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Abstract

The multi-modal nature of neural loss land-
scapes is often considered to be the main
driver behind the empirical success of deep
ensembles. In this work, we probe this belief
by constructing various "connected" ensem-
bles which are restricted to lie in the same
basin. Through our experiments, we demon-
strate that increased connectivity indeed neg-
atively impacts performance. However, when
incorporating the knowledge from other basins
implicitly through distillation, we show that
the gap in performance can be mitigated by
re-discovering (multi-basin) deep ensembles
within a single basin. Thus, we conjecture
that while the extra-basin knowledge is at
least partially present in any given basin, it
cannot be easily harnessed without learning
it from other basins.

1 INTRODUCTION

The intricate characteristics of neural loss landscapes
pose one of the most intriguing puzzles in deep learn-
ing. The surfaces are characterized by their highly
non-convex nature, giving rise to an exponential num-
ber of minima belonging to various modes or basins.
Simple, first-order optimizers such as stochastic gradi-
ent descent are then used to navigate these landscapes,
leading to a complex interplay between stochasticity
and non-convexity. As a consequence, a plethora of
interesting behaviours are observed empirically: (1)
models trained under different random initializations
and batch orderings end up in different parts of the
weight space while maintaining similar generalization
performance (Choromanska et al., 2015), (2) these inde-
pendently trained models can be connected by simple
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but non-linear curves (Draxler et al., 2018; Garipov
et al., 2018) in parameter space, and (3) ensembling
these leads to an increase in performance (Lakshmi-
narayanan et al., 2017). The gain in performance can
be attributed to the predictive diversity of the obtained
models (akin to the classic bias-variance tradeoff), i.e.
different runs of the same model result in "different
interpretations of the data" due to the non-convexity
and the stochasticity of the learning process. The idea
of distinguishing between models from different basins
is essential and has been used as a synonym for higher
model diversity. The common belief is that diversity
is achieved by visiting different basins in the loss land-
scape. This belief suggests that ensembling models
from the same basin is of limited use, as models are
not sufficiently diverse. Indeed, many works use this
interpretation of diversity as a design principle for their
inference algorithms (Huang et al., 2017; D’Angelo and
Fortuin, 2021; Loshchilov and Hutter, 2017; Zhang
et al., 2020).

In this work, we take the opposite direction and in-
vestigate instead how performant ensembles can be if
they are restricted to lie in a single basin. To that end,
we design a set of ensemble baselines that increasingly
manage to close the gap to deep ensembles in terms
of test accuracy with the additional constraint that
each ensemble member lies in the same basin. We coin
such ensembles connected ensembles alluding to the fact
that models from the same basin are linearly mode-
connected. Our more intuitive approaches for con-
structing connected ensembles suggest that increased
connectivity is often associated with lower performance.
However, by leveraging the insights of Frankle et al.
(2020) regarding the stability of SGD and adopting
the distillation procedure introduced by Hinton et al.
(2015), this relationship can be disrupted. Connected
ensembles constructed using this distillation method
show significantly improved predictive performance.
We further demonstrate the broad applicability of the
connected ensemble class on two model families and
three widely used benchmarks. More specifically, we
consider ensembles of ResNets (He et al., 2016) and the
more recent Vision Transformers (Dosovitskiy et al.,
2021).
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These results have strong implications for the design
of learning algorithms that leverage multiple model
runs, demonstrating that in principle, one does not
need to break linear mode-connectivity to find diverse
models but can rather ensemble models that are within
the same basin. From a theoretical point of view, our
results on distilled ensembles imply that the informa-
tion of multiple basins can be re-discovered within a
single basin to a large extent. However, more work
is necessary to assess whether this knowledge can be
leveraged without the explicit aid of other basins. More
specifically, we make the following contributions:

• We design a rich set of connected ensembles and
characterize a trade-off between diversity and con-
nectivity.

• We show that implicitly incorporating knowledge
from other basins allows us to design strong con-
nected ensembles that significantly close the gap in
performance to deep ensembles. We thus demon-
strate that a single basin could suffice for the
construction of diverse ensembles.

The structure of this paper is as follows. In Section 2,
we introduce the background and motivate the research
question. In Section 3, we describe methods to explore a
single loss basin. We expand on those results by further
enhancing the single-basin ensemble performance with
different techniques in Section 4. We provide a review
of related work in Section 5 and discuss implications
of our empirical findings in Section 6.

2 BACKGROUND

2.1 Mode-Exploring Ensembling Techniques

In deep ensembles (Lakshminarayanan et al., 2017),
each model is trained on the same dataset by using
different random initializations and batch orderings.
As a result, the ensemble members reliably converge
to different loss basins in weight-space, which makes
this procedure highly effective at exploring the non-
convex, multi-modal loss landscape of neural networks.
Naturally, the success of deep ensembles in terms of
predictive accuracy, uncertainty quantification and out-
of-distribution robustness (Ovadia et al., 2019; Wenzel
et al., 2020) is commonly attributed to this ability
to sample from different modes that contain function-
ally diverse models (Fort et al., 2020). Consequently,
researchers have developed sequential ensembling meth-
ods designed to mimic the mode-sampling ability of
deep ensembles. In particular, methods that leverage a
cyclical (sometimes constant) learning rate schedule are
supposed to explore different parts of the weight-space

by cyclically increasing the learning rate and decreas-
ing it again before sampling a model (Loshchilov and
Hutter, 2017). Further examples are cyclical SGM-
CMC (Zhang et al., 2020), as well as Snapshot Ensem-
bles (Huang et al., 2017), Fast Geometric Ensembling
(Garipov et al., 2018), and Stochastic Weight Averaging
(Izmailov et al., 2018). D’Angelo and Fortuin (2021)
study ensembles with repulsive terms in weight and
function space to prevent collapse to a single mode.

Frankle et al. (2020) observed that there is a point early
in training after which SGD runs with different batch
orderings and augmentations become linearly mode-
connected, allowing to interpolate linearly between dif-
ferent modes without incurring a high loss. Two models
which are linearly mode-connected can be thought of
as being located in the same loss basin, which, from a
classical point of view, can be detrimental for the pre-
dictive diversity of an ensemble. Hence, the procedures
described sequentially train models and sample from
different modes by traversing regions of high loss to
escape the basin and break linear mode-connectivity.

2.2 Permutation Hypothesis

The permutation hypothesis (Entezari et al., 2022),
which recently has attracted much attention, posits
that, for wide enough networks, the solutions obtained
through independent SGD runs become linearly mode-
connected if their weights are permuted appropriately.
Ainsworth et al. (2023) provided empirical evidence
for the permutation hypothesis by proposing weight
and activation matching algorithms that bring neurons
into alignment without altering the underlying function.
Given two models found by SGD, their method finds
a permutation of weights such that the two models
become linearly mode connectable, i.e., lie in the same
loss basin.

The permutation hypothesis implies that the loss land-
scape can be collapsed into a single loss basin if we
account for redundant basins that are due to permuta-
tion symmetries. This implication has significant con-
sequences for mode-exploring ensembling techniques.
The underlying assumption of such ensembling tech-
niques is that predictive diversity can only be achieved
by virtue of visiting different modes in weight-space.
The permutation hypothesis, however, implies that
there is nothing to be gained from visiting different
modes beyond what can already be found in a single
basin. In other words, visiting different basins might
not be necessary to obtain models that constitute a
strong ensemble.

Given these new insights into the redundancies of the
loss landscape and their potential implications for deep
ensembles, we depart from the dominant paradigm
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of exploring multiple modes and instead intentionally
limit ourselves to a single mode to form a connected
ensemble. By doing so, we aim to provide an answer
to the following question:

How Good Can a Single-Basin Ensemble Be?

3 EXPLORING A SINGLE BASIN

3.1 Setting

Setup. We consider image classification problems
with a training dataset D = {(x1, y1), . . . , (xn, yn)}
consisting of n i.i.d tuples of labelled examples xi ∈ Rd

and yi ∈ {1, . . . ,K}. We study the class of neural net-
work functions fθ : Rd → RK parameterized by θ ∈ Rp

where θ denotes the concatenation of all the parameters.
Note that many modern neural network parameteriza-
tions contain redundancies in the weight-space in the
sense that two parameter vectors can encode the same
function, i.e., θ1 ̸= θ2 could yield fθ1

(x) = fθ2
(x) ∀x ∈

Rd. In our work, we limit ourselves to the set of sym-
metries induced by permutations1. We learn θ through
empirical risk minimization minθ∈Θ

∑n
i=1 ℓ(fθ(xi), yi)

with ℓ : RK ×{1, . . . ,K} → R+ denoting the loss func-
tion. To approximately minimize this objective, we
use some form of stochastic gradient descent and refer
to a minimizer θ as a mode. Such a mode is located
in a loss basin, referring to the approximately convex
region of low loss around it. We use KL(·, ·) to denote
the KL-Divergence between two probability distribu-
tions over the discrete space of classification labels and
denote the softmax function with σ : RK → (0, 1)K .

Deep Ensembles. We consider M ∈ N runs of SGD
under different initializations and batch orderings, re-
sulting in a set of minimizers {θ1, . . . ,θM}. Due to
the non-convexity of neural landscapes, simple convex
combinations θ̄ =

∑M
i=1 λiθi with

∑M
i=1 λi = 1 do not

constitute minimizers of the test loss. In the literature
this is often referred to as lack of (joint) linear mode-
connectivity (Garipov et al., 2018). While averaging
parameters proves detrimental, averaging the predic-
tions (i.e. ensembling) leads to a substantially more
powerful model, i.e. f̄(x) := 1

M

∑M
i=1 fθi

(x) outper-
forms any individual model θi. We demonstrate this
effect on the classic image classification benchmarks
CIFAR (Krizhevsky, 2009) and Tiny ImageNet (Le
and Yang, 2015) using a ResNet20 (He et al., 2016)
ensemble of size M = 5 in Table 1. While the increase
in test accuracy is moderate for CIFAR10, we observe

1We note that there are other symmetries, such as scaling
or sign-flip symmetries, that might cause this phenomenon.
However, these other symmetries are beyond the scope of
this work.
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Figure 1: Illustration of toy deep ensemble {θ1,θ2,θ3}
and the matching, connected ensemble {θ̃1, θ̃2, θ̃3}.

Dataset Mean Acc Ens. Acc

CIFAR10 93.01±0.08 94.43±0.12

CIFAR100 73.44±0.12 78.15±0.10

Tiny ImageNet 55.36±0.33 62.85±0.20

Table 1: Average member test accuracy 1
5

∑5
i=1 Acc(θi)

and deep ensemble performance of ResNet20. Averaged
over 3 seeds.

very strong improvements for the more complex tasks
CIFAR100 and Tiny ImageNet. We remark that a
deep ensemble of size M incurs a computational cost
of CDE = M × T where T is the number of training
epochs used for a single model. We ensure that our
baselines match in terms of computational cost in order
to guarantee that no improvement is achieved simply
due to longer training. We defer implementation details
such as values for T to Appendix C.

3.2 Finding Connected Deep Ensembles

We now explore various methods to replicate the success
of deep ensembles while intentionally limiting ourselves
to only leveraging a single basin. In other words, we
aim to construct a connected ensemble {θ̃1, . . . , θ̃M}
that approximates the performance of the original en-
semble while at the same time guaranteeing linear
mode-connectivity. We provide a visualization of the
idea in Fig. 1. While for simple baselines we focus
on Residual Networks (ResNets) (He et al., 2016), we
also evaluate our more competitive methods on Vi-
sion Transformers (ViTs) (Dosovitskiy et al., 2021).
Note that we do not consider pre-trained ViTs, as our
experiments heavily depend on whether models share
a pre-trained initialization. We largely focus on test
accuracy, cross-entropy loss, connectivity, and diversity
as the main metrics of comparison.
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Connectivity. In order to assess the connectivity of
a given set of models {θ1, . . . ,θM}, we perform several
tests. Firstly, we study the pairwise connectivity of
any two sets of models, i.e. we evaluate

qpair(λ) =Acc(λθi + (1− λ)θj)

− (λAcc(θi) + (1− λ)Acc(θj)) (1)

for λ ∈ [0, 1], where Acc : Θ −→ [0, 1] maps a con-
figuration θ to its generalization accuracy Acc(θ).
If qpair does not decrease significantly, we say that
{θ1, . . . ,θM} are pairwise linearly-connected. We fur-
ther visualize the test accuracy as a function of λ (see
e.g. Fig. 2) and inspired by Garipov et al. (2018),
also produce two-dimensional plots visualizing the
parameter-plane spanned by three models (see e.g.
Fig. 4). In order to assess joint connectivity, we mea-
sure

qjoint(λ) = Acc

(
M∑
i=1

λiθi

)
−

M∑
i=1

λi Acc(θi), λ ∼ Dir(1)

(2)

While we could rely on a densely sampled grid for λ
in the pairwise case, for the joint connectivity we re-
sort to randomly sampling convex combination weights
λ ∈ [0, 1]M from a Dirichlet distribution. We then
average multiple draws of λ to obtain q̄joint and say
that {θ1, . . . ,θM} are jointly linearly-connected if q̄joint
does not decrease significantly.

Diversity. To evaluate ensemble diversity, we con-
sider two metrics used by Abe et al. (2023). More
specifically, we consider the variance over ensemble
members’ true-class predictions Var({θi}Mi=1) and the
one-vs-all Jensen-Shannon-Divergence JSD({θi}Mi=1).
For more details on those metrics, we refer to Abe et al.
(2023).

Stochastic Weight Ensembling (SWE). As a
very simple first baseline, we consider a variant of
stochastic weight averaging (SWA) (Izmailov et al.,
2018), where instead of averaging the obtained iter-
ates, we average the predictions, effectively forming
an ensemble. Similarly to Izmailov et al. (2018), we
use a decaying learning rate schedule that converges to
a fixed value, enabling exploration of the basin with-
out leaving it. More precisely, we train a ResNet20
for T epochs with a decaying learning rate, producing
the first sample θ̃1 and then continue training with a
constant learning rate, saving a checkpoint θ̃i every T
epochs until we collected M samples. This ensures the
same computational budget as the deep ensemble. We
highlight that this approach is very similar to Snap-
shot Ensembles (Huang et al., 2017), but instead of
encouraging explorations of different basins by using

cyclical learning rates, we ensure connectivity by us-
ing a constant learning rate. We report the resulting
test performance and joint connectivity values in Table
2. We also display the corresponding values for deep
ensembles as a reference. We observe that SWE is
surprisingly effective, matching the performance of the
deep ensemble on CIFAR10 while maintaining a high
degree of connectivity. On the more challenging task of
CIFAR100 however, we find a significant gap of roughly
3% in test accuracy.

Constrained Ensembles. We leverage the insights
of Frankle et al. (2020) regarding the stability of SGD;
Along the training trajectory {θ(t) : t ≤ T} of SGD,
there exists a point θ(t) after which any subsequently
started SGD run with a different batch ordering ends
up in the same loss basin. Surprisingly, this time point
t can be as early as a few epochs in training. This
offers a recipe for the following family of connected
ensembles; (1) Train a model up to time t. (2) Use θ(t)

as a starting point for M runs of SGD for T − t epochs
with different batch orderings, leading to a constrained
ensemble {θ̃1(t), . . . , θ̃M (t)}. Again we use the same
computational budget as a deep ensemble. We notice
that the time parameter t intuitively trades off diversity
and connectivity; the smaller t is, the more diverse but
less connected are the solutions and similarly for large t.
We display the resulting performance and connectivity
results in Table 2. We obtain a very similar picture as
for SWE, i.e., constrained ensembles also match the
performance on CIFAR10, offer strong connectivity,
but fall short on CIFAR100, albeit with a significant
improvement.

4 RE-DISCOVERING DEEP
ENSEMBLES IN A SINGLE BASIN

Our preliminary results lead us to conclude that dis-
covering a connected deep ensemble with matching
performance is a challenging endeavour. We thus take
a step back and revisit our research question from a
slightly different angle:

If access to a deep ensemble was granted, could one
re-discover it in a single basin?

This is conceptually a simplified goal as knowledge of
other basins can now be leveraged to guide the search
within a single basin. A positive answer however would
still be very impactful as it proves the existence of a
connected deep ensemble, motivating further research
into efficient exploration of a single basin.

In the following approaches, we will thus assume that
we have access to a deep ensemble {θ1, . . . ,θM}. We
emphasize that the purpose of this investigation is not
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Deep Ensemble Constrained Ensemble SWE

q̄joint Ens. Acc q̄joint Ens. Acc q̄joint Ens. Acc

CIFAR10 −71.74±2.38 94.43±0.12 −0.14±0.07 94.17±0.05 1.48±0.04 94.00±0.18

CIFAR100 −68.16±1.72 78.15±0.10 0.86±0.18 75.92±0.20 3.30±0.10 74.95±0.49

Tiny ImageNet −53.78±0.85 62.85±0.20 0.75±0.10 59.83±0.13 2.80±0.14 58.36±0.60

Table 2: Comparison of ResNet20 ensemble connectivity and accuracy (in percent) for deep ensembles and
connected ensembles. Averaged over 3 seeds.

Deep Ens. PCD Multi-PCD

CIFAR10 −71.74±2.38 −25.84±4.20 −14.64±3.66

CIFAR100 −68.16±1.72 −44.89±0.91 −41.02±1.55

Tiny ImageNet −53.78±0.85 −46.30±2.08 −44.54±2.65

Table 3: Joint connectivity q̄joint of deep ensembles and
permuted ensembles optimizing for pairwise (PCD) and
joint alignment (Multi-PCD). Averaged over 3 seeds.

to propose an alternative method for ensembling. In-
stead, we aim to investigate how constraining ensembles
to a single loss basin impacts predictive performance
and calibration to gain a better understanding of the
loss landscapes of neural networks.

4.1 Permuting Deep Ensembles

Pairwise Alignment. As a first candidate, we inves-
tigate the PermutationCoordinateDescent (PCD)
algorithm from Ainsworth et al. (2023). We choose the
first member θ1 as a reference model and we aim to
apply permutations πi to each remaining member θi
such that θ1 and πi(θi) live in the same basin. Such
a permutation is discovered by aligning the weights
of each member with the reference model, we refer to
Ainsworth et al. (2023) for more details. Since per-
mutations constitute a symmetry of neural networks,
the performance of the new members πi(θi) remains
unchanged, and we thus have a mathematical guaran-
tee to achieve the same performance as the original
ensemble. Unfortunately, this guarantee comes at a
cost; while θ1 and π(θi) are indeed linearly-connected
for i = 1, . . . ,M as demonstrated in Ainsworth et al.
(2023), pairwise connectivity between two permuted
members πi(θi) and πj(θj) does not hold. Similarly,
joint connectivity is also violated as shown in Table 3.
This is not surprising as the objective only optimizes
for pairwise alignment.

Joint Alignment. Next, we evaluate whether the
lack of joint connectivity can be diminished by ex-
tending the optimization objective used in PCD. More
specifically, we change the objective function used in
Ainsworth et al. (2023) to account for the joint align-

ment with respect to all other models and not just the
reference model. Thus, when optimizing πi(θi) we ac-
count for the alignment with respect to all other models
πj(θj) with j ̸= i in the ensemble. Using this modified
objective and wrapping the pairwise procedure with
another layer iterating over ensemble members, we ob-
tain an algorithm that optimizes for joint alignment
and to which we refer to as Multi-PCD. While joint
connectivity does improve, the resulting ensemble is
still far from being connected as measured by q̄joint
in Table 3. We thus conclude that permutations can
not be leveraged to re-discover an ordinary multi-basin
ensemble in a single loss basin.

4.2 Distilling Deep Ensembles

Distilled Ensemble. In this approach, we combine
our insights from constrained ensembles with the mech-
anism of model distillation, as introduced by Hinton
et al. (2015). Again denote by θ

(t)
1 the stability point

of SGD for the reference model θ1. We aim to re-
discover the j-th member θj in the same basin as θ1
by minimizing a distillation objective towards θj , i.e.
we minimize

L(θ) =
n∑

i=1

(1− β) · τ2 ·KL
(
σ

(
fθj

(xi)

τ

)
, σ

(
fθ(xi)

τ

))
− β log

(
[σ (fθ(xi))]yi

)
(3)

where β and τ are additional hyperparameters. We
then start the optimization from θ

(t)
1 to encourage con-

nectivity of solutions and denote the minimizers of
Eq. 3 by θ̃1 j . β trades-off the optimization towards
matching the ground truth and functional similarity to
the j-th member. Note that for β = 1, the approach es-
sentially reduces to constrained ensembles. τ > 1 is the
temperature parameter commonly used in knowledge
distillation frameworks to increase the entropy of the
distribution over class labels, facilitating the knowledge
transfer to the student model. Table 4 illustrates that
our distillation strategy with β = 0.2 produces very
competitive ensembles for residual models, significantly
closing the gap to standard deep ensembles across all
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(b) ResNet20, Tiny ImageNet
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(d) ViT, Tiny ImageNet

Figure 2: Linear Mode Connectivity of ResNet20 and
ViT ensembles. We approximate qpair through lines
showing averages of five randomly selected pairs. The
experiment is repeated with three random seeds, to-
talling 15 pairs. The shading shows the standard devi-
ation.

datasets. Moreover, such a distilled ensemble exhibits
a surprisingly strong degree of connectivity, not only
fulfilling pairwise connectivity (see Fig. 2), but also
the very challenging joint linear connectivity q̄joint, as
shown in Fig. 4 and Table 4.

Note that we do not explicitly encourage similarity
between two distilled points θ̃1 i and θ̃1 j . However,
the stability of SGD after time t suffices to guarantee
joint connectivity. In contrast to the weight-matching
procedure introduced above, the distillation framework
can also readily be applied to any architecture, includ-
ing architectures with non-elementwise non-linearities
such as Vision Transformers.

Role of β and t. We now investigate the impact
of the distillation procedure by varying the hyperpa-
rameter β in Eq. 3. When β = 1, our training proce-
dure reduces to standard training restricted to a single
basin, recovering the constrained ensembles from Sec-
tion 3.2. In contrast, when 0 < β < 1, we optimize
the convex combination of the cross-entropy loss and
a similarity encouragement term relative to an out-
of-basin model. The results in Table 4 demonstrate
that similarity encouragement to an out-of-basin model
significantly boosts the accuracy of the connected en-
semble for both architectures considered. We further
highlight the important role of the splitting time t
in Fig. 5, trading-off connectivity and performance.
Also, note that, as expected, the deterioration in per-
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Figure 3: Connectivity q̄ plotted against test accuracy
for ResNet20 on CIFAR100. The dashed horizontal line
shows the accuracy of a deep ensemble, while the dotted
horizontal line shows the mean member accuracy.
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Figure 4: The plots display the 2D planes spanned by
the three weight vectors given by the parameters of a
ResNet20 trained on Tiny ImageNet mentioned in the
legend with the first model at the origin. The plane is
constructed as in Garipov et al. (2018).

formance as connectivity increases is more pronounced
for ensembles that do not include a distillation term
(β = 1.0).

Connectivity and Accuracy. In Fig. 3, we show
test accuracy as a function of connectivity q̄. Without
distillation (represented by the red markers), we see
that increased connectivity negatively impacts perfor-
mance. However, as soon as we employ distillation
(e.g., blue markers), we manage to significantly miti-
gate the drop in performance without compromising
connectivity, narrowing the gap to the baseline of deep
ensembles.

Isolating the regularizing effect of distillation.
Zhang et al. (2019); Furlanello et al. (2018) have demon-
strated that distillation can enhance student perfor-
mance, to the point that the student can even surpass
the performance of its teacher. Thus, the improvement
of distilled ensembles beyond the performance of con-
strained ensembles observed in Table 4 might be caused
by this regularizing effect of distillation. To clearly iso-
late the magnitude of this effect, we consider a baseline
of a deep ensemble trained with the same distillation
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β = 1.0 β = 0.2

q̄joint Mean Acc Ens. Acc q̄joint Mean Acc Ens. Acc

CIFAR10 ResNet20 −0.14±0.07 93.15±0.03 94.17±0.05 −0.64±0.11 93.67±0.12 94.46±0.20

ViT −1.37±0.41 82.60±0.02 84.28±0.23 −1.49±0.25 83.14±0.13 84.55±0.40

CIFAR100 ResNet20 0.86±0.18 73.53±0.23 75.92±0.20 0.39±0.11 75.33±0.12 77.56±0.18

ViT −0.14±0.08 54.90±0.26 57.81±0.29 −0.29±0.33 56.12±0.10 58.70±0.15

Tiny ImageNet ResNet20 0.75±0.10 55.80±0.19 59.83±0.13 −1.35±0.48 58.69±0.17 62.61±0.43

ViT 1.76±0.12 35.36±0.30 39.50±0.21 1.57±0.18 38.46±0.07 42.31±0.09

Table 4: Comparison of joint connectivity and ensemble performance for constrained (β = 1.0) and distilled
ensembles (β = 0.2). Averaged over 3 seeds.
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Figure 5: Accuracy, loss, and mean accuracy as a func-
tion of time parameter t for ResNet20 on CIFAR100.
The dashed vertical lines mark the t used in Table 4.

objective in Eq. 3. If the gain in ensemble performance
observed for distilled ensembles would be primarily due
to this regularizing effect of distillation rather than
the incorporation of out-of-basin knowledge, then it is
reasonable to expect similar improvements in ensem-
ble performance when adding the distillation term to
deep ensembles. As illustrated in Table 5, distillation
does not significantly improve ensemble performance
for ordinary deep ensembles, highlighting that the gain
observed in Table 4 is unlikely to be caused by the
regularizing effect of distillation.

Diversity and Connectivity. In search of a suitable
explanation for the performance gap between connected
and deep ensembles, we turn to predictive diversity,
which is often deemed as the primary driver of ensemble
performance (Dietterich, 2000; Breiman, 1996; Freund
et al., 1999). In Fig. 6, we plot diversity and connec-
tivity as a function of t for a grid of β values. In the
limit of t → 0, we recover ordinary deep ensembles,
due to the loss of joint connectivity. In contrast, for
t > 40, we enter the regime of connected ensembles
whose members fulfill joint connectivity. Note that
with increasing connectivity, the diversity, as measured
by the one-vs-all Jensen-Shannon Divergence decreases,
giving rise to a diversity-connectivity trade-off that is
likely to be a main driver of the performance gap be-
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Figure 6: Jensen-Shannon divergence and joint connec-
tivity as a function of time parameter t for ResNet20
ensembles on CIFAR100. The dashed vertical lines
mark the t used in Table 4.

tween single-basin and ordinary multi-basin ensembles.

5 RELATED WORKS

Connected Ensembles. There is a plethora of pre-
vious work that studies novel ensembling techniques,
often with a focus on reduced cost or better weight
averaging properties. Jolicoeur-Martineau et al. (2023)
propose an algorithm that simultaneously trains all
ensemble members, dynamically updating the mem-
bers with a running average. Garipov et al. (2018)
and Huang et al. (2017) both adapt a similar strat-
egy as the SWE approach but use a cyclical learning
rate to intentionally break connectivity and produce
more efficient ensembles. Wortsman et al. (2021) on
the other hand directly learn lines and curves whose
endpoints they leverage for ensembling. They also re-
port improved performance when using the midpoint
as a summary of the ensemble. Another related line
of work studies fusion of several independent models.
Singh and Jaggi (2020) leverage optimal transport to
align the weights of multiple models and produce a
fused endpoint. Ainsworth et al. (2023) take a sim-
ilar approach and fuse different networks by finding
fitting permutations to maximize similarity. We pro-
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Deep Ens. Deep Ens. + β = 0.2

q̄joint Mean Acc Ens. Acc q̄joint Mean Acc Ens. Acc

CIFAR10 ResNet20 −71.74±2.38 93.01±0.08 94.43±0.12 −71.30±3.01 93.54±0.04 94.45±0.02

ViT −55.81±1.99 82.43±0.33 85.10±0.27 −55.70±1.71 82.97±0.22 84.87±0.31

CIFAR100 ResNet20 −68.16±1.72 73.44±0.12 78.15±0.10 −69.03±2.19 75.20±0.15 78.42±0.20

ViT −47.28±0.19 54.91±0.10 59.88±0.12 −48.32±0.15 56.20±0.08 59.92±0.26

Tiny ImageNet ResNet20 −53.78±0.85 55.36±0.33 62.85±0.20 −56.54±0.70 58.65±0.23 63.29±0.33

ViT −33.04±0.70 35.57±0.38 44.05±0.19 −35.79±0.77 38.37±0.31 44.29±0.21

Table 5: Isolating the additional regularizing effect of distillation. Averaged over 3 seeds.

vide a more detailed overview of related techniques in
Appendix A due to space constraints.

Mode Connectivity. An intellectual ancestor to
linear mode connectivity can be seen in the work of
(Goodfellow et al., 2015). They consider the 1D sub-
space spanned by the initial and fully trained parameter
vectors and find that the loss is monotonically decreas-
ing the closer we get to the final parameter vector.
(Lucas et al., 2021) confirmed these results and coined
the phenomenon monotonic linear interpolation. In
the context of our work, we interpret this monotonic
linear interpolation phenomenon as a descent into a
loss basin whose functional diversity we aim to explore.
Frankle et al. (2020) demonstrated that there is a point
in training θ(t) after which SGD runs sharing θ(t) as ini-
tialization remain linearly mode connected. Neyshabur
et al. (2020) observed linear mode connectivity in a
transfer learning setup, where models pre-trained on
a source task remain linearly mode connected after
training on the downstream task. Juneja et al. (2023)
provide counterexamples to mode connectivity outside
of image classification tasks. Draxler et al. (2018);
Garipov et al. (2018) found non-linear paths of low loss
between independently trained models, questioning the
idea that the loss landscape is composed of isolated
minima.

6 DISCUSSION

In this work, we have explored various approaches to
construct ensembles constrained to lie in a single basin.
We observe that constructing such a connected ensem-
ble without any knowledge from other basins proves
to be difficult and a significant gap to deep ensembles
remains. Moreover, we observe a pronounced trade-off
between (joint) linear mode-connectivity and the re-
sulting ensemble performance and diversity. However,
when incorporating other basins implicitly through a
distillation procedure we manage to break this trade-
off and strongly reduce this gap, producing connected
ensembles that are (almost) on-par for convolutional

networks. While relying on other basins renders our
approach very inefficient, it nevertheless proves the ex-
istence of very performant ensembles in a single basin,
requiring us to rethink the characteristics of loss land-
scapes. We remark however that the picture is less
clear for architectures with less inductive bias such as
ViTs.

The existence of strong connected ensembles demon-
strates that, in principle, the functional diversity within
a single basin is sufficient to achieve predictive perfor-
mance that is comparable to an ensemble sampled from
different modes. In other words, our results illustrate
that escaping the basin is not a prerequisite for at-
taining competitive prediction accuracy. We hope that
our insights can guide future work towards designing
algorithms that more thoroughly and efficiently explore
a single basin.
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A MORE RELATED WORKS

A.1 Mode Connected Ensembles

Population Parameter Averaging. Jolicoeur-Martineau et al. (2023) propose an algorithm that simultaneously
trains all ensemble members. To exploit and preserve linear mode connectivity among members, they repeatedly
train the members for a number of epochs on different SGD noise and data augmentations, and replace each
member with the average weight vector every fifth epoch.

Subspace Learning. Wortsman et al. (2021) present a method that learns subspaces of networks by uniformly
sampling a network from within the subspace to be learned and backpropagating the error signal to the networks
spanning the space. They prevent a collapse of the subspace by adding a penalty that encourages orthogonality
between the networks constituting the subspace. In a similar manner, (Benton et al., 2021) present a procedure
to find low-loss complexes consisting of simplexes whose vertices are found through standard training. A collapse
is prevented through a regularization penalty that encourages subspaces with large volume.

Ensembling from a Loss Landscape Perspective. Fort et al. (2020) conclude that subspace sampling
methods (weight averaging, MC dropout, local Gaussian approximations) yield solutions that lack diversity in
function space and therefore, when comparing against deep ensembles, offer an inferior diversity-accuracy tradeoff.
We would like to stress that this finding, which is seemingly contradictory to our work, is not applicable in our
setting. The methods used in Fort et al. (2020) start exploring the subspace starting from a fully optimized
solution whereas our approach starts exploration right after reaching the stability point. Moreover, the methods
employed by Fort et al. (2020) are different to using our distillation approach, which, we argue, is more informative,
but admittedly not computationally efficient.

Snapshot Ensembles (SSE). Huang et al. (2017) use a cyclic cosine annealing learning rate schedule to
sample multiple models (snapshots) within a single training run and ensemble their predictions. Their results
demonstrate that snapshots acquired in later cycles become linearly mode connected as they lie in the same basin
(cf. Figure 4 in Huang et al. (2017)). Their key insight is that snapshots that lie in the same basin only add
limited predictive diversity, suggesting that a cyclical learning rate schedule with a sufficiently high peak learning
rate is crucial to escape the basin and attain sufficient predictive diversity for the ensemble to perform well. Our
investigation makes the case that staying in the same basin and maintaining linear mode connectivity is not
necessarily an impediment to achieving predictive diversity. Put differently, the benefit of ensembling does not
depend on escaping the local minima the previous models are sampled from.

Fast Geometric Ensembling (FGE). Fast Geometric Ensembling (FGE) (Garipov et al., 2018) is similar in
spirit to SSE. According to Garipov et al. (2018), the feature that distinguishes FGE from SSE is the shorter
cycle length between sampling a model. FGE intentionally takes fewer steps in-between sampling models in order
to not leave a region of low loss.

Stochastic Weight Averaging (SWA). Izmailov et al. (2018) average weights along the SGD trajectory
using a cyclical or constant learning rate. They find that averaging SGD iterates, which often lie on the edge of a
loss basin, leads to a more central point and thus to an increase in generalization performance.

Combining SSE, FGE, and SWA. We decided to use a procedure that combines elements from SSE, FGE,
and SWA as a baseline. We argue that this approach is most effective at training an ensemble while ensuring
linear mode connectivity and computational comparability, at training and inference time, with deep ensembles.
As outlined in the main text, we refer to this method as Stochastic Weight Ensembling (SWE). More specifically,
SWE is ensembling models in function space, acquiring them using a sequential procedure. We first decay the
learning rate to a level that enables exploration of the basin without leaving it, and keep the learning rate constant
thereafter. We sample a model every T epochs where T is on the order of epochs required to train a single model.
The difference to SSE is that we specifically do not encourage exploration of different basins and thus refrain
from cyclically increasing the learning rate. The procedure is also different from SWA, as we do not average in
weight space, but in function space. Lastly, it is also different from FGE, as the cycle length is comparable to
that of SSE, ruling out the fast in FGE.
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Figure 7: Out-of-distribution robustness of different ResNet20 ensembles on the corrupted CIFAR100 datasets
from Hendrycks and Dietterich (2019).

Deep Ens. SWE Distilled Ens. Constrained Ens.

T T β T t Dist. Epochs β T t Dist. Epochs

CIFAR10 ResNet20 110 110 0.2 110 10 100 1.0 110 10 100
ViT 165 —- 0.2 165 15 150 1.0 165 15 150

CIFAR100 ResNet20 190 190 0.2 190 40 150 1.0 190 40 150
ViT 165 —- 0.2 165 15 150 1.0 165 15 150

Tiny ImageNet ResNet20 130 130 0.2 130 30 100 1.0 130 30 100
ViT 140 —- 0.2 140 15 125 1.0 140 15 125

Table 6: Computational cost of ensembles. For deep ensembles, T refers to the number of epochs per sample.
Similarly, for SWE, T is the cycle length in-between taking a sample. For constrained and distilled ensembles, t
is the epoch after which we split the runs and starting distilling for Dist. Epochs.

A.2 Diversity in Deep Ensembles

As mentioned in the introduction, it is commonly believed that encouraging predictive diversity is a prerequisite
for improving ensemble performance. This belief is derived from classical results in statistics on bagging and
boosting weak learners (Freund et al., 1999; Breiman, 1996). While it is true that disagreement among members is
a necessary condition for an ensemble to outperform any single member, recent work has shown that encouraging
predictive diversity can be detrimental to the performance of deep ensembles with high-capacity members (Abe
et al., 2023). In other words, the intuition from those classical results might not be applicable. The counter-
intuitive observation of Abe et al. (2023) is explained by the fact that diversity encouraging penalties affect all
predictions irrespective of their correctness. As a result, these penalties can adversely affect the performance of
individual members, which in turn can undermine the performance of the ensemble.

B MORE EXPERIMENTS
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Figure 8: Predictive variance as a function of
time parameter t for ResNet20 ensembles on
CIFAR100. The dashed vertical lines mark
the t used in Table 4.

Predictive Variance. In addition to the Jensen-Shannon
divergence in Fig. 6a, we also analyzed the predictive variance.
We display the results in Fig. 8 and observe that the results
corroborate the conclusions drawn in the main text.

Out-of-distribution Robustness. A significant advantage
of deep ensembles over single models is their robustness towards
distribution shifts (Lakshminarayanan et al., 2017). Thus, we
evaluate whether connected ensembles can match the out-of-
distribution robustness of multi-basin deep ensembles in Fig. 7.
We use a subset of corruptions from CIFAR100-C (Hendrycks
and Dietterich, 2019) and note that distilled ensembles exhibit
a similar degree of robustness to distribution shifts as their
multi-basin counterparts.
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C IMPLEMENTATION DETAILS

Computational Cost. If not stated otherwise, we consider ensembles of size M = 5. Table 6 illustrates the
computational cost on a per model basis.

Optimizers. With the exception of experiments conducted with ViTs, we use SGD as an optimizer with a peak
learning rate of 0.1. We use a cosine decay schedule with linear warmup for the first 10% of training. Momentum
is set to 0.9. For ViTs, we use Adam (Kingma and Ba, 2015) with β1 = 0.9 and β2 = 0.999. The batch size is at
128 and we set the temperature in the distillation experiments to τ = 3. For SWE, we apply the same linear
warmup cosine decay schedule as for the other ensemble methods, but stop decaying the learning rate at 0.01 and
hold it constant thereafter to enable exploration of the basin.

Datasets. We experiment with the classic image classification baselines CIFAR (Krizhevsky, 2009) and Tiny
ImageNet (Le and Yang, 2015). For all experiments, we make use of data augmentation. More specifically, we use
horizontal flips, random crops, and color jittering.

Architectures. We use the ResNet20 implementation from Ainsworth et al. (2023) with three blocks of 64,
128, and 256 channels, respectively. We note that this implementation uses LayerNorm (Ba et al., 2016) instead
of BatchNorm (Ioffe and Szegedy, 2015), as it eliminates the burden of recalibrating the BatchNorm statistics
when interpolating between networks. Our Vision Transformer implementation is based on Lippe (2022) and
composed of six attention layers with eight heads, latent vector size of 256 and hidden dimensionality of 512. We
apply it to flattened 4× 4 image patches.

Permuted Ensembles. We use the PermutationCoordinateDescent implementation from Ainsworth et al.
(2023) to bring deep ensemble models into alignment. The implementation of the PermutationCoordinat-
eDescent algorithm can be found at https://github.com/samuela/git-re-basin. We include pseudo-code
for the Multi-PCD procedure that is based on PermutationCoordinateDescent and described in Section 4.1.
We adopt the notation from Section 3 in Ainsworth et al. (2023) and suppose a model fθi

is parameterized by
θi = {W (i)

ℓ }Lℓ=1. The permutation matrix applied to the ℓ-th layer of model i is denoted as P
(i)
ℓ ∈ Snℓ

.

Algorithm 1 MultiPermutationCoordinateDescent

Require: Ensemble members θi = {W (i)
ℓ }Lℓ=1 with i = 1, . . . ,M

P
(i)
ℓ ← I ∀ℓ = 1, . . . , L and i = 1, . . . ,M

while not converged do
for i ∈ RandomPermutation(1, . . . ,M) do

while not converged do
for ℓ ∈ RandomPermutation(1, . . . , L) do

P
(i)
ℓ ← LAP

(∑
j∈{1,...,M}\ i W

(j)
ℓ P

(i)
ℓ−1(W

(i)
ℓ )T + (W

(j)
ℓ+1)

TP
(i)
ℓ+1W

(i)
ℓ+1

)
end for

end while
θi ← {P (i)

1 W
(i)
1 , P

(i)
2 W

(i)
2 (P

(i)
1 )T , . . . , W

(i)
L (P

(i)
L−1)

T }
end for

end while
return {θ1, . . . , θM} ▷ Permuted ensemble members

Note that this procedure is different from Algorithm 3 described in Ainsworth et al. (2023), where single members
are permuted with respect to the leave-one-out average model and a single merged set of parameters is returned.

Joint Connectivity. As mentioned in the main text, we draw samples λ1, . . . ,λN ∼ Dir(1) to approximately
assess the joint connectivity of ensemble members. For each seed, we evaluate N = 50 samples and compute
q̄joint =

1
N

∑N
i=1 qjoint(λi)

Hardware. We ran experiments on a cluster with NVIDIA GeForce RTX 2080 Ti and NVIDIA GeForce RTX
3090 GPUs.

https://github.com/samuela/git-re-basin

