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Abstract

In this paper we develop a novel nonparamet-
ric framework to test the independence of two
random variables X and Y with unknown
respective marginals H(dx) and G(dy) and
joint distribution F (dxdy), based on Receiver
Operating Characteristic (ROC) analysis and
bipartite ranking. The rationale behind our
approach relies on the fact that, the indepen-
dence hypothesis H0 is necessarily false as
soon as the optimal scoring function related
to the pair of distributions (H ⊗ G, F ), ob-
tained from a bipartite ranking algorithm, has
a ROC curve that deviates from the main di-
agonal of the unit square. We consider a wide
class of rank statistics encompassing many
ways of deviating from the diagonal in the
ROC space to build tests of independence. Be-
yond its great flexibility, this new method has
theoretical properties that far surpass those
of its competitors. Nonasymptotic bounds for
the two types of testing errors are established.
From an empirical perspective, the novel pro-
cedure we promote in this paper exhibits a
remarkable ability to detect small departures,
of various types, from the null assumption H0,
even in high dimension, as supported by the
numerical experiments presented here.

1 INTRODUCTION

Let (X1, Y1), . . . , (XN , YN ) be N ≥ 1 independent
and identically distributed (i.i.d.) random pairs, de-
fined on a space (Ω, F , P) and valued in the product
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space X ×Y , copies of the generic random pair (X, Y).
An important problem, occurring in many applications,
consists in testing the independence of the two r.v.’s
X and Y based on the observation of the (Xi, Yi)’s.
It is considered here from a nonparametric perspective,
meaning that no assumptions are made about the dis-
tribution F (dxdy) of the pair (X, Y), nor about the
marginal distributions H(dx) and G(dy) of X and Y.
The goal is to test the composite hypothesis:

H0 : F = H ⊗G versus H1 : F 6= H ⊗G . (1)

The problem thus consists in testing whether two prob-
ability distributions on the product space X × Y are
equal or not. Under additional (parametric) assump-
tions on the distribution F (e.g. discreteness, Gaussian-
ity), various measures of dependence can be classically
used to build pivotal test statistics (e.g. chi-square
statistic, empirical linear correlation). In the nonpara-
metric case, most techniques consists in computing
a statistical version of a (pseudo-) distance between
F and H ⊗ G (e.g. integral probability metrics, see
Rachev et al. (2013)). Refer to e.g. Székely and Rizzo
(2007, 2013) for covariance-based distances, general-
ized to metric spaces in Lyons (2013); Jakobsen (2017).
Gretton et al. (2005a,b, 2007a) introduced kernel-based
extensions relying on the Hilbert-Schmidt Independence
Criterion (HSIC), where the covariance distance being
shown to be a specific instance of the class of HSIC-
type measures of dependence in Sejdinovic et al. (2013).
Other measures for testing independence have been
recently proposed, see in particular, Berrett and Sam-
worth (2019); Gonzalez et al. (2021) using the notion of
mutual information, Gretton and Györfi (2010); Heller
et al. (2016) based on partitioning techniques, and
Reshef et al. (2011, 2016, 2018) considering use of the
maximal information criterion.

Rank statistics for testing independence. The
approach developed here, of completely different na-
ture, is inspired by rank-based methods (Hájek and
Sidák (1967) or Kallenberg and Ledwina (1997), Kallen-
berg and Ledwina (1999) or Kallenberg et al. (1997))
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tailored to the situations where X = Y = R and
H0 is tested against specific alternatives of positive
(regression) dependence1. Assuming in addition that
X and Y are continuous r.v.’s, a natural strategy
(see Kendall (1975)) consists in ranking the pairs
(Xi, Yi) according to increasing values of the Xi’s:
(Xσ(1), Yσ(1)), . . . , (Xσ(N), Yσ(N)), where σ is the
permutation of the index set {1, . . . , N} (i.e. the
element of the symmetric group SN ) s.t. Xσ(1) <
. . . < Xσ(N) and analyzing the ranks of the Yσ(i)’s
through the rank correlation coefficient, see e.g. Chap-
ter 6 in Lehmann and Romano (2005): conditioned
upon (Xσ(1), . . . , Xσ(N)), the latter being uniformly
random under H0, while the rank of Yσ(i) among the
Yσ(j)’s exhibits an ‘upward trend’ under the positive
dependence alternative (i.e. it is stochastically increas-
ing with i). The approach to independence testing
based on statistical learning we propose shares similar-
ities with such rank-based techniques, it also consists
ranking pairs in X × Y. Extension of rank-based tech-
niques for independence testing to multivariate data
has been recently the subject of much attention in the
literature. The sole approach enjoying distribution-
freeness under nonparametric assumptions so far, is
based on the notion of center-outward ranks/signs in
Hallin (2017). It is used in Shi et al. (2022) to build
generalized symmetric (test) statistics: it boils down
to plugging into classic statistics, e.g. the distance
covariance measure for independence testing, a center-
outward generalization of rank statistics by mapping
any absolute continuous distribution to the spherical
uniform distribution on the d-dimensional unit ball,
solution of the related optimal transport formulation,
see Hallin et al. (2021). This encompasses the main
modern rank-based and distance-based methods for
testing the hypothesis of independence, see e.g. Deb
and Sen (2021); Leung and Drton (2018). While these
methods have appealing theoretical properties, see Shi
et al. (2022), they are limited by the strong negative
impact of d of the feature on their power, studied for
kernel and distance based techniques, see section 3 in
Ramdas et al. (2015). As shown in Huang et al. (2023),
this is caused by the dependence of the kernel of the
U -statistic of degree two w.r.t. the dimension d.

Our contributions. The nature of our approach is
quite different. It involves a preliminary statistical
learning step, namely bipartite ranking on X × Y , and
relies on Receiver Operating Characteristic (ROC) anal-
ysis. The ROC curve is the gold standard to differenti-
ate between two univariate distributions. The rationale
behind our methodology lies in the fact that, under the
null hypothesis H0, the optimal ROC curve related to

1Two real-valued r.v.’s X and Y defined on the same
space exhibit positive dependence iff P (X > x, Y > y) ≥
P (X > x)× P (Y > y) for any (x, y) ∈ R2.

the bipartite ranking defined by the pair (H⊗G, F ) of
distributions on X ×Y , is known and coincides with the
main diagonal of [0, 1]2. It is thus natural to quantify
the departure from H0, by the deviations of the opti-
mal ROC curve from the diagonal. The latter can be
summarized by appropriate two-sample (linear) rank
statistics, whose concentration properties have been in-
vestigated in Clémençon et al. (2021). Since the optimal
ROC curve is unknown in practice, a bipartite ranking
task on the product space X × Y must be completed
first to rank the pairs. Our method is implemented
in three steps: after splitting the sample in two parts
(2-split trick) and shuffling the pairs, a first part of the
sample is used to train a bipartite ranking function
to output a scoring function. The second part is then
ranked using the scoring function previously learned
so as to compute a test statistic assessing the possible
departure from independence. It may be applied in a
general multivariate framework and has considerable
advantages in the high-dimension case, compared to all
its competitors, especially those based on probability
metrics between statistical versions of F and H ⊗G,
see e.g. Gretton and Györfi (2010). In contrast, pro-
vided that the model bias (i.e., the error inherent in
the choice of the set of ranking functions over which
the learning step is performed) is ‘small’, the power of
the test proposed is possibly affected by the dimension
only through the choice of bipartite ranking algorithm.
This is supported here by a sound (nonasymptotic)
theoretical analysis based on the concentration results
for two-sample R-processes proved in Clémençon et al.
(2021) and promising empirical results. Our method
is shown to work well, in the vicinity of independence
especially, surpassing the existing methods.

Connection to the two-sample problem. We
point out that the use of (an estimate of) the optimal
ROC curve, on which the novel independence testing
method promoted here relies, has been recently ex-
ploited for the purpose of statistical hypothesis testing
in Clémençon et al. (2023) to solve the two-sample
problem, i.e. to test the assumption that two i.i.d.
samples share the same distribution. The major dif-
ference naturally lies in the nature of the alternatives
to the null assumption, i.e. departure from indepen-
dence vs. departure from homogeneity, but also in the
statistical framework/analysis: whereas independent
observations drawn from each of the two distributions
to be tested equal are supposedly available in the two-
sample problem, no sample of the distribution H ⊗G
is directly available under H1 in independence testing.
A shuffling procedure (i.e. a random permutation of
parts of the indices {1, . . . , N}), that aims at building
independent observations drawn from H ⊗ G, is key
in the testing method we propose and analyze here.
To summarize, for the method proposed here, new to
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the literature, we show that: 1) the test statistic is
distribution-free resulting in the exact computation of
the testing threshold, 2) a nearly optimal control of the
type-II error with explicit parameters can be obtained
for all types of alternative, 3) the method depends on
the dimension of the underlying spaces only through the
bipartite ranking algorithm, importantly avoiding any
mispessification of the asymptotic distribution (Huang
et al. (2023)) and harmfull high-dimensional setting.

The article is organized as follows. Section 2 recalls
key notions pertaining to ROC analysis and bipartite
ranking, providing an insight into the rationale of the
method. It is described and theoretically analyzed from
a nonparametric and nonasymptotic perspective in
section 3. Numerical results are displayed in section 4,
while concluding remarks are collected in section 5. Due
to space constraints, some properties related to ROC
analysis and bipartite ranking, all technical details and
proofs, as well as additional numerical experiments, are
postponed to the Supplementary Material.

2 PRELIMINARIES

We first briefly recall the main concepts related to
ROC analysis and bipartite ranking, involved in the
methodology subsequently proposed and analyzed. The
rationale behind the latter is next explained. Here and
throughout, by I{E} is meant the indicator function
of any event E , by δa the Dirac mass at any point
a, by W−1(u) = inf{t ∈ (−∞, +∞] : W (t) ≥ u},
u ∈ [0, 1] the generalized inverse of any cumulative
distribution function W (t) on R ∪ {+∞}. The floor
and ceiling functions are denoted by u ∈ R 7→ buc and
by u ∈ R 7→ due respectively. For any bounded function
ψ : (0, 1) → R, we also set ||ψ||∞ = supu∈(0,1) |ψ(u)|.
We consider r.v. denoted in bold symbols as valued in
a multivariate space Z, e.g. subset of Rd, with d ≥ 2.

2.1 Bipartite Ranking and ROC Analysis

We explain the connection between bipartite ranking
and the quantification of the discrepancy between two
probability distributions on a same space.

ROC analysis. The ROC curve is a gold standard to
measure the difference between two univariate distribu-
tions, F1 and F2 say. It is defined by the Probability-
Probability plot t ∈ R 7→ (1 − F1(t), 1 − F2(t)),
connecting possible jumps by line segments by con-
vention. It can alternatively be seen as the graph
of a càd-làg (i.e. right-continuous and left-limited)
non-decreasing mapping defined by u ∈ (0, 1) 7→
ROCF1,F2(u) := 1− F2 ◦ F−1

1 (1− u) at points α such
that F2 ◦ F−1

1 (1 − u) = 1 − u. The curve ROCF1,F2

coincides with the main diagonal of [0, 1]2 iff F1 = F2.

Hence, the notion of ROC curve offers a visual tool to
examine the differences between two univariate distri-
butions. For instance, the univariate distribution F2 is
stochastically larger2 than F1 iff the curve ROCF1,F2

is everywhere above the main diagonal. Of course,
the curve ROCF1,F2

is unknown in practice, just like
the Fi’s. Hence, ROC analysis must be based on
independent i.i.d. samples (X1,1, . . . , X1,n1) and
(X2,1, . . . , X2,n2

) with distributions F1 and F2 re-
spectively and consists in plotting ROCF̂1,F̂2

, where
F̂i = (1/ni)

∑
k≤ni δXi,k is the corresponding empirical

counterpart of Fi with i ∈ {1, 2}. A popular scalar
summary is the Area Under the ROC Curve (AUC),
defined by AUC(F1,F2) =

∫ 1

0
ROCF1,F2

(u)du. Its em-
pirical version can be expressed as an affine transform of
a (two-sample linear) rank statistic, the Mann-Whitney
Wilcoxon (MWW) statistic Ŵn1,n2

=
∑
k≤n2

R(X2,k),
where the ranks R(X2,k) =

∑
l≤n1

I{X1,l ≤ X2,k} +∑
l≤n2

I{X2,l ≤ X2,k} denotes the rank of X2,k among
the pooled sample:

n1n2AUC(F̂1, F̂2) = Ŵn1,n2 −
n2(n2 + 1)

2
. (2)

It is thus a distribution-free statistic (concentrated
around the value 1/2) when F1 = F2, that can be
naturally used to test the hypothesis of equality in
distribution based on the Xi,k’s with i ∈ {1, 2}.

Bipartite ranking. Consider now two distributions
F+ and F− on a general measurable space Z, referred
to as positive and negative distributions. Let two
independent i.i.d. samples X+,1, . . . , X+,n+

and
X−,1, . . . , X−,n− drawn from F+ and F− respec-
tively. The goal of bipartite ranking is to learn a
scoring function s : Z → (−∞, ∞], based on the
two samples, to rank any new observation without
prior knowledge, by inducing a total preorder on
Z statistically ranking the positive instances (+)
at the top of the resulting list compared to the
negative ones (−), i.e., ∀(x, x′) ∈ Z2, x 4s x′ iff
s(x) ≤ s(x′). Let S be the set of all scoring functions
on Z. One evaluates the ranking performance of a
candidate s(z) in S by plotting (a statistical version
of) the ROC curve ROC((Fs,−,Fs,+), α) = ROC(s, α),
denoting by Fs,ε the pushforward distribution of Fε
by the mapping s(z) for ε ∈ {−, +}. This defines
a partial preorder on S: for all (s1, s2), s2 is more
accurate than s1 when ROC(s1, ·) ≤ ROC(s2, ·)
on [0, 1]. The most accurate scoring functions
are increasing transforms of the likelihood ratio
Ψ(z) = dFs,+/dFs,−(z), as can be deduced from a
straightforward Neyman-Pearson argument (see e.g.
Proposition 4 in Clémençon and Vayatis (2009)): S∗ =

2Recall that F2 is said to be stochastically larger than
F1 iff F1(t) ≥ F2(t) for all t ∈ R.
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{
s ∈ S,∀(z, z′) ∈ Z2,Ψ(z) < Ψ(z′)⇒ s∗(z) < s∗(z′)

}
.

For all (s, u) ∈ S × (0, 1), we have: ROC(s, u) ≤
ROC∗(u), where ROC∗(·) = ROC(Ψ, ·) = ROC(s∗, ·)
for any s∗ ∈ S∗. The optimal curve is always concave,
increasing, above the main diagonal of the ROC space
consequently, cf Clémençon and Vayatis (2009). A key
to understanding the method in section 3 is to realize
that F+ = F− iff ROC∗ coincides with the diagonal of
[0, 1]2, see subsection 2.2.

ROC curve optimization. From a quantitative per-
spective, bipartite ranking aims at building a scor-
ing function s(z), based on the Xε,k’s with a ROC
curve as close as possible to ROC∗. A typical way
of measuring the deviation between these curves is
to consider their distance in sup norm. As ROC∗

is unknown, just like S∗, no straightforward statis-
tical counterpart of this loss can be computed. In
Clémençon and Vayatis (2009) and Clémençon and
Vayatis (2010), it is proved that bipartite ranking can
be viewed as nested cost-sensitive classification tasks.
By discretizing them adaptively, empirical risk mini-
mization can be sequentially applied, with statistical
guarantees in the sup-norm sense at the cost of an
approximation bias. Ranking performance can be also
measured by means of the L1-norm in the ROC space:∫ 1

0
|ROC(s, u)−ROC∗(u)|du = AUC∗−AUC(s), where

AUC(s) = AUC(Fs,−,Fs,+) and AUC∗ = AUC(Ψ).
The minimization of the L1-distance to ROC∗ is equiv-
alent to the maximization of the (scalar) AUC criterion.
Maximizing the latter over a class S0 ⊂ S, of controlled
complexity, is a popular approach to bipartite rank-
ing, and documented in various articles. Refer to e.g.
Agarwal et al. (2005) or Clémençon et al. (2008) for
upper confidence bounds for the AUC deficit of scoring
rules obtained by solving maxs∈S0 AUC(F̂s,−, F̂s,+),
where F̂s,ε = (1/nε)

∑nε
j=1 δs(Xε,j) for ε ∈ {−,+}. As

noticed in (2), this boils down to maximizing the rank-
sum criterion: Ŵn−,n+

(s) =
∑n+

i=1R(s(X+,i)), where
R(s(X+,i)) = NF̂s,N (s(X+,i)) for i ∈ {1, . . . , n+},
F̂s,N (t) = (1/N)

∑
ε∈{−,+}

∑nε
i=1 I{s(Xε,i) ≤ t} for

t ∈ R and N = n+ + n−. As expected, appropriate
ranking performance criteria take the form of (two-
sample linear) rank statistics, see Clémençon and Vay-
atis (2007). In Clémençon et al. (2021), the empirical
ranking performance measures

Ŵφ
n−,n+

(s) =

n+∑
i=1

φ

(
R(s(X+,i))

N + 1

)
, (3)

where φ : [0, 1] → R is an increasing score-generating
function that weights the positive ranks involved the
functional, are considered. For φ(v) = v, one recov-
ers the MWW statistic and the AUC criterion, see
(2). If Fs,+ = Fs,−, the ranks of the ‘positive scores’
are uniformly distributed. The distribution Lφn−,n+

of (22) is thus independent from the distributions of
the Xε,i’s, and can be tabulated by means of elemen-
tary combinatorial computations. When n+ = bpNc
and n− = d(1 − p)Ne for p ∈ (0, 1), the statistic
(1/N)Ŵφ

n−,n+
(s) can be viewed as an empirical ver-

sion of Wφ-ranking performance:

Wφ(s) = E [(φ ◦ Fs)(s(X+))] =
1

p

∫ 1

0

φ(v)dv

−1− p
p

∫ 1

0

φ (p(1− ROC(s, α)) + (1− p)(1− u)) du ,

(4)
where Fs = pFs,+ + (1 − p)Fs,− for any s ∈ S. For
any score-generating function φ that rapidly vanishes
near 0 and takes much higher values near 1, such as
φ(v) = vq with q > 1, the quantity (2.1) reflects
the behavior of the curve ROC(s, ·) near 0, i.e.,
the probability that s(X+) takes the highest values
in other words. As stated in Proposition 6 of Clé-
mençon et al. (2021), for any s, s∗ ∈ S × S∗, we
have Wφ(s) ≤ W ∗φ := Wφ(dF+/dF−) = Wφ(s∗). If
φ is strictly increasing, S∗ coincides with the ensem-
ble of maximizers of Wφ. In Clémençon et al. (2021),
bounds for the maximal deviations between (22) and
NWφ(s) over appropriate classes S0 have been proved,
and generalization results for maximizers of the em-
pirical Wφ-ranking performance criterion based on the
latter have been established. The theoretical analysis
carried out subsequently relies on these results.

2.2 On Dependence through ROC Analysis

We now go back to the problem recalled in section 1
and explain why the analysis of ROC curves and their
scalar summaries (2.1) provide natural tools to test the
statistical hypothesis of independenceH0. Consider the
notations introduced in section 2.1, and set Z = X ×Y ,
F− = H ⊗G and F+ = F . Our approach relies on the
observation that deviations of the curve ROC∗ from
the main diagonal of [0, 1]2, as well as those ofW ∗φ from∫ 1

0
φ(v)dv, for appropriate score-generating functions

φ, provide a natural way of measuring the departure
from H0, as revealed by the theorem below.

Theorem 1. The following assertions are equivalent.

(i) The hypothesis ‘H0 : H ⊗G = F ’ holds true.

(ii) The optimal ROC curve relative to the bipartite
ranking problem defined by the pair (H⊗G,F ) coincides
with the diagonal of [0, 1]2: ∀u ∈ (0, 1), ROC∗(u) = u.

(iii) For any function φ(v), we have W ∗φ =
∫ 1

0
φ(v)dv .

(iv) There exists a strictly increasing score-generating
function φ(u) s.t. W ∗φ =

∫ 1

0
φ(v)dv.
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(v) We have AUC∗ = 1/2. In addition, we have:

AUC∗− 1

2
=

∫ ∫ ∣∣∣∣ dF

d(H⊗G)
(x,y)− 1

∣∣∣∣H(dx)G(dy) .

(5)

Hence, the optimal curve ROC∗ quantifies the dissim-
ilarity between the H ⊗G and F , as depicted by Eq.
(5).
Example 1. (Multivariate Gaussian Variables)
Consider a centered Gaussian r.v. (X, Y) with definite
positive covariance Γ, valued in Rq×Rl. Denote by ΓX

and ΓY the (definite positive) covariance matrices of
the components X and Y. As an increasing transform
of the likelihood ratio, the quadratic scoring function
s : z ∈ Rq+l 7→ zt(Γ−1 − diag(Γ−1

X ,Γ−1
Y ))z is optimal.

When Cov(X1, Y k) = ρ, for all k ≤ l, with ρ ∈ [0, 1),
and Γi,j = δij otherwise, the hypothesis H0 is naturally
true iff ρ = 0. The optimal ROC curve is plotted in
Fig. 1 for different values of the parameter ρ, such that
Γ is positive definite, and q = l = 5. We further refer
to section 6.3 for an advanced analysis in light of the
proposed method.

Figure 1: Left: Joint Gaussian density for ρ = 0.20
of (X1, Y 1). Right: Plots of the optimal ROC curves
for two Gaussian vectors with linear correlation ρ ∈
{0.0, 0.05, 0.10, 0.15, 0.20} and q = l = 5.

Ranking-based rank tests of independence. The-
orem 1 shows that the testing problem (1) can be
reformulated in terms of properties of the optimal
ROC curve, related to the bipartite ranking problem
(H ⊗G,F ), as ‘H0 : AUC∗ = 1/2 vs. H1 : AUC∗ >

1/2’, or, equivalently, as ‘H0 : W ∗φ =
∫ 1

0
φ(u)du

vs. H1 : W ∗φ >
∫ 1

0
φ(u)du’, for any given strictly

increasing score generating function φ(u). It is note-
worthy that these formulations are unilateral, the opti-
mal ROC curve being necessarily above the diagonal.
From a practical perspective, the curve ROC∗ as well
as its scalar summaries, such as AUC∗ or W ∗φ , are
unknown. The approach we propose is thus imple-
mented in three steps. After splitting the samples
{(X1,Y1) . . . , (XN ,YN )} into two parts: 1) based
on the first part, build two independent i.i.d. samples
with respective distributions H ⊗ G and F , then 2)

solve the corresponding bipartite ranking problem and
produce a scoring function ŝ(z), as described above.
Finally, 3) perform a univariate rank-based test based
on a statistic of type (22) computed from the second
part of the data, once scored using ŝ, to detect possible
statistically significant deviations between the ROC
curve and the diagonal.

The subsequent sections provide both theoretical and
empirical evidence that, beyond the fact that they are
nearly unbiased, such testing procedures permit to
detect very small departures, of various types, from
the hypothesis of independence.

3 METHODOLOGY AND THEORY

We now describe at length the testing procedure previ-
ously sketched, and next establish the related theoreti-
cal guarantees by proving nonasymptotic bounds for
the two types of testing error. Throughout this section,
we set F− = H ⊗G and F+ = F .

3.1 Ranking-based Rank Test Statistics

Following section 2, two steps are required to im-
plement the procedure proposed. Let n < N be
an even integer. Hence, we use a classic two-split
trick to independently divide the original i.i.d. sample
{(X1,Y1) . . . , (XN ,YN )} into two:

Dn := {(Xi,Yi) : i = 1, . . . , n}
D′n′ := {(Xi,Yi) : i = n+ 1, . . . , N} ,

with n < N and n′ = N − n. Fix p ∈ (0, 1), set
n+ = bpnc = n − n− and n′+ = bpn′c = n′ − n′−.
Consider two independent random variables σ and σ′,
defined on the same probability space (Ω,F ,P) as the
(Xi,Yi)’s and independent of the latter, uniformly
distributed in Sn− and Sn′−

respectively. From the
first part Dn, one considers the two samples: D−n− =

{(Xi,Yσ(i))1≤i≤n−}, D+
n+

= {(Xi,Yi)1+n−≤i≤n},
whereas the samples below are formed from the second
part D′−n′− = {(Xi,Yn+σ′(i−n))1+n≤i≤n+n′−

}, D′+n′+ =

{(Xi,Yi)1+n+n′−≤i≤N}.
Proposition 1. The following assertions hold true.

(i) The samples D−n− , D
+
n+

, D′−n′− , and D
′+
n′+

are inde-
pendent.

(ii) For ε ∈ {−,+}, Dεnε and D′εn′ε are i.i.d. samples
with distribution Fε.

Now that we are equipped with the two pairs of nega-
tive/positive samples constructed above, the procedure
we propose requires two ingredients: a bipartite rank-
ing algorithm A that permits to construct a scoring
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function ŝ = A(D−n− ,D
+
n+

) based on the first part of
the data (see the algorithms in e.g. Freund et al. (2003),
Rakotomamonjy (2004), Rudin et al. (2005), Rudin
(2006) or Burges et al. (2007)) and a strictly increasing
score-generating function φ. As explained in section
2, the independence testing problem (1) for the couple
(H ⊗G,F ) can be expressed as follows:

H0 : W ∗φ =

∫ 1

0

φ(u)du vs. H1 : W ∗φ >

∫ 1

0

φ(u)du .

(6)
Notice that the formulation above is unilateral, the
optimal curve ROC∗ being always above the first diag-
onal, or equivalently, the pushforward distribution of
F by Ψ(x, y) is always stochastically larger than that
of H ⊗ G. Relying on (6), one computes the values
taken by the scoring function ŝ(x, y) over the pooled
data set D′−n′− ∪ D

′+
n′+

and next the following version of
the statistic (22):

Ŵφ
n′−,n

′
+

(ŝ, σ′) =

N∑
i=1+n+n′−

φ

(
R′σ′(ŝ(Xi,Yi))

n′ + 1

)
, (7)

where the ranks are defined on D′n′ by

R′σ′(t) =
∑N
i=1+n+n′−

I{ŝ(Xi,Yi) ≤ t} +
∑n+n′−
i=1+n

I{ŝ(Xi,Yn+σ′(i−n)) ≤ t}. Under H0, the test statistic
(7) has distribution Lφn′−,n′+ , similar to the univariate
rank statistic defined in (22) by Proposition 1.
Fix now the desired level α ∈ (0, 1) of the test of
independence. Consider the (1−α)-quantile qφn′−,n′+(α)

of the pushforward distribution of Lφn′−,n′+ , by the

mapping w 7→ (1/n′)w−
∫ 1

0
φ(u)du, depending only on

φ, n′+ and n′−. Proposition 2 proves that constructing
a test based on the statistic (7) and using this
(1 − α)-quantile qφn′−,n′+(α) as testing threshold, has
exact type-I error less than α by the bound (9). Figure
2 summarizes the procedure.

Proposition 2. (Type-I Error Bound.) Let α ∈
(0, 1) and let a scoring function ŝ = A(D−n− ,D

+
n+

). The
test statistic for testing (6), based on the second part
of the data D′−n′− ∪ D

′+
n′+

, is defined by:

Φφα = I
{

1

n′+
Ŵφ
n′−,n

′
+

(ŝ, σ′) >

∫ 1

0

φ(u)du+ qφn′−,n′+
(α)

}
(8)

Under H0, we have for any pair of distributions (H ⊗
G,F ) and for all 1 ≤ n′− < n′ and 1 ≤ n′+ < n′:

PH0

{
Φφα(D′n′(ŝ)) = +1

}
≤ α , (9)

where D′n′(s) denotes the dataset obtained by mapping
the observations of D′n′ by any scoring function s.

The type-I error is exactly controlled, and essentially
independent of the scoring function and holds true for
any sample size n′.

3.2 Nonasymptotic Theoretical Guarantees
Under the Alternative - Error Bound

We now investigate the theoretical properties of the test
procedure previously described in the specific situation,
where the bipartite ranking step is accomplished by
maximizing, over a class S0 of scoring functions s(x, y)
on X ×Y , the empirical Wφ-ranking performance mea-
sure computed from D−n− ∪ D

+
n+

:

Ŵφ
n−,n+

(s, σ) =

n∑
i=1+n−

φ

(
Rσ(s(Xi,Yi))

n+ 1

)
, (11)

where Rσ(t) =
∑n
i=1+n−

I{s(Xi,Yi) ≤ t} +∑n−
i=1 I{s(Xi,Yσ(i)) ≤ t}. We thus consider

ŝ ∈ arg max
s∈S0

Ŵφ
n−,n+

(s, σ) . (12)

We focus on establishing a uniform nonasymptotic
bound for the type-II error of the test statistic Φφ

α.
It relies on the generalization properties of (12) w.r.t.
the deficit of Wφ-ranking performance, investigated at
length in Clémençon et al. (2021) (practical optimiza-
tion issues are beyond the scope of the present paper,
one may refer to Clémençon et al. (2021) for a dedi-
cated study). The following technical assumptions are
required to apply the related guarantees, and refer to
the Suppl. Material for explicit definitions and details.

Assumption 1. The score-generating function φ :
[0, 1] 7→ R, is nondecreasing, of class C2.

Assumption 2. Let M > 0. For all s ∈ S0, the
pushforward distributions of F and H ⊗G by the map-
ping s(x, y) are continuous, with density functions that
are twice differentiable and have Sobolev W2,∞-norms
bounded by M < +∞.

Assumption 3. The class of scoring functions S0 is
a Vapnik-Chervonenkis (VC) class of finite VC dimen-
sion V <∞.

Considering the quantity W ∗φ −
∫ 1

0
φ(u)du to describe

the departure from the null hypothesis H0 (see Theo-
rem 1) and the bias model W ∗φ − sups∈S0 Wφ(s) inher-
ent in the bipartite ranking step (when formulated as
empirical Wφ-ranking performance maximization), we
introduce the two (nonparametric) classes of pairs of
probability distributions on X × Y.
Definition 1. Let ε > 0. Denote by H1(ε) the set of
alternative hypotheses corresponding to all of probability
distributions F on X × Y s.t. W ∗φ −

∫ 1

0
φ(u)du ≥ ε ,
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Ranking-based Independence Rank Testing

Input. Collection of N ≥ 1 i.i.d. copies DN = {(X1,Y1) . . . , (XN ,YN )} of (X,Y); subsample sizes n = n++n− < N
and n′ = N − n = n′+ + n′−; bipartite ranking A algorithm operating on the class S0 of scoring functions on X × Y;
score-generating function φ; target level α ∈ (0, 1); quantile qφ

n′−,n
′
+
(α).

1. Splitting and Shuffling. Divide the initial sample into two subsamples DN = Dn ∪ D′n′ .
Independently from the (Xi,Yi)

′s, draw uniformly at random two independent permutations σ and σ′ in Sn− and Sn′−

respectively, in order to build the independent samples: D−n− = {(Xi,Yσ(i))1≤i≤n−}, D+
n+

= {(Xi,Yi)1+n−≤i≤n},
and D′−

n′−
= {(Xi,Yn+σ′(i−n))1+n≤i≤n+n′−}, D′+

n′+
= {(Xi,Yi)1+n+n′−≤i≤N}.

2. Bipartite Ranking. Run the bipartite ranking algorithm A based on the pooled training dataset Dn = D−n− ∪D
+
n+

built at the previous step, in order to learn the scoring function ŝ = A(Dn).

3. Scoring and Two-sample Rank Statistic. Build the univariate positive/negative subsamples us-
ing the scoring function ŝ learned at the previous step {ŝ(Xn+1,Yn+σ′(1)), . . . , ŝ(Xn+n′−

,Yn+σ′(n′−))} and
{ŝ(Xn+n′−+1,Yn+n′−+1), . . . , ŝ(XN ,YN )}. Sort them by decreasing order to compute

Ŵφ

n′−,n
′
+
(ŝ, σ′) =

N∑
i=1+n+n′−

φ

(
R′σ′ (ŝ(Xi,Yi))

n′ + 1

)
. (10)

Output. Compute the outcome of the test of level α based on the test statistic (10), i.e., accept H0 if:

1

n′+
Ŵφ

n′−,n
′
+
(ŝ, σ′) ≤

∫ 1

0

φ(u)du+ qφ
n′−,n

′
+
(α) , and reject it otherwise.

Figure 2: Ranking-based independence rank test.

where we recall W ∗φ = Wφ(s∗) = W ∗φ(dF/d(H ⊗ G))
for any s∗ ∈ S∗.
Definition 2. Let δ > 0, S0 ⊂ S. We denote by B(δ)
the set of all pairs (H⊗G,F ) of probability distributions
on X × Y such that W ∗φ − sups∈S0 Wφ(s) ≤ δ.

The theorem below provides a rate bound for the type-
II error of the ranking-based rank test (8) of size α.
It depends on the sample sizes n used for bipartite
ranking, and on n′ = N − n for performing the rank
test based on the learned scoring function, see Fig. 2.
Theorem 2. (Type-II error bound.) Let φ(u) be
a score-generating function and ε > δ > 0. Let σ, σ′
two independent permutations drawn resp. from Sn−

and Sn′−
, independent of the Xis, Yjs. Fix α ∈ (0, 1).

Suppose that Assumptions 1-3 are fulfilled. Let p ∈
(0, 1) such that n ∧ n′ ≥ 1/p. Set n+ = bpnc and
n− = d(1− p)ne = n− n+, as well as n′+ = bpn′c and
n′− = d(1−p)n′e = n′−n′+. Then, there exist constants
C1 and C2 ≥ 24, depending on (φ, V), such that the
type-II error of the test (8) is uniformly bounded:

sup
(H⊗G,F )
∈H1(ε)∩B(δ)

PH1

{
Φφα = 0

}
≤ 18 exp

(
−Cn

′(ε− δ)2

16

)
(13)

+ C2

(
1 +

ε− δ
32C1κp

)−npκp(ε−δ)/(8C2)

as soon as n′ ≥ 4 log(18/α)/(C(ε − δ)2) and n ≥
16C2

1/(p(ε− δ)2), with constants κp = p∧ (1− p), C =
8−1 min

(
p/‖φ‖2∞, (p‖φ′‖2∞)−1, ((1− p)‖φ′‖2∞)−1

)
, the

Cj’s are explicitly detailed in the proof.

The first term results from the control of the type-II
error of a univariate rank statistic. The second term
relies on Theorem 5 established in Clémençon et al.
(2021), inherited from the learning stage of the scoring
function. If the bias δ induced by the learning step is
guaranteed to be smaller that the departure ε from H0,
such that ε− δ > 0, and if this quantity is kept fixed,
then both terms in (13) converge to zero when both
n, n′ →∞. Importantly, the error rate related to the
hypothesis test is independent on the dimensions of the
spaces X and Y. The only term dependent on those
dimensions comes from the learning step, through the
choice of bipartite ranking related to the class of scor-
ing functions S0. Precisely, only the constants C1 and
C2 depend on the dimensions of X and Y as inherited
by the VC dimension V of S0. We illustrate this bound
and its parameters (ε, δ) in the context of Example 1
in the Suppl. Material.
This result is important and new to the literature for
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testing independence under nonparametric alternatives.
It is, to the best of our knowledge, the first finite sam-
ple probabilistic uniform control of the type-II error.
The power of test statistics from the literature com-
paratively suffers from the underlying dimensions, see
Ramdas et al. (2015). The estimator of those statistic
indeed take the form of U -statistics based on multivari-
ate observations, for which it has been proved to be
subject to misspecification of the asymptotic distribu-
tion under nonparametric alternatives, see Huang et al.
(2023). Hence, our proposed method circumvents this
limitation by computing the test statistic based on uni-
variate samples that are mapped thanks to the scoring
function solution of the bipartite ranking problem.

4 NUMERICAL EXPERIMENTS

This section presents the empirical performance of our
proposed method (Fig. 2), by illustrating the the-
oretical testing guarantees of section 3 through: 1)
high-dimensional settings and non-monotonic class of
alternatives, and 2) application to fair learning by
testing for statistical parity based on real data pub-
lished in Jesus et al. (2022). We mainly consider
synthetic datasets to exactly control the departure
from independence. We refer to the Supp. Material,
Section 8 for details on the implementation and ad-
ditional experiments. These experiments can be re-
produced using the Python code available at https:
//github.com/MyrtoLimnios/independence_ranktest.

Ranking-based independence rank tests. We im-
plemented the Ranking Forest algorithm (rForest, Clé-
mençon et al. (2013)) to solve Step 2, following the
empirical results in Clémençon et al. (2023). We se-
lected two score-generating functions to compute the
rank statistic (8) for Step 3 : φ(u) = u (rForestMWW ,
Wilcoxon (1945)) and φ(u) = uI{u ≥ u0} with u0 ∈
{0.85, 0.90, 0.95} (rForestu0

, Clémençon and Vayatis
(2007)) considering only the 1 − u0 higher ranks in
the computation of the statistic corresponding to the
beginning of the ROC curve.

Evaluation criteria and experimental parame-
ters. Once all methods are calibrated for the range of
significance levels α ∈ (0, 1), we compare the graphs
of the the rate of rejecting H0 under H1, and also at
fixed α = 0.05 exposed in tables in the Supp. Material.
These criteria are computed over B = 100 Monte-Carlo
samplings, with 95% confidence interval, and plotted
against the dependence parameter ρ ∈ R, as function
of the departure level ε ∈ (0, 1), see Def. 1.

Probabilistic model and experimental parame-
ters. We continue on Ex. 1 motivated by the results in
Huang et al. (2023) refered to as model (GL). Consider
(X, Y) ∼ N (ed,Γρ), where ed ∈ Rd the null vector,

Cov(X1, Y k) = ρ, for all k ≤ l and Γρ,i,j = δij other-
wise. We implement model (M1) for non-monotonic
set of alternatives, wherein X1 = ρ cos Θ + ω1/4,
Y 1 = ρ sin Θ + ω2/4, with ρ ∈ {1, 2, 3}, ωi ∼ N (0, 1),
i ∈ {1, 2}, and Θ ∼ U([0, 2π]) all variables being in-
dependent, and with d ∈ {4, 10, 26}, N ∈ {500, 2000}.
(M1) is extended for high dimension to both a sparse
(M1s) and dense (M1d) models, see the Supp. Material,
Section 8 therein. The number of random permuta-
tions for our procedure is Kp ∈ {10, 50} under H1.
The pooled sample size N is fixed, with n = 4N/5 and
n′ = N/5, and set q = l = d/2.

Benchmark tests. We implement two state-of-the-
art multivariate and nonparametric tests, namely the
unbiased estimator of the Hilbert-Schmidt Indepen-
dence Criterion (HSIC, Gretton et al. (2007b)), with
the recommended Gaussian kernel with bandwidth the
median heuristic of the distance between the points in
the merged sample (e.g. Gretton et al. (2012)), and
the centered estimator of the Distance correlation com-
puted with either the L1 or the L2 distances (dCorL1 ,
dCorL2 , Székely and Rizzo (2007)). These methods re-
quire an additional implementation to estimate the null
quantile, e.g. done by a permutation procedure. Due
to their high computational complexity (O(N !)), we
restricted to a fixed number of permutations K0 = 200.

Results and discussion. We focus on the ability of
the ranking-based method to reject H0 for small de-
pendence ρ and for increasing dimension d, depending
on the choice of φ(u). First, the proposed method
is distribution free under H0 for any bipartite rank-
ing algorithm, hence its calibration only depends on
n′−, n

′
+, φ and α. State-of-the-art (SoA) methods do

not have this advantage in comparison. Other proce-
dures than the implemented permutation-based one,
approximate the asymptotic null distribution of the
related statistics, namely using the Gamma distribu-
tion for the HSIC, see Gretton et al. (2007b) Section
3. However, this method is proved to be subject to
misspecification under nonparametric assumptions, as
proved in Huang et al. (2023), resulting in false es-
timation of the testing threshold and thus incorrect
p-values. Notice that, for the proposed ranking-based
tests, the number of random permutations Kp required
to estimate the product of the marginal distributions,
is lower than that for the estimation of the SoA’s null
threshold: we propose to only sample from both Sn−

and Sn′−
, compared to SN . The experiments show

that for a well calibrated ranking-method, one achieves
high empirical power with minimal number of permu-
tations (Kp ∈ {10, 20, 50}), see Fig. 1 and 4. For small
sample sizes, RTB is not competitive as it has lower
power for increasing u0: fewer observations are consid-
ered and yielding larger variance for the estimation of

https://github.com/MyrtoLimnios/independence_ranktest
https://github.com/MyrtoLimnios/independence_ranktest
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the rank statistic. RTB has, however, experimentally
showed higher accuracy for estimating the beginning
of the true ROC curve (ROC∗) in Clémençon et al.
(2021). RTB also achieves competitive rejection rates
to MWW for larger N (Fig. 2), and to SoA for models
(GL, M1), see Fig. 1. When the dimension increases
d ∈ {N/10, N/5, N/2}, fixing N , the performance of
MWW remains high, e.g. Fig. 1. Notice that the data
generating processes are designed not to suffer from
signal-to-noise low ratio, for high dimension d especially.
However, there is a clear difference in the performances
depending on the range of that ratio: the sparser the
signal is and the smaller the rejection rates are for the
SoA methods. For (GL), see Fig. 4 (d = 4) and 5
(d = 10) especially, wherein the ratio equals to resp.
1/4 and 1/10, rForest exhibits higher power for lower
departures from H0, see also (M1s) Fig. 3 and plots
6, 7. On the contrary, for denser models, e.g. (M1d)
Fig. 4, SoA methods have similar performances with
MWW, however RTB shows no power for small departures
ρ. The randomization related to rForest increases the
chances to select important information, whereas for
dense models, it might be ignored, see Clémençon et al.
(2013) for further empirical analysis. Lastly, both HSIC
and dCorL2 show similar experimental performances
as expected, see Sejdinovic et al. (2013). To conclude,
for all φ and d, the rejection rates of the ranking-based
tests increase with the departure ε. They empirically
outperform the comparative SoA tests, studied for non-
monotonic and sparse high dimensional models.

Interpretation of the null assumption rejection.
We recall that certain bipartite ranking algorithms,
such as those proposed in Clémençon et al. (2011) or
Clémençon et al. (2013), produce scoring functions that
can be interpreted to a certain extent. As explained
in section 5 of Clémençon et al. (2011), the relative
importance of each component of the argument (X,Y )
of a scoring function s(x, y) defined by a ‘ranking tree’
(or by a ‘forest of ranking trees’) can be easily quanti-
fied. When applied to the testing problem considered
here, this interpretability tool may permit to identify
the components mainly responsible for the departure
from the independence assumption (or equivalently the
departure of the ROC curve from the diagonal) possibly
assessed from the data by means of the methodology
we promote. We further refer to similar discussions
on interpretability of the learned decision rule in the
context of two-sample testing, when formulated as a
classification learning problem in e.g. Lopez-Paz and
Oquab (2017); Kübler et al. (2022).

Real data experiment: testing for statistical
parity. In the context of ‘responsible’ statistical pre-
diction, a significant number of works have studied fair
statistical methods, aiming to be unbiased/fair wrt.

protected attributes/subgroups considered as sensitive.
In particular, Statistical parity is achieved when a deci-
sion rule producing a set of outcomes X based on an
ensemble of covariates Z, is independent of a set of pro-
tected attributes Y. We propose to test for statistical
parity formulated as a test for independence between X
and Y as in (1). If X is univariate and discrete, typical
methods in fairness propose to learn a classification
model to predict X, wherein both (X, Z) are used, and
then to measure or test for statistical independence
between the predicted X and the protected attributes
Y, see e.g. Fermanian and Guegan (2021). We pro-
pose to apply our proposed method in that context,
to assess whether a typical algorithm learns to predict
the outcome under statistical parity, when both out-
comes X and protected variables Y are continuous and
valued in spaces of possibly dimensions q, l > 1. We
use the synthetic Bank Account Fraud (BAF) dataset
developed by Jesus et al. (2022), and generated from
real datasets of frauds in anonymized bank account
openings. BAF has 31 explanatory variables plus one
indicating the possible occurence of fraud. It has unbal-
anced representation of frauds and all features can be
modeled as continuous observations. We selected three
potentially protected variables related to the personal
identity of the clients, namely the age of the client
(Age), an indicator level of similarity between the name
of the client and personal email address (Name), and
the number of emails received for applicants with same
date of birth four weeks prior to fraud (Date). We
gather the distributions of the empirical p-values in
Fig. 8, based on a 5-fold cross-validation. For each
fold, a Random Forest algorithm is trained to predict
the probability of Fraud X, and our ranking-based
procedure (Fig. 2) is used to estimate the associate
p-value of (1). We subsampled at random from the
original data set N = 103 while keeping the proportion
of Fraud from the original dataset fixed. This plot
shows that we cannot reject at level α = 0.05 the sta-
tistical independence between the predicted probability
of fraud and the protected variables Y.

5 CONCLUSION

We have proposed a novel approach, involving a pre-
liminary bipartite ranking stage, to test independence
between random variables in a nonparametric and pos-
sibly high-dimensional setting. Nonasymptotic error
bounds have been established for this method, and its
theoretical optimality properties are confirmed by nu-
merical experiments, showing that it generally detects
small departures from the independence much better
than its competitors and resists to the high dimension
especially in sparse settings.
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On Ranking-based Tests of Independence:
Supplementary Materials

This material supplements the article On Ranking-based Tests of Independence. Section 6 gathers additional
properties on ROC analysis, and on the assumptions required to prove the main Theorem 2, as well as developing
Example 1. In Section 7, we derive the detailed proofs for all theoretical results stated in the main corpus of the
article. Finally, section 8 presents additional numerical experiments on synthetic data. Importantly, we prove
the nonasymptotic control of both type-I and type-II errors formulated as concentration inequalities and show
empirical evidence for the competitiveness of our proposed method. We first recall the proposed ranking-based
rank test of independence procedure in Figure 3 for the sake of clarity.

Ranking-based Independence Testing

Input. Collection of N ≥ 1 i.i.d. copies DN = {(X1,Y1) . . . , (XN ,YN )} of (X,Y); subsample sizes
n = n+ + n− < N and n′ = N − n = n′+ + n′−; bipartite ranking A algorithm operating on the class S of scoring
functions on X × Y; score-generating function φ; target level α ∈ (0, 1); quantile qφn′−,n′+(α).

1. Splitting and Shuffling. Divide the initial sample into two subsamples DN = Dn ∪ D′n′ .
Independently from the (Xi,Yi)

′s, draw uniformly at random two independent permutations σ and σ′ in
Sn− and Sn′−

respectively, in order to build the independent samples: D−n− = {(Xi,Yσ(i))1≤i≤n−}, D+
n+

=

{(Xi,Yi)1+n−≤i≤n}, and D′−n′− = {(Xi,Yn+σ′(i−n))1+n≤i≤n+n′−
}, D′+n′+ = {(Xi,Yi)1+n+n′−≤i≤N}.

2. Bipartite Ranking. Run the bipartite ranking algorithm A based on the pooled training dataset Dn =
D−n− ∪ D

+
n+

built at the previous step, in order to learn the scoring function

ŝ = A(Dn) . (14)

3. Scoring and Two-sample Rank Statistic. Build the univariate positive/negative subsamples using
the scoring function ŝ learned at the previous step {ŝ(Xn+1,Yn+σ′(1)), . . . , ŝ(Xn+n′−

,Yn+σ′(n′−))} and
{ŝ(Xn+n′−+1,Yn+n′−+1), . . . , ŝ(XN ,YN )}. Sort them by decreasing order to compute

Ŵφ
n′−,n

′
+

(ŝ, σ′) =

N∑
i=1+n+n′−

φ

(
R′σ′ (ŝ(Xi,Yi))

n′ + 1

)
, (15)

where R′σ′(t) =
∑N
i=1+n+n′−

I{ŝ(Xi,Yi) ≤ t}+
∑n+n′−
i=1+n I{ŝ(Xi,Yn+σ′(i−n)) ≤ t}.

Output. Compute the outcome of the test of level α based on the test statistic (10): accept the hypothesis
H0 of independence if:

1

n′+
Ŵφ
n′−,n

′
+

(ŝ, σ′) ≤
∫ 1

0

φ(u)du+ qφn′−,n′+
(α) , and reject it otherwise.

Figure 3: Ranking-based independence testing.
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6 PRELIMINARIES

This subsection gathers additional definitions and properties important to the main corpus. We first expose
results related to ROC analysis. Then, we provide complementary material to Assumptions (1-3) required to
prove the main Theorem 2, deriving the nonasymptotic uniform bound of the type-II error of the test statistic
based on Eq. (10). We consider same notations as in the main corpus of the article.

6.1 ROC analysis

Lemma 3. (Clémençon and Vayatis (2009)) Let Z denote either X+ or X−, and define the likelihood ratio
Ψ(z) = dF+/dF−(z). The property below holds true a.s.

Ψ(Z) =
dFΨ,+

dFΨ,−
(Ψ(Z)) ,

where FΨ,+ (resp. FΨ,−) is the pushforward distribution F+ (resp. F−) by the likelihood ratio.
Proposition 3. (Clémençon and Vayatis (2009)) For any probability distributions F+ and F−, and any scoring
function s : Z → R, the following assertions hold true.

(i) ROC(s, 0) = 0 and ROC(s, 1) = 1.

(ii) The ROC curve is invariant by any nondecreasing transform c : R→ R of a scoring function s(z) on (0, 1):
ROC(c ◦ s, ·) = ROC(s, ·).

(iii) Let a scoring function s(z). Suppose both distributions F+ and F− are continuous. Then, the associated ROC
curve of the function s(z) is differentiable iff. the pushforward distributions Fs,+ and Fs,− are continuous.

6.2 Sobolev and VC-classes of functions

Sobolev space of functions. Assumption 2 requires that for all s ∈ S0, the pushforward distributions of F
and H ⊗G by the mapping s(x, y) are continuous, with density functions that are twice differentiable and have
Sobolev W2,∞-norms bounded by a finite constant M > 0.

We recall that the Sobolev space W2,∞ is composed of all Borelian functions f : R → R, such that f and its
first and second order weak derivatives f ′ and f ′′ are bounded almost-everywhere. It is a Banach space when
equipped with the norm ||f ||2,∞ = max{||f ||∞, ||f ′||∞, ||f ′′||∞}, where ||.||∞ is the norm of the Lebesgue space
L∞ of Borelian and essentially bounded functions.

VC-type classes of functions. We recall below the definition of VC-type class of functions formulated in
Assumption 3. We further refer to van der Vaart and Wellner (1996), Chapter 2.6. therein, for additional
generalizations, details and examples.
Definition 3. A class F of real-valued functions defined on a measurable space Z is a bounded V C-type class
with parameter (A,V) ∈ (0, +∞)2 and constant envelope LF > 0 if for all ε ∈ (0, 1):

sup
Q

N(F , L2(Q), εLF ) ≤
(
A

ε

)V
, (16)

where the supremum is taken over all probability measures Q on Z and the smallest number of L2(Q)-balls of
radius less than ε required to cover class F (i.e. covering number) is meant by N(F , L2(Q), ε).

In particular, a bounded VC class of functions with finite VC dimension V is of VC-type, with V = 2(V − 1) and
A = (cV (16e)V )1/(2(V−1)), where c is a universal constant, see e.g. van der Vaart and Wellner (1996), Theorem
2.6.7 therein.

6.3 Multivariate Gaussian framework - Example 1 continued

This section extends Example 1, i.e., for testing independence between two multivariate Gaussian r.v.. We focus
on deriving the explicit constants appearing in the bound that are related to: (i) the testing problem through
the departure from the null ε > 0, and the bias δ > 0, and (ii) the complexity of the selected class of scoring
functions S0 (Assumption 3).
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Framework and procedure. Consider a centered Gaussian r.v. (X, Y) with definite positive covariance Γ,
valued in Rq+l. Denote by ΓX and ΓY the (definite positive) covariance matrices of the components X and Y.
The oracle class of scoring functions S∗ is composed of the increasing transforms of the likelihood ratio, taking
the form of the quadratic scoring function:

s : z ∈ Rq+l 7→ zt(Γ−1 − diag(Γ−1
X ,Γ−1

Y ))z .

and define θ∗ = Γ−1 − diag(Γ−1
X ,Γ−1

Y ). Following the procedure summarized in Figure 3, we thus propose to solve
Step 2 by learning the optimal scoring function in the class:

S0(Θ) = {sθ : z ∈ Rq+l 7→ ztθz, θ ∈ Θ} ,

where Θ is a subset of real definite positive matrices of size R(q+l)×(q+l). Notice that, for any r.v. Z drawn either
from H ⊗G or F , the r.v. sθ(Z) for any θ ∈ Θ, being a quadratic transform of multivariate Gaussian r.v., is a
weighted sum of χ2(1) r.v..

VC dimension of S0(Θ). We analyze the VC dimension of the class S0(Θ) to obtain explicit relations of the
constants appearing in Theorem 2 with the dimensions of the spaces X and Y. Notice that,

S0(Θ) = {sθ : z ∈ Rq+l 7→ 〈θ, zzt〉F , θ ∈ Θ}

where 〈·, ·〉F is the Frobenius inner product in R(q+l)×(q+l). This yields the collection of subgraphs taking the
form:

{{(z, t) ∈ R(q+l) × R 7→ 〈θ, zzt〉F > t}, θ ∈ Θ} .

It is a VC-class of functions by recognizing linear separator for matrix networks (taking the sign function), where
θ is definite positive thus of full rank, the VC dimension can be upperbounded by c(q + l)2, with c = 2 log(24)
constant. We refer to Khavari and Rabusseau (2021), Theorem 2 therein, stating general upperbounds applied to
tensor networks. Therefore, the constants involved in Definition 3 for the class S0 are: A = (cV (16e)V )1/(2(V−1)),
with V = c(q + l)2. Applying the permanence properties proved in Clémençon et al. (2021), all resulting classes
of functions implied in the analysis of the R-statistic in Step 2 are therefore VC bounded and of parameters
depending similarly to those of the basis class S0, see Lemma 14,19,20 in particular. By Proposition 2.1 Giné and
Guillou (2001), we can see that the dominant constant C1 appearing in Theorem 2, as function of the parameters
of the class S0, is a linear combination of V and V 2, while C2 is a linear combination of V and

√
V .

Definition 1: interpretation of the alternative hypothesis H1. Notice that for any distribution H ⊗G
and F , i.e. not necessarily Gaussian, choosing the score-generating function φ(u) = u trivially leads to H1(ε) :
AUC(s)− 1/2 ≥ ε/(1− p). The deviation from the null hypothesis thus depends linearly on ε.

Definition 2: bipartite ranking bias. In this setting δ = 0 as S0(Θ) ⊂ S∗.

6.4 Nonlinear Dependence - Example 2

Gumbel (1960) proposed a construction of dependent absolute continuous univariate r.v. that allows for larger class
of alternative hypotheses. Let X, Y of resp. distribution functions h(dx) and g(dy), the class of joint distributions
indexed by the dependence parameter ρ ∈ [−1, 1] can be defined by fρ(x, y) = h(x)g(y)(1+ρ(2H(x)−1)(2G(y)−1)),
yielding the explicit oracle class S∗ by noticing that Ψρ(x, y) = ρ(2H(x)− 1)(2G(y)− 1).

7 TECHNICAL PROOFS

7.1 Proof of Theorem 1

The equivalence between assertions (i) and (ii) results from Corollary 7 in Clémençon et al. (2011), applied to
the pair (H ⊗G, F ) and combined with the equality ROC∗(·) = ROC(Ψ, ·) = ROC(s∗, ·) for any s∗ ∈ S∗ by
Proposition 3. One establishes the remaining equivalences by using Equation (4).
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7.2 Proof of Proposition 1

Assertions (i) and (ii) are inherent to the construction of the subsamples by mutual independence of all random
pairs (Xi, Yi)s, and their independence with the permutations σ, σ′ independently drawn at random from Sn−

and Sn′−
.

7.3 Proof of Proposition 2

Let α ∈ (0, 1), 1 ≤ n′− < n′ and 1 ≤ n′+ < n′. Consider a scoring function ŝ = A(D−n− ,D
+
n+

) solution of Step
2, see Fig. 3. By Proposition 1, ŝ is independent of both D

′−
n′−

and D
′+
n′+

, hence conditioning on the subsample
D−n− ∪ D

+
n+

under the null hypothesis yields a.s.:

PH0

{
Φφα = +1

∣∣ D−n− ∪ D+
n+

}
= PH0

{
1

n′+
Ŵφ
n′−,n

′
+

(ŝ, σ′) >

∫ 1

0

φ(u)du+ qφn′−,n′+
(α)

∣∣ D−n− ∪ D+
n+

}
≤ α ,

where the first equality holds true by definition of the test statistic. The inequality results from the definition of the
(1− α)-quantile qφn′−,n′+(α) of the pushforward distribution of Lφn′−,n′+ , by the mapping w 7→ (1/n′)w −

∫ 1

0
φ(u)du,

depending only on φ, n′+ and n′−. Then taking the expectation w.r.t. D−n− ∪ D
+
n+

concludes the proof.

7.4 Proof of Theorem 2

Let α ∈ (0, 1), ε > 0, δ > 0, and consider a scoring function ŝ = A(D−n− ,D
+
n+

) ∈ S0, solution of the bipartite
ranking step (Step 2 ) when formulated as the maximization of the empirical Wφ-performance criterion over the
class S0, see Fig. 3. Observe that for all alternatives (H ⊗ G, F ) in H1(ε) ∩ B1(δ), the deviation of the rank
statistic from the null decomposes a.s. as:

1

n′+
Ŵφ
n′−,n

′
+

(ŝ, σ′) −
∫ 1

0

φ(u)du =

{
1

n′+
Ŵφ
n′−,n

′
+

(ŝ, σ′)−Wφ(ŝ)

}
−
{
W ∗φ −Wφ(ŝ)

}
+

{
W ∗φ −

∫ 1

0

φ(u)du

}
,

(17)

and the generalization deviation of the Wφ-performance criterion satisfies, by Definition 2:

W ∗φ −Wφ(ŝ) ≤ 2 sup
s∈S0

∣∣∣∣ 1

n+
Ŵn−,n+

(s, σ)−Wφ(s)

∣∣∣∣+ δ . (18)

We can bound the type-II error on the samples D
′−
n′−
∪ D

′+
n′+

as follows:

PH,G
{

Φφα = 0
}

= PH,G
{

1

n′+
Ŵφ
n′−,n

′
+

(ŝ, σ′)−
∫ 1

0

φ(u)du ≤ qφn′−,n′+(α)

}
≤ PH,G

{
2 sup
s∈S0

∣∣∣∣ 1

n+
Ŵn−,n+

(s, σ)−Wφ(s)

∣∣∣∣+

∣∣∣∣ 1

n′+
Ŵφ
n′−,n

′
+

(ŝ, σ′)−Wφ(ŝ)

∣∣∣∣ ≥ ε− δ −
√

log(18/α)

Cn′

}
(19)

where C = 8−1 min
(
p/‖φ‖2∞, (p‖φ′‖2∞)−1, ((1− p)‖φ′‖2∞)−1

)
and as soon as n′ ≥ 4 log(18/α)/(C(ε − δ)2). We

sequentially used Eq. (17) and (18), and Proposition 4 to upperbound the quantile applied to samples of sizes
n′+, n

′
−, proved in section 7.5.

We now apply Theorem 5 in Clémençon et al. (2021) to bound the uniform deviation of theWφ-ranking performance
criterion to its estimator based on the two-samples D−n− ∪ D

+
n+

, such that for all n ≥ 16C2
1/(p(ε− δ)2):

PH,G
{

2 sup
s∈S0

∣∣∣∣ 1

n+
Ŵn−,n+(s, σ)−Wφ(s)

∣∣∣∣ ≥ ε− δ
2

}
≤ C2 exp

{
−np(p ∧ (1− p))

4C2
(ε− δ) log

(
1 +

ε− δ
16C1(p ∧ (1− p))

)}
, (20)
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as soon as n ≥ 16C2
1/(p(ε− δ)2), constants C1 > 0, C2 ≥ 24 depend on φ, V of values detailed in the dedicated

proof, see Clémençon et al. (2021), Appendix section B.3 therein.

We can now upperbound the deviation of the two-sample rank statistic w.r.t. the Wφ-ranking performance
criterion by conditioning on the first subsample Dn = D−n− ∪ D

+
n+

and applying the inequality (27), to the two
independent samples:

{ŝ(Xn+1,Yn+σ′(1)), . . . , ŝ(Xn+n′−
,Yn+σ′(n′−))} ∪ {ŝ(Xn+n′−+1,Yn+n′−+1), . . . , ŝ(XN ,YN )}

PH,G

{∣∣∣∣ 1

n′+
Ŵφ
n′−,n

′
+

(ŝ, σ′)−Wφ(ŝ)

∣∣∣∣ ≥ ε− δ
2
−
√

log(18/α)

Cn′
∣∣ D−n− ∪ D+

n+

}
≤ 18 exp

{
−Cn

′ (ε− δ)2

4

}
. (21)

Finally, we obtain the desired bound by taking the expectation on the last inequality (21) and combining it with
Eq. (20) using the union bound.

7.5 A nonasymptotic inequality for the testing threshold

Let {Xε,1, . . . , Xε,nε} with ε ∈ {−,+}, be two independent i.i.d. random samples, drawn from univariate
probability distributions Fε. Recall that the univariate two-sample linear rank statistic based on these samples is
defined by

Ŵφ
n−,n+

=

n+∑
i=1

φ

(
R(X+,i)

n+ 1

)
, (22)

where the ranks R(X+,i) =
∑
ε∈{−,+}

∑nε
j=1 I{s(Xε,j) ≤ X+,i}, for all i ≤ n+ The proposed class of linear rank

statistics is distribution-free under the null, hence allows for the exact computation of the testing threshold for
any sample sizes. Proposition 4 provides an upperbound for the (1− α)-quantile qφn−,n+

(α) of the pushforward
distribution of Lφn−,n+

by the mapping w 7→ (1/n)w −
∫ 1

0
φ(u)du. It proves to be of order OP(n−1/2) and only

depending on φ, n+, n− and α.

Proposition 4. Let p ∈ (0, 1) and n ≥ 1/p. Let the score-generating function φ(u) satisfy Assumption 1. Set
n+ = bpnc and n− = d(1− p)ne = n− n+. Then, for any α ∈ (0, 1), the (1− α)-quantile satisfies a.s.:

qφn−,n+
(α) ≤

√
log(18/α)

Cn
, (23)

where C = 8−1 min
(
p/‖φ‖2∞, (p‖φ′‖2∞)−1, ((1− p)‖φ′‖2∞)−1

)
.

Proof. The proof relies on the concentration results established in Clémençon et al. (2021), see Theorem 5 in
particular, and builds upon the linearization technique exposed therein. Define by F = pF+ + (1 − p)F− the
mixture c.d.f. of the pooled sample and of empirical estimator F̂n(t) = (1/n)

∑
ε∈{+,−}

∑
i≤nε I{Xε,i ≤ t}. By

considering φ(u) satisfying Assumption 1, writing its Taylor expansion of order 2 evaluated at nF̂n(X+,i)/(n+ 1)
around F (X+,i) for 1 ≤ i ≤ n+, and summed over i ≤ n+, results in a a.s. decomposition of the statistic Eq.
(22). We refer to Eq. (B.3,4) in Clémençon et al. (2021) for the detailed arguments.

The terms of the resulting expansion of order one are composed of two U -statistics, for which the Hoeffding
decomposition results in the linearization below:

1

n+
Ŵφ
n−,n+

−Wφ = Ŵφ −Wφ +
1

n+

(
V̂ +
n+
− E

[
V̂ +
n+

])
+

1

n+

(
V̂ −n− − E

[
V̂ −n−

])
+

1

n+
Rn−,n+ , (24)
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where:

Wφ = E[(φ ◦ F ) (X+)] ,

Ŵφ =
1

n+

n+∑
i=1

(φ ◦ F ) (X+,i) ,

V̂ +
n+

=
n+ − 1

n+ 1

n+∑
i=1

∫ +∞

X+,i

(φ′ ◦ F )(u)dF+(u) ,

V̂ −n− =
n+

n+ 1

n−∑
i=1

∫ +∞

X−,i

(φ′ ◦ F )(u)dF+(u) ,

and Rn−,n+ is the sum of the Taylor-Lagrange residual term T̂n−,n+ , and of the terms of order at most OP(n−1)
inherited from the (two) Hoeffding decompositions. Precisely, it inherits from the linear statistics of order OP(n−1)

defined by R̂n−,n+
, and both remainder terms being degenerate U -statistics. We detail hereafter the main steps

for obtaining a nonasymptotic exponential deviation bound of the univariate rank statistic (1/n+)Ŵφ
n−,n+

based
on Eq. (24). Following Clémençon et al. (2021), define the (nonsymmetric) bounded kernels defined on R2 by:

k(z, z′) = I{z′ ≤ z}(φ′ ◦ F )(z) .

Then

Rn−,n+
= R̂n−,n+

+
n+(n+ − 1)

n+ 1
Un+

(k) +
n+n−
n+ 1

Un−,n+
(k) + T̂n−,n+

,

where Un+
(k) is the one-sample degenerate U -statistic of order 2 based on the positive sample with kernel k,

Un−,n+
(k) is the two-sample degenerate U -statistic of degree (1, 1) based on the two samples {Xε,1, . . . , Xε,nε},

with ε ∈ {−,+}, with kernel k.

Noticing that
|Rn−,n+

| ≤ |R̂n−,n+
|+ p2n|Un+

(k)|+ p(1− p)n|Un−,n+
(k)|+ |T̂n−,n+

| ,

one can sequentially upperbounded the tail of each term with threshold t/16, for any t > 0, in probability using:
Hoeffding’s classic exponential bound from Hoeffding (1963) with the union bound to R̂n−,n+

, Lemma 3 in Nolan
and Pollard (1987) applied to Un+

, Lemma 27 in Clémençon et al. (2021) to Un+,n− , and finally for T̂n−,n+
, one

has:

1

n+
|T̂n−,n+

| ≤ ‖φ′′‖∞
(

sup
t∈R

(
F̂n(t)− F (t)

)2

+
1

(n+ 1)2

)
≤ 3p2‖φ′′‖∞ sup

t∈R

(
F̂n+(t)− F+(t)

)2

+ 3(1− p)2‖φ′′‖∞ sup
t∈R

(
F̂n−(t)− F−(t)

)2

+
13‖φ′′‖∞

n2
.

It remains to apply Dvoretzky–Kiefer–Wolfowitz inequality to each of the two first terms on the right hand side,
while the third is negligeable w.r.t. the others. This concludes to, for all nt ≥ 512‖φ′‖2∞/(p‖φ′′‖∞):

P
{
|Rn,m| >

t

4

}
≤ 12 exp

{
− Nt

48κp‖φ′′‖∞

}
, (25)

and otherwise

P
{
|Rn−,n+ | >

t

4

}
≤ 12 exp

{
− αpn

2t2

512‖φ′‖2∞

}
, (26)

where αp = min(p, 1− p)/(4(1− p)), κp = max(p, 1− p).

It remains to apply Hoeffding exponential inequality to the other terms of the decomposition Eq. (24) with
threshold t/4 as follows:
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P
{
|Ŵφ −Wφ| >

t

4

}
≤ 2 exp

{
− pnt2

8‖φ‖2∞

}
,

P
{

1

n+

∣∣∣V̂ +
n+
− E

[
V̂ +
n+

]∣∣∣ > t

4

}
≤ 2 exp

{
− nt2

8p‖φ′‖2∞

}
,

P
{

1

n+

∣∣∣V̂ −n− − E
[
V̂ −n−

]∣∣∣ > t

4

}
≤ 2 exp

{
− nt2

8(1− p)‖φ′‖2∞

}
.

By virtue of the union bound, we obtain

P
{∣∣∣∣ 1

n+
Ŵφ
n−,n+

−Wφ

∣∣∣∣ > t

}
≤ 18 exp{−Cnt2} , (27)

where C = 8−1 min
(
p/‖φ‖2∞, (p‖φ′‖2∞)−1, ((1− p)‖φ′‖2∞)−1

)
, concluding the proof.

8 ADDITIONAL NUMERICAL EXPERIMENTS

This section details the technicalities related to the experiments exposed in the main corpus, as well as additional
experiments on synthetic data.

Experimental parameters. All results are shown with 95% confidence interval based on B ∈ N∗ Monte-Carlo
samplings. The number of random permutations for the benchmark tests is chosen so that the test is calibrated
K0 = 200, the number of random permutations for our proposed procedure is fixed to Kp ∈ {10, 20, 50}. The
significance level is chosen equal to α = 0.05. We consider the pooled sample size N ∈ {500, 1000, 2000}, with
n = 4N/5 and n′ = N/5, where the subsamples are balanced n− = n+ = n/2, n′− = n′+ = n′/2, and denote by
d = 2q = 2l. We choose the RTB parameter u0 ∈ {0.85, 0.90, 0.95}.

Probabilistic models. We first consider different types of independence according to the following models.
Define X = (X1, X2, . . . , Xq) and Y = (Y 1, Y 2, . . . , Y l), the first two models sample X and Y according to the
multivariate Gaussian distribution, in the continuity of Example 1.

(GL) (X, Y) ∼ N (ed, (1/
√
d) × Γρ), where ed ∈ Rd the null vector, Cov(X1, Y k) = ρ, for all k ≤ l and

Γρ,i,j = δij otherwise, d ∈ {4, 10, 26, 50} for N = 500 and d ∈ {4, 10} for N = 1000.

(GL+) Covariance matrix from model (GL) extended for higher dimensions with Cov(Xu, Y k) = ρ, for all
k ≤ l and a u ≤ q only, and with d ∈ {100, 250, 500}, N = 500.

Also, for (GL), the range of the dependence parameter ρ are chosen such that the resulting Γρ is positive definite
to show directional dependency. The following data generation distributions model non-monotonic alternative
hypothesis. The first subset of coordinates Xu, Y v’s are drawn according to the models below, and Xi, Y j , for
all i, j ≥ u, v are independently drawn from the Univariate distribution on [0, 1] and are independent of the first
coordinate.

(M1) X1 = ρ cos Θ+ω1/4, Y 1 = ρ sin Θ+ω2/4, with ρ ∈ {1, 2, 3}, ωi ∼ N (0, 1), i ∈ {1, 2}, and Θ ∼ U([0, 2π])
all variables being independent, and with d ∈ {4, 10, 26}, N ∈ {500, 2000}.

(M1s) Sparse covariance matrix from model (M1) extended for higher dimensions by generating the Xu, Y v’s,
for u, v ≤ q/2, l/2 according to (M1) and the Xu, Y v, for u, v > q/2, l/2 are drawn from the Univariate
distribution on [0, 1], with d ∈ {100, 250, 500}, N = 500.

(M1d) Dense covariance matrix from model (M1) extended for higher dimensions with by generating the
Xu, Y v, for all coordinates u, v ≤ q, l according to (M1), with d ∈ {100, 250, 500}, N = 500.

Model (M1) was proposed for both the univariate and bivariate settings by Berrett and Samworth (2019) and
further studied by Albert et al. (2022) and for very small sample sizes. We compare our results for models (M1s)
and (M1d) to the benchmark tests to see the resistance to high dimension d.
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Model (GL) N = 500, d = 4 N = 500, d = 10 N = 500, d = 26

Rejection rate of the null H0 H1 H0 H1 H0 H1

Method ρ = 0.0 ρ = 0.1 ρ = 0.3 ρ = 0.6 ρ = 0.0 ρ = 0.05 ρ = 0.1 ρ = 0.15 ρ = 0.0 ρ = 0.02 ρ = 0.05 ρ = 0.07

rForestMWW 0.04 ± 0.19 0.47 ± 0.50 0.92 ± 0.27 1.00 ± 0.00 0.05 ± 0.22 0.85 ± 0.36 0.92 ± 0.27 0.98 ± 0.14 0.04 ± 0.19 0.98 ± 0.14 0.99 ± 0.10 1.00 ± 0.00
rForest95 0.01 ± 0.10 0.02 ± 0.14 0.08 ± 0.27 0.17 ± 0.35 0.01 ± 0.10 0.04 ± 0.19 0.17 ± 0.38 0.16 ± 0.37 0.01 ± 0.10 0.29 ± 0.46 0.42 ± 0.59 0.39 ± 0.49
rForest90 0.02 ± 0.14 0.10 ± 0.30 0.23 ± 0.42 0.49 ± 0.50 0.01 ± 0.10 0.32 ± 0.47 0.37 ± 0.46 0.46 ± 0.50 0.01 ± 0.10 0.64 ± 0.48 0.60 ± 0.49 0.77 ± 0.42
rForest85 0.02 ± 0.14 0.17 ± 0.38 0.35 ± 0.48 0.71 ± 0.46 0.01 ± 0.10 0.41 ± 0.49 0.52 ± 0.50 0.63 ± 0.49 0.02 ± 0.14 0.79 ± 0.41 0.78 ± 0.42 0.87 ± 0.34
HSIC 0.06 ± 0.24 0.09 ± 0.29 0.06 ± 0.24 0.14 ± 0.35 0.06 ± 0.24 0.06 ± 0.24 0.09 ± 0.29 0.04 ± 0.19 0.06 ± 0.24 0.03 ± 0.17 0.06 ± 0.24 0.03 ± 0.17
dCorL2 0.10 ± 0.30 0.06 ± 0.24 0.03 ± 0.17 0.12 ± 0.33 0.07 ± 0.26 0.03 ± 0.17 0.10 ± 0.30 0.11 ± 0.31 0.05 ± 0.22 0.03 ± 0.17 0.06 ± 0.24 0.10 ± 0.30
dCorL1 0.08 ± 0.27 0.06 ± 0.24 0.09 ± 0.29 0.15 ± 0.36 0.05 ± 0.22 0.08 ± 0.27 0.11 ± 0.31 0.09 ± 0.29 0.04 ± 0.19 0.04 ± 0.20 0.04 ± 0.20 0.0è ± 0.26

Model (M1) N = 500, d = 4 N = 500, d = 10 N = 500, d = 26

Rejection rate of the null H0 H1 H0 H1 H0 H1

Method ρ = 0.0 ρ = 1 ρ = 2 ρ = 3 ρ = 0.0 ρ = 1 ρ = 2 ρ = 3 ρ = 0.0 ρ = 1 ρ = 2 ρ = 3

rForestMWW 0.04 ± 0.19 0.78± 0.42 0.97± 0.17 0.99 ± 0.10 0.04 ± 0.19 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.04 ± 0.20 0.99 ± 0.10 1.00 ± 0.00 1.00 ± 0.00
rForest95 0.01 ± 0.10 0.02± 0.14 0.07 ± 0.26 0.13± 0.34 0.00 ± 0.00 0.16 ± 0.37 0.70 ± 0.46 0.88 ± 0.33 0.00 ± 0.00 0.33 ± 0.47 0.92 ± 0.27 0.99 ± 0.10
rForest90 0.02 ± 0.14 0.16± 0.37 0.38 ± 0.47 0.52 ± 0.50 0.02 ± 0.14 0.67 ± 0.47 0.98 ± 0.14 1.00 ± 0.00 0.01 ± 0.10 0.80 ± 0.040 1.00 ± 0.00 1.00 ± 0.00
rForest85 0.00 ± 0.00 0.23 ± 0.42 0.56 ± 0.50 0.71 ± 0.46 0.01 ± 0.10 0.88 ± 0.33 1.00 ± 0.00 1.00 ± 0.00 0.01 ± 0.10 0.89± 0.31 1.00 ± 0.00 1.00 ± 0.00
HSIC 0.03 ± 0.17 0.22 ± 0.42 0.60 ± 0.49 0.86 ± 0.35 0.05 ± 0.22 0.26 ± 0.44 0.74 ± 0.44 1.0 ± 0.00 0.04 ± 0.20 0.16 ± 0.37 0.98 ± 0.14 1.00 ± 0.00
dCorL2 0.06 ± 0.24 0.20 ± 0.40 0.59 ± 0.50 0.83 ± 0.38 0.03 ± 0.17 0.26 ± 0.44 0.75 ± 0.44 1.0 ± 0.00 0.03 ± 0.17 0.17 ± 0.38 0.96 ± 0.20 1.00 ± 0.00
dCorL1 0.02 ± 0.14 0.18 ± 0.39 0.49 ± 0.50 0.72 ± 0.45 0.05 ± 0.22 0.18 ± 0.39 0.55 ± 0.50 0.80 ± 0.40 0.08 ± 0.27 0.12 ± 0.33 0.79 ± 0.41 0.97 ± 0.17

Table 1: Empirical rejection rates for testing H0 of independence against H1, for models (GL, M1) ± 95% standard
deviation at significance level α = 0.05. Parameters: ρ ∈ [0, 0.6] (GL), ρ ∈ {0, 1, 2, 3} (M1), d ∈ {4, 10, 26},
Kp = 50, B = 100, Bp = 200. Results in bold specify the best performance among all methods.

Model (M1) N = 2000, d = 4 N = 2000, d = 10 N = 2000, d = 50

Rejection rate of the null H0 H1 H0 H1 H0 H1

Method ρ = 0.0 ρ = 1 ρ = 2 ρ = 3 ρ = 0.0 ρ = 1 ρ = 2 ρ = 3 ρ = 0.0 ρ = 1 ρ = 2 ρ = 3

rForestMWW 0.03 ± 0.17 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.06 ± 0.24 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.02 ± 0.14 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
rForest95 0.02 ± 0.14 0.46 ± 0.50 0.89 ± 0.31 0.94 ± 0.24 0.00 ± 0.00 0.71 ± 0.46 0.96 ± 0.19 0.97 ± 0.17 0.00 ± 0.00 0.99 ± 0.1 1.00 ± 0.00 1.00 ± 0.00
rForest90 0.02 ± 0.14 0.82 ± 0.38 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.92 ± 0.27 1.00 ± 0.00 1.00 ± 0.00 0.01 ± 0.10 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
rForest85 0.04 ± 0.20 0.93 ± 0.26 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.96 ± 0.19 1.00 ± 0.00 1.00 ± 0.00 0.02 ± 0.14 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 2: Empirical rejection rates for the model (M1) ± 95% standard deviation at significance level α = 0.05.
The parameters are fixed to: ρ ∈ {0, 1, 2, 3}, d ∈ {4, 10, 50}, Kp ∈ {10, 20}, B = 100. Results in bold specify the
best performance among all methods.

Model (M1s, N = 500) d = 50 d = 100 d = 250

Rejection rate of the null H0 H1 H0 H1 H0 H1

Method ρ = 0.0 ρ = 0.30 ρ = 0.40 ρ = 0.50 ρ = 0.0 ρ = 0.30 ρ = 0.40 ρ = 0.50 ρ = 0.0 ρ = 0.20 ρ = 0.30 ρ = 0.40

rForestMWW 0.03 ± 0.17 0.94 ± 0.24 0.96 ± 0.20 0.97 ± 0.17 0.03 ± 0.17 0.82 ± 0.39 0.96 ± 0.20 1.00 ± 0.00 0.07 ± 0.26 0.11 ± 0.31 0.90 ± 0.30 0.98 ± 0.14
rForest95 0.01 ± 0.10 0.02 ± 0.14 0.03 ± 0.17 0.74 ± 0.44 0.01 ± 0.10 0.00 ± 0.00 0.05 ± 0.22 0.73 ± 0.45 0.01 ± 0.10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
rForest90 0.01 ± 0.10 0.32 ± 0.47 0.60 ± 0.49 0.95 ± 0.22 0.04 ± 0.19 0.00 ± 0.00 0.60 ± 0.49 0.98 ± 0.14 0.02 ± 0.14 0.00 ± 0.00 0.00 ± 0.00 0.06 ± 0.24
rForest85 0.01 ± 0.10 0.71 ± 0.46 0.89 ± 0.31 0.97 ± 0.17 0.03 ± 0.17 0.00 ± 0.00 0.82 ± 0.39 0.99 ± 0.10 0.03 ± 0.17 0.00 ± 0.00 0.06 ± 0.24 0.24 ± 0.42
HSIC 0.05 ± 0.22 0.27 ± 0.45 0.41 ± 0.49 0.72 ± 0.45 0.03 ± 0.17 0.46 ± 0.50 0.80 ± 0.40 0.92 ± 0.27 0.04 ± 0.19 0.23 ± 0.42 0.74 ± 0.44 1.00 ± 0.00
dCorL2 0.06 ± 0.24 0.28 ± 0.45 0.39 ± 0.49 0.73 ± 0.45 0.05 ± 0.22 0.41 ± 0.49 0.80 ± 0.40 0.93 ± 0.26 0.04 ± 0.19 0.24 ± 0.43 0.74 ± 0.44 1.00 ± 0.00
dCorL1 0.04 ± 0.19 0.21 ± 0.41 0.27 ± 0.45 0.59 ± 0.49 0.02 ± 0.14 0.35 ± 0.48 0.58 ± 0.50 0.78 ± 0.42 0.03 ± 0.17 0.22 ± 0.42 0.58 ± 0.50 0.93 ± 0.27

Table 3: Empirical rejection rates for model (M1s) ± 95% standard deviation at significance level α = 0.05.
Parameters: ρ ∈ {0.0, 0.1, 0.2, 0.3}, d ∈ {50, 100, 250}, Kp ∈ {10, 50}, K0 = 200, B = 100. Results in bold specify
the best performance among all methods.

Model (M1d, N = 500) d = 50 d = 100 d = 250

Rejection rate of the null H0 H1 H0 H1 H0 H1

Method ρ = 0.0 ρ = 0.20 ρ = 0.30 ρ = 0.40 ρ = 0.0 ρ = 0.15 ρ = 0.20 ρ = 0.30 ρ = 0.0 ρ = 0.20 ρ = 0.30 ρ = 0.40

rForestMWW 0.03 ± 0.17 0.37 ± 0.49 0.99± 0.10 0.96 ± 0.20 0.03 ± 0.17 0.00 ± 0.00 0.02 ± 0.14 0.99 ± 0.10 0.07 ± 0.26 0.00 ± 0.00 0.97 ± 0.17 1.00 ± 0.00
rForest95 0.01 ± 0.10 0.00 ± 0.00 0.10 ± 0.31 0.03 ± 0.17 0.01 ± 0.10 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.14 0.01 ± 0.10 0.00 ± 0.00 0.00 ± 0.00 0.85 ± 0.36
rForest90 0.01 ± 0.10 0.00 ± 0.00 0.65 ± 0.48 0.60 ± 0.49 0.04 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 0.32 ± 0.47 0.02 ± 0.14 0.00 ± 0.00 0.00 ± 0.00 0.98 ± 0.14
rForest85 0.02 ± 0.14 0.00 ± 0.00 0.92 ± 0.39 0.89± 0.31 0.03 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 0.71 ± 0.46 0.03 ± 0.17 0.00 ± 0.00 0.06 ± 0.24 0.99± 0.10
HSIC 0.05 ± 0.22 0.32 ± 0.47 0.93 ± 0.26 0.99 ± 0.10 0.03 ± 0.17 0.27± 0.45 0.43 ± 0.50 0.93 ± 0.26 0.04 ± 0.19 0.74± 0.44 1.00 ± 0.00 1.00 ± 0.00
dCorL2 0.06 ± 0.24 0.33 ± 0.47 0.95 ± 0.22 0.99 ± 0.10 0.05 ± 0.2 0.29± 0.46 0.47 ± 0.50 0.95 ± 0.22 0.04 ± 0.19 0.74± 0.44 1.00 ± 0.00 1.00 ± 0.00
dCorL1 0.04 ± 0.19 0.19 ± 0.39 0.80 ± 0.40 0.88 ± 0.33 0.02 ± 0.14 0.15 ± 0.36 0.32 ± 0.47 0.80 ± 0.40 0.03 ± 0.17 0.68 ± 0.47 1.00 ± 0.00 1.00 ± 0.00

Table 4: Empirical rejection rates for models (M1d) ± 95% standard deviation at significance level α = 0.05.
Parameters: ρ ∈ {0.0, 0.1, 0.2, 0.3}, d ∈ {50, 100, 250}, Kp ∈ {10, 20}, K0 = 200, B = 100. Results in bold specify
the best performance among all methods.
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(a) (GL), ρ = 0.0, d = 4

(b) ρ = 0.2, d = 4

(c) (GL), ρ = 0.4, d = 4

(d) (GL), ρ = 0.3, d = 4

(e) (GL), ρ = 0.5, d = 4

Figure 4: Plots of the rejection rate under H0 (a) and H1 (b-e) against the significance level α ∈ (0, 1) for (GL)
with φ(u) = u (rForestMWW ), ρ = 0.0 (a) ρ = 0.2 (b), ρ = 0.3 (c), ρ = 0.4 (d), ρ = 0.5 (e). The parameters are
fixed to N = 1000, d = 4, Kp = 10, K0 = 200, B = 100 for all experiments.

(a) (GL), ρ = 0.0, d = 10 (b) (GL), ρ = 0.10, d = 10 (c) (GL), ρ = 0.15, d = 10 (d) (GL), ρ = 0.20, d = 10

Figure 5: Plots of the rejection rate under H0 (a) and H1 (b-d) against the significance level α ∈ (0, 1) for (GL)
with φ(u) = u (rForestMWW ), ρ = 0.0 (a) ρ = 0.10 (b), ρ = 0.15 (c), ρ = 0.20 (d). The parameters are fixed to
N = 1000, d = 10, Kp = 10, K0 = 200, B = 100 for all experiments.
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(a) ρ = 0.0, d = 50

(b) (M1s), ρ = 0.30, d = 50

(c) (M1d), ρ = 0.20, d = 50

(d) (M1s), ρ = 0.40, d = 50

(e) (M1d), ρ = 0.30, d = 50

(f) (M1s), ρ = 0.50, d = 50

(g) (M1d), ρ = 0.40, d = 50

Figure 6: Plots of the rejection rate under H0 (a) and H1 (b-g) against the significance level α ∈ (0, 1) for
(M1s) top row, and (M1d) bottom row, with φ(u) = u (rForestMWW ), ρ = 0.0 (a) ρ ∈ (0.20, 0.50) (b-g). The
parameters are fixed to N = 500, d = 50, Kp = 10, K0 = 200, B = 100 for all experiments.

(a) ρ = 0.0, d = 100

(b) (M1s), ρ = 0.30, d = 100

(c) (M1d), ρ = 0.15, d = 100

(d) (M1s), ρ = 0.40, d = 100

(e) (M1d), ρ = 0.20, d = 100

(f) (M1s), ρ = 0.50, d = 100

(g) (M1d), ρ = 0.30, d = 100

Figure 7: Plots of the rejection rate under H0 (a) and H1 (b-g) against the significance level α ∈ (0, 1) for
(M1s) top row, and (M1d) bottom row, with φ(u) = u (rForestMWW ), ρ = 0.0 (a) ρ ∈ (0.15, 0.50) (b-g). The
parameters are fixed to N = 500, d = 100, Kp = 10, K0 = 200, B = 100 for all experiments.
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Figure 8: Boxplots of the p-values for different sets of protected attributes. The experimental parameters are
fixed to N = 103, Kp = 10, q = 1, l ∈ {2, 3}, 5-fold cross-validation, 31 features, based on the open-source dataset
available Jesus et al. (2022).
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