

) = Lσ(vi). Therefore, for all i = 1, 2, . . . , N ,

Lσ(wi)− Lσ(wi−1) ≤ −β ⟨∇Lσ (wi−1) , gi⟩+
β2L

2
∥gi∥2 (2)

Summing up the above inequalities through i = 1, . . . , N , we have

N∑
i=1

β ⟨∇Lσ (wi−1) , gi⟩ ≤ Lσ(w0)− Lσ(wN ) +
β2L

2

N∑
i=1

∥gi∥2 ≤ 1 +
β2L

2

N∑
i=1

∥gi∥2 (3)

where the last inequality follows from 0 ≤ Lσ(w) ≤ 1,∀w ∈ Rd, and we have Lσ(w0)− Lσ(wn) ≤ 1.

Taking expectation on both sides, and by linearity of expectation, we have:

β

N∑
i=1

E [⟨∇Lσ (wi−1) , gi⟩] ≤ 1 +
β2L

2

N∑
i=1

E
[
∥gi∥2

]
.

For the left hand side, applying item 2 of Lemma 9 and the law of iterated expectation, we have that for all
i = 1, . . . , N ,

E [⟨∇Lσ (wi−1) , gi⟩] = E [Ei−1 ⟨∇Lσ (wi−1) , gi⟩] = E
[
∥∇Lσ (wi−1) ∥2

]
For the right hand side, applying item 3 of Lemma 9 and the law of iterated expectation, we have that for all
i = 1, . . . , N ,

E
[
∥gi∥2

]
= E

[
Ei−1∥gi∥2

]
≤ B2

Therefore, we have

βE

[
N∑
i=1

∥∇Lσ (wi−1) ∥2
]
≤ 1 +

β2L

2
NB2

Note that we are choosing R to be uniformly distributed on {0, . . . , N − 1}, hence by the law of iterated expec-
tation,

E
[
∥∇Lσ(wR)∥2

]
= E

[
E
[
∥∇Lσ(wR)∥2 | w1, . . . , wN−1

]]
= E

[∑N
i=1 ∥∇Lσ (wi−1) ∥2

N

]
≤ 1

βN

[
1 +

β2L

2
NB2

]
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By the definitions of β,N,B and L, the above inequality gives us

E
[
∥∇Lσ(wR)∥2

]
≤ ρ2

2

By Markov’s inequality, we have

P
[
∥∇F (wR)∥2 ≥ ρ2

]
≤ 1

2

That is, with probability at least 1
2 ,

∥∇F (wR)∥ ≤ ρ

Finally, by Lemma 18, with probability at least 1 − δ
6S , the total number of label queries after N calls to

Active-FO is at most Õ(σN +
√
N ln 6S

δ ) = Õ( d
σρ4 +

√
d

σ2ρ4 ln
6S
δ ).

Lemma 14 (Restatement of Lemma 10). Suppose w1, . . . , wS are such that mini ∥∇Lσ(wi)∥ ≤ ρ, then after
executing lines 6 to 11 of Algorithm 1, with

M1 = c
d

σ2ρ2
ln

S

δ

for some constant c, with probability at least 1− δ/6, w̃ satisfies

∥∇Lσ(w̃)∥ ≤ 2ρ

Furthermore, after M1 calls to Active-FO, with probability at least 1− δ
6S , the total number of label queries is

at most Õ( d
σρ2 ln

S
δ +

√
d

σ2ρ2 ln
S
δ ln 6S

δ ).

The algorithmic idea underlying lines 6 to 11 of Algorithm 1 for iterate selection is largely inspired by Corollary
2.5 in Ghadimi and Lan (2013). However, here we rely on the sub-exponential-ness of the stochastic gradient
outputted by Active-FO (See Lemma 25), whereas Corollary 2.5 in Ghadimi and Lan (2013) assumes sub-
gaussian stochastic gradient. We include the proof for completeness.

Proof. Recall from Algorithm 1 that ḡs =
1

M1

∑M1

i=1 ∥gs,i∥ and s∗ = argmins∈[S] ḡs. We have

∥ḡs∗∥ =min
s
∥ḡs∥

=min
s
∥∇Lσ(ws) + ḡs −∇Lσ(ws)∥

≤min
s

(∥∇Lσ(ws)∥+ ∥ḡs −∇Lσ(ws)∥)

≤min
s
∥∇Lσ(ws)∥+max

s
∥ḡs −∇Lσ(ws)∥ (4)

where the first inequality is by the triangle inequality, the second inequality is by the fact that mini(ai + bi) ≤
mini ai +maxi bi, Further,

∥∇Lσ(w̃)∥ =∥ḡs∗ +∇Lσ(w̃)− ḡs∗∥
≤∥ḡs∗∥+ ∥∇Lσ(w̃)− ḡs∗∥ (5)

where the inequality is by the triangle inequality.

Denote δs,i := gs,i−∇Lσ(ws), for s = 1, . . . , S, i = 1, . . . ,M1. We have ḡs−∇Lσ(ws) =
1

M1

∑M1

i=1 gs,i−∇Lσ(ws) =
1

M1

∑M1

i=1 δs,i, for all s = 1, . . . , S.

By Lemma 25, for any unit vector w, ∥gw∥ is sub-exponential with parameter K = Θ̃(
√
d

σ ). Together with
Proposition 2.7.1 in Vershynin (2018) on equivalent characterizations of sub-exponential random variables, we

have E
[
exp(∥gw∥

K ) | w
]
≤ exp(1) for any unit vector w.
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Applying Lemma 28, we have for any s = 1, . . . , S and λ > 0,

P

{
∥

M1∑
i=1

δs,i∥ ≥
√
2(
√
e+ λ)

√
M1K

}
≤ 2 exp

{
− 1

64
min

[
λ2, 16

√
M1λ

]}

Taking λ0 = max
{
8
√

ln 12S
δ , 4√

M1
ln 12S

δ

}
, we have for any s = 1, . . . , S

P
{
∥ḡs −∇Lσ(ws)∥ ≥

√
2(
√
e+ λ0)

1√
M1

K

}
= P

{
∥

M1∑
i=1

δs,i∥ ≥
√
2(
√
e+ λ0)

√
M1K

}
≤ δ

6S

Taking a union bound over s = 1, . . . , S, we have with probability at least 1− δ/6,

max
s=1,...,S

∥ḡs −∇Lσ(ws)∥ ≤
√
2(
√
e+ λ0)

1√
M1

K

In conjunction with Equations (4) and (5), and recall that M1 = c d
σ2ρ2 ln

S
δ for some large enough constant c,

we have with probability at least 1− δ/6, w̃ satisfies

∥∇Lσ(w̃)∥ ≤∥g(w̃)∥+ ∥∇Lσ(w̃)− g(w̃)∥
≤min

s
∥∇Lσ(ws)∥+max

s
∥g(ws)−∇Lσ(ws)∥+ ∥∇Lσ(w̃)− g(w̃)∥

≤ρ+ 2
√
2(
√
e+ λ0)

1√
M1

K

≤ρ+ 2
√
2(
√
e+ 8

√
ln

6S

δ
+

4√
M1

ln
6S

δ
)

1√
M1

K

≤2ρ

Lastly, by Lemma 18, with probability at least 1 − δ
6S , the total number of label queries after M1 calls to

Active-FO is at most Õ(σM1 +
√
M1 ln

6S
δ ) = Õ( d

σρ2 ln
S
δ +

√
d

σ2ρ2 ln
S
δ ln 6S

δ ).

Lemma 15 (Restatement of Lemma 11). Suppose w̃ satisfies that ∃w ∈ {±w̃}, such that err(w) − err(w∗) ≤ ϵ

with ϵ ≤ 1
2α(

1
A )

1−α
α , then after executing lines 12 to 13 of Algorithm 1, where M2 = O

(
( 2

α( 1
A )

1−α
α

)2 ln 6
δ

)
, we

have with probability at least 1− δ/3, ŵ satisfies

err(ŵ)− err(w∗) ≤ ϵ

Proof. From Lemma 27, we know that err(w∗) ≤ 1
2 − α( 1

A )
1−α
α , hence we have ∃w̄ ∈ {±w̃}, such that

err(w̄) ≤ err(w∗) + ϵ ≤ 1

2
− 1

2
α(

1

A
)

1−α
α

For any (x, y) and any w ∈ Rd, exactly one of {±w} will label (x, y) correctly. Thus for any w ∈ Rd, err(w) +
err(−w) = 1, and errS(w) + errS(−w) = 1. So we have

err(−w̄) ≥ 1

2
+

1

2
α(

1

A
)

1−α
α

By Hoeffding’s inequality, drawing M2 = O

(
( 2

α( 1
A )

1−α
α

)2 ln 6
δ

)
iid labeled examples from D as the validation set

S, we have that with probability at least 1− δ/3, |err(w)− errS(w)| ≤ 1
2α(

1
A )

1−α
α ,∀w ∈ {±w̃}.

This means that with probability at least 1 − δ/3, errS(w̄) < 1/2, which implies that ŵ = w̄, hence err(ŵ) −
err(w∗) ≤ ϵ.
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Lemma 16 (Restatement of Lemma 4). Let DX be a well-behaved distribution, and D satisfies (A,α)-TNC.

Recall that Lσ(w) = ED

[
ϕσ

(
y ⟨w,x⟩

∥w∥2

)]
where ϕσ is softmax loss. Let w be a unit vector such that θ(w,w∗) ∈

(θ, π − θ), where θ ≤ ( 14 )
3α−1

2(1−α) ( 128UcR2L )
1
2 = Θ(A). Then for σ = Θ

(
( 1
A )

1−α
3α−1 θ

2α
3α−1

)
, we have that ∥∇wLσ(w)∥2 ≥

Ω
(
( 1
A )

2(1−α)
3α−1 θ

2(1−α)
3α−1

)
.

Proof. With foresight, we choose σ =
(

1
768U ·R

2L(RL
A )

1−α
α

) α
3α−1

θ
2α

3α−1 = Θ
(
( 1
A )

1−α
3α−1 θ

2α
3α−1

)
. By our assump-

tion that θ ≤ 8A
RL · (

1
4 )

3α−1
2(1−α) ( 768UR2L )

1
2 = Θ(A),

σ ≤ 8A

RL
(
1

4
)

α
1−α . (6)

Without loss of generality, suppose w = (0, 1, 0, . . . , 0) and w∗ = (− sin θ, cos θ, 0, . . . , 0), we have

∥∇wLσ(w)∥2 =

∥∥∥∥∇ED

[
ϕσ

(
y
⟨w, x⟩
∥w∥2

)]∥∥∥∥
2

=

∥∥∥∥ED

[
ϕ′
σ

(
y
⟨w, x⟩
∥w∥2

)
y

(
x

∥w∥2
− ⟨w, x⟩w
∥w∥32

)]∥∥∥∥
2

=

∥∥∥∥Ex

[
ϕ′
σ(x2)(1− 2η(x)) sign(⟨w∗, x⟩)

(
x

∥w∥2
− ⟨w, x⟩w
∥w∥32

)]∥∥∥∥
2

≥ |Ex [ϕ
′
σ(x2)(1− 2η(x)) sign(⟨w∗, x⟩)x1]| (7)

where the first equality is by taking the gradient of Lσ(w) = ED

[
ϕσ

(
y ⟨w,x⟩

∥w∥2

)]
, the second equality is by

∇ϕσ

(
y ⟨w,x⟩

∥w∥2

)
= ϕ′

σ

(
y ⟨w,x⟩

∥w∥2

)
y
(

x
∥w∥2

− ⟨w,x⟩w
∥w∥3

2

)
, the third inequality is by noting that ⟨w,x⟩

∥w∥2
= x2 and ϕ′

σ(t) =

ϕ′
σ(−t), and E [y | x] = (1−2η(x)) sign(⟨w∗, x⟩), and the last inequality is because x

∥w∥2
− ⟨w,x⟩w

∥w∥3
2

= (x1, 0, x3, . . .).

Denote by G :=
{
x ∈ Rd : ϕ′

σ(x2)(1− 2η(x)) sign(⟨w∗, x⟩)x1 ≥ 0
}
=
{
x ∈ Rd : sign(⟨w∗, x⟩)x1 ≤ 0

}
, and GC =

Rd \G, then we have,

∥∇wLσ(w)∥2 ≥ |Ex [ϕ
′
σ(x2)(1− 2η(x)) sign(⟨w∗, x⟩)x1]|

=
∣∣Ex

[
ϕ′
σ(x2)(1− 2η(x)) sign(⟨w∗, x⟩)x1

(
1(x ∈ G) + 1(x ∈ GC)

)]∣∣
≥Ex [|ϕ′

σ(x2)| (1− 2η(x))|x1|1(x ∈ G)]− Ex

[
|ϕ′

σ(x2)| (1− 2η(x))|x1|1(x ∈ GC)
]

=Ex [|ϕ′
σ(x2)| (1− 2η(x))|x1|]− 2Ex

[
|ϕ′

σ(x2)| (1− 2η(x))|x1|1(x ∈ GC)
]

(8)

where the first inequality is from Equation (7), the equalities are because 1(x ∈ G) + 1(x ∈ GC) = 1, for all
x ∈ Rd, the last inequality is by the triangle inequality.

We lower bound Ex [|ϕ′
σ(x2)| (1− 2η(x))|x1|] as follows.

Define R1 =
{
x ∈ Rd : x1 ∈ [R4 ,

R
2 ], x2 ∈ [0, σ]

}
, we lower bound Px(x ∈ R1) as follows. We project x onto the

2-dimensional subspace V spanned by {e1, e2}; define x̃ to be the coordinate of its projection, and let R̃1 be the
projection of R1 onto V . Denote by D̃X the distribution of x̃, and denote by its probability density function pV .
Since DX is well-behaved, we have

Px(x ∈ R1) = Px̃∼D̃X
(x̃ ∈ R̃1) =

∫
R̃1

pV (x̃)dx̃ ≥
R

4
σL

Let t = 2(RσL
8A )

1−α
α ; with this choice of t, R

8 σL ≥ A( t2 )
α

1−α . Also note that by Eq. (6), t ≤ 1
2 . We obtain the
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following,

Ex [|ϕ′
σ(x2)| (1− 2η(x))|x1|] ≥Ex [|ϕ′

σ(x2)| (1− 2η(x))|x1|1(x ∈ R1)]

≥ 1

6σ
· t · E [1(1− 2η(x) ≥ t)|x1|1(x ∈ R1)]

≥ 1

6σ
· tR

4
· E [1(1− 2η(x) ≥ t)1(x ∈ R1)]

≥ 1

6σ
· tR

4
· [P(x ∈ R1)− P(1− 2η(x) ≤ t)]

≥ 1

6σ
· tR

4
·
[
P(x ∈ R1)−A(

t

2
)

α
1−α

]
≥ 1

6σ
· tR

4
·
[
R

4
σL− R

8
σL

]
=

1

192
c ·R2Lt

=
1

192
c ·R2L · 2(RσL

8A
)

1−α
α (9)

where the first inequality is since R1 ⊂ Rd, the second inequality is by noting that when |x2| ≤ σ, |ϕ′
σ(x2)| ≥

1
σ

e
(1+e)2 ≥

1
6σ . The third is because for all x ∈ R1, |x1| ≥ R

4 , the fourth is by basic logic operation, the fifth

is by the definition of TNC and t ≤ 1
2 . The sixth is by Px(x ∈ R1) ≥ R

4 σL and R
8 σL ≥ A( t2 )

α
1−α . The other

inequalities and equalities are all by algebra.

Next, we upper bound Ex

[
|ϕ′

σ(x2)| (1− 2η(x))|x1|1(x ∈ GC)
]
.

Let f(r cosφ, r sinφ) denote the density function after projection on the 2-d subspace spanned by {e1, e2},

Ex

[
|ϕ′

σ(x2)| (1− 2η(x))|x1|1(x ∈ GC)
]
≤Ex

[
|ϕ′

σ(x2)| |x1|1(x ∈ GC)
]

=Ex

[
1

σ

e
|x2|
σ

(1 + e
|x2|
σ )2
|x1|1(x ∈ GC)

]

=Ex

[
1

σ

e−
|x2|
σ

(1 + e−
|x2|
σ )2
|x1|1(x ∈ GC)

]

≤Ex

[
1

σ
e−

|x2|
σ |x1|1(x ∈ GC)

]
=
2

σ

∫ ∞

0

∫ π
2

θ

f(r cosφ, r sinφ)r2 cosφe−
r sinφ

σ dφd r

≤ 2

σ
U

∫ ∞

0

∫ π
2

θ

r2 cosφe−
r sinφ

σ dφd r

=2U
σ2

tan2 θ

≤2U σ2

θ2
(10)

where the first inequality is by η(x) ≥ 0, the second equality uses ϕ′
σ(t) = − 1

σ
e

t
σ

(1+e
t
σ )2

, the third equality is

by algebra, the fourth inequality is because (1 + e−
|x2|
σ )2 ≥ 1, the fifth equality is writing the expectation

as the integral in the polar coordinate, the sixth inequality is by the definition of well-behaved distribution:
f(r cosφ, r sinφ) ≤ U , for all r ≥ 0, φ ∈ [0, 2π], the next equality is by algebra, the last inequality is by the
elementary fact that tan θ ≥ θ, for all θ ∈ [0, π/2].

Therefore, putting together Equations (8), (9) and (10), we obtain

∥∇wLσ(w)∥2 ≥
1

192
·R2L · 2(RσL

8A
)

1−α
α − 4U

σ2

θ2
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Recall the choice that σ =
(

1
768U ·R

2L(RL
A )

1−α
α

) α
3α−1

θ
2α

3α−1 = Θ
(
( 1
A )

1−α
3α−1 θ

2α
3α−1

)
, then we obtain

∥∇wLσ(w)∥2 ≥ 4U

(
1

768U
·R2L(

RL

A
)

1−α
α

) 2α
3α−1

θ
2−2α
3α−1 = Ω

(
(
1

A
)

2(1−α)
3α−1 θ

2(1−α)
3α−1

)

Lemma 17 (Restatement of Lemma 9). Let gw be the random output of Active-FO(w). We have, for any unit
vector w:

1. gw is perpendicular to w;

2. gw is an unbiased estimator of ∇Lσ(w) : E [gw] = ∇Lσ(w);

3. E
[
∥gw∥2

]
≤ Õ( dσ );

4. The expected number of label queries per call to Active-FO is Õ(σ).

Proof. Recall that q(w, x) = σ
∣∣∣ϕ′

σ(
〈

w
∥w∥ , x

〉
)
∣∣∣, and h(w, x, y) = − 1

σy
(

x
∥w∥2

− ⟨w,x⟩w
∥w∥3

2

)
.

We prove the first term as follows. Note that gw can take the value of 0 or h(w, x, y). If gw = 0, then obviously,
⟨gw, w⟩ = 0. If gw = h(w, x, y), we have

⟨h(w, x, y), w⟩ = − 1

σ

〈
x

∥w∥2
− ⟨w, x⟩w
∥w∥32

, w

〉
= − 1

σ

(
⟨x,w⟩
∥w∥2

− ⟨x,w⟩ ∥w∥
2

∥w∥32

)
= 0.

Hence we conclude that in both cases, gw is perpendicular to w.

For the second item, let w ∈ Rd, we have

E [gw] =E(x,y)∼D,Z∼Bernoulli(q(w,x)) [h(w, x, y)Z]

=E(x,y)∼D [h(w, x, y)q(w, x)]

=E(x,y)∼D

[
− 1

σ
y

(
x

∥w∥2
− ⟨w, x⟩w
∥w∥32

)
σ

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣]
=∇Lσ(w)

where the first equality is by the definition of Active-FO, the second equality uses the tower rule, the third
equality plugs in the value of h(w, x, y) and q(w, x), the last equality is by the definition of Lσ(w).

Now we prove the third item.

1. If σ < 1
e .



Efficient Active Learning Halfspaces with Tsybakov Noise: A Non-convex Optimization Approach

Let C below be from Lemma 19. We have for any w such that ∥w∥ ≥ 1, for any p, q ≥ 1 such that 1
p +

1
q = 1,

E
[
∥gw∥2

]
=E(x,y)∼D,Z∼Bernoulli(q(w,x))

[
∥h(w, x, y)Z∥2

]
=E(x,y)∼D

[
q(w, x)∥h(w, x, y)∥22

]
=E(x,y)∼D

[
σ

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣ 1

σ2
∥ x

∥w∥2
− ⟨w, x⟩w
∥w∥32

∥2
]

=
1

σ
E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣ ∥ x

∥w∥2
− ⟨w, x⟩w
∥w∥32

∥2

≤ 1

σ
E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣ ∥x∥2
≤ 1

σ

(
E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣p)
1
p (

E(x,y)∼D∥x∥2q
) 1

q

≤ 1

σ

(
C

1

σp−1
ln

1

σ

) 1
p (

Γ(2q + 1)eβ2qdq
) 1

q

=
1

σ
Õ((

1

σ
)1−

1
p · q2d)

=
1

σ
Õ((

1

σ
)

1
q · q2d)

where the first equality is by the definition of gw in Algorithm 3, the second equality uses the tower rule,
the third equality is by the definition of q(w, x) and h(w, x, y), the fourth equality is by algebra, the fifth
inequality is because for all x ∈ Rd,

∥ x

∥w∥2
− ⟨w, x⟩w
∥w∥32

∥2 ≤ ∥ x

∥w∥2
∥2 ≤ ∥x∥2

The sixth inequality is by Holder’s inequality. The seventh inequality is by Lemmas 19 and 20. The eighth
equality is by Lemma 30. The ninth equality uses that 1

p + 1
q = 1.

Choosing q = ln 1
σ , we have q > 1 since σ < 1

e .

we have

E(x,y)∼D

[
∥gw∥2

]
≤ 1

σ
Õ((

1

σ
)

1

ln 1
σ · (ln 1

σ
)2d) =

1

σ
Õ(exp(ln

1

σ
· 1

ln 1
σ

) · (ln 1

σ
)2d) = Õ(

d

σ
)

where the last two equalities are by algebra.

2. If σ ≥ 1
e . Then we can proceed as follows,

E
[
∥gw∥2

]
=E(x,y)∼D,Z∼Bernoulli(q(w,x))

[
∥h(w, x, y)Z∥2

]
=E(x,y)∼D

[
q(w, x)∥h(w, x, y)∥22

]
=E(x,y)∼D

[
σ

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣ 1

σ2
∥ x

∥w∥2
− ⟨w, x⟩w
∥w∥32

∥2
]

=
1

σ
E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣ ∥ x

∥w∥2
− ⟨w, x⟩w
∥w∥32

∥2

≤ 1

σ
E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣ ∥x∥2
≤ 1

σ2
E(x,y)∼D∥x∥2

≤ 1

σ2
O(d)

=O(d)

where the sixth inequality is because |ϕ′
σ(t)| ≤ 1

σ , for all t ∈ R, the seventh inequality uses Lemma 20 with
q = 2, the eighth inequality uses σ ≥ 1

e .
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Lastly, we prove the fourth item. We have,

E(x,y)∼D,Z∼Bernoulli(q(w,x)) [Z] = E(x,y)∼D [q(w, x)] = σE(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣ ≤ σC ln
1

σ
= Õ(σ)

where the first equality uses the tower rule, the second equality uses the definition of q(w, x), the inequality is
by applying Lemma 19 with p = 1.

Lemma 18. With probability at least 1− δ, the total number of label queries after T calls to Active-FO is at

most Õ(σT +
√
T ln 1

δ ).

Proof. Let Zi be the query indicator the i-th time Active-FO is called. Define a filtration {Gi}Ni=0, where Gi
denotes the σ-field σ(w1, Z1, w2, Z2, . . . , wi, Zi). In this proof, We use Ei[·] to denote the conditional expectation
with respect to Gi.

Let Mi =
∑i

j=1 Zj − E [Zj | Gj−1]. It can be seen that {Mi}Ti=1 is a martingale and |Mi −Mi−1| ≤ 1. Applying
Azuma’s inequality, we have that with probability at least 1− δ,

MT =

T∑
j=1

Zj −
T∑

j=1

E [Zj | Gj−1] ≤
√

2T ln
1

δ
.

In addition, by item 4 of Lemma 9, E [Zj | Gj−1] = Õ(σ) for all j ∈ {1, . . . , T}. Combining with the above
inequality, we conclude that

T∑
j=1

Zj ≤
T∑

j=1

E [Zj | Gj−1] +

√
2T ln

1

δ
≤ Õ(σT +

√
T ln

1

δ
).

D Auxiliary lemmas

Lemma 19. Let DX be a well-behaved distribution, then there exists a constant C, such that for any w such
that ∥w∥ ≥ 1, and any p ≥ 1,

Ex∼DX

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣p ≤ C
1

σp−1
ln

1

σ

Proof. For k ∈ {0} ∪ N, denote by Rk =
{
x ∈ Rd :

∣∣∣〈 w
∥w∥ , x

〉∣∣∣ ∈ (kσ, (k + 1)σ)
}
, then we have

Ex∼DX

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣p =

∞∑
k=0

Ex∼DX

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣p 1(x ∈ Rk)

≤
∞∑
k=0

(
1

σ

ek

(1 + ek)2

)p

P(x ∈ Rk)

≤ 1

σp
4σUβ ln

2

σUβ

∞∑
k=0

(
ek

(1 + ek)2

)p

=
1

σp−1
4Uβ ln

2

σUβ

∞∑
k=0

(
ek

(1 + ek)2

)p

≤C 1

σp−1
ln

1

σ
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where the first equality is by the partition of Rd, namely Rd = ∪∞k=0Rk. The second inequality is because for

k ∈ {0} ∪ N, if |t| ∈ (kσ, (k + 1)σ), |ϕ′
σ(t)| =

∣∣∣∣ 1σ e
t
σ

(1+e
t
σ )2

∣∣∣∣ ≤ 1
σ

ek

(1+ek)2
. The third inequality is by Lemma 22. The

constant C in the fourth equality exists, because

ek+1

(1+ek+1)2

ek

(1+ek)2

= e
(1 + ek)2

(1 + ek+1)2
≤ e

(1 + e0)2

(1 + e1)2
< 1,∀k = 0, 1, 2, . . .

this means
{

ek

(1+ek)2
: k = 0, 1, 2, . . .

}
is decaying faster than a convergent power series, and thus this sequence

is also summable. For all p ≥ 1,
(

ek

(1+ek)2

)p
≤ ek

(1+ek)2
, so

∑∞
k=0

(
ek

(1+ek)2

)p
≤
∑∞

k=0
ek

(1+ek)2
.

Lemma 20. Let DX be a well-behaved distribution, then for all q ≥ 2, we have Ex∼DX
∥x∥q ≤ Γ(q + 1)eβqd

q
2 .

Proof. By Holder’s inequality, with p′ = q
2 , q

′ = q
q−2 ,

d∑
i=1

x2
i =

d∑
i=1

x2
i · 1 ≤

(
d∑

i=1

|xi|q
) 2

q
(

d∑
i=1

1

) q−2
q

=

(
d∑

i=1

|xi|q
) 2

q

d
q−2
q

Hence

∥x∥q =

(
d∑

i=1

x2
i

) q
2

≤

(
d∑

i=1

|xi|q
)
d

q−2
2

Ex∼DX
∥x∥q ≤ Ex∼DX

(
d∑

i=1

|xi|q
)
d

q−2
2 = d

q−2
2

d∑
i=1

E|xi|q

For all i ∈ [d] , q ≥ 2,

E|xi|q =

∫ ∞

0

P(|xi|q > t) d t =

∫ ∞

0

P(|xi| > t
1
q ) d t ≤

∫ ∞

0

exp(1− t
1
q /β) d t = Γ(q + 1)eβq

where the first equality computes the expectation by integrating over the tail probability, the inequality is by
the definition of well-behaved distribution, the last equality can be calculated by the definition of the Gamma

function: let x = t
1
q /β, then t = xqβq and d t = xq−1qβq dx, and∫ ∞

0

exp(1− t
1
q /β) d t = e

∫ ∞

0

e−xxq−1qβq dx = eqβqΓ(q) = eβqΓ(q + 1)

Hence Ex∼DX
∥x∥q ≤ Γ(q + 1)eβqd

q
2 .

Claim 21. Let DX be a well-behaved distribution, then for any unit vector w and for all q ≥ 1, Ex∼DX
|⟨x, v⟩|q ≤

Γ(q + 1)eβq.

Proof.

E |⟨x, v⟩|q =

∫ ∞

0

P(|⟨x, v⟩|q > t) d t =

∫ ∞

0

P(|⟨x, v⟩| > t
1
q ) d t ≤

∫ ∞

0

exp(1− t
1
q /β) d t = Γ(q + 1)eβq

where the first equality computes the expectation by integrating over the tail probability, the inequality is by
the definition of well-behaved distribution, the other equalities and inequalities are by algebra.

Lemma 22. Let DX be a well-behaved distribution, then for any unit vector w, any b0 ≥ 0, b > 0, we have

Px∼DX
(b0 < | ⟨w, x⟩ | < b0 + b) ≤ 4bUβ ln

2

bUβ



Yinan Li, Chicheng Zhang

Proof. WLOG, assume w = (1, 0, . . . , 0), then b0 < | ⟨w, x⟩ | < b0 + b is equivalent to b0 < |x1| < b0 + b. For any
γ > 0, by the definition of well-behaved distribution,

P(b0 < |x1| < b0 + b) ≤ P(b0 < |x1| < b0 + b, |x2| ≤ β ln
e

γ
) + P(|x2| ≥ β ln

e

γ
) ≤ 4bUβ ln

e

γ
+ γ

where the first inequality is because {x : b0 < |x1| < b0 + b} ⊂
{
x : b0 < |x1| < b0 + b, |x2| ≤ β ln e

γ

}
∪{

x : |x2| ≥ β ln e
γ

}
, the second inequality is by the definition of well-behaved distribution.

Taking γ = 4bUβ, we have

Px∼DX
(b0 < | ⟨w, x⟩ | < b0 + b) ≤ 4bUβ

(
ln

e

4bUβ
+ 1

)
≤ 4bUβ ln

2

bUβ

Lemma 23. |ϕ′′
σ(t)| ≤ 1

σ |ϕ
′
σ(t)| for all t ∈ R.

Proof. Since ϕσ(t) =
1

1+e
t
σ
, by direct calculation, ϕ′

σ(t) = − 1
σ

e
t
σ

(1+e
t
σ )2

, and ϕ′′
σ(t) =

1
σ2

e
t
σ (e

t
σ −1)

(1+e
t
σ )3

. Hence for all

t ∈ R, we have

|ϕ′′
σ(t)| =

1

σ2

e
t
σ |e t

σ − 1|
(1 + e

t
σ )3

≤ 1

σ2

e
t
σ

(1 + e
t
σ )2

=
1

σ
|ϕ′

σ(t)|

where the inequality is by the elementary fact that |a− 1| ≤ a+ 1 for all a ≥ 0.

Lemma 24. For all w such that ∥w∥ ≥ 1, ∥∇2
wLσ(w)∥ = Õ( 1σ ).

Proof. Throughout this proof, we denote by ℓ(w, x) :=
〈

w
∥w∥ , x

〉
. We continue the calculation of ∇2Lσ(w) in

Lemma B.2 of Diakonikolas et al. (2020c) and refine the result therein.

∇2ϕσ(yℓ(w, x)) =ϕ′′
σ(yℓ(w, x))

(
xx⊤

∥w∥2
− ⟨w, x⟩
∥w∥4

wx⊤ − ⟨w, x⟩
∥w∥4

xw⊤ +
⟨w, x⟩2

∥w∥6
ww⊤

)
+ ϕ′

σ(yℓ(w, x))y∇2ℓ(w, x) (11)

Our goal here is to upper bound ∥E(x,y)∼D∇2ϕσ(yℓ(w, x))∥op. By triangle inequality, it suffices to upper bound
the operator norm of each individual term.

Let v ∈ Sd−1, C below be from Lemma 19.

For any w such that ∥w∥ ≥ 1, for any p, q ≥ 1 such that 1
p + 1

q = 1,∣∣∣∣〈v,E(x,y)∼D

[
ϕ′′
σ(yℓ(w, x))

xx⊤

∥w∥2

]
v

〉∣∣∣∣ ≤E(x,y)∼D

[
|ϕ′′

σ(yℓ(w, x))|
∥w∥2

⟨x, v⟩2
]

≤ 1

σ
E(x,y)∼D

[
|ϕ′

σ(ℓ(w, x))| ⟨x, v⟩
2
]

≤ 1

σ

[
E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣p]
1
p [

E(x,y)∼D |⟨x, v⟩|
2q
] 1

q

≤ 1

σ

(
C

1

σp−1
ln

1

σ

) 1
p (

Γ(2q + 1)eβ2q
) 1

q

=
1

σ
Õ((

1

σ
)1−

1
p · q2)

=
1

σ
Õ((

1

σ
)

1
q · q2)



Efficient Active Learning Halfspaces with Tsybakov Noise: A Non-convex Optimization Approach

where the first inequality is moving the absolute value inside the expectation, the second inequality uses Lemma 23
and ϕ′

σ is even, as well as ∥w∥ ≥ 1, the third inequality is by Holder’s inequality. The fourth inequality is by
Lemmas 19 and Claim 21. The fifth equality is by Lemma 30. The sixth equality uses that 1

p + 1
q = 1.

Taking q = ln 1
σ , we have∣∣∣∣〈v,E(x,y)∼D

[
ϕ′′
σ(yℓ(w, x))

xx⊤

∥w∥2

]
v

〉∣∣∣∣ ≤ 1

σ
Õ((

1

σ
)

1
q · q2) = Õ(

1

σ
)

Similarly, ∣∣∣∣〈v,E(x,y)∼D

[
ϕ′′
σ(yℓ(w, x))

⟨w, x⟩
∥w∥4

wx⊤
]
v

〉∣∣∣∣
≤E(x,y)∼D

[
|ϕ′′

σ(yℓ(w, x))|
∥w∥4

| ⟨w, x⟩ || ⟨v, w⟩ || ⟨x, v⟩ |
]

≤E(x,y)∼D

[
|ϕ′′

σ(yℓ(w, x))|
∥w∥3

| ⟨w, x⟩ || ⟨x, v⟩ |
]

=E(x,y)∼D

[
|ϕ′′

σ(yℓ(w, x))|
∥w∥2

|
〈

w

∥w∥
, x

〉
|| ⟨x, v⟩ |

]
≤ 1

σ
E(x,y)∼D

[
|ϕ′

σ(ℓ(w, x))| |
〈

w

∥w∥
, x

〉
|| ⟨x, v⟩ |

]

≤ 1

σ

[
E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣p]
1
p

[
E(x,y)∼D

∣∣∣∣〈 w

∥w∥
, x

〉∣∣∣∣2q
] 1

2q [
E(x,y)∼D |⟨x, v⟩|

2q
] 1

2q

≤ 1

σ

(
1

σp−1
ln

1

σ

) 1
p (

Γ(2q + 1)eβ2q
) 1

2q
(
Γ(2q + 1)eβ2q

) 1
2q

=
1

σ
Õ((

1

σ
)1−

1
p · q2)

Again, taking q = ln 1
σ , we have∣∣∣∣〈v,E(x,y)∼D

[
ϕ′′
σ(yℓ(w, x))

⟨w, x⟩
∥w∥4

wx⊤
]
v

〉∣∣∣∣ ≤ 1

σ
Õ((

1

σ
)

1
q · q2) = Õ(

1

σ
)

The same calculation and the upper bound goes for
∣∣∣〈v,E(x,y)∼D

[
ϕ′′
σ(yℓ(w, x))

⟨w,x⟩
∥w∥4 xw

⊤
]
v
〉∣∣∣.

For the fourth term in Eqn (11),∣∣∣∣∣
〈
v,E(x,y)∼D

[
ϕ′′
σ(yℓ(w, x))

⟨w, x⟩2

∥w∥6
ww⊤

]
v

〉∣∣∣∣∣ ≤E(x,y)∼D

[
|ϕ′′

σ(yℓ(w, x))|
∥w∥6

⟨w, x⟩2 ⟨v, w⟩2
]

=E(x,y)∼D

[
|ϕ′′

σ(yℓ(w, x))|
∥w∥4

〈
w

∥w∥
, x

〉2

⟨v, w⟩2
]

≤E(x,y)∼D

[
|ϕ′′

σ(yℓ(w, x))|
∥w∥2

〈
w

∥w∥
, x

〉2
]

≤ 1

σ
E(x,y)∼D

[
|ϕ′

σ(ℓ(w, x))|
〈

w

∥w∥
, x

〉2
]

where the first inequality is moving the absolute value inside the expectation, the second inequality is by algebra,

the third inequality uses
∣∣∣〈 w

∥w∥ , v
〉∣∣∣ ≤ 1, the fourth inequality uses Lemma 23 and ϕ′

σ is even, as well as ∥w∥ ≥ 1.

It follows the same upper bound∣∣∣∣∣
〈
v,E(x,y)∼D

[
ϕ′′
σ(yℓ(w, x))

⟨w, x⟩2

∥w∥6
ww⊤

]
v

〉∣∣∣∣∣ ≤ Õ(
1

σ
)
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To upper bound the operator norm of the last term in Eqn (11), note that ϕ′
σ(t) ≤ 1

σ , for all t ∈ R, and

∇2ℓ(w, x) = − xwT

∥w∥3
− wxT

∥w∥3
− ⟨w, x⟩
∥w∥3

I + 3
⟨w, x⟩
∥w∥5

wwT

Then we can upper bound the operator norm for each individual term,∣∣∣∣〈v,E(x,y)∼D

[
xw⊤

∥w∥3

]
v

〉∣∣∣∣ ≤E(x,y)∼D

[
1

∥w∥3
|⟨x, v⟩ ⟨w, v⟩|

]
≤E(x,y)∼D

[
1

∥w∥2
|⟨x, v⟩|

]
≤E(x,y)∼D [|⟨x, v⟩|]
=O(1)

where the first inequality is moving the absolute value inside the expectation, the second inequality uses∣∣∣〈 w
∥w∥ , v

〉∣∣∣ ≤ 1, the third inequality uses ∥w∥ ≥ 1, the last equality applies Claim 21 with q = 1.

Similarly, ∣∣∣∣〈v,E(x,y)∼D

[
⟨w, x⟩
∥w∥3

I

]
v

〉∣∣∣∣ ≤E(x,y)∼D

[
1

∥w∥2

∣∣∣∣〈 w

∥w∥
, x

〉∣∣∣∣]
≤E(x,y)∼D

[∣∣∣∣〈 w

∥w∥
, x

〉∣∣∣∣]
=O(1)

Putting above terms together, we have

∥∇2
wLσ(w)∥op = Õ(

1

σ
)

Lemma 25 (Stochastic gradient is sub-exponential). Let gw be the random output of Active-FO(w). Then for

any unit vector w, ∥gw∥ is sub-exponential with parameter K = Θ̃(
√
d

σ ), that is, the tails of ∥gw∥ satisfy

P(∥gw∥ ≥ t) ≤ 2 exp(− t

K
),∀t ≥ 0

Proof. Assume WLOG that w = (1, 0, . . . , 0),

P(∥gw∥ ≥ t) ≤P(∥h(w, x, y)∥ ≥ t)

≤P( 1
σ
∥x∥ ≥ t)

=P(∥x∥ ≥ σt)

≤P(
√
d∥x∥∞ ≥ σt)

≤d · P(|xi| ≥
σt√
d
)

≤d exp(− σt√
d
)

where the first inequality uses the fact that the events {∥gw∥ ≥ t} ⊆ {∥h(w, x, y)∥ ≥ t} ,∀t ≥ 0, the second
inequality uses that ∥h(w, x, y)∥ ≤ 1

σ∥x∥,∀x ∈ Rd, so the events {∥h(w, x, y)∥ ≥ t} ⊆
{

1
σ∥x∥ ≥ t

}
,∀t ≥ 0. The

third equality is by algebra. The fourth inequality uses ∥x∥ ≤
√
d∥x∥∞,∀x ∈ Rd. The fifth inequality uses a

union bound on d coordinates. The sixth inequality is by the definition of well-behaved distribution.

Therefore, by Claim 26, ∥gw∥ is Θ(
√
d ln d
σ ) sub exponential.
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Claim 26. If P(|X| ≥ t) ≤ 2C exp(− t
K ) for some constant C ≥ e2, then P(|X| ≥ t) ≤ 2 exp(− t

2K lnC ).

Proof. Let t0 = 2K ln2 C
2 lnC−1 .

1. If t ≤ t0, P(|X| ≥ t) ≤ 1 ≤ 2 exp(− t0
2K lnC ) ≤ 2 exp(− t

2K lnC ).

The second inequality is true, because t0 = 2K ln2 C
2 lnC−1 ≤ 2K lnC ln 2, using C ≥ e2.

2. If t > t0, then P(|X| ≥ t) ≤ 2C exp(− t
K ) = 2 exp(lnC − t

K ) ≤ 2 exp(− t
2K lnC ).

Lemma 27. Suppose D satisfies the (A,α)-Tsybakov noise condition. Then the Bayes error err(w∗) satisfies

err(w∗) ≤ 1
2 − α( 1

A )
1−α
α .

Proof. By the definition of Tsybakov noise, Definition 1, we know P(η(x) ≥ 1
2 − t) ≤ At

α
1−α , for t ∈ [0, 1

2 ].

Taking t = 1
2 , we can see A,α need to satisfy 1 = P(η(x) ≥ 0) ≤ A( 12 )

α
1−α . We proceed to calculate err(w∗) as

follows.

err(w∗) = Eη(x) =
∫ ∞

0

P(η(x) ≥ t) d t =

∫ 1
2

0

P(η(x) ≥ t) d t ≤
∫ 1

2

0

min(1, A(
1

2
− t)

α
1−α ) d t

where the first equality is by the definition of the Bayes classifier, the second equality is writing the expectation
as the integral of the tail probability, the third equality uses 0 ≤ η(x) ≤ 1

2 ,∀x ∈ Rd, the inequality uses the
trivial upper bound 1 of the probability.

Let t0 = 1
2 − ( 1

A )
1−α
α , so 1 = A( 12 − t0)

α
1−α , and we have,

∫ 1
2

0

min(1, A(
1

2
− t)

α
1−α ) d t =t0 +

∫ 1
2

t0

A(
1

2
− t)

α
1−α d t

=
1

2
− (

1

A
)

1−α
α + (1− α)(

1

A
)

1−α
α

=
1

2
+ ((1− α)− 1)(

1

A
)

1−α
α

=
1

2
− α(

1

A
)

1−α
α

Therefore, err(w∗) ≤ 1
2 − α( 1

A )
1−α
α .

Lemma 28 (Theorem 2.1 in Juditsky and Nemirovski (2008)). Suppose martingale difference {ξi}∞i=1 satisfies

∀i ≥ 1,Ei−1

{
exp

{
∥ξi∥
ν

}}
≤ exp(1) almost surely

then, for all N ≥ 1 and γ ≥ 0, one has

P

{
∥

N∑
i=1

ξi∥ ≥
√
2(
√
e+ γ)

√
Nν

}
≤ 2 exp

{
− 1

64
min

[
γ2, 16

√
Nγ
]}

Lemma 29 (Lemma 26 in Zhang and Li (2021)). If D is (2, L,R, U, β)-well behaved, then, we have for any u, v

in Rd, for all γ > 0, Px∼DX
(hu(x) ̸= hv(x)) ≤ 4Uβ2

(
ln 6

γ

)2
θ(u, v) + γ.

Lemma 30. There exists c > 0, s.t. for any q ≥ 1, Γ(2q + 1)
1
q ≤ cq2.
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Proof. We show that for any m > 0, Γ(m + 1) ≤ 3
(
3m
5

)m
. The proof is originally from https://math.

stackexchange.com/questions/214422/bounding-the-gamma-function; for completeness, we reproduce the
proof here.

Let 0 < α < 1, f(t) = e−αttm where t > 0, it can be checked (by taking a derivative) that f(t) achieves the
maximum at t = m

α . Hence for any m > 0,

Γ(m+ 1) =

∫ ∞

0

e−ttm d t =

∫ ∞

0

e−αttme−(1−α)t d t ≤ (
m

ae
)m
∫ ∞

0

e−(1−α)t d t = (
m

ae
)m
(

1

1− α

)
where the first equality is by the definition of the Gamma function, and the other equalities and inequalities are
by algebra.

Taking α = 5
3e and noting that 1

1− 5
3e

≤ 3, we obtain that for any m > 0, Γ(m+ 1) ≤ 3
(
3m
5

)m
.

Therefore, for any q ≥ 1, we have

Γ(2q + 1)
1
q ≤ 3

1
q

(
6q

5

)2

≤ 3

(
6q

5

)2

We show in the following claim that Active-FO preserves the bound on the expected squared norm of the
stochastic gradient as passively querying the labels for all x.

Claim 31. For any unit vector w, E(x,y)∼D

[∥∥∥∇ϕσ

(
y ⟨w,x⟩

∥w∥

)∥∥∥2] ≤ Õ( dσ ).

Proof. We follow a similar proof idea of item 3 in Lemma 17.

1. If σ < 1
e .

Let C below be from Lemma 19. We have for any w such that ∥w∥ ≥ 1, for any p, q ≥ 1 such that 1
p +

1
q = 1,

E(x,y)∼D

[∥∥∥∥∇ϕσ

(
y
⟨w, x⟩
∥w∥

)∥∥∥∥2
]
=E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣2 ∥ x

∥w∥2
− ⟨w, x⟩w
∥w∥32

∥2

≤E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣2 ∥x∥2
≤

(
E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣2p
) 1

p (
E(x,y)∼D∥x∥2q

) 1
q

≤
(
C

1

σ2p−1
ln

1

σ

) 1
p (

Γ(2q + 1)eβ2qdq
) 1

q

=Õ((
1

σ
)2−

1
p · q2d)

=Õ((
1

σ
)1+

1
q · q2d)

where the first equality and second inequality are by algebra, the third inequality is by Holder’s inequality.
The fourth inequality is by Lemmas 19 and 20. The fifth equality is by Lemma 30. The sixth equality uses
that 1

p + 1
q = 1.

Choosing q = ln 1
σ , we have q ≥ 1 since σ ≤ 1

e . we have

E(x,y)∼D

[∥∥∥∥∇ϕσ

(
y
⟨w, x⟩
∥w∥

)∥∥∥∥2
]
≤ 1

σ
Õ((

1

σ
)

1

ln 1
σ · (ln 1

σ
)2d) =

1

σ
Õ(exp(ln

1

σ
· 1

ln 1
σ

) · (ln 1

σ
)2d) = Õ(

d

σ
)

where the last two equalities are by algebra.
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2. If σ ≥ 1
e . We proceed as follows.

E(x,y)∼D

[∥∥∥∥∇ϕσ

(
y
⟨w, x⟩
∥w∥

)∥∥∥∥2
]
=E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣2 ∥ x

∥w∥2
− ⟨w, x⟩w
∥w∥32

∥2

≤E(x,y)∼D

∣∣∣∣ϕ′
σ(

〈
w

∥w∥
, x

〉
)

∣∣∣∣2 ∥x∥2
≤ 1

σ2
E(x,y)∼D∥x∥2

≤ 1

σ2
O(d)

=O(d)

where the third inequality is because |ϕ′
σ(t)| ≤ 1

σ , for all t ∈ R, the fourth inequality uses Lemma 20 with
q = 2, the fifth inequality uses σ ≥ 1

e .


