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Abstract

Feature selection algorithms aim to select a
subset of informative features from a dataset
to reduce the data dimensionality, conse-
quently saving resource consumption and im-
proving the model’s performance and in-
terpretability. In recent years, feature se-
lection based on neural networks has be-
come a new trend, demonstrating superior-
ity over traditional feature selection meth-
ods. However, most existing methods use
dense neural networks to detect informative
features, which requires significant computa-
tional and memory overhead. In this paper,
taking inspiration from the successful appli-
cation of local sensitivity analysis on neu-
ral networks, we propose a novel resource-
efficient supervised feature selection algo-
rithm based on sparse multi-layer perceptron
called “GradEnFS”. By utilizing the gradi-
ent information of various sparse models from
different training iterations, our method suc-
cessfully detects the informative feature sub-
set. We performed extensive experiments on
nine classification datasets spanning various
domains to evaluate the effectiveness of our
method. The results demonstrate that our
proposed approach outperforms the state-of-
the-art methods in terms of selecting infor-
mative features while saving resource con-
sumption substantially. Moreover, we show
that using a sparse neural network for feature
selection not only alleviates resource con-
sumption but also has a significant advantage
over other methods when performing feature
selection on noisy datasets.
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1 INTRODUCTION

With the increasing dimensionality of the real-world
data, training a machine learning model on these high-
dimensional data brings several limitations, including
the curse of dimensionality, overfitting, and expensive
resource consumption. In the face of these challenges,
feature selection remains a crucial step in the machine
learning pipeline. It aims to identify the most relevant
and informative features from a dataset while remov-
ing irrelevant, noisy, or redundant ones. By reducing
data dimensionality and mitigating noise, feature se-
lection enhances the efficiency of the model’s training
phase and the effectiveness and interpretability of the
trained models (Li et al., 2018).

Numerous feature selection algorithms have been pro-
posed, and there is growing interest in using neural
networks for feature selection due to their ability to
learn non-linear dependencies between features effec-
tively (Lemhadri et al., 2021; Yamada et al., 2020).
However, most existing neural network-based (NN-
based) feature selection methods suffer from the de-
mand for substantial computational and memory re-
sources because they often require training dense neu-
ral networks, which are highly overparameterized, for
many iterations to identify informative features. This
resource-intensive characteristic hinders their scalabil-
ity on the super high-dimensional dataset and low-
resource environment. The emergence of Dynamic
Sparse Training (DST) algorithms, capable of training
sparse neural networks from scratch, offers a promis-
ing solution to this challenge. Novel feature selec-
tion methods that leverage the sparse networks trained
by DST algorithms have been presented, effectively
mitigating the resource consumption issue (Atashgahi
et al., 2020; Sokar et al., 2022). QuickSelection (QS)
(Atashgahi et al., 2020) is the pioneering method that
utilizes a sparse network trained by DST to success-
fully identify informative features. It reduces memory
and computational costs compared to previous dense-
based methods. However, QS exhibits slow conver-
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Figure 1: An overview of our proposed method “GradEnFS”. GradEnFS first initializes a sparse MLP and neuron
importance for all input neurons. During training, the algorithm performs backpropagation and accumulates
the gradient information to update neuron importance. Meanwhile, the weight matrices and topology are also
updated. After training, input neurons with the highest importance are selected as the most informative features.

gence and needs numerous training epochs for infor-
mative feature detection. WAST (Sokar et al., 2022)
is another sparse NN-based method that addresses the
limitations of QS and exhibits fast convergence. How-
ever, it is specifically tailored for unsupervised con-
texts.

In this paper, we propose an efficient supervised fea-
ture selection algorithm based on sparse Multi-Layer
Perceptrons (MLPs). Our approach draws inspiration
from the local sensitivity method, which is used to an-
alyze the functionality of components within a func-
tion (Zhou and Lin, 2008). Specifically, we present a
metric that leverages gradient information to quan-
tify the importance of neurons during the training
of a sparse MLP using the DST algorithm. It uti-
lizes the gradient information of models from different
training iterations, resulting in an implicit ensemble
effect. Therefore, we named this method Gradient
Ensemble Feature Selection (GradEnFS). We eval-
uate our proposed approach on nine datasets from
various domains and demonstrate that it outperforms
state-of-the-art feature selection methods in balancing
the performance of feature selection tasks and resource
consumption considerations. Our main contributions
are:

• We introduce a novel sensitivity-based neuron im-
portance metric and use it to propose GradEnFS,
a highly efficient sparse neural network-based su-
pervised feature selection algorithm.

• Our extensive evaluation of GradEnFS across nine
benchmark datasets spanning diverse domains
demonstrates its superiority over state-of-the-art
techniques in selecting informative features.

• GradEnFS significantly reduces memory usage,
computational cost, and the number of con-
vergence iterations compared to other neural
network-based methods.

• We highlight GradEnFS’s remarkable efficiency in
handling noisy datasets, showcasing its robustness
and effectiveness toward noisy datasets.

2 BACKGROUND & RELATED
WORK

2.1 Feature Selection

Feature selection generally is classified into three cate-
gories: filter, wrapper, and embedded method. The
filter method selects the most informative feature
by utilizing a statistic-based score independent of the
downstream learning task. Two famous examples of
such scores are mutual information (Lee et al., 2012)
and F-score (Ding, 2009). The filter approach is sim-
ple to design and does not require significant com-
puting resources, which are advantages when working
with large datasets. However, they are not able to
learn the non-linear relation among features and are
prone to choose redundant features (Chandrashekar
and Sahin, 2014). The wrapper method evaluates
the score of the features’ subsets via the accuracy of
a specific model. For example, Maldonado and Weber
(2009) proposed a wrapper method using a support
vector machine. This method requires retraining the
model per subset, which brings expensive computa-
tional costs, especially for high-dimensional data, even
with a simple model (El Aboudi and Benhlima, 2016).
The embedded method performs feature selection si-
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multaneously in the model’s learning phases to allevi-
ate the problem of filter and wrapper methods, and a
successful example is LASSO (Tibshirani, 1996).

Recently, one of the branches in the embedded
method, the NN-based feature selection, has become a
new trend due to some attractive advantages of neural
networks, such as the ability to learn the non-linear
relation between features (Lemhadri et al., 2021; Lu
et al., 2018; Yamada et al., 2020; Abid et al., 2019;
Han et al., 2018). However, most of these methods
suffer from overparameterization, which leads to ex-
pensive resource costs, especially when facing high-
dimensional datasets (Singh et al., 2020). The newly
emerged algorithms that utilize sparse neural networks
for feature selection offer a promising solution for ad-
dressing the resource-intensive issue. QS is the first
sparse NN-based feature selection method (Atashgahi
et al., 2020). It introduces the strength of the neu-
ron, which also refers to neuron importance, trains a
sparse autoencoder from scratch, and subsequently de-
rives the ranking of the informative features according
to the designed neuron importance metric at the end of
the training. WAST algorithm is another sparse NN-
based method recently proposed (Sokar et al., 2022).
WAST introduces a novel neuron importance metric
and develops a new sparse training algorithm that in-
corporates this metric in drop-and-regrow cycles. This
approach enables the network’s topology to focus on
informative neurons and connections, rapidly detect-
ing the most informative input neurons (features).
However, QS exhibits slow convergence, and WAST
is unsuitable for supervised contexts.

2.2 Sparse Neural Networks

Sparse Neural Networks (SNNs) are neural networks
that encourage connection sparsity in the network’s
topology (Mocanu et al., 2021). SNNs offer potential
solutions to address the resource-intensive demands
and overfitting issues arising from the overparameteri-
zation of Dense Neural Networks (DNNs), where neu-
rons in DNNs are connected in pairs between consec-
utive layers. The first SNNs were obtained through
pruning methods, which involve removing connec-
tions from a trained DNN based on specific criteria
(Janowsky, 1989; Mozer and Smolensky, 1989; LeCun
et al., 1989; Han et al., 2015; Frankle and Carbin, 2018;
Strom, 2015; Molchanov et al., 2019, 2016; Louizos
et al., 2017; Wen et al., 2016; Srinivas et al., 2017;
Zhu and Gupta, 2017; Lee et al., 2018; Wang et al.,
2020; Tanaka et al., 2020; de Jorge et al., 2020). How-
ever, pruning methods necessitate training a DNN
first, which means the benefits of sparsity are only re-
alized during the model’s inference phase. Dynamic
Sparse Training (DST) is a recent and promising

approach for obtaining SNNs, attracting significant re-
search interest (Mocanu et al., 2017, 2018; Dettmers
and Zettlemoyer, 2019; Evci et al., 2020; Dai et al.,
2019; Atashgahi et al., 2022). DST methods initial-
ize a sparse neural network and, during training, pe-
riodically update the sparse topology through a drop-
and-grow cycle. This cycle involves dropping a frac-
tion of connections based on a dropping criterion and
regrowing the same number of connections based on
a regrown criterion. Because DST methods train a
sparse neural network from scratch, the benefits of the
sparsity can be obtained in both the training and in-
ference phases. DST methods have demonstrated suc-
cess in diverse research fields, such as continual learn-
ing (Sokar et al., 2021a), feature selection (Atashgahi
et al., 2020; Sokar et al., 2022), federated learning (Zhu
and Jin, 2019; Bibikar et al., 2022) and deep reinforce-
ment learning (Sokar et al., 2021b).

2.3 Local Sensitivity Analysis

Local Sensitivity Analysis (LSA) is a widely used
method to measure the importance of individual input
features in machine learning models, including neural
networks. It quantifies the local impact of each input
feature on the model’s output at a specific sample by
calculating the first-order partial derivative of the out-
put with respect to the input. LSA defines this deriva-
tive as the corresponding input’s local sensitivity and
can be expressed using the following formula:

sj(x
(i)) =

∂y(i)

∂xj
(x(i)) (1)

where x(i) represents the specific i-th sample, y(i) cor-
responds to the model’s output of this input sample,
xj denotes the j-th feature in the input vector, and
sj(x

(i)) represents the local sensitivity that quantifies
how a slight change in the value of the j-th feature of
the input vector x(i) will affect the output.

Based on this principle, several applications have been
proposed to analyze the relationship between input
features and output in deep learning models, especially
in the analysis of convolutional neural networks (Si-
monyan et al., 2013; Smilkov et al., 2017; Selvaraju
et al., 2017). However, local sensitivity calculated
based on a single sample can easily introduce bias.
Hence, aggregating local sensitivity values obtained
from a wide range of samples using methods such as
averaging provides a better solution (Pizarroso et al.,
2020).
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3 METHODOLOGY

3.1 Problem Formulation

Let D be a dataset containing m samples {x(i), y(i)},
where x(i) ∈ Rd is the i-th sample in the data matrix
X ∈ Rm×d with the dimensionality of the features d,
and y(i) is the label corresponding to the x(i). Feature
selection algorithm aims to select the most informative
feature subset Fs from the whole feature space F, and
|Fs| = K, where K is the hyperparameter of the al-
gorithm which notates the number of the selected fea-
tures. The objective function of the feature selection
problem in a supervised learning context is as follows:

F∗
s = argmin

Fs⊂F,|Fs|=K

m∑
i=1

L(f(x(i)
Fs
;θ), y(i)) (2)

where f(x
(i)
Fs
;θ) represents a function with parameter

θ that predicts the target of the i-th sample utiliz-
ing the feature subset Fs, L is the loss function, and
F∗
s is the optimal feature subset which minimize the

loss. Notably, determining the optimal feature sub-
set F∗ is an NP-hard problem because the number of
potential feature subsets increases exponentially with
the dimensionality of features d. Therefore, most ex-
isting algorithms exploit heuristic sequential search to
adjust subsets iteratively instead of directly optimiz-
ing Eq(2); for example, some works rely on importance
metrics to rank the features. Our method follows this
approach, which utilizes the importance metric based
on local sensitivity analysis and is strengthened via
neural networks’ function approximation abilities.

3.2 Gradient Ensemble Feature Selection

We now present our proposed methodology for fea-
ture selection using sparse neural networks, named
Gradient Ensemble Feature Selection (GradEnFS).
We start by describing our proposed neuron impor-
tance metric. Then, we explain the sparse MLP train-
ing process. We use the Sparse Evolutionary Train-
ing algorithm (Mocanu et al., 2018), the first DST al-
gorithm, to train a sparse MLP. Finally, we describe
how to perform feature selection at the end of train-
ing. Pseudocode for the GradEnFS algorithm can be
found in Appendix A.

3.2.1 Neuron Importance Metric

Drawing inspiration from local sensitivity analysis, we
measure how sensitive the loss is to changes in input
neurons (features) within a neural network, quantify-
ing this sensitivity as the importance of the neurons.

We use s(x(i)) to represent the local sensitivity vector,
which includes the local sensitivities of input neurons

at a specific sample x(i). s(x(i)) is defined as follows:

s(x(i)) = ∇xL(f(x(i),θs), y
(i)) = ∇xℓ

(i) (3)

where y(i) is the corresponding label of the sample x(i),
L is the loss function, f(x,θs) is a sparse neural net-
work with parameter θs, and ℓ(i) is the loss between
the label and predicted label of the sample x(i), and
∇xℓ

(i) denotes the gradient of loss with respect to fea-
ture vector x.

To address bias resulting from measuring sensitivity
using a single data sample, we calculate the overall
sensitivity by averaging the absolute values of the lo-
cal sensitivities obtained from a set of samples. Sub-
sequently, we accumulate this overall sensitivity, often
referred to as gradient information, from various mod-
els across different training iterations to achieve an en-
semble effect as these models undergo updates in their
topology and weight matrices over different iterations.
We then consider the accumulated value as the neuron
importance. We use I(t) to represent the input neuron
importance vector at iteration t. Initially, all elements
of this vector are set to 0, and they are updated during
the training iterations using the following formula:

I(t) = βI(t−1) +

∑N(t)

i=0 |s(x(i))|
N (t)

(4)

where N (t) denotes the number of data samples in
training iteration t, and β is the hyperparameter that
determines the extent to which we account for histor-
ical effects.

In GradEnFS, we recommend constraining the value
of β to (0, 1]. This recommendation is based on the
principle that as the model approaches the underlying
function of the real-world dataset, sensitivity analysis
becomes more effective and accurate. Therefore, we
should assign greater weight to the current results and
less to historical results. Empirical evidence support-
ing this recommendation is presented in Appendix E.
While the MLP is considered a universal approximator
capable of approximating any real-world function with
sufficient neurons, differences between the real func-
tion and the model still exist. Consequently, aggre-
gating insights from various models becomes a valuable
strategy. Thanks to the rapid convergence of MLP, the
model often approximates the real-world distribution
within just a few epochs. Additionally, the sparsity in-
troduced to the model not only saves resources but also
helps prevent overfitting during later training stages.
Consequently, gathering sensitivity analysis informa-
tion from models obtained in different training stages
becomes beneficial.
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Table 1: Datasets Characteristics
DATASET TYPE #FEATURES #SAMPLES #TRAIN #TEST #CLASSES

BASEHOCK text 4862 1993 1595 398 2
PCMAC text 3289 1943 1555 388 2

Prostate GE biological 5966 102 82 20 2
TOX 171 biological 5748 171 137 34 4
Madelon artificial 500 2600 2080 520 2
Isolet spoken letter recognition 617 1560 1248 312 26

COIL20 image 1024 1440 1152 288 20
USPS hand written digit image 256 9298 7439 1859 10
MNIST hand written digit image 784 70000 60000 10000 10

3.2.2 Sparse Multi-Layer Perceptron

Initialization GradEnFS initializes a sparse MLP
as an Erdős-Rényi random graph, in which the sparse
connections are uniformly distributed over the neurons
from consecutive layers. The probability of establish-
ing a connection between two neurons is determined
by the following equation:

p(W k
ij) =

ϵ(Hk−1 +Hk)

Hk−1Hk
(5)

where ϵ is the hyperparameter to control the sparsity
level, Hk denotes the number of neurons in k-th layer,
and W k

ij represents the connection between neuron i
of layer k − 1 and neuron j of layer k. Compared to
completely random initialization or initialization with
a fixed sparsity level in each layer, this probability dis-
tribution yields varying sparsity levels among different
layers and promotes sparser connections between lay-
ers with more neurons.

Training The sparse MLP is trained to minimize the
cross-entropy loss between the label y and the predic-
tion ŷ. The loss function is as follows:

L(y, ŷ) = −
C∑

c=1

yc log(ŷc) (6)

where C is the number of the classes, and ŷ = f(x;θs)
in which f(x;θs) is the sparse model with parame-
ter θs. After calculating losses based on a batch of
data, the model’s sparse weight matrices are updated
by backpropagation algorithm and utilize gradient
information to update the input neurons impor-
tance. We simultaneously adapt the sparse topology
through a drop-and-grow cycle after a fixed interval
(batch or epoch).

Drop phase The algorithm first takes the absolute
values of the weight of every existing connection. Fol-
lowing this, a fraction α of the existing connections is
removed by selecting the smallest absolute value. This
removal operation is performed layer by layer through-
out the entire network.

Grow phase After the drop phase, the algorithm ran-
domly regrows the same number of connections that

were dropped layer by layer. This randomness offers
several advantages. Firstly, it can potentially save
computational resources since there is no need for com-
putations like connection importance during regrowth
(Evci et al., 2020; Atashgahi et al., 2022). Addition-
ally, the randomness provides a vast exploration space
for sparse topology, which enhances the ensemble ef-
fect.

3.2.3 Feature Selection

After the training process, we identify the K in-
put neurons with the highest importance, considering
them as the K most informative features.

4 EXPERIMENTS & RESULTS

4.1 Datasets

We evaluate the performance of our proposed method
on nine publicly available datasets. The characteristics
of these datasets are illustrated in Table 1.

4.2 Experimental Settings

Evaluation Metrics We evaluate the performance
of feature selection algorithms from different aspects,
including learning accuracy, memory usage, and com-
putational cost. For learning accuracy, we assess
it by classification accuracy, which means we train a
classifier using the selected K features and obtain the
test accuracy of this classifier as the evaluation. We
use one of the most popular classifiers, Support Vector
Machines (SVM) (Vapnik, 1992). Using the non-NN-
based classifier ensures that our evaluation remains
unbiased and avoids favoring NN-based baselines over
others. Classification accuracy measured by other clas-
sifiers can be found in Appendix F.1. For memory
usage, we calculate the number of network parameters
used by each NN-based method. For computational
cost, we assess the number of FLoating-Point Opera-
tions (FLOPs) needed for training a neural network.
More details can be found in Appendix B.
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Table 2: Classification Accuracy. The results are the SVM classification accuracy average over five independent
runs (%). Bold fonts indicate the best performer and italic fonts indicate the second-best performer (Baseline is
not under consideration).

METHOD
HIGH-DIMENSIONAL DATASETS LOW-DIMENSIONAL DATASETS

BASEHOCK PCMAC Prostate GE TOX 171 Madelon Isolet COIL20 USPS MNIST

Fisher Score 54.77 ± 0 57.22 ± 0 75.00 ± 0 73.53 ± 0 53.00 ± 0 77.88 ± 0 75.35 ± 0 93.60 ± 0 88.16 ± 0
CMIM 63.07 ± 0 61.86 ± 0 90.00 ± 0 70.53 ± 0 53.67 ± 0 82.37 ± 0 98.26 ± 0 95.05 ± 0 42.68 ± 0
ICAP 53.51 ± 0 62.37 ± 0 85.00 ± 0 64.71 ± 0 51.50 ± 0 77.24 ± 0 97.22 ± 0 95.60 ± 0 87.57 ± 0
RFS 67.34 ± 0 57.47 ± 0 95.00 ± 0 79.41 ± 0 54.00 ± 0 80.77 ± 0 87.50 ± 0 95.27 ± 0 40.60 ± 0
LassoNet 87.19 ± 0.84 84.05 ± 0.83 90.00 ± 1.23 73.53 ± 2.33 70.17 ± 0.89 87.82 ± 1.25 97.57 ± 0.72 95.32 ± 0.25 86.37 ± 1.01
STG 84.92 ± 1.04 81.44 ± 0.88 90.00 ± 2.01 91.18 ± 2.53 72.27 ± 1.24 80.77 ± 1.62 94.92 ± 0.64 96.18 ± 0.22 94.09 ± 0.88
QS 90.15 ± 0.83 83.75 ± 1.17 87.00 ± 6.78 65.88 ± 7.58 70.33 ± 0.43 90.58 ± 2.13 97.50 ± 0.97 96.14 ± 0.28 85.40 ± 2.07
GradEnFS batch 92.43 ± 1.29 83.56 ± 0.75 89.00 ± 4.90 72.35 ± 4.78 75.23 ± 2.50 92.69 ± 1.30 99.10 ± 0.47 97.22 ± 0.21 80.94 ± 3.20
GradEnFS epoch 88.94 ± 2.34 84.38 ± 0.42 84.00 ± 3.74 75.29 ± 3.98 75.33 ± 3.28 89.23 ± 0.77 98.40 ± 1.47 96.65 ± 0.16 93.43 ± 0.51
Baseline 96.73 88.92 90.00 82.35 59.33 93.59 98.96 97.20 97.82

Table 3: Memory Usage (#PARAMETERS ×105) and Computational Cost (#FLOPS during training ×106).
The “SPARSE” columns include results for QS and GradEnFS, while the “DENSE 1” columns show the outcomes
of LassoNet, and the “DENSE 3” columns show the outcomes of STG. The “DENSITY” column indicates the
sparsity level of the sparse networks compared to their dense counterparts.

#PARAMETERS (×105) #FLOPS (×106)
DATASETS DENSITY SPARSE DENSE 1 DENSE 3 SPARSE DENSE 1 DENSE 3

BASEHOCK 1.46% 1.00 48.64 68.64 0.60 29.18 41.18
PCMAC 1.61% 0.85 32.91 52.91 0.51 19.75 31.75
Prostate GE 1.40% 1.12 59.68 79.68 0.67 35.81 47.81
TOX 171 1.43% 1.11 57.52 77.52 0.67 34.51 46.51
Madelon 0.23% 0.06 5.02 25.02 0.04 3.01 15.01
Isolet 2.30% 0.70 6.43 26.43 0.42 3.86 15.86
COIL20 2.50% 0.66 10.44 30.44 0.40 6.26 18.26
USPS 2.78% 0.63 2.66 22.66 0.38 1.60 13.60
MNIST 2.40% 0.67 7.86 27.94 0.41 4.72 16.76

Baselines We trained an SVM using the training
dataset with all available features and measured the
classification accuracy on the test dataset with all
available features. This classification accuracy was
considered as the baseline.

State-of-the-art methods We conducted a com-
parison of GradEnFS with seven state-of-the-art fea-
ture selection methods. These methods include filter
methods such as Fisher score (Gu et al., 2012), CMIM
(Fleuret, 2004), and CIAF (Jakulin, 2005), as well as
embedding methods like RFS (Nie et al., 2010), QS
(Atashgahi et al., 2020), STG (Yamada et al., 2020),
and LassoNet (Lemhadri et al., 2021). Among them,
STG and LassoNet are dense NN-based methods, and
QS is sparse NN-based methods. More details about
these methods can be found in Appendix C.

Implementation We implemented GradEnFS with
PyTorch using the binary mask to simulate the spar-
sity. We also implemented QS with PyTorch and
adapted it to work with a supervised MLP model. For
filter methods and RFS, the implementations from the
Scikit-Feature library1 were utilized. For STG2 and

1https://github.com/jundongl/scikit-feature
2https://github.com/runopti/stg

LassoNet3, we employed the implementations provided
by their respective authors.

Hyperparameter The architecture of the network
used for GradEnFS, QS, and STG is a 3-hidden-layer
MLP with 1000 neurons in each hidden layer. For Las-
soNet, we use a 1-hidden-layer MLP with 1000 neurons
in the hidden layer, as running a 3-hidden-layer MLP
would take an excessively long time (over 24 hours).
The number of training epochs for all neural network
methods is set to 100, with a learning rate of 0.001. For
GradEnFS, the hyperparameters are set as follows: α
is 0.3, β is 0.9, and ϵ is set to 10 for all datasets except
for the Madelon dataset, where ϵ is set to 1. During
the experiment, K values vary across 25, 50, 75, 100,
150, and 200 for all the datasets except for Madelon,
for which K is fixed at 20, as this dataset contains only
20 informative features. Additional details on the hy-
perparameter settings for all experiments in this paper
can be found in Appendix D. Moreover, we investigate
the impact of hyperparameters on GradEnFS, and the
results are presented in Appendix E.

3https://github.com/lasso-net/lassonet

https://github.com/jundongl/scikit-feature
https://github.com/runopti/stg
https://github.com/lasso-net/lassonet
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Figure 2: Classification Accuracy (%) of Different Methods After Different Epochs

Figure 3: Heatmap Visualization of Neuron Importance of MNIST Dataset for Various Epochs.

4.3 Results

Classification Accuracy Table 2 shows the av-
erage classification accuracy from five independent
runs for various feature selection methods. We con-
duct experiments with GradEnFS using two topol-
ogy update intervals: after every batch (denoted as
GradEnFS batch) and after every epoch (denoted as
GradEnFS epoch). The results are based on 50 se-
lected features for all the datasets except for Madelon,
which used 20 selected features. Additional results for
different values of K can be found in Appendix F.2.

For most of the datasets, the best performers
are observed in NN-based methods, except for the
Prostate GE dataset, which demonstrates NN-based
methods’ superiority over non-NN-based methods.
This distinction is particularly noticeable in two text
datasets and the noisy Madelon dataset. We believe
this is due to the complex dependencies between fea-
tures within these three datasets.

GradEnFS performs decently on low-dimensional
datasets, particularly on the Madelon dataset. The
inherent sparsity in GradEnFS plays a crucial role in
mitigating the adverse effects of noise features within
the Madelon dataset, leading to improved and more
accurate results for feature selection tasks. The perfor-
mance of GradEnFS on biological datasets falls short
of expectations, which could be attributed to the lim-
ited number of samples available. This method typi-
cally requires a decent number of samples to mitigate

bias in neuron importance measurement. In a nutshell,
GradEnFS performs best in six out of nine datasets.

Furthermore, we provide insight into the consistency
between top features selected by our proposed method
and various state-of-the-art feature selection methods
in Appendix F.3, along with additional analysis in Ap-
pendices F.4 and F.5.

Memory Usage and Computational Cost Ta-
ble 3 shows the memory usage (#PARAMETERS)
and computational cost (#FLOPS) of each NN-based
method. The results indicate that the sparse NN-
based methods significantly reduce memory usage
and computational costs by approximately 96% to
99% across various datasets compared to STG, which
shares the same network architecture as the models
used in the sparse NN-based methods in the experi-
ment. Even in comparison to LassoNet, which uses
only a single hidden layer MLP, memory usage and
computational costs are reduced by 76% to 98%.

5 DISCUSSIONS

5.1 Converge Speed

We investigate the convergence behavior and speed of
three NN-based feature selection methods: STG, QS,
and GradEnFS. We conducted experiments over sev-
eral epochs, ranging from 1 to 20, to observe how these
methods perform. The results, illustrated in Figure 2,
provide valuable insights into their behavior. More de-
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tails about the convergence of the proposed algorithm
can be found in Appendix G.

Across most datasets, GradEnFS exhibited a remark-
able pattern. It shows a steep increase in accuracy
from epoch 1 to 5 and achieves competitive accuracy
by the 20th epoch, which is close to the results ob-
tained after 100 epochs, as demonstrated in Table
2. This indicates that GradEnFS possesses a rapid
convergence speed on the majority of datasets, with
the Madelon dataset displaying this tendency promi-
nently. Moreover, we observed that for most datasets,
the standard deviation of GradEnFS’s accuracy across
the 20th epochs was considerably smaller than that ob-
served at the 1st epoch. This suggests that the results
became more stable as training progressed.

However, all methods exhibited substantial fluctua-
tions in two biological datasets. This highlights the
importance of having a sufficient number of samples
when utilizing NN-based feature selection methods, as
their performance is intricately linked to the training
process of neural networks.

5.2 Visualization

Figure 3 offers a visualization of neuron importance
across various epochs in the form of a heatmap. We
perform this analysis on the MNIST dataset, an im-
age dataset with handwritten digits centered in 28
× 28 grayscale images (see Appendix H). As the re-
sults show, GradEnFS swiftly identifies informative
features, primarily located in the center of the im-
age, even after just one epoch. Notably attractive is
that, over subsequent epochs, GradEnFS gradually ex-
tends its focus beyond the central pixels, containing
the neighboring pixels surrounding those composing
the digit. This behavior suggests that GradEnFS be-
gins to recognize the importance of pixels along the
edges of the digit, implying that these edge pixels also
contribute valuable information to the classification
task. We also compared the visualization heatmaps
between GradEnFS and QS; the details can be found
in Appendix I.

5.3 Robustness in Noisy Dataset

Through our extensive experiments, we have observed
that GradEnFS delivers significantly superior perfor-
mance when compared to other methods on the chal-
lenging noisy dataset, Madelon. This dataset has 500
features, but only 20 of them are informative. To fur-
ther investigate GradEnFS’s robustness in handling
noisy datasets, we have leveraged a function4 pro-
vided by sklearn that enables the generation of artifi-

4https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_
classification.html

cial noisy datasets.

We generated multiple noisy datasets, each consisting
of 2000 samples and 500 features, with varying num-
bers of informative features denoted as “K”. These K
informative features were intentionally placed at the
first K indexes of the feature set. Consequently, we
applied different feature selection methods to identify
the indexes of the K informative features and com-
pared them to the ground truth. The ratio of correctly
identified informative features, referred to as the “hit
rate”, was calculated for each method.

The results are presented in Figure 4. From the re-
sults, it is evident that the NN-based method signif-
icantly outperforms the non-NN-based method. We
believe this is due to the complex dependencies be-
tween the features in these artificial datasets. Neu-
ral networks can learn and model these intricate re-
lationships. Among NN-based methods, we have ob-
served that sparse NN-based methods clearly outper-
form dense-based methods in environments with high
levels of noise (e.g., K = 10). This demonstrates that
sparsity in neural networks plays a significant role in
mitigating the noise effects in feature selection tasks.
Moreover, GradEnFS emerges as the top performer
across variousK values in these artificial datasets, con-
firming the effectiveness of the sensitivity-based met-
ric in this specific scenario. However, as the number
of informative features increases, the hit rate of sparse
NN-based methods decreases. We believe that when
dealing with datasets that contain a greater number of
informative features, it may need to employ a denser
network with more parameters for effective analysis.
However, throughout our experiments, we maintained
a consistently high sparsity level (ϵ = 1). Therefore,
increasing the network’s density slightly for larger val-
ues of K could potentially improve the hit rate.

Figure 4: Hit Rate (%) of Various Methods on Noisy
Datasets with Varying Numbers of Informative Fea-
tures (K).

6 CONCLUSIONS

In this paper, we proposed an efficient sparse NN-
based feature selection method named GradEnFS.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
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This method trains a sparse MLP from scratch and,
during the training, measures the importance of the
input neurons using the sensitivity-based metric. Fi-
nally, at the end of the training, it selects the top-
K features based on their importance. We per-
formed extensive experiments to compare our pro-
posed method with other state-of-the-art methods on
nine datasets. GradEnFS achieves the best perfor-
mance on six datasets regarding feature selection accu-
racy and has obvious superiority over other NN-based
methods in terms of resource consumption. Further-
more, we demonstrated that GradEnFS excels in han-
dling noisy datasets compared to other methods.

Limitations Due to the absence of hardware capa-
ble of efficiently supporting sparse matrix operations,
the sparse neural network in GradEnFS is currently
implemented using masks to simulate sparsity, which
is a common approach in most related works. Conse-
quently, the potential advantages of sparse networks
in terms of resource consumption have not been fully
harnessed. However, there is a recent and increasing
focus on developing hardware and software support for
the sparsity of neural networks (Liu et al., 2021; Curci
et al., 2021). This advancement holds the potential for
a fully sparse implementation of the proposed method,
although it falls beyond the scope of our current study.

References

A. Abid, M. F. Balin, and J. Zou. Concrete autoen-
coders for differentiable feature selection and recon-
struction. arXiv preprint arXiv:1901.09346, 2019.

Z. Atashgahi, G. Sokar, T. van der Lee, E. Mocanu,
D. C. Mocanu, R. Veldhuis, and M. Pechenizkiy.
Quick and robust feature selection: the strength
of energy-efficient sparse training for autoencoders.
arXiv preprint arXiv:2012.00560, 2020.

Z. Atashgahi, J. Pieterse, S. Liu, D. C. Mocanu,
R. Veldhuis, and M. Pechenizkiy. A brain-inspired
algorithm for training highly sparse neural networks.
Machine Learning, 111(12):4411–4452, 2022.

S. Bibikar, H. Vikalo, Z. Wang, and X. Chen. Feder-
ated dynamic sparse training: Computing less, com-
municating less, yet learning better. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 36, pages 6080–6088, 2022.

G. Chandrashekar and F. Sahin. A survey on feature
selection methods. Computers & Electrical Engi-
neering, 40(1):16–28, 2014.

S. Curci, D. C. Mocanu, and M. Pechenizkiyi. Truly
sparse neural networks at scale. arXiv preprint
arXiv:2102.01732, 2021.

X. Dai, H. Yin, and N. K. Jha. Nest: A neural
network synthesis tool based on a grow-and-prune
paradigm. IEEE Transactions on Computers, 68
(10):1487–1497, 2019.

P. de Jorge, A. Sanyal, H. S. Behl, P. H. Torr, G. Ro-
gez, and P. K. Dokania. Progressive skeletonization:
Trimming more fat from a network at initialization.
arXiv preprint arXiv:2006.09081, 2020.

T. Dettmers and L. Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance.
arXiv preprint arXiv:1907.04840, 2019.

S. Ding. Feature selection based f-score and aco algo-
rithm in support vector machine. In 2009 Second
International Symposium on Knowledge Acquisition
and Modeling, volume 1, pages 19–23. IEEE, 2009.

N. El Aboudi and L. Benhlima. Review on wrapper
feature selection approaches. In 2016 International
Conference on Engineering MIS (ICEMIS), pages
1–5, 2016. doi: 10.1109/ICEMIS.2016.7745366.

U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen.
Rigging the lottery: Making all tickets winners.
In International Conference on Machine Learning,
pages 2943–2952. PMLR, 2020.

F. Fleuret. Fast binary feature selection with con-
ditional mutual information. Journal of Machine
learning research, 5(9), 2004.

J. Frankle and M. Carbin. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018.

Q. Gu, Z. Li, and J. Han. Generalized fisher score for
feature selection. arXiv preprint arXiv:1202.3725,
2012.

K. Han, Y. Wang, C. Zhang, C. Li, and C. Xu. Au-
toencoder inspired unsupervised feature selection.
In 2018 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pages 2941–
2945. IEEE, 2018.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems,
28, 2015.

A. Jakulin. Machine learning based on attribute inter-
actions. PhD thesis, Univerza v Ljubljani, 2005.

S. A. Janowsky. Pruning versus clipping in neural net-
works. Physical Review A, 39(12):6600, 1989.

Y. LeCun, J. Denker, and S. Solla. Optimal brain
damage. Advances in neural information processing
systems, 2, 1989.

N. Lee, T. Ajanthan, and P. H. Torr. Snip: Single-
shot network pruning based on connection sensitiv-
ity. arXiv preprint arXiv:1810.02340, 2018.



Supervised Feature Selection via Ensemble Gradient Information from Sparse Neural Networks

S. Lee, Y.-T. Park, B. J. d’Auriol, et al. A novel feature
selection method based on normalized mutual infor-
mation. Applied Intelligence, 37(1):100–120, 2012.

I. Lemhadri, F. Ruan, and R. Tibshirani. Lassonet:
Neural networks with feature sparsity. In Inter-
national Conference on Artificial Intelligence and
Statistics, pages 10–18. PMLR, 2021.

J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino,
J. Tang, and H. Liu. Feature selection: A data per-
spective. ACM Computing Surveys (CSUR), 50(6):
94, 2018.

S. Liu, D. C. Mocanu, A. R. R. Matavalam, Y. Pei, and
M. Pechenizkiy. Sparse evolutionary deep learning
with over one million artificial neurons on commod-
ity hardware. Neural Computing and Applications,
33(7):2589–2604, 2021.

C. Louizos, M. Welling, and D. P. Kingma. Learning
sparse neural networks through l 0 regularization.
arXiv preprint arXiv:1712.01312, 2017.

Y. Lu, Y. Fan, J. Lv, and W. Stafford Noble. Deep-
pink: reproducible feature selection in deep neural
networks. Advances in neural information process-
ing systems, 31, 2018.

S. Maldonado and R. Weber. A wrapper method for
feature selection using support vector machines. In-
formation Sciences, 179(13):2208–2217, 2009. ISSN
0020-0255. doi: https://doi.org/10.1016/j.ins.2009.
02.014. URL https://www.sciencedirect.com/

science/article/pii/S0020025509000917. Spe-
cial Section on High Order Fuzzy Sets.

D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen,
M. Gibescu, and A. Liotta. Scalable training of ar-
tificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature commu-
nications, 9(1):1–12, 2018.

D. C. Mocanu, E. Mocanu, T. Pinto, S. Curci, P. H.
Nguyen, M. Gibescu, D. Ernst, and Z. A. Vale.
Sparse training theory for scalable and efficient
agents. arXiv preprint arXiv:2103.01636, 2021.

D. C. Mocanu et al. Network computations in artifi-
cial intelligence. Technische Universiteit Eindhoven,
2017.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and
J. Kautz. Pruning convolutional neural networks
for resource efficient inference. arXiv preprint
arXiv:1611.06440, 2016.

P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and
J. Kautz. Importance estimation for neural network
pruning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 11264–11272, 2019.

M. C. Mozer and P. Smolensky. Using relevance to
reduce network size automatically. Connection Sci-
ence, 1(1):3–16, 1989.

F. Nie, H. Huang, X. Cai, and C. Ding. Efficient and
robust feature selection via joint 2, 1-norms mini-
mization. Advances in neural information processing
systems, 23, 2010.

J. Pizarroso, J. Portela, and A. Muñoz. Neuralsens:
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A Pseudocode of GradEnFS

Algorithm 1: Gradient Ensemble Feature Selection Algorithm

Data: the data matrix D(X,y)
Result: indices of selected K features stored in Fs

set ϵ, α, β, K;

initialize an MLP with a specified topology based on the formula p(W k
ij) =

ϵ(Hk−1+Hk)
Hk−1Hk ;

initialize dynamic input neuron importance vector I with every element set to 0;
for each training iteration do

perform feedforward and backpropagation;
compute the local sensitivity for every input neuron on every sample according to formula
s(x(i)) = ∇xL(f(x(i),θs), y

(i)) = ∇xℓ
(i);

update neuron importance vector I according to formula I(t) = βI(t−1) +
∑N(t)

i=0 |s(x(i))|
N(t) ;

perform weights update;
if is the topology update interval then

for each W k
s of MLP do

drop α∥W k
s∥0 connections that are closest to 0 from W k

s ;
if is not the last topology update interval then

regrow α∥W k
s∥0 connections to W k

s randomly;
end

end

end

end
Fs ← top(I,K);

B Details of Evaluation Metrics

In our experiments, we measure the resource comsuption of the neural network based methods by the number
of parameters and the number of FLoating-Point Operations (FLOPs). Since existing deep learning hardware
isn’t optimized for sparse matrix computations, most methods for obtaining sparse neural networks simulate
sparsity using binary masks over the weights, including our proposed method. Consequently, the runtimes of
these methods aren’t reliable indicators of their efficiency. Instead, we turn to FLOPs, a measure of the number
of floating-point operations required for a computation. In the context of deep learning models, FLOPs are
commonly used to assess the efficiency of a sparse neural network compared to its dense counterpart. To calculate
the FLOPs needed for a single computation (including the forward pass, backpropagation, and parameters
update) of the model, we count the total number of multiplications and additions layer by layer. The overall
FLOPs is then derived by summing these operations. Furthermore, we compare the parameter count of all neural
network-based methods, as the number of parameters indicates the model’s size, which directly impacts memory
consumption and computational complexity.

Here, we provide a step-by-step guide on calculating the number of FLOPs for an example using the MNIST
dataset. We employ a dense MLP with three hidden layers for training on the MNIST dataset. The network
structure is defined as (784, 1000, 1000, 1000, 10), where each number represents the number of neurons in each
respective layer.

When using a sample for one complete training, the process involves three main steps: the forward pass, back-
propagation, and parameter updates. Therefore, we break down the FLOPs calculation into these three distinct
parts.

• Forward Pass: Calculate the weighted sum of inputs and apply the activation function for each layer. Each
neuron in each layer performs two floating-point operations (one multiplication and one summation).

• Backpropagation: Calculate gradients for each layer, which involves the same number of FLOPs as the
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forward pass.

• Parameter Updates: For each weight parameter in the network, update it using the gradients and the
learning rate (one multiplication and one summation for every weight).

Now, we start to calculate for the mnist example:

• Forward Pass:

– Input Layer to Hidden Layer 1: 784 (input features) * 1000 (neurons) * 2 = 1,568,000 FLOPs

– Hidden Layer 1 to Hidden Layer 2: 1000 * 1000 * 2 = 2,000,000 FLOPs

– Hidden Layer 2 to Hidden Layer 3: 1000 * 1000 * 2 = 2,000,000 FLOPs

– Hidden Layer 3 to Output Layer: 1000 * 10 * 2 = 20,000 FLOPs

• Backpropagation: Total number of FLOPs is the same as the forward pass.

• Parameter Updates: Total number of FLOPs is two times of the number of parameters.

– Input Layer to Hidden Layer 1: 784 (input features) * 1000 (neurons) * 2 = 1,568,000 FLOPs

– Hidden Layer 1 to Hidden Layer 2: 1000 * 1000 * 2 = 2,000,000 FLOPs

– Hidden Layer 2 to Hidden Layer 3: 1000 * 1000 * 2 = 2,000,000 FLOPs

– Hidden Layer 3 to Output Layer: 1000 * 10 * 2 = 20,000 FLOPs

Then, we can sum up and get the total FLOPs for one complete training in this MLP architecture, the number
are approximately 16,764,000 FLOPs. Please note that this is a simplified estimate, and actual FLOP counts
can vary depending on factors like batch size and hardware optimizations.

C Details of Other State-of-the-art Methods

In our experiments, we employed seven widely recognized feature selection methods, comprising three filter
methods and four embedding methods. Here is a concise description of each of them.

The three filter methods are:

– Fisher Score: selects features that maximize the similarity of feature values among the same class.

– ICAP: a methodology for feature selection based on information theory principles. The approach focuses on
identifying and utilizing attribute interactions and employs probability theory, entropy, and Kullback-Leibler
divergence as loss functions, with a Bayesian framework for significance testing and uncertainty handling.

– CMIM: a feature selection technique based on conditional mutual information, which iteratively selects
features that maximize the mutual information with the class labels given the selected features.

The four embedding methods are:

– LassoNet: utilizes a neural network with residual connections to the input layer and solves a two-component
(linear and non-linear) optimization problem to determine feature importance.

– STG: utilizes a continuous relaxation of the Bernoulli distribution in a neural network to perform feature
selection.

– Quick Selection (QS): selects features using the magnitude-based neuron importance metric in a sparse
neural network.

– Robust Feature Selection (RFS): employs joint l2,1-norm minimization on the loss function and regulariza-
tion to select features.
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D Additional Details of Hyperparameters Setting

In this section, we will describe the hyperparameters setting for different experiments. All experiments were
conducted on the CentOS 7.9 operating system and executed on a CPU. We conducted zero-mean-unit variance
normalization before applying various feature selection methods to these nine datasets. This normalization step
was essential not only for LassoNet but also beneficial for our proposed method. Then, we split the datasets,
except for MNIST, which is already separated by the provider, by 80% and 20% as the training and testing
sets, respectively. We further separated the training sets into 90% and 10%, of which 90% of data was used
for training, and the other 10% was used as a validation set to monitor if the hyperparameters were proper for
the model training. Notably, for the experiment on the MNIST dataset, we used part of the datasets to train
GradEnFS with batch update. This decision was made due to the considerable time required when using the
entire dataset for five runs in GradEnFS with batch updates, which would exceed 24 hours. Since we set a time
constraint of under 24 hours for all experiments, GradEnFS with batch updates was run with a reduced dataset,
utilizing 6,000 training samples and 1,000 testing samples for the MNIST dataset. We use the whole training and
testing datasets (with 60,000 training samples and 10,000 testing samples) for all the other methods, including
GradEnFS with epoch updates.

D.1 Experiment on classification accuracy

To ensure a fair comparison among various feature selection algorithms, we chose an appropriate value for the
hyperparameters shared across multiple algorithms. For hyperparameters unique to each algorithm, we employed
a grid search to find a proper value among a small set of values.

Therefore, the network used in the experiments for all neural-network-based feature selection methods, except
for LassoNet, is an MLP with three hidden layers, and each hidden layer has 1000 neurons. The activation
function used for the hidden layers is ReLU, and the activation function of the output layer is Softmax. The
optimizer of the network is Adam. Given that our proposed method relies on gradient flow information, for
GradEnFS, we incorporate batch normalization after each activation function to optimize the gradient flow, thus
improving the performance of our method. For LassoNet, we chose a neural network with a single hidden layer of
1000 neurons. This choice was made due to practical considerations. A neural network with three hidden layers
not only required extensive time to complete the experiments (over 24 hours), but it also yielded SVM accuracy
results that were inferior to those achieved with the single hidden layer network for some datasets. Consequently,
we opted to report the results based on a single hidden layer model in our experiments.

The hyperparameters for training neural networks, including batch size, learning rate, and the number of epochs,
have been set to 100 (except for the two biological datasets, which batch size has been set to 50), 0.001, and 100,
respectively. As the number of informative features is usually unknown for most datasets, we employed multiple
K values to obtain diverse results when applying each method on datasets except for the Madelon dataset,
where K represents the number of features in the final selected informative feature subset. The chosen K values
include 25, 50, 75, 100, 150, and 200. For the Madelon dataset, K was set to 20, as this dataset contains only
20 informative features.

For GradEnFS, the rewire rate α and the historical neuron importance ratio β were set to specific values of 0.3
and 0.9, respectively. The grid search range for α contained [0.1, 0.3, 0.5, 0.7, 0.9], and β contained [0.0, 0.1,
0.3, 0.5, 0.7, 0.9, 1.0]. The sparsity level ϵ is adjusted based on the dataset. Specifically, ϵ is set to 1 for the
Madelon dataset. For the remaining datasets, ϵ is set to 10. The grid search range for ϵ contained [1, 10, 20, 30,
50, 70, 100, 150, 200, ∞]. Notably, when ϵ was set to ∞, the network transformed into a dense neural network.

For QS, we maintained the same values for ϵ and α as in GradEnFS according to various datasets. In the case
of RFS, the hyperparameter γ was set to 1, with a search range of [0.1, 0.5, 1, 10]. The hyperparameter λ for
STG was set to 0.5, with a search range of [0.1, 0.5, 1, 10], while the hyperparameter M for LassoNet was set to
10, as recommended by the authors who proposed this algorithm.

D.2 Experiment on converge speed

In this experiment, our objective is to compare the convergence speed of three feature selection methods, QS,
STG, and GradEnFS (with batch updates). Notably, we chose not to include Lassonet in this comparison since
it utilizes a different network structure in our experiment and differs significantly from the three methods under
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investigation. As a result, we opted to omit Lassonet to ensure fair competition among the selected methods. Our
choice to focus on GradEnFS with batch updates is based on the observation that most datasets demonstrated
a better performance when batch updates were employed in the results of classification accuracy. In cases where
epoch updates are more suitable, the performance of the two topology update intervals is similar, with one notable
exception: the MNIST dataset, where epoch updates outperform batch updates and demonstrate significantly
faster training. Finally, the remaining hyperparameters and settings for this experiment are consistent with
those described in Section D.1.

D.3 Experiment on visualization

In this experiment, we have adopted GradEnFS with epoch update intervals as our chosen method. This choice
is influenced by the advantages in terms of classification accuracy and training speed that epoch updates exhibit
over batch updates in training on the MNIST dataset. Other selected hyperparameters for GradEnFS include
ϵ = 50, α = 0.3, and β = 0.9. For the QS method, we maintain consistency by using the same hyperparameters
ϵ = 50 and α = 0.3. Furthermore, the network structure remains unchanged as described in Section D.1.

D.4 Experiment on robustness in noisy datasets

In this experiment, we employ GradEnFS with epoch update intervals, where we set ϵ = 1, α = 0.3, and β = 0.9
as the chosen hyperparameters. For all other methods used in this experiment, the hyperparameter settings
remain consistent with those described in Section D.1.

Regarding data generation, we configure the following parameters: 2000 samples, 500 features, 2 classes, 20
informative features, a random state of 0, and shuffle set to false. All other hyperparameters for data generation
are maintained at their default values.

Figure 5: Classification Accuracy of GradEnFS with Different Betas

E Hyperparameters Effect

In this section, we delve into the analysis of the impact of hyperparameters on the quality of GradEnFS in
feature selection tasks. The hyperparameters include ϵ, which controls the sparsity level, the rewire rate α, the
parameter controlling historical neuron importance ratio β and network’s width w.
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Figure 6: Classification Accuracy of GradEnFS with Different β Values (Excluding Biological Datasets)

The experimental settings were as follows: for the parameter ϵ, we varied its values within the range [1, 10, 20,
30, 50, 70, 100, 150, 200,∞]. When ϵ =∞, the network is a dense neural network. Throughout this experiment,
the parameter α remained constant at 0.3, and β was set to 0.9. In the α experiment, we explored values in
the range [0.1, 0.3, 0.5, 0.7, 0.9], with β held at 0.9 and ϵ set to 10 for all datasets except for Madelon, where
ϵ was set to 1. In the β experiment, we considered values within the range [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.1,
1.3, 1.5, 1.7, 2.0], while α remained at 0.3, and ϵ was set to 10 for all datasets except for Madelon, where ϵ
was set to 1. We use a batch update for all the datasets except the MNIST dataset, which is an epoch update.
We consistently retained K = 50 features throughout all experiments, except for Madelon, where K was set to
20. We employed SVM to measure the accuracy of the selected features. In the network width w experiment,
we explored widths of 500 and 1500 with sparsity ranging from 95% to 99%. Throughout this experiment, the
parameter α remained constant at 0.3, while β was set to 0.9.

Beta The results for β are presented in Figure 5. However, as previously discussed, given that the number of
samples in biological datasets is relatively small, the results for these datasets exhibit significant fluctuations.
For better analysis, we provide a separate Figure 6 that excludes the results of biological datasets.

When β was set to 0, the algorithm computed neuron importance solely based on the final trained model without
considering any historical or ensemble effects, resulting in a loss of the benefits associated with ensemble learning.
This phenomenon is clearly observable in Figure 6 where the majority of datasets (with the exception of USPS)
exhibit an increase in accuracy as β increases within the range [0,1]. Even for USPS, where the accuracies exhibit
minimal variation as β changes within the range [0,1], the ensemble effect still brings an advantage, as evidenced
by the reduction in standard deviation as β increases within this range.

When β exceeded a value of 1, a significant drop in performance is evident. This occurs because the algorithm
assigns the highest weight to the initial untrained sparse model but the smallest weight to the well-trained final
models, damaging performance. Hence, we recommend constraining this hyperparameter within the range (0,1]
for optimal performance.

Epsilon and Alpha From Figure 7, it is evident that most of the datasets achieve decent performance when ϵ
is set to 10, with the exception of the Madelon and biological datasets. The Madelon dataset, given its abundance
of noisy features, benefits from a smaller ϵ to make the network sparser and mitigate the impact of noise. The
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Figure 7: Classification Accuracy of GradEnFS with Different ϵ or α Values

performance of the biological dataset remains unstable due to limited sample size, yet there is a discernible trend
of increased accuracy as ϵ increases, which may suggest that, for such high-dimensional and intricate datasets, a
denser network is preferable for improved analysis. Most datasets are not particularly sensitive to changes in α.
However, considering that some datasets experience a decline in performance at high α values, it is advisable to
set this hyperparameter to a moderate value for optimal results.

Width The results for w are presented in Table 4. The results show that PCMAC and MNIST had slight
performance drops at width=500 compared to higher widths. Attempts to lower the sparsity to 85%, 60%, and
45% (which are not shown in the table) resulted in worsened performance due to increased noise. We inferred
that these datasets benefit from increased network complexity with increased width rather than connections
(density). Thus, a high sparsity range of 95% to 98% yields optimal performance across various widths. Besides,
width=1500 didn’t notably improve over width=1000 (see Table 2). Hence, we chose width=1000 across all
datasets for a good performance efficiency trade-off.

Table 4: Exploration on width selection. The results are the SVM classification accuracy average over five
independent runs (%).

SETTING DATASETS

width epsilon
approximate

sparsity
BASEHOCK PCMAC Prostate GE TOX 171 Madelon Isolet COIL20 USPS MNIST

500
1 99% 84.07 ± 1.94 78.76 ± 3.26 88.00 ± 9.27 76.47 ± 6.17 77.20 ± 2.25 88.14 ± 2.50 99.24 ± 0.55 96.99 ± 0.19 91.36 ± 0.43
5 98% 87.79 ± 1.10 81.24 ± 2.40 79.00 ± 5.83 66.47 ± 5.13 76.00 ± 3.39 88.01 ± 2.21 99.38 ± 0.26 96.84 ± 0.14 92.44 ± 1.42
10 95% 89.00 ± 0.69 82.68 ± 1.11 92.00 ± 8.12 78.82 ± 6.81 69.77 ± 4.39 89.29 ± 0.56 99.31 ± 0.49 96.77 ± 0.19 91.60 ± 1.75

1500
1 99% 83.42 ± 1.80 80.10 ± 0.91 80.00 ± 8.94 75.29 ± 5.46 68.20 ± 0.91 91.86 ± 1.44 99.58 ± 0.34 96.36 ± 0.29 94.33 ± 0.85
10 98% 88.94 ± 0.78 86.03 ± 1.34 91.00 ± 3.74 85.88 ± 7.30 66.40 ± 0.98 88.14 ± 2.10 98.06 ± 0.52 96.35 ± 0.41 93.73 ± 0.75
30 95% 91.71 ± 0.94 85.41 ± 1.61 99.00 ± 2.00 73.53 ± 4.92 61.50 ± 1.70 79.87 ± 4.56 98.61 ± 0.69 96.25 ± 0.16 93.13 ± 0.45

F Additional Results of Classification Accuracy

F.1 Classification accuracy of KNN, ExtraTrees and Sparse MLP trained by SET

The classification accuracies evaluated by KNN and ExtraTree are listed in Table 5 and Table 6, respectively.
We also present the results of using SET to train a sparse MLP on the feature subsets selected by GradEnFS in
Table 7. For most datasets, these results were similar to those of SVM, meaning our selected subsets are robust
to various classifiers.
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Table 5: Classification Accuracy. The results are the KNN classification accuracy average over five independent
runs (%). Bold fonts indicate the best performer and italic fonts indicate the second-best performer (Baseline is
not under consideration).

METHOD
HIGH-DIMENSIONAL DATASETS LOW-DIMENSIONAL DATASETS

BASEHOCK PCMAC Prostate GE TOX 171 Madelon Isolet COIL20 USPS MNIST

Fisher Score 57.54 ± 0 58.25 ± 0 80.00 ± 0 64.71 ± 0 52.50 ± 0 69.55± 0 77.78± 0 91.07± 0 82.91± 0
CMIM 54.52 ± 0 53.09 ± 0 75.00 ± 0 64.71 ± 0 49.50 ± 0 68.59 ± 0 96.53± 0 94.67± 0 36.52 ± 0
ICAP 56.28 ± 0 55.93 ± 0 70.00 ± 0 67.65 ± 0 50.33 ± 0 68.59 ± 0 91.32± 0 94.67± 0 85.12± 0
RFS 57.04 ± 0 60.82 ± 0 75.00 ± 0 44.12 ± 0 54.33 ± 0 71.47 ± 0 87.50± 0 94.46± 0 53.64± 0
LassoNet 87.44 ± 2.35 83.25 ± 3.68 90.00 ± 5.23 79.41 ± 7.67 61.83 ± 4.32 69.55 ± 2.31 95.14 ± 0.89 94.57 ± 1.11 82.07 ± 3.37
STG 83.17 ± 2.11 82.99 ± 1.37 85.00 ± 5.96 73.53 ± 5.32 71.67 ± 4.67 74.36 ± 1.66 97.22 ± 1.12 95.37 ± 0.89 90.73 ± 2.51
QS 88.39 ± 2.20 86.60 ± 2.06 73.00 ± 9.27 74.71 ± 4.40 68.17 ± 4.31 81.41 ± 2.17 93.12 ± 1.69 96.09 ± 0.60 85.53 ± 1.74
GradEnFS batch 88.74 ± 1.97 79.23 ± 1.86 99.00 ± 2.00 76.47 ± 7.67 74.93 ± 4.68 86.54 ± 1.48 98.75 ± 0.35 95.93 ± 0.34 74.70 ± 3.79
GradEnFS epoch 86.23 ± 1.57 81.70 ± 2.35 74.00 ± 5.83 74.71 ± 5.46 73.30 ± 5.59 81.99 ± 1.52 93.75 ± 1.05 96.04 ± 0.50 87.84 ± 2.22
Baseline 78.89 73.97 75.00 79.41 47.67 80.13 99.31 96.29 92.10

Table 6: Classification Accuracy. The results are the ExtraTree classification accuracy average over five inde-
pendent runs (%). Bold fonts indicate the best performer and italic fonts indicate the second-best performer
(Baseline is not under consideration).

METHOD
HIGH-DIMENSIONAL DATASETS LOW-DIMENSIONAL DATASETS

BASEHOCK PCMAC Prostate GE TOX 171 Madelon Isolet COIL20 USPS MNIST

Fisher Score 60.30 ± 0 61.08 ± 0 85.00 ± 0 67.65 ± 0 52.17 ± 0 78.53 ± 0 85.76 ± 0 93.49 ± 0 86.77 ± 0
CMIM 64.57 ± 0 53.61 ± 0 95.00 ± 0 82.35 ± 0 53.83 ± 0 86.54 ± 0 97.92 ± 0 95.00 ± 0 43.71 ± 0
ICAP 56.03 ± 0 56.96 ± 0 65.00 ± 0 82.35 ± 0 50.50 ± 0 85.90 ± 0 98.96 ± 0 95.64 ± 0 87.97 ± 0
RFS 64.07 ± 0 61.08 ± 0 95.00 ± 0 73.53 ± 0 60.33 ± 0 90.06 ± 0 92.71 ± 0 95.56 ± 0 60.17 ± 0
LassoNet 91.46 ± 1.58 86.86 ± 2.13 95.00 ± 3.69 76.47 ± 10.26 67.17 ± 5.24 83.65 ± 1.58 99.31 ± 0.98 95.43 ± 0.68 86.33 ± 3.89
STG 89.95 ± 1.14 87.89 ± 1.55 85.00 ± 2.17 88.24 ± 10.31 82.17 ± 4.69 82.69 ± 1.38 99.00 ± 1.11 95.80 ± 0.32 92.85 ± 3.52
QS 94.23 ± 1.36 87.89 ± 0.63 78.00 ± 6.78 68.82 ± 8.24 77.73 ± 7.38 84.49 ± 0.77 99.10 ± 0.64 94.67 ± 0.52 89.03 ±1.27
GradEnFS batch 93.07 ± 0.80 88.20 ± 0.85 91.00 ± 2.00 74.12 ± 6.28 86.53 ± 2.65 92.31 ± 1.25 92.31 ± 1.25 95.88 ± 0.34 80.29 ± 3.83
GradEnFS epoch 94.37 ± 1.20 86.34 ± 0.92 92.00 ± 4.00 71.76 ± 10.29 83.73 ± 4.19 86.28 ± 1.81 99.86 ±0.28 94.78 ± 0.33 90.85 ± 1.61
Baseline 98.74 94.07 90.00 67.65 69.00 93.59 99.65 97.04 95.30

F.2 SVM classification accuracy of different values of K

We present the detailed results of accuracies on various values of K in Figure 8. Our experimental outcomes are
derived from averaging results obtained from five individual runs, ensuring the reduction of any potential bias.

According to the result, a clear trend emerges in two text datasets (BASEHOCK and PCMAC): neural network-
based feature selection methods tend to outperform classical feature selection approaches across various datasets,
proving the advantage of utilizing neural networks’ ability to capture non-linear relationships between features
to perform feature selection. We also noted that across all datasets, as the value of K increases, the SVM
accuracy of GradEnFS either increases or remains constant. This consistent trend suggests that whenever
GradEnFS adds a feature to the informative subset, it adds a helpful feature or, at the very least, is not noisy.
This contrasts with other methods where SVM accuracy often fluctuates when increasing K (especially in two
biological datasets (Prostate GE and TOX 171), indicating that these methods occasionally introduce noisy
features into the selection.

F.3 Consistency with state-of-the-art feature selection methods

We believe methods with the highest SVM accuracy exhibit higher consistency in selected features. For analysis,
we utilized a heatmap to visualize the percentage of shared features within the selected subset among various
methods on the Madelon dataset in Figure 9. We selected Madelon, which has 20 informative features among
500 total features, because in this dataset, neural network-based methods, including our method GradEnFS,
notably achieve higher SVM accuracies compared to classical methods (refer to Table 2 in the paper). The
plot underscores the consistency among the feature subsets selected by GradEnFS and other high-performing
methods (STG, LassoNet, and QS, all with accuracies greater than 70%) while differing from methods with poor
performance (RFS, ICAP, CMIM, and Fisher Score, all with accuracies less then 55%).
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Figure 8: Feature selection comparison results for all datasets, including accuracy for various values of K.

Figure 9: Heatmap about the percentage of shared features within the selected subset among various methods
on the Madelon dataset.
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Table 7: Classification Accuracy. The results are the classification accuracies evaluated by sparse MLPs with
various sparsities and average over five independent runs (%).

SETTING DATASETS
Method Epsilon BASEHOCK PCMAC Prostate GE TOX 171 Madelon Isolet COIL20 USPS MNIST

SET
1 89.10 ± 5.22 73.77 ± 12.09 92.00 ± 6.71 73.53 ± 14.26 83.23 ± 1.11 89.10 ± 2.28 99.10 ± 0.40 95.68 ± 0.66 85.86 ± 2.09
30 92.11 ± 1.67 83.45 ± 4.15 92.00 ± 5.70 82.94 ± 8.92 81.43 ± 2.14 92.44 ± 1.92 99.17 ± 0.31 96.92 ± 0.38 88.68 ± 2.46
100 91.66 ± 1.75 83.30 ± 3.14 90.00 ± 4.08 82.35 ± 4.65 81.43 ± 2.95 92.12 ± 2.24 97.99 ± 2.39 96.45 ± 0.64 88.86 ± 2.46

SVM - 92.43 ± 1.29 84.38 ± 0.42 89.00 ± 4.90 75.29 ± 3.98 75.33 ± 3.28 92.69 ± 1.30 99.10 ± 0.47 97.22 ± 0.21 93.43 ± 0.51

F.4 Average classification accuracy of GradEnFS with 20 random seeds

To further demonstrate the stability of our proposed method, we increase the number of random seeds from 5
to 20 to evaluate GradEnFS and present the results in Table 8. The SVM classification accuracy of GradEnFS
averaged from 20 independent runs, remains similar to the results averaged from 5 independent runs, and still
outperforms the classification accuracy of other methods, which were averaged from 5 independent runs on 6 out
of 9 datasets (see Table 2).

Table 8: Classification Accuracy. The results are the SVM classification accuracy average over twenty indepen-
dent runs (%).

Method\Dataset BASEHOCK PCMAC Prostate GE TOX 171 Madelon Isolet COIL20 USPS MNIST

GradEnFs batch 89.03 ± 1.14 83.17 ± 1.41 88.25 ± 2.86 74.12 ± 7.12 76.08 ± 2.21 91.36 ± 2.05 98.80 ± 0.47 97.23 ± 0.26 83.46 ± 3.14
GradEnFS epoch 89.85 ± 1.61 84.22 ± 2.40 87.75 ± 7.50 65.29 ± 6.14 77.19 ± 2.22 87.15 ± 2.46 98.59 ± 0.94 95.86 ± 0.42 93.25 ± 1.11

F.5 Comparison of GradEnFS and Lasso

Lasso is a widely used feature selection method that imposes a penalty on the absolute size of the coefficients
in a linear regression model, promoting sparsity and leading to automatic feature selection. We conducted an
experiment to compare our methods with Lasso on the quality of the selected feature subset and present the
results in Table 9. The results demonstrate that GradEnFS outperforms Lasso in 6 out of 9 cases, particularly
on Madelon and Isolet datasets. This superiority can be attributed to the ability of neural networks to learn
nonlinear dependencies, while Lasso primarily operates with linear models. Additionally, sparsity reduces noise,
and the network diversity achieved by dynamic sparse training strengthens the ensemble effect, further enhancing
performance.

Table 9: Classification Accuracy. The results are the SVM classification accuracy average over five independent
runs (%).

Method\Dataset BASEHOCK PCMAC Prostate GE TOX 171 Madelon Isolet COIL20 USPS MNIST

Lasso 90.65 ± 1.07 89.59 ± 1.94 90.00 ± 2.00 72.35 ± 2.35 59.07 ± 0.08 78.53 ± 1.13 96.04 ± 0.89 96.97 ± 0.22 95.65 ± 0.26
GradEnFS 92.43 ± 1.29 84.38 ± 0.42 89.00 ± 4.90 75.29 ± 3.98 75.33 ± 3.28 92.69 ± 1.30 99.10 ± 0.47 97.22 ± 0.21 93.43 ± 0.51

G Additional Details of the Algorithm’s Convergence

To further investigate the convergence of the proposed algorithm, we present the SVM accuracies evaluated
on selested feature subset per epoch for all datasets in Figure 10. The results show that most of the datasets
achieve a stable, high-quality feature subset after a few epochs, further validating the proposed algorithm’s fast
convergence speed and stability of the selected subset. Moreover, we also present the validation losses per epoch
of the sparse MLPs during training for all datasets in Figure 11. In this work, we utilize the SET algorithm to
train sparse MLPs. Empirical evidence from the SET paper and subsequent studies has demonstrated that SET
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Figure 10: SVM accuracies on different epochs for all datasets.

does not hinder the convergence of models and can achieve convergence in MLPs and other network types (e.g.,
CNNs). SET updates weight matrices after standard feed-forward and backpropagation, including dropping
weights with small magnitudes and adding zero connections, thus minimally impacting loss values. Figure 11
illustrates that using SET to train MLPs in our algorithm also leads to model convergence, indicating that the
additional process of measuring neuron importance does not affect the convergence of the sparse model.

H MNIST Visualization

The visualization of the handwritten digits in the MNIST dataset is depicted in Figure 12.

I Additional Results of Visualization Heatmap

We compared the visualization heatmaps between GradEnFS and QS. The Quick Selection (QS) method, which
leverages the SET algorithm for feature selection, can be hindered by the random regrow criterion within SET.
This randomness often leads to slow convergence in the search for an optimal feature subset. However, because
of SET’s simplicity and energy-saving characteristics compared to other DST algorithms and the widespread
success of applying SET to various ANNs, we still choose to combine the SET algorithm with the sensitivity-
based dynamic neuron importance metric in our algorithm design. Therefore, we want to study whether the
random regrow criterion will also affect the convergence speed of GradEnFS. To address this query, we run
GradEnFS and QS on MNIST, and then we visualize the importance scores of input neurons as a heatmap at
several epochs, which is shown in Figure 13. We also visualize the pixels (features) each algorithm selects after
several epochs based on their importance metric and present the results in Figure 14.

Illustrated in Figure 13 and 14, following the initial epoch of neuron importance score calculation by GradEnFS,
it already becomes evident that specific pixels positioned in the image’s central region have higher neuron
importance scores than the pixels at the edge of the image. This difference in importance scores between center
and edge pixels continues growing until the fifth epoch. Interestingly, after the fifth epoch, the pixels recognized
as informative by GradEnFS are not solely restricted to the image’s center; they start to distribute across other
areas, resulting in a distinct pattern of some important pixels gathered in the middle of the image and some
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Figure 11: Validation losses per epoch of the sparse MLPs during training for all datasets.

important pixels surrounding this central cluster of significant pixels. This phenomenon is attributed to the
algorithm’s ability to recognize the pixels adjacent to the pixels forming the digit as significant contributors to
the image’s classification prediction, which means the model needs the edges of the digit to make a prediction.
Notably, this distinct pattern had already emerged by epoch 20, and the visualization at epoch 50 closely
resembles that of epoch 100, indicating that GradEnFS achieves rapid convergence from epoch 20. On the other
hand, while QS ultimately converges to a pattern closely resembling GradEnFS after 100 epochs of training, it
is noteworthy that QS only begins to exhibit higher neuron importance in the middle pixels compared to the
neighboring pixels by the 20th epoch. This observation suggests that QS is more influenced by the random
regrow criterion in SET, leading to a comparatively slower convergence rate when compared to GradEnFS.
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Figure 12: MNIST Dataset

Figure 13: Neuron importance scores visualization of GradEnFS (above) and QS (below) after epoch 1, 5, 10,
20, 50 and 100.
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Figure 14: Selected pixels (features) visualization of GradEnFS (above) and QS (below) after epoch 1, 5, 10, 20,
50 and 100 (K=100).
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