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Abstract

The synthetic control method (SCM) has be-
come a popular tool for estimating causal
effects in policy evaluation, where a single
treated unit is observed. However, SCM
faces challenges in accurately predicting post-
intervention potential outcomes had, con-
trary to fact, the treatment been withheld,
when the pre-intervention period is short or
the post-intervention period is long. To ad-
dress these issues, we propose a novel method
that leverages post-intervention information,
specifically time-varying correlates of the
causal effect called “surrogates”, within the
synthetic control framework. We establish
conditions for identifying model parameters
using the proximal inference framework and
apply the generalized method of moments
(GMM) approach for estimation and infer-
ence about the average treatment effect on
the treated (ATT). Interestingly, we uncover
specific conditions under which exclusively
using post-intervention data suffices for es-
timation within our framework. Through a
synthetic experiment and a real-world appli-
cation, we demonstrate that our method can
outperform other synthetic control methods
in estimating both short-term and long-term
effects, yielding more accurate inferences.

1 INTRODUCTION

The synthetic control method (SCM), first introduced
by Abadie and Gardeazabal (2003), has become a
widely used baseline method in empirical research
across economics and social sciences. It is designed
to estimate the impact of an intervention experienced

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

by a single unit by predicting the counterfactual sce-
nario of what would have occurred if the intervention
had not taken place, utilizing outcomes from unaf-
fected units. As formalized in Abadie et al. (2010),
the approach involves matching the treated unit to a
weighted average of control units, referred to as “syn-
thetic control”, such that the resulting synthetic con-
trol matches the pre-intervention outcome trajectory
over time for the treated units. Despite its significance
in policy evaluation literature, the SCM may struggle
to accurately reproduce the trajectory of the outcome
for the treated unit when faced with a limited number
of pre-intervention periods or structural breaks during
a long pre- and post-intervention period (see Abadie
(2021)). In response to these challenges, this paper
proposes a novel method that utilizes post-intervention
information to enhance the precision of the estimated
causal effects.

Our approach leverages time-varying correlates of the
causal effect that can be integrated into the synthetic
control framework. Contrary to standard SCM, which
requires donor units to remain unaffected by the in-
tervention, our proposed model repurposes correlates
as ideal surrogates of causal effects to the extent that
they are predictive of treatment effects. This inno-
vative method aims to enhance the performance of
SCM in various situations, including estimating long-
term effects and handling short pre-intervention peri-
ods, by incorporating additional post-intervention in-
formation, specifically surrogates.

We first establish the conditions required for identify-
ing model parameters within the proximal causal in-
ference framework. We then employ the generalized
method of moments (GMM) approach to estimate and
conduct statistical inference on the average treatment
effect on the treated (ATT). In the pre-intervention
period, we rely on the donor series to learn the “syn-
thetic control”, conceptually similar to the classic syn-
thetic control method (see Shi et al. (2021)). In the
post-intervention period, our method augments the es-
timation of synthetic weights and the causal effect se-
ries with surrogates. Our identification and estima-
tion strategy is based on a joint set of moment equa-
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tions that utilize data from both periods. Under this
framework, we highlight the possibility of using only
post-treatment data for estimation. This is potentially
feasible as outcomes of treatment comprise of two com-
ponents: one influenced by the latent factors affecting
donors, and the other by those affecting surrogates.
Because our method utilizes observations for both sur-
rogates and donors, it allows for simultaneous learning
of these components.

1.1 Related Work

The Synthetic Control Frameworks. The syn-
thetic control literature has primarily focused on
frameworks that assume either a perfect match of
the synthetic control to the treated unit in the pre-
treatment period (see for example Abadie et al. (2010))
or a perfect match of the underlying unobserved fac-
tor loadings (see for example Ferman (2021); Amjad
et al. (2018); Powell (2018); Ferman and Pinto (2021)).
However, it is rarely the case that the perfect match
assumption holds exactly in the observed data. Fur-
thermore, models that assume perfect match of un-
derlying factor loadings may be subject to bias due
to the measurement error that arises in the synthetic
control regression of the treated unit on donor out-
comes. To address this issue, some researchers have
proposed using lagged control unit outcomes as in-
strumental variables Ferman and Pinto (2021) or de-
noising the data through singular value thresholding
Amjad et al. (2018), under an assumption of indepen-
dent idiosyncratic error terms across units and time.
In contrast, our paper employs the proximal causal in-
ference framework proposed by Shi et al. (2021), which
offers several advantages, such as effectively addressing
the measurement error issue and providing convenient
access to off-the-shelf Generalized Method of Moments
(GMM) approaches for estimation and inference of av-
erage treatment effects on the treated (ATT). Recent
advancements in the field of proximal causal inference
include Miao et al. (2018); Shi et al. (2020); Cui et al.
(2023); Miao et al. (2020).

Augmented Synthetic Control Method. Our
method contributes to the expanding literature on
methodological advancements that enhance traditional
synthetic control methods by incorporating supple-
mentary estimation techniques or additional informa-
tion. Ben-Michael et al. (2021) propose an augmented
synthetic control method that employs ridge regression
to rectify disparities in pre-treatment outcomes be-
tween treated units and un-augmented synthetic con-
trol estimators. Kellogg et al. (2021) advocate for
the integration of synthetic control estimators and
nearest-neighbor matching estimators in a weighted
average to mitigate interpolation and extrapolation bi-

ases. A number of prior studies have utilized penal-
ization schemes to regularize synthetic control weights
(for example, Abadie and L’Hour (2021), Doudchenko
and Imbens (2016), Chernozhukov et al. (2021)).

2 SETUP AND PRELIMINARIES

Let Yt denote the observed outcome for the target unit,
Wt denote a (N×1) vector of the observed outcome for
donors, and Xt denote a (K × 1) vector of observed
surrogates for time periods t = 1, . . . , T . Denote by
Yt(0) the outcome of the target unit at time period t
that would be observed in the absence of the interven-
tion, and by Yt(1) the outcome of the target unit at
time period t that would be observed in the presence
of the intervention. The (observed) outcome and po-
tential outcomes are related to treatment assignment
by the relationship

Yt = 1 (t > T0)Yt(1) + 1 (t ≤ T0)Yt(0) , (1)

where 1 < T0 < T denotes the time period when the
target unit receives treatment. In this paper, we focus
on estimation and inference on the so-called average
treatment effect on the treated (ATT), which is given
by:

τ = E

[
1

T − T0

T∑
t=T0

Yt(1)− Yt(0)

]
. (2)

Suppose that Yt(0) and Wt follow an interactive fixed
effect model (IFEM).

Yt(0) = λ′
tβ + ϵY,t

W ′
t = λ′

tΓ + ϵ′W,t ,
(3)

where λt is a (F ×1) vector of common factors, for t =
1, . . . , T , β is an (F × 1) vector of factor loadings, Γ is
an (F ×N) matrix of factor loadings, ϵY,t and ϵW,t are
the corresponding error terms. Similarly, we consider a
synthetic surrogate model in post intervention period
based on a similar factor model:

Yt(1)− Yt(0) = ρ′tθ + δt

X ′
t = ρ′tΦ+ ϵ′X,t ,

(4)

where ρt is a (K × 1) vector of common factors, for
t = 1, . . . , T , and θ is an (K × 1) vector of factor
loadings, Xt is an (H × 1) vector of surrogates, Φ is a
(K ×H) matrix of factor loadings, δt and ϵX,t are the
corresponding error terms.

The IFEM model in Equation (3) is commonly as-
sumed in the synthetic control literature (see, for ex-
ample, Xu, 2017; Ferman and Pinto, 2021; Shi et al.,
2021). In this paper, we consider an additional surro-
gate model, as in Equation (4), which is analogous to



Jizhou Liu, Eric J. Tchetgen Tchetgen, Carlos Varjão

Equation (3). The motivation is to leverage extra post-
intervention information sometimes available in the
dataset to capture post-intervention period variation
in causal effects, using surrogates that are highly corre-
lated with post-intervention outcomes. This property
is manifested in Equation (4), where both surrogates
Xt and causal effects Yt(1) − Yt(0) are driven by the
same set of latent factors, as assumed in the classical
synthetic control approach in Equation (3). To iden-
tify and estimate parameters in the model, we need a
few more assumptions.

Assumption 2.1 (Conditional independence)
The error terms are conditional mean independent
and independent of each other. E (ϵY,t | λt) =
E (ϵW,t | λt) = E (δt | ρt) = E (ϵX,t | ρt) = 0 for
t = 1, . . . , T .

Further, we make the following assumption that is key
to identification of a synthetic control and the time
series of post-intervention causal effects:

Assumption 2.2 (Existence of weights) There
exist a (N × 1) vector of weights α such that Γα = β,
and a (H × 1) vector of weights γ such that Φγ = θ.

Remark 2.1 A necessary condition for the existence
of such a vector of weights α (or γ) is that the number
of donors exceeds the number of latent factors λt (or
the number of surrogates exceeds the number of latent
factors ρt), i.e. N ≥ F (or H ≥ K).

Next, we make the following assumption to identify
synthetic weights α and coefficients of the surrogate γ,
which can later be used for identifying causal effects:

Assumption 2.3 (Existence of proxies) We
observe proxies {Z0,t, Z1,t} such that

Z0,t ⊥⊥ {Yi(0),Wt} | λt for any t ≤ T0 ,

{Z0,t, Z1,t} ⊥⊥ {Yi(1),Wt, Xt} | λt, ρt for any t > T0 .

Assumption 2.3 implies that λt encompasses the entire
set of confounders between Z0,t and {Yi(0),Wt}, while
(λt, ρt) encompasses the entire set of confounders be-
tween {Z0,t, Z1,t} and {Yi(1),Wt, Xt}. As argued in
Shi et al. (2021), Z0,t, which denotes proxy variables
for outcomes of donors, is frequently available in syn-
thetic control settings. For instance, a suitable choice
of proxy variables might be the outcome of units that
are potential donor candidates but were excluded from
the donor pool. Similarly, proxy variables for surro-
gates, denoted by Z1,t, could be potentially unused
surrogate candidates.

In order to ensure unique identification of the syn-
thetic control and surrogate weights, we introduce the
following completeness condition.

Assumption 2.4 (Completeness) For any square
integrable function g, if

E[g(Wt) | Z0,t = z0,t, t ≤ T0] = 0

for all z0,t, then g(Wt) = 0 for any t ≤ T0. For any
square integrable function h, if

E[h(Wt, Xt) | Z0,t = z0,t, Z1,t = z1,t, t > T0] = 0

for all z0,t, z1,t, then h(Wt, Xt) = 0 for any t > T0.

Assumption 2.4 is formally known as completeness
condition which characterizes the informativeness of
Z0,t about Wt (similarly for {Z0,t, Z1,t} and {Wt, Xt}
in the post-intervention period), in the sense that any
infinitesimal variation in Wt is captured by variation
in Z0,t such that no information has been lost through
projection of Wt on Z0,t in the pre-treatment period.

Building on Assumptions 2.3-2.4, we present a prac-
tical approach for identifying and estimating causal
effects by finding all necessary variables (donors, sur-
rogates, and proxies). The initial step involves iden-
tifying as many appropriate donors and surrogates as
possible to ensure N > F and H > K. To find suit-
able donors, we adhere to the standard approach in
synthetic control literature. For instance, in the Ger-
man reunification example, Abadie (2021) considered
a set of industrialized countries as potential donors for
West Germany. Regarding surrogates, strong candi-
dates should be highly predictive of magnitude of the
causal effect for the target unit, which may include
covariates that potentially mediate the causal effect of
interest for the target unit in the post-intervention pe-
riod and outcomes or covariates of other units affected
by the treatment. Subsequently, we select N0 donors
to construct synthetic controls and H0 surrogates to
predict causal effects. The remaining N − N0 donors
and H − H0 surrogates can serve as Z0,t and Z1,t.
In Section 4.2, we present a real-world application of
our method, serving as a motivating example to help
readers understand the concepts of donors, surrogates,
proxies, and factors.

3 MAIN RESULTS

In this section, we present our main results on iden-
tification and estimation. We apply the off-the-shelf
GMM approach for identifying model parameters and
estimating the average treatment effect on the treated
(ATT). To begin with, under assumptions provided in
the previous section, we have the following identifica-
tion results:

Theorem 3.1 (Identification) Under Assumption
2.1-2.2, we have E[Yt(0)] = E[W ′

tα] and E[Y (1)] =
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E[W ′
tα+X ′

tγ] for any 1 ≤ t ≤ T . Under Assumption
2.1-2.4, (α, γ) is uniquely identified by solving

E[Yt −W ′
tα | Z0,t, t ≤ T0] = 0 for any t ≤ T0 ,

E[Yt −W ′
tα−X ′

tγ | Z0,t, Z1,t, t > T0] = 0

for any t > T0 .

(5)

Using the identification results, we formulate the fol-
lowing moment conditions:

0 = E[Ut(α, γ)]

= E

[(
g0(Z0,t)(Yt −W ′

tα)I{t ≤ T0}
g1(Z0,t, Z1,t)(Yt −W ′

tα−X ′
tγ)I{t > T0}

)]
,

where g0, g1 are d0- and d1-dimensional (d0 + d1 ≥
N +H) vector of user-specified functions. The above
moment equation motivates the use of the general-
ized method of moments (GMM) method with Ut(α, γ)
providing identifying moment restrictions (Hansen
(1982)). The GMM solves

(α̂, γ̂) = argmin
α,γ

m (α, γ)
′
Ωm (α, γ) ,

where m (α, γ) = 1/T
∑T

t=1 Ut(α, γ) is the sample mo-
ments evaluated at an arbitrary value α, γ and Ω is
a (d0 + d1) × (d0 + d1) user-specified symmetric and
positive-definite weight matrix.

An interesting observation is that by forming the
unconditional moments E[g1(Z0,t, Z1,t)(Yt − W ′

tα −
X ′

tγ)I{t > T0}] = 0 using equation (5), we can iden-
tify α and γ, as long as the dimension of g1 exceeds
the number of donors and surrogates. This finding
suggests the possibility of using only post-treatment
data for estimation. In Section 4.1, we validate the
practical relevance of this idea through a simulation
study.

Then, we make the following assumptions on the error
terms:

Assumption 3.1 (Stationary error)
ϵY,t, ϵW,t, δt, ϵX,t are stationary and weakly dependent
processes.

We adopt the weakly dependent assumption as a sub-
stitute for the independent and identically distributed
errors assumption, while still ensuring the applicabil-
ity of ergodic laws of large numbers and central limit
theorems. The consistency and asymptotic normality
of GMM estimators have been well-documented under
such conditions, as demonstrated in studies by Hansen
(1982), Newey and West (1986), and Hall (2005b).
The theorem presented below is derived from Theo-
rem 3.2 in Hall (2005b) and its proof can be found in
Section B of the Supplementary Material.

Theorem 3.2 Under Assumptions 2.1-2.4 and 3.1
and regularity conditions B.1-B.9 listed in Section B.2,
as T → ∞, we have

√
T (θ̂ − θ)

d−→ N
(
0,
(
G⊤ΩG

)−1
G⊤ΩSΩ⊤G

(
G⊤Ω⊤G

)−1
)

where θ = (α′, γ′)′, S = limT→∞ Var{
√
Tm(α, γ)} is

the variance-covariance matrix of the limiting distribu-
tion of

√
Tm(α, γ) and the formula for G is provided

as equation (8) in Section B.2.

Remark 3.1 When utilizing the general method of
moments framework, over-identification tests on mo-
ment restrictions are applicable when the number of
moment conditions surpasses the number of parame-
ters to be estimated (i.e., d0+d1 > N +H). A testing
procedure for this scenario was proposed by Hansen
(1982), which involves calculating the J-statistic as
follows:

JT = m(θ̂)′Ω̂m(θ̂). (6)

The validity of this testing procedure is supported by
its asymptotic distribution, which is a chi-square dis-
tribution with d0 + d1 − (N + H) degrees of freedom,
as demonstrated in Lemma 4.2 of Hansen (1982).

Remark 3.2 It is worth noting that Assumption 2.4
is a stronger condition than what is strictly necessary
for estimating the parameters of interest, θ. In the
context of the IFEM model, we only require the in-
vertibility of G⊤ΩG. In other words, the rank condi-
tions ensuring the relevance of Z0,t and Wt (as well as
Z0,t, Z1,t and Wt, Xt) are sufficient for the validity of
the result.

Theorem 3.2 provides the asymptotic results required
for estimation and statistical inference of the parame-
ters (α, γ) identified by the structural model. The syn-
thetic weights α potentially provide meaningful inter-
pretation for the synthetic control, while γ can heuris-
tically be used to gauge the potential predictive ability
of surrogates for the target treatment effect over time.
We aim to make inferences about the ATT, for which
we provide two distinct estimation strategies that we
incorporate in the GMM framework. Note that, we
have

τ = E

[
1

T − T0

T∑
t=T0

Yt(1)− Yt(0)

]

= E

[
1

T − T0

T∑
t=T0

ρ′tθ

]
= E

[
1

T − T0

T∑
t=T0

X ′
tγ

]
,

which motivates the following estimator that plugs in
the estimated surrogate coefficients and replaces pop-
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ulation quantities with their sample counterparts:

τ̂ =
1

T − T0

T∑
t=T0

X ′
tγ̂ .

Alternatively, we can use the difference between out-
comes of the target unit and the synthetic control to
estimate the average treatment effect as follows:

τ = E

[
1

T − T0

T∑
t=T0

Yt(1)−W ′
tα

]
,

which motivates the following plug-in estimator:

τ̂ =
1

T − T0

T∑
t=T0

Yt −W ′
t α̂ .

By incorporating both estimation strategies, we form
the moment conditions E[Ũt(α, γ, τ)] = 0 where

Ũt(α, γ, τ)

=


g0(Z0,t)(Yt −W ′

tα)I{t ≤ T0}
g1(Z0,t, Z1,t)(Yt −W ′

tα−X ′
tγ)I{t > T0}

(Yt − τ −W ′
tα)I{t > T0}

(X ′
tγ − τ)I{t > T0}

 .

Then, we can estimate τ and structural paramters
(α, γ) simultaneously through the GMM approach
that solves

(α̂, γ̂, τ) = arg min
α,γ,τ

m̃ (α, γ, τ)
′
Ωm̃ (α, γ, τ)

where m̃ (α, γ, τ) = 1/T
∑T

t=1 Ũt(α, γ, τ). Similar to
that of Theorem 3.2, we then present the following
theorem for estimation and inference of ATT.

Theorem 3.3 Under Assumptions 2.1-2.4 and 3.1
and regularity conditions B.1-B.9 listed in Section B.2,
as T → ∞, we have

√
T (θ̂ − θ)

d−→ N
(
0,
(
G⊤ΩG

)−1
G⊤ΩSΩ⊤G

(
G⊤Ω⊤G

)−1
)

where θ = (α′, γ′, τ)′ includes τ as an extra pa-
rameter, and S = limT→∞ Var{

√
Tm̃(α, γ, τ)} is the

variance-covariance matrix of the limiting distribution
of

√
Tm̃(α, γ, τ) and the formula for G is provided as

equation (9) in Section B.2.

Remark 3.3 The GMM approach provided in Theo-
rem 3.3 offers a flexible framework for conducting es-
timation and inference for various types of causal ef-
fects. For example, the moment equations Ũt(α, γ, τ)
can be modified for estimating ATT of any specified
period of time with E[(X ′

tγ − τ)I{t1 < t < t2}] = 0,
percentage lift with E[(X ′

tγ −W ′
tα · τ)I{t1 < t < t2}],

and so on.

4 EXPERIMENTS

4.1 Experiments on Synthetic Data

In this section, we examine the finite sample perfor-
mance of our proposed method under various condi-
tions. We simulate time series data for N control
units and one treated unit with fixed pre-treatment
period T0 = 100 across different lengths of total peri-
ods T = 200, 400, 800. We assume the following data
generating mechanism:

Yt = I{t > T0}(ρ′tθ + δt) + λ′
tβ + ϵY,t

Wi,t = λ′
tΓi + ϵi,t

Xi,t = ρ′tΦi + ϵ′X,t

where ϵY,t, ϵi,t, ϵX,i,t
i.i.d∼ N(0, 1) denotes random er-

rors. We simulate a vector of latent factors λt =

(λ1,t, . . . , λF,t)
′ for donor model, where λk,t

i.i.d∼
N(1, 1) or λk,t

i.i.d∼ N(log(t), 1), k = 1, . . . , F , and
F = 1, 5, 10, and a vector of latent factors ρt =

{ρ1,t, . . . , ρK,t} for surrogate model, where ρi,t
i.i.d∼

N(µi, 1), j = 1, . . . ,K, and K = 1, 5. We set µ1 = 1
and µi = 0 for 2 ≤ i ≤ K. In this case, the aver-
age treatment effect is equal to one, i.e. τ = 1. For
each setting, we assume the number of control units
N = 2F and the number of surrogates H = 2K, and
the first half of the control units and surrogates consti-
tute the donor and surrogate pool. We specify factor
loadings as follows: β = (1, . . . , 1)′ and θ = (1, . . . , 1)′

are two vectors of ones, and Γ = (IF , IF )Φ = (IK , IK)
stack two identity matrices, which correspondingly
generate donors/surrogates and proxies. Respectively,
Φi and Γi correpsond to i-th column of Φ and Γ .
This specification leads to exact identified linear sys-
tems with solutions β = α and γ = θ. Notably, the
SC weights α do not sum to one.

To estimate τ , we implement our proposed method
taking the first half of control units as donors {Wi,t :
i = 1, . . . , F} and second half of control units as sup-
plemental proxies {Wi,t : i = F+1, . . . , 2F}. Similarly,
we use the first half of surrogates {Xi,t : i = 1, . . . ,K}
to predict causal effects and the second half of sur-
rogates as proxies {Xi,t : i = K + 1, . . . , 2K}. As a
comparison, we implement the following methods:

1. (SC) The unconstrained OLS under following lin-
ear regression model: Yt = α0 + I{t > T0}τ +
W ′

tα+ νt, t = 1, . . . , T .

2. (SC-S) The unconstrained OLS with surrogates
under following linear regression model: Yt =
α0 + I{t > T0}X ′

tγ +W ′
tα+ νt, t = 1, . . . , T . We

perform inference through the following moment
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equations:

Ũt(α, γ, τ) =I{t > T0}Xt(Yt − (I{t > T0}X ′
tγ +W ′

tα)
Wt(Yt − (I{t > T0}X ′

tγ +W ′
tα))

(X ′
tγ − τ)I{t > T0}

 .

3. (PI) The proximal inference method without us-
ing surrogates in Shi et al. (2021), which is based
on the following moment conditions:

Ũt(α, γ, τ) =

(
Z0,t(Yt −W ′

tα)I{t ≤ T0}
(Yt − τ −W ′

tα)I{t > T0}

)
.

4. (PI-P) A proximal inference method using post-
treatment period only. Specifically, we use the
following moment conditions:

Ũt(α, γ, τ) =

Z0,t(Yt −W ′
tα−X ′

tγ)I{t > T0}
Z1,t(Yt −W ′

tα−X ′
tγ)I{t > T0}

(X ′
tγ − τ)I{t > T0}

 .

5. (PI-S)Our proposed proximal inference with sur-
rogates from Section 3. Specifically, we use the
following moment conditions:

Ũt(α, γ, τ) =

 Z0,t(Yt −W ′
tα)I{t ≤ T0}

Z1,t(Yt −W ′
tα−X ′

tγ)I{t > T0}
(X ′

tγ − τ)I{t > T0}

 .

Table 1 reports the Mean Squared Errors (MSE) of
each estimation method for both independent and
AR(1) errors, computed across 2,000 Monte Carlo iter-
ations. We compare our proposed method, PI-S, with
other methods under two data generating processes,
one with an i.i.d normal latent factor λt with a mean
and variance equal to one, and another with an i.i.d
normal λt with a time trend log(t). We find that PI-S
outperforms all other methods under almost all model
specifications, having the lowest MSE. However, under
λt ∼ N(1, 1), SC and SC-S perform better than PI-S
when the number of factors is large relative to the num-
ber of total time periods, i.e. K = 5, T = 200, possibly
due to the “curse of dimensionality”. Additionally, we
observe that the performance of PI-P and PI-S im-
proves as the post-treatment period increases, while
the performance of other methods deteriorates, high-
lighting the advantage of our approach in the case of
long post-treatment periods. Finally, we also find that
as the dimension of latent factors increases, the per-
formance of all proximal inference methods declines,
particularly for PI-P.

Table 2 reports coverage rates at a 5% significance level
for different estimation methods. Under the station-
ary model with λt ∼ N(1, 1), all five methods achieve

coverage rates of approximately 95%. However, under
the model with a time trend, i.e., λt ∼ N(log(t), 1),
regression-based methods (SC and SC-S) produce a
large bias and fail to cover the ground truth, while
all three proximal inference methods (PI, PI-P, and
PI-S) exhibit good coverage rates. The comparison
of coverage rates in the “robust” section versus the
“HAC” section demonstrates the validity of our HAC
robust inference approach for models with time series
autocorrelation. When the dimension of latent fac-
tors is large relative to the number of observations,
the proximal inference methods with surrogates (PI-
P and PI-S) tend to become conservative. Impor-
tantly, alongside Table 1, we demonstrate the potential
of applying proximal inference to estimate causal ef-
fects with post-intervention data only by highlighting
relatively low MSEs and good coverage rates.

4.2 Experiments on Real-World Data

In this section, we examine and compare the five syn-
thetic control methods discussed in Section 4.1 (SC,
SC-S, PI, PI-S, and PI-P) using data collected from
the study of the Panic of 1907, one of the most severe
financial crises in US history. Fohlin and Lu (2021)
re-analyzed the impact of this event on NYC trusts
using a new high-frequency dataset on market valua-
tions and a generalized synthetic control method pro-
posed by Xu (2017). Their analysis employs a dataset
covering 59 trust companies from January 5, 1906, to
December 30, 1908, with a triweekly frequency, derived
from the “Trust and Surety Company” table published
in the New York Tribune. These trust companies are
divided into three groups based on their connections
and status during the crisis: the “troubled” group,
the “connected” group, and the “independent” group.
The troubled group comprises three trusts that expe-
rienced severe runs during the panic, while the con-
nected group consists of seven trusts linked to four
major “money trusts”. The remaining 49 trusts are
classified as the independent group.

In the original analysis by Fohlin and Lu (2021), the
primary focus was on assessing the impact of the panic
on both troubled and connected trusts collectively,
taking into account the average performance of firms
within each respective group. However, our study
aims to highlight the disparities in estimation out-
comes arising from the application of various methods
explored in this paper. To achieve this, we consider
the logarithm of the stock mid-price of Knickerbocker
Trust Company as the target outcome, with the three
troubled trusts serving as surrogates. Specifically, we
use the bid price (logarithm) of these trusts, includ-
ing the bid price (logarithm) of Knickerbocker as sur-
rogates, with their corresponding ask prices acting as
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λt ∼ N(1, 1) λt ∼ N(log(t), 1)

Std Error (K,T ) SC SC-S PI PI-P PI-S SC SC-S PI PI-P PI-S

Robust

(1, 200) 0.057 0.066 0.060 0.073 0.048 0.684 0.690 0.078 0.115 0.051
(1, 800) 0.022 0.024 0.023 0.009 0.010 1.961 1.963 0.061 0.014 0.020
(5, 200) 0.150 0.158 0.215 2.617 0.201 6.886 6.749 0.290 1.744 0.231
(5, 800) 0.057 0.058 0.112 0.044 0.048 23.770 23.742 0.247 0.050 0.081

HAC

(1, 200) 0.062 0.071 0.065 0.076 0.049 0.674 0.684 0.086 0.122 0.057
(1, 800) 0.024 0.026 0.024 0.010 0.010 2.004 2.004 0.072 0.015 0.022
(5, 200) 0.162 0.168 0.258 6.369 0.214 6.931 6.807 0.360 7.122 0.262
(5, 800) 0.062 0.063 0.120 0.045 0.050 24.065 24.064 0.279 0.058 0.090

Table 1: Mean Squared Errors under various methods

λt ∼ N(1, 1) λt ∼ N(log(t), 1)

Std Error (K,T ) SC SC-S PI PI-P PI-S SC SC-S PI PI-P PI-S

Robust

(1, 200) 94.00% 91.85% 95.05% 93.25% 94.25% 11.40% 12.75% 94.55% 94.40% 94.25%
(1, 800) 94.60% 94.00% 94.45% 94.75% 94.75% 0.00% 0.00% 94.30% 94.35% 95.00%
(5, 200) 94.35% 94.30% 96.70% 97.65% 97.05% 0.15% 0.15% 95.95% 97.60% 97.60%
(5, 800) 95.05% 94.65% 94.35% 95.35% 94.60% 0.00% 0.00% 94.30% 95.55% 94.80%

HAC

(1, 200) 93.30% 91.05% 93.85% 92.90% 93.80% 14.70% 15.35% 94.10% 93.10% 93.25%
(1, 800) 94.05% 93.00% 94.65% 94.25% 95.30% 0.00% 0.00% 92.45% 94.95% 93.50%
(5, 200) 93.60% 92.80% 95.45% 97.95% 96.40% 0.45% 0.45% 93.75% 97.30% 96.20%
(5, 800) 94.85% 94.85% 94.40% 95.65% 95.40% 0.00% 0.00% 92.95% 94.45% 94.35%

Table 2: Coverage rate under various methods

proxies. Similarly, the mid-prices (logarithm) of the 48
independent trusts are used as donors.1 The relevance
of our IFEM model to this application is supported
by the common assumption of factor models in study-
ing the stock market within the asset pricing literature
(see, for example, discussions of factors and loadings
in Fama and French (1993)).

Figure 1 displays the trends of the logarithmic stock
price of Knickerbocker Trust Company alongside the
synthetic control estimates derived from the five meth-
ods presented in the Section 4.1. The plot reveals
that the classic synthetic control regression generates
a counterfactual series closely aligned with the ob-
served outcome in the post-intervention period, re-
sulting in a relatively small causal effect. In con-
trast, the proximal inference methods (PI and PI-S)
yield series that visually extend the pre-intervention
price trend more consistently, suggesting that these
approaches might be better suited to this context. No-
tably, the post-intervention predictions, particularly

1The original analysis consists of 49 independent trusts,
one of which has a missing date and thus was dropped in
our analysis. We adopt the contaminated surrogate ap-
proach from Section A.3, as it is arguably more suitable
for this dataset.

with PI and PI-S, exhibit higher volatility compared
to the pre-intervention series, reflecting the inherent
uncertainty associated with the estimates. Meanwhile,
SC-S remains below the pre-intervention average price
but also appears to perform relatively well.

Table 4.2 displays the estimated average treatment
effect on the treated (ATT) obtained using the five
methods, along with their corresponding relative ef-
ficiency and standard errors enclosed in parentheses.
In the PI-S column, the standard errors of the esti-
mator are included, while in the other columns, we
show the relative efficiency calculated as the ratio of
variances of PI-S against the other methods. To
estimate standard errors and relative efficiency, we
use heteroskedasticity- and autocorrelation-consistent
(HAC) variance estimators. Each row section corre-
sponds to different lengths of post-intervention pe-
riods used for estimation, with the total length of
the post-treatment period available in the data be-
ing 182 (triweekly frequency). The results suggest
that the SC method performs poorly, as its point esti-
mates differ considerably from those of the other meth-
ods. On the other hand, the PI-S method demon-
strates smaller standard errors than PI when em-
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Figure 1: Stock price of Knickerbocker and its synthetic controls using various methods

Table 3: Estimated ATT under different lengths of post-intervention period

#time steps SC† SC-S† PI† PI-S∗ PI-P†

80
-0.020 -0.370 -0.600 -0.593 -0.739

(120.843) (12.750) (0.999) (0.154) (0.022)

100
-0.013 -0.495 -0.771 -0.769 -0.361

(182.137) (9.725) (0.972) (0.161) (0.012)

120
-0.061 -0.566 -0.909 -0.920 -0.590

(113.319) (10.030) (0.998) (0.165) (0.245)

160
-0.069 -0.626 -1.086 -1.086 -0.531

(107.123) (10.882) (0.959) (0.166) (0.082)

182
-0.089 -0.643 -1.138 -1.134 -1.220
(56.464) (11.036) (0.962) (0.158) (0.092)

* Numbers in parentheses represent the estimated standard errors.
† Numbers in parentheses represent the relative efficiencies, calculated as the ratio of variances of PI-S
against the other methods.

ploying different post-intervention periods for training.
This finding highlights the benefits of augmenting pre-
intervention estimation with post-intervention data.
Nonetheless, the difference between PI and PI-S is
not substantial. Interestingly, despite relying solely
on post-intervention data, PI-P is capable of produc-
ing reasonably accurate estimates. This observation
underscores the potential advantages of using proxi-
mal inference methods, such as PI, PI-P and PI-S,
in estimating the impact of financial crises on stock
prices.

5 CONCLUSION

Our paper introduces a novel framework that enhances
the synthetic control method (SCM) for estimating
the long-term impact of interventions. By integrat-
ing surrogates and leveraging the proximal causal in-
ference framework, our approach effectively incorpo-
rates post-intervention information, improving the es-

timation of causal effects. Importantly, our method
demonstrates the feasibility of estimating causal ef-
fects using only post-intervention period data, which
is particularly valuable in situations with limited pre-
intervention data. Moving forward, several avenues
for future research arise from our work. One direc-
tion involves the development of prediction intervals
for our proposed estimator, as seen in the work of
Chernozhukov et al. (2021). This would enable the
quantification of uncertainty and provide a more com-
prehensive assessment of the estimated treatment ef-
fects. Additionally, exploring weighting approaches to
achieve double robustness properties, as discussed in
Qiu et al. (2023), could further enhance the robust-
ness of our estimates. Furthermore, in Section A.3,
we present a solution for surrogates contaminated by
the outcomes of the control group. Extending this
approach to address interference problems in the syn-
thetic control setup holds promise for future research.
Overall, our framework opens up new possibilities for
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refining and expanding the synthetic control method,
offering valuable insights for researchers in the field of
impact evaluation.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes. Please see in Section 2 and 3.]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable.]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable. ]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes. Please see in
Section 2 and B.2.]

(b) Complete proofs of all theoretical results.
[Yes. Please see in Section B.1 and B.2]

(c) Clear explanations of any assumptions. [Yes.
Please see in Section 2.]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes.]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes.
Details are explained in Section 4.1 and 4.2]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes. We report MSEs and
coverage rates.]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [No. Our method is not
computationally expensive.]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes. The original real-world
data application is cited in Section 4.2.]

(b) The license information of the assets, if ap-
plicable. [Not Applicable.]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble.]

(d) Information about consent from data
providers/curators. [Not Applicable. Data
is open sourced.]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable.]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable.]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable.]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable.]
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The appendix is organized as follows: in Appendix A we provide three useful extensions to our primary framework.
In Appendix B.1, we present the proof of Theorem 3.1-3.3.

A EXTENSIONS

In this section, we explore three extensions to our primary framework. First, we incorporate adjustments for
measured covariates, which can be beneficial in practice to mitigate the issue of unmeasured confounders. Second,
we aim to relax the linear structure in the IFEM model. We outline the necessary assumptions for nonparametric
identification, which may be useful for practitioners when designing and implementing nonparametric methods
in practice. Finally, we include a useful extension of the surrogacy model to consider “contaminated” surrogates.
Such surrogates can potentially be alternative outcomes of the target unit or outcomes of other units affected by
the intervention.

A.1 Adjustment for Measured Covariates

In practice, one may wish to incorporate available covariate data measured across units and over time, either to
account for endogeneity or to improve efficiency. As such, we generalize the IFEM model as follows:

Yt(1) = ρ′tθ + δt + λ′
tβ + C ′

Y,tξY + ϵY,t

Yt(0) = λ′
tβ + C ′

Y,tξY + ϵY,t

W ′
t = λ′

tΓ + ξ′WCW,t + ϵ′W,t

X ′
t = ρ′tΦ+ ξ′XCX,t + ϵ′X,t ,

where CY,t, CW,t, CX,t are vectors/matrices of measured covariates that are not causally impacted by the inter-
vention, i.e. CY,t(1) = CY,t(0) = CY,t. We modify Assumption 2.1 and 2.3 to include measured covariates as
follows:

Assumption A.1 (Conditional independent errors) The error terms are conditional mean independent
and independent of each other. E (ϵY,t | λt, CY,t) = E (ϵW,t | λt, CW,t) = E (δt | ρt) = E (ϵX,t | ρt, CX,t) = 0
for t = 1, . . . , T .

Assumption A.2 (Existence of proxies) We observe {Z0,t, Z1,t} such that

Z0,t ⊥⊥ {Yi(0),Wt} | λt, CY,t, CW,t for any t ≤ T0 ,

{Z0,t, Z1,t} ⊥⊥ {Yi(1),Wt, Xt} | λt, ρt, CY,t, CW,t, CX,t for any t > T0 .

Let Ỹt = Yt − C ′
Y,tξY , W̃t = Wt − C ′

W,tξW and X̃t = Xt − C ′
X,tξX . Under the modified assumptions above, we

have the following identification results:

Theorem A.1 (Identification) Under Assumption A.1 and 2.2, we have E[Yt(0)] = E[C ′
Y,tξY + W̃ ′

tα] and

E[Y (1)] = E[C ′
Y,tξY + W̃ ′

tα + X̃ ′
tγ] for any 1 ≤ t ≤ T . Under Assumption A.1-A.2, 2.2 and 2.4, (α, γ) is

uniquely identified by solving

E[Ỹt − W̃ ′
tα | Z0,t, CY,t, CW,t, t ≤ T0] = 0 for any t ≤ T0 ,

E[Ỹt − W̃ ′
tα− X̃ ′

tγ | Z0,t, Z1,t, CY,t, CW,t, CX,t, t > T0] = 0 for any t > T0 .

The proof is similar to that of Theorem 3.1 in Appendix B.1.

Next, we present an example of applying Theorem A.1 to treatment effect estimations. First, let ξ = (ξY , ξW , ξX),
Z̃0,t = (Z0,t, CY,t, CW,t). We have moment conditions E[Ũt(α, γ, τ, ξ)] = 0 where

Ũt(α, γ, τ, ξ) =


g0(Z̃0,t)(Yt −W ′

tα− C ′
Y,tξY − C ′

W,tξWα)I{t ≤ T0}
g1(Z̃0,t, Z1,t, CX,t)(Yt −W ′

tα−X ′
tγ − C ′

Y,tξY − C ′
W,tξWα− C ′

X,tξXγ)I{t > T0}
(Yt − τ −W ′

tα− C ′
Y,tξY − C ′

W,tξWα)I{t > T0}
(X ′

tγ − C ′
X,tξXγ − τ)I{t > T0}

 .

Lastly, we can employ the standard GMM approach as outlined in Section 3 for estimation and inference.
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A.2 Nonparametric Identification and Estimation

The given approach in section 3 is heavily dependent on the linearity assumptions in equations (3) and (4).
In practice, this linear structure could potentially be violated. Thus, in this section, we extend our proposed
framework to obtain nonparametric identification and estimation. To begin, we replace Assumption 2.3 with the
following assumption:

Assumption A.3 (Existence of confounding bridge) There exists a function h(Wt) such that the outcome
model for Yt(0) is equivalent to a model for h(Wt):

E[Yt(0) | λt] = E[h(Wt) | λt], ∀t ≥ 1.

Meanwhile, there exists a function g(Xt) such that the causal effect model for Yt(1) − Yt(0) is equivalent to a
model for g(Xt):

E[Yt(1)− Yt(0) | ρt] = E[g(Xt) | ρt], ∀t ≥ 1.

From Assumption A.3, we can immediately deduce that nonparametric identification of ATT can be expressed
as follows:

τ = E[Yt(1)− Yt(0) | t > T0] = E[g(Xt) | t > T0].

Subsequently, the following theorem presents the nonparametric identification results for h(·), g(·):

Theorem A.2 (Moment condition for h(·), g(·)) Under Assumption 2.1, A.3 and 2.3, the confounding
bridge function h(·), g(·) satisfies the moment condition

E[Yt − h(Wt) | Z0,t, t ≤ T0] = 0 for any t ≤ T0 ,

E[Yt − h(Wt)− g(Xt) | Z0,t, Z1,t, t > T0] = 0 for any t > T0 .

The proof follows the same procedure as in Appendix B.1. By Assumption 2.3, we have E[Yt−h(Wt) | Z0,t, λt, t ≤
T0] = E[Yt − h(Wt) | λt, t ≤ T0] = 0. By integrating over λt, we obtain E[Yt − h(Wt) | Z0,t, t ≤ T0] = 0. The
same argument applies to the second moment condition, and thus the result follows.

A.3 Contaminated Surrogates

In this section, we extend our IFEM model to accommodate situations where “pure” surrogates are not available.
Instead, we only observe surrogates that are “contaminated” by latent factors that drive the outcomes of the
control. In many applications, such contaminated surrogates are essentially alternative outcomes of the target
units and are expected to be driven by λt in (3) in the pre-intervention periods, and driven by both λt and ρt
in (4) in the post-intervention periods. For example, if the target outcome of interest is the GDP growth of
California, contaminated surrogates can potentially be inflation and the unemployment rate of California, or the
GDP growth, inflation, and unemployment rate of other states affected by the treatment.

To formalize this setup, we consider the following latent factor model for the surrogates as a replacement of Xt

from equation (4):

X ′
t(0) = λ′

tΘ+ ϵ′X,t

X ′
t(1)−X ′

t(0) = ρ′tΦ+ δX,t ,
(7)

where Θ is a (F ×H) matrix of factor loadings. In addition to Assumption A.2, we assume the following:

Assumption A.4 (Existence of synthetic control for contaminated surrogates) There exist a (N×H)
matrix of weights Ψ such that ΓΨ = Θ.

Remark A.1 Similar to Remark 2.1, such an assumption holds when the number of donors exceeds the number
of latent factors λt, i.e. N ≥ F .
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Under the model of contaminated surrogates and the additional Assumption A.4, we have the following results
for identification:

Theorem A.3 (Identification) Under Assumption 2.1-2.2 and A.4, we have E[Yt(0)] = E[W ′
tα], E[Xt(0)

′] =
E[W ′

tΨ] and E[Y (1)] = E[W ′
tα + (X ′

t(1) − W ′
tΨ)γ] for any 1 ≤ t ≤ T . Under Assumption 2.1-2.4, (α, γ) is

uniquely identified by solving

E[Yt −W ′
tα | Z0,t, t ≤ T0] = 0 for any t ≤ T0 ,

E[Xt −W ′
tΨ | Z0,t, t ≤ T0] = 0 for any t ≤ T0 ,

E[Yt −W ′
tα− (X ′

t −W ′
tΨ)γ | Z0,t, Z1,t, t > T0] = 0 for any t > T0 .

The proof is similar to that of Theorem 3.1 in Appendix B.1. Next, we use GMM approach for estimation and
inference about the average treatment effects on the treated (ATT). The moment equations defining the ATT
can be given as E[(Yt − τ −W ′

tα)I{t > T0}] = 0 and E[((X ′
t −W ′

tΨ)γ − τ)I{t > T0}] = 0.

B PROOFS

B.1 Proof of Theorem 3.1

By Assumption 2.1 and 2.2, we have

E[Yt(0)] = E[λ′
tβ] = E[λ′

tΓα] = E[(Wt − ϵW,t)
′α] = E[W ′

tα]

and

E[Yt(1)] = E[Yt(0)] + E[ρ′tθ] = E[W ′
tα] + E[ρ′tΦγ] = E[W ′

tα] + E[(Xt − ϵX,t)
′γ] = E[W ′

tα+X ′
tγ] .

Again, by Assumption 2.1 and 2.2, we have

E[Yt(0)−W ′
tα | λt, t ≤ T0] = E[ϵY,t − ϵ′W,tα | λt, t < T0] = 0

and

E[Yt(1)−W ′
tα−X ′

tγ | λt, ρt, t > T0] = E[Yt(1)− Yt(0)−X ′
tγ | λt, ρt, t > T0]

= E[δt − ϵ′X,tγ | λt, ρt, t > T0] = 0 .

By Assumption 2.3, we have

E[Yt −W ′
tα | Z0,t, t ≤ T0] = E[E[Yt(0)−W ′

tα | λt, Z0,t, t ≤ T0] | Z0,t, t ≤ T0]

= E[E[Yt(0)−W ′
tα | λt, t ≤ T0] | Z0,t, t ≤ T0] = 0 ,

and

E[Yt −W ′
tα−X ′

tγ | Z0,t, Z1,t, t > T0] = E[E[Yt(1)−W ′
tα−X ′

tγ | λt, ρt, Z1,t, t > T0] | Z0,t, Z1,t, t > T0]

= E[E[Yt(1)−W ′
tα−X ′

tγ | λt, ρt, t > T0] | Z0,t, Z1,t, t > T0] = 0 .

To show uniqueness, assume there exists two sets of vectors of weights (α, γ), (α̃, γ̃) such that E[Yt−W ′
tα−X ′

tγ |
Z0,t, Z1,t, t > T0] = E[Yt −W ′

t α̃ −X ′
tγ̃ | Z0,t, Z1,t, t > T0] = 0. Thus, E[W ′

t (α − α̃) +X ′
t(γ − γ̃) | Z0,t, Z1,t, t >

T0] = 0, which by Assumption 2.4 implies α = α̃ and γ = γ̃.

B.2 Details and Proof for Theorem 3.2 and 3.3

B.2.1 Details for the Theorem Statements

In Thereom 3.2, the formula for G is given as follows:

G = E

[(
g0(Z0,t)W

′
tI{t ≤ T0} 0

g1(Z0,t, Z1,t)W
′
tI{t > T0} g1(Z0,t, Z1,t)X

′
tI{t > T0}

)]
. (8)

In Theorem 3.3, the formula for G is given as follows:

G = E




g0(Z0,t)W
′
tI{t ≤ T0} 0 0

g1(Z0,t, Z1,t)W
′
tI{t > T0} g1(Z0,t, Z1,t)X

′
tI{t > T0} 0

W ′
tI{t > T0} 0 I{t > T0}

0 −X ′
tI{t > T0} I{t > T0}


 . (9)
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B.2.2 Proof for Theorem 3.2 and 3.3

We first show that E[Ut(α, γ)] = E[Ũt(α, γ, τ)] = 0 at the true value under Assumptions 2.1-2.4 and 3.1. For
brevity, we only show E[Ut(α, γ)] = 0. We have

E[Ut(α, γ)] = E

[(
g0(Z0,t)(Yt −W ′

tα)I{t ≤ T0}
g1(Z0,t, Z1,t)(Yt −W ′

tα−X ′
tγ)I{t > T0}

)]
= E

[(
E [g0(Z0,t)(Yt −W ′

tα)I{t ≤ T0} | Z0,t, t ≤ T0]
E [g1(Z0,t, Z1,t)(Yt −W ′

tα−X ′
tγ)I{t > T0} | Z0,t, Z1,t, t > T0]

)]
= E

[(
g0(Z0,t)E [(Yt −W ′

tα)I{t ≤ T0} | Z0,t, t ≤ T0]
g1(Z0,t, Z1,t)E [(Yt −W ′

tα−X ′
tγ)I{t > T0} | Z0,t, Z1,t, t > T0]

)]
(by Theorem 3.1)

= 0 .

Now we focus on proving Theorem 3.2. Similar arguments apply to Theorem 3.3. We follow Chapter 3
of Hall (2005a) to prove the asymptotic normality of our estimator. To summarize, we have a population
moment condition E[Ut(θ)] = 0 with a moment function Ut(α, γ) = Vt (Yt −D′

tθ), θ = (α, γ) ∈ RN+H ,
Vt = {g0(Z0,t)

′I{t ≤ T0}, g1(Z0,t, Z1,t)
′I{t > T0}}′ ∈ Rd1+d2 , Dt = {W ′

t , X
′
tI{t > T0}}′ ∈ RN+H . Let

Ot = {Yt,Wt, Xt, T0, Z0,t, Z1,t} ∈ RN+H+dim({Z0,t,Z1,t})+2, denote the observable vector of random variables,
where dim({Z0,t, Z1,t}) is the dimension of {Z0,t, Z1,t}. Let Θ ⊆ RN+H denote the parameter space of θ, and
let O ⊆ RN+H+dim({Z0,t,Z1,t})+2 denote the sample space of Ot. Then Ut = Ut(Ot; θ) is a mapping from O ×Θ
to Rd1+d2 . We impose the following regularity conditions.

Assumption B.1 (Strict stationarity) The observable vector of random variables Ot form a strictly station-
ary process, such that all expectations of functions of Ot do not depend on time.

Assumption B.2 (Regularity conditions for Ut) The function Ut : O × Θ → Rd1+d2 where d1 + d2 < ∞
satisfies: (i) it is continuous on Θ for each Ot ∈ O; (ii) E[Ut(Ot; θ)] exists and is finite for every θ ∈ Θ; (iii)
E[Ut(Ot; θ)] is continuous on Θ.

Assumption B.3 (Regularity conditions on ∂Ut(Ot; θ)/∂θ
′) (i) The derivative matrix ∂Ut(Ot; θ)/∂θ

′ ex-
ists and is continuous on Θ for each Ot ∈ O; (ii) The true value of θ does not lie on the boundary of Θ; (iii)
E[∂Ut(Ot; θ)/∂θ

′] exists and is finite.

Assumption B.4 (Properties of the Weighting Matrix) The user-specified weight matrix Ω is a positive
semi-definite matrix, possibly depends on data, and converges in probability to the positive definite matrix of
constants.

Assumption B.5 (Ergodicity) The random process {Ot;−∞ < t < ∞} is ergodic.

Assumption B.6 (Compactness of Θ) Θ is a compact set.

Assumption B.7 (Domination of Ut(Ot; θ)) E[supθ∈Θ∥Ut(Ot; θ)∥] < ∞.

Assumption B.8 (Properties of the variance of the sample moment) Let θ∗ = (α∗, γ∗) denote the true
value of θ. (i) E[Ut(Ot; θ)Ut(Ot; θ)

′] exists and is finite; (ii) S exists and is a finite valued positive definite
matrix.

Assumption B.9 (Properties of GT (θ) = T−1
∑T

t=1 ∂Ut(Ot; θ)/∂θ
′) (i) E[∂Ut(Ot; θ)/∂θ

′] is continuous on
some neighbourhood Nϵ of the true value θ∗ in Θ; (ii) Uniform convergence of GT (θ):

∑
θ∈Nϵ

∥GT (θ) −
E[∂Ut(Ot; θ)/∂θ

′]∥ p−→ 0.

Under Assumptions 2.1-2.4 and 3.1 and B.1-B.9, we have that Theorem 3.2 holds by Theorem 3.2 of Hall (2005a).
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