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Abstract

We study differentially private stochastic
convex optimization (DP-SCO) under user-
level privacy, where each user may hold
multiple data items. Existing work for
user-level DP-SCO either requires super-
polynomial runtime [Ghazi et al., 2023b]
or requires the number of users to grow
polynomially with the dimensionality of
the problem with additional strict assump-
tions [Bassily and Sun, 2023]. We develop
new algorithms for user-level DP-SCO that
obtain optimal rates for both convex and
strongly convex functions in polynomial
time and require the number of users to
grow only logarithmically in the dimension.
Moreover, our algorithms are the first to
obtain optimal rates for non-smooth func-
tions in polynomial time. These algorithms
are based on multiple-pass DP-SGD, com-
bined with a novel private mean estimation
procedure for concentrated data, which ap-
plies an outlier removal step before estimat-
ing the mean of the gradients.

1 Introduction

Differentially private stochastic convex optimization
(DP-SCO) is a central problem in privacy-preserving
machine learning, whose aim is to minimize a convex
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function

minimize LP(θ) := E
Z∼P

[ℓ(θ;Z)]

subject to θ ∈ Θ ⊂ Rd,
(1)

under the constraint of differential privacy, given
n users each holding a single sample zi ∈ Z
from the distribution P. Numerous works
have studied this problem, known as item-level
DP-SCO, and it is by now relatively well under-
stood [Bassily et al., 2014, Bassily et al., 2019,
Feldman et al., 2020, Asi et al., 2021b,
Asi et al., 2021a, Kulkarni et al., 2021].

A significant concern about item-level DP-SCO in
practice is that each user may hold and contribute
multiple items to the dataset, significantly degrad-
ing the actual privacy protection provided by the
item-level differential privacy to users. This is the
case in many machine learning applications in prac-
tice, such as training language and vision models on
users’ data in federated learning. To address this
problem, prior work has studied user-level versions
of differential privacy, where the algorithm preserves
privacy concerning users that may contribute m ≥
1 data points [Liu et al., 2020, Badih et al., 2021,
Levy et al., 2021]. This definition is stronger than
item-level DP as it forces the algorithm not to be
sensitive to changes of a single user or equivalently
m data points.

Motivated by the realistic and strong privacy pro-
tections guaranteed by user-level privacy, many
papers have studied DP-SCO under this notion
of privacy. [Levy et al., 2021] has initiated the
study of this problem and proposed new algorithms
based on localized SGD. The main observation
in [Levy et al., 2021] is that averaging the gradients
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of users in SGD results in gradients that are con-
centrated in a ball of small radius of roughly 1/

√
m,

yielding a final excess risk of 1/
√
nm + d/n

√
mε.

However, as the optimal rates for item-level DP-SCO
(m = 1) are known to be 1/

√
n +
√
d/nε, it is ev-

ident that the rates of [Levy et al., 2021] are sub-
optimal. Moreover, their algorithms are applicable
only to smooth functions.

Two recent works of [Bassily and Sun, 2023,
Ghazi et al., 2023b] have resolved some of these
issues. [Bassily and Sun, 2023] developed new
algorithms based on DP-SGD with improved
mean estimation procedures to obtain an optimal
rate 1/

√
nm +

√
d/n
√
mε. However, their algo-

rithms also require smoothness of the function
and require an unnecessarily strong lower bound
on the number of users n ≥

√
d/ε. Moreover,

their algorithm can not work for large m and
require m ≤ max{

√
d, nε2/

√
d}. On the other

hand, [Ghazi et al., 2023b] observe that user-level
DP-SCO has small local sensitivity to deletions, and
used propose-test-release to desgin new algorithms.
Their algorithm requires only n ≥ log(d)/ε users
and is also applicable to non-smooth functions.
However, it runs in super-polynomial time and
achieves sub-optimal error 1/

√
nm+

√
d/n
√
mε2.5.

As a result, existing algorithms for user-level
DP-SCO are not satisfactory: they either
require smoothness and a large number of
users that grows polynomially in the dimen-
sion [Bassily and Sun, 2023], or run in super-
polynomial time [Ghazi et al., 2023b].

1.1 Contributions and Technical Overview

In this work, we develop new algorithms for user-
level DP-SCO that resolve the abovementioned is-
sues. In particular, our algorithms obtain optimal
rates in polynomial time, are applicable for non-
smooth functions, and requires a number of users
that grows only logarithmically in the dimension
n ≤ log(d)

ε . We summarize our results for the convex
case and compare them to prior work in Table 1.
Additionally, building on our algorithm for the con-
vex case, we propose a new algorithm that obtains
optimal rates for user-level DP-SCO in the strongly
convex case.

Our algorithm follows a similar recipe to that
of [Bassily and Sun, 2023]: as it is well known that
DP-SGD is optimal in the item-level setting, we wish
to extend it to user-level DP using new mean esti-
mation procedures that add less noise to estimate

the gradients at each iteration. To this end, note
that if we average the gradients of each user using
their m samples, this guarantees that the resulting
averaged gradients of all users will lie in a ball of
radius roughly τ = 1/

√
m. This concentration al-

lows to design algorithms for mean estimation with
sensitivity τ/n (instead of 1/n), hence obtaining er-
ror (e.g., [Bassily and Sun, 2023]) τ

√
d/nεi for es-

timating the gradients at iteration i, where εi is the
privacy budget at iteration i. As we have T itera-
tions, this requires εi = ε/

√
T . The key challenge

here is that private mean estimation procedures
for τ -concentrated data (e.g. [Levy et al., 2021,
Bassily and Sun, 2023]) require n ≥ 1/εi =

√
T/ε,

which results in a strong restriction on the number
of rounds T that we can run.

Our main challenge is then to design a private mean
estimation procedure with T iterations. Each itera-
tion we wish to estimate the mean of τ -concentrated
data with privacy budget εi = ε/

√
T such that the

error at each iteration is τ
√
d/nεi, and the algo-

rithm uses only n ≤ log(T )/ε samples. We de-
velop a new private mean estimation algorithm for
τ -concentrated data that satisfies these properties.

Our approach draws inspiration from the Friendly-
Core framework [Tsfadia et al., 2022], which we use
for removing outliers from the dataset. Our method-
ology has two distinct phases: in the initial stage, we
employ an outlier-elimination process that yields a
subset of data samples exhibiting τ -concentration.
Subsequently, we privatize the mean of the concen-
trated sample by adding Gaussian noise proportional
to τ .

Our outlier-detection phase is based on a score we
give to each sample to measure how likely it is to
be an outlier; the score measures how many sam-
ples in the dataset are in a ball of size τ around the
sample. We then keep each sample in the dataset
with probability proportional to its score, hence re-
moving outliers which have low score. To guarantee
that our final algorithm is private, we have to upper
bound the sensitivity of the mean of the sub-sampled
dataset is small. To this end, we apply an extra step
via AboveThreshold [Dwork and Roth, 2014] to ver-
ify that the input dataset is nearly τ -concentrated,
hence limiting the number of outliers that can be
detected.

This improved mean estimation procedure is the
building block of all of our results: it allows us to
use DP-SGD with a small number of users and run
it for large number of rounds to get the optimal rate.
Moreover, the large number of rounds made possible
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Excess Risk Polynomial Runtime Number of Users

[Bassily and Sun, 2023] 1√
nm

+
√
d

n
√
mε

Yes n ≥
√
d
ε

[Ghazi et al., 2023b] 1√
nm

+
√
d

n
√
mε2.5

No n ≥ 1
ε

This work 1√
nm

+
√
d

n
√
mε

Yes n ≥ 1
ε

Table 1: Comparison of excess risk bounds for user-level DP-SCO with prior work, with logarithmic terms
omitted. The work of [Bassily and Sun, 2023] additionally requires smoothness of the loss function and
m ≤ max{

√
d, nε2/

√
d}.

by our mean estimation procedure allows us to use
randomized smoothing in order to obtain optimal re-
sults in the non-smooth case as well, in contrast to
prior work where randomized smoothing would not
result in optimal rates in the non-smooth setting.

1.2 Related Work

User-level differential privacy (DP) is a rela-
tively recent and less-explored area compared
to the more established item-level DP setting.
It has gained increased attention lately due
to its significance in machine learning applica-
tions, particularly in the context of federated
learning. Several works have studied user-level
DP for several applications, including DP-
SCO [Levy et al., 2021, Bassily and Sun, 2023],
PAC learning [Badih et al., 2021], and dis-
crete distribution estimation [Liu et al., 2020,
Acharya et al., 2023]. In particular, the lower
bound in [Levy et al., 2021] shows the tightness
of the dependence on m in our results. In recent
work, [Ghazi et al., 2023a] proposed a generic
transformation of any item-level DP algorithm to a
user-level DP algorithm. However, it is inefficient,
and the dependence on ε may not be optimal.

DP-SCO has been studied in the item-level
DP setting extensively [Bassily et al., 2019,
Feldman et al., 2020, Asi et al., 2021b,
Asi et al., 2021a, Kulkarni et al., 2021,
Gopi et al., 2023]. The rates of DP-SCO in
the item-level setting are well understood
and [Bassily et al., 2019] obtained the optimal
1/
√
n +

√
d log(1/δ)/nε rate using stability

based analysis of DP-SGD with a large batch

size. These algorithms are not efficient, leading
[Feldman et al., 2020] to develop new optimal algo-
rithms for the smooth case that run in linear time.
However, the best runtime for the non-smooth set-
ting is super-linear, and this is an ongoing research
direction which is still open [Asi et al., 2021b,
Kulkarni et al., 2021, Carmon et al., 2023]. Item-
level DP-SCO has also been studied in various
other settings, such as the stronger pure DP
model [Asi et al., 2021c], heavy-tailed data distribu-
tions [Lowy and Razaviyayn, 2023], non-euclidean
geometries [Asi et al., 2021b, Bassily et al., 2021],
and non-convex loss functions [Ganesh et al., 2023,
Arora et al., 2023].

2 Preliminaries

Let [k] = {1, · · · , k} be the set of positive integers
no larger than k. Throughout the paper, we assume
that the loss function ℓ(:, z) : Θ → R is convex and
G-Lipschitz for any z ∈ Z, and Θ ⊂ Rd is a closed
convex domain of diameter R. There are n users,
each holding m i.i.d. samples from the underlying
distribution P; we denote the samples of the i-th
user by Zi = {zi,j}j∈[m]. We use capital Z to denote
one user and z to denote one item. The dataset
D = {Zi}i∈[n] contains all the users along with all
the items.

The objective is to design efficient algorithms
for minimizing LP(θ) := Ez∼P ℓ(θ, z), which is
differentially private at the user level. For a
user Zi = {zi,j}j∈[m], we let ∇L(θ;Zi) :=
1
m

∑
j∈[m]∇ℓ(θ;Zi,j) denote the average of the gra-

dients for the user’s samples. We denote the empiri-
cal function LD(θ) :=

1
nm

∑
z∈Zi

∑
Zi∈D ℓ(θ, z). For
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a distribution X, we let supp(X) be the support of
the distribution X.

2.1 Differential Privacy

In this work, we use the notion of user-level differen-
tial privacy where each user has a sample z ∈ Zm.

Definition 2.1 (User-Level Differential Privacy). A
mechanism M : (Zm)n → Rd is (ε, δ) user-level dif-
ferentially private, if for any neighboring datasets
D,D′ ∈ (Zm)n that differ in one user, and for any
event O in the range ofM, we have

Pr[M(D) ∈ O] ≤ eε Pr[M(D′) ∈ O] + δ.

Note that item-level differential privacy is a specific
case of this definition where m = 1.

Additionally, our analysis requires the notion of in-
distinguishability between two random variables.
Definition 2.2 (Indistinguishablity). Two random
variables X and Y are (ε, δ)-Indistinguishable if for
any event O, we have

Pr[X ∈ O] ≤ eε Pr[Y ∈ O] + δ,

and Pr[Y ∈ O] ≤ eε Pr[X ∈ O] + δ.

Moreover, for two distributions X and Y , we use the
notation X ∼γ Y to denote that the total variation
distance between X and Y is bounded by γ. We also
define the following divergence.
Definition 2.3. Given two distributions X and Y ,
the δ-approximate max divergence between X and
Y is defined as

Dδ
∞(X∥Y ) = sup

Z∈supp(X):Pr[X∈Z]≥δ

log
Pr[X ∈ Z]− δ

Pr[Y ∈ Z]

2.1.1 AboveThreshold

Our algorithms use the AboveThreshold algo-
rithm [Dwork and Roth, 2014] which is a key tool
in differential privacy to identify whether there is
a query qi : Z → R in a stream of queries
q1, . . . , qT that is above a certain threshold ∆. The
AboveThreshold algorithm (presented in appendix)
has the following guarantees.
Lemma 2.4 ([Dwork and Roth, 2014], Theorem
3.24). AboveThreshold is (ε, 0)-DP. Moreover, let
α = 8 log(2T/γ)

ε and D ∈ Zn. For any sequence of
T queries q1, · · · , qT : Zn → R each of sensitivity 1,
AboveThreshold halts at time k ∈ [T + 1] such that
with probability at least 1− γ,

• For all t < k, at = ⊤ and qt(D) ≥ ∆− α;

• ak = ⊥ and qk(D) ≤ ∆+ α or k = T + 1.

2.2 Randomized Smoothing

To develop optimal algorithms in the non-smooth
setting, our algorithm use randomized smooth-
ing [Yousefian et al., 2012, Duchi et al., 2012] to
make the functions smooth. To this end, for a convex
function ℓ(:;Z), we denote the convolution function
ℓ̂(:;Z) := ℓ(:;Z) ∗ nr., where nr is the uniform den-
sity in the ℓ2 ball of radius r centered at the origin
in Rd. Specifically, nr(y) =

Γ( d
2+1)

π
d
2 rd

for ∥y∥ ≤ r, and
nr(y) = 0 otherwise. For simplicity, we may omit
the dependence on z, and write the function as ℓ̂
and ℓ. Denote L̂P(θ) := Ez∼P,y∼nr

ℓ(θ + y; z) and
L̂D(θ) :=

1
|D|
∑

z∈D Ey∼nr
ℓ(θ + y; z).

Lemma 2.5 (Randomized Smoothing,
[Yousefian et al., 2012, Duchi et al., 2012]). The
convolution function has the following properties:

• ℓ̂(θ) ≤ ℓ(θ) ≤ ℓ̂(θ) +Gr.

• ℓ̂ is G-Lipschitz and convex.

• ℓ̂ is G
√
d

r -smooth.

• For random variables y ∼ nr, and z ∈ D, we
have Ey,z[∇ℓ(θ + y; z)] = ∇L̂D(θ).

2.3 Norm-Subgaussian Concentration

Our analysis also uses a notion named concentration
properties for norm-Subgaussian random variables.

Definition 2.6 (norm-Subgaussian). A random
vector X ∈ Rd is norm-SubGaussian with param-
eter σ, denoted nSG(σ), if for all t ∈ R

Pr[∥X − EX∥ ≥ t] ≤ 2 exp(− t2

2σ2
).

The following concentration result holds for norm-
Subgaussian random variables.

Lemma 2.7 ([Jin et al., 2019], concentration of
NormSubgaussian). There exists a constant c > 0,
such that for zero-mean independent random vectors
X1, · · · , Xn ∈ Rd where Xi is nSG(σi) for all i ∈ [n],
for any δ > 0, with probability at least 1− δ,

∥
∑
i∈[n]

Xi∥ ≤ c

√√√√∑
i∈[n]

σ2
i log

2d

δ
.
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3 Adaptive Mean Estimation for
Concentrated Samples

The main component in our algorithms is a novel
mean estimation procedure for adaptive queries for
τ -concentrated samples where the samples lie in a
ball of radius τ (see Definition 3.1). This algorithm
will be used to estimate the gradients in our op-
timization procedure, as the user-level setting will
guarantee that τ ≈ 1/

√
m for an i.i.d. input. We

add Gaussian noise scales with τ ; hence, the final
loss bound benefits from small τ .

Definition 3.1. A random samples {Xi}i∈[n] is
(τ, γ)-concentrated if there exists a point x ∈ Rd

such that with probability at least 1− γ,

max
i∈[n]
∥Xi − x∥ ≤ τ.

Given T adaptive mean estimation queries
q1, . . . , qT : (Zm)n → Rd such that the n users
are τ -concentrated with respect to these queries,
our goal is to get a nearly unbiased estimate of
the mean of each query with variance τ2Td

n2ε2 under
(ε, δ)-DP. The standard approach for solving this
task, as done in [Bassily and Sun, 2023], is to assign
a privacy budget εi = ε/

√
T for each query, hence

resulting in variance τ2Td
n2ε2 . However, this procedure

requires n ≥ 1
εi

=
√
T/ε to guarantee the desired

utility bounds, which is too prohibitive for our
purposes.

In this section, we design a new algorithm for adap-
tive mean estimation that achieves the desired vari-
ance with only n ≥ 1/ε. Our algorithm is inspired by
the FriendlyCore framework [Tsfadia et al., 2022],
where we use the basic filter to identify outliers in the
dataset. Our procedure consists of two stages: first,
we apply an outlier-removal procedure, which re-
turns a subset of the samples that is τ -concentrated.
Then, we add Gaussian noise proportional to τ to
privatize the mean of the concentrated sample.

To identify outliers, we give a score to each sample,
which measures how many samples in the dataset
are in a ball of size τ around the sample. As outlier
samples will have a low score, we then keep each
sample in the dataset with probability proportional
to its score. This will preserve privacy for samples
that are nearly τ -concentrated, whereas we aim to
preserve privacy for all input datasets. Therefore, we
add an initial check to the algorithm which verifies
that the algorithm is nearly τ -concentrated. To this
end, we define a τ -concentration score of the dataset

for a query qi to be

sconci (D, τ) := 1

n

∑
z∈D

∑
z′∈D

1(∥qi(z)− qi(z
′)∥ ≤ τ).

(2)

and check via AboveThreshold that this score is
above the desired threshold for all queries. The
following procedure will be processed only if the
dataset and the queries pass the check, which means
our samples are nearly concentrated and ensures the
privacy guarantee of the following procedure. We
describe the full details of our algorithm in Algo-
rithm 1.

Algorithm 1: Outlier-Removal Based Mean Es-
timation for Concentrated Data

1 Input: Dataset D = (Z1, . . . , Zn), privacy
parameters (ε, δ), parameters τ ;

2 for i = 1 to T do
3 Receive a new mean estimation query

qi : Z → Rd ;
4 Define concentration score

sconci (D, τ) := 1

n

∑
Z∈D

∑
Z′∈D

1(∥qi(Z)−qi(Z ′)∥ ≤ τ)

if AboveThreshold(sconci , ε/2, 4n/5) = ⊤
then

5 Set Si = ∅;
6 for Each User Zj ∈ D do
7 Set fi,j =∑

Z∈D 1(∥qi(Zj)− qi(Z)∥ ≤ 2τ);
8 Add Zj to Si with probability pi,j for

pi,j =


0 fi,j < n/2

1 fi,j ≥ 2n/3
fi,j−n/2

n/6 o.w.

9 end
10 Let gi =

1
|Si|
∑

Z∈Si
qi(Z) if Si is not

empty, and 0 otherwise ;
11 Output: ĝi ← gi + νi, where

νi ∼ N (0, 8τ2T log(eε/2T/δ) log(eε/2/δ)
n2ε2 Id)

12 end
13 else
14 Output: gi = 0;
15 Halt;
16 end
17 end

The following theorem summarizes the main guar-
antees of our algorithm.
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Theorem 3.2. For 0 < ε < 10, 0 < δ < 1.
Let D = (Z1, . . . , Zn) ∈ (Zm)n be a dataset with
n ≥ 8 log(T/γ)+8 log(T/δ)

ε users. Algorithm 1 is
(ε, δ)-DP. Moreover, if (qi(Z1), . . . , qi(Zn)) is (τ, γ)-
concentrated for all i ∈ [T ], then there exists random
variables ĝ′1, . . . , ĝ

′
T such that the outputs ĝ1, . . . , ĝT

of Algorithm 1 satisfy ĝi ∼2γ ĝ′i for all i ∈ [T ]. More-
over, ĝ′i has

E ĝ′i =
1

n

n∑
j=1

qi(Zj),

E

∥∥∥∥∥∥ĝ′i − 1

n

n∑
j=1

qi(Zj)

∥∥∥∥∥∥
2

≤ τ2T log(T/δ) log(1/δ)

n2ε2
.

To prove Theorem 3.2, we consider the privacy and
utility guarantees separately. We argue about pri-
vacy first. The following are two technical lemmas.
Lemma 3.3. For any neighboring dataset D,D′ that
differs in one user, let pi = (pi,1, · · · , pi,n) be the
probability for users to be selected into Si for D, and
let p′i be the corresponding probability for D′. Then

∥pi − p′i∥1 ≤ 2.

Lemma 3.4. Let p, p′ ∈ [0, 1]n such that ∥p−p′∥1 ≤
10, and let V and V ′ be drawn from Ber(p) and
Ber(p′) respectively. For any ζ ∈ (0, 1), there ex-
ists a coupling Γ over V and V ′ such that for (x, y)
drawn from Γ, with probability at least 1− ζ,

∥x− y∥1 ≤ O(log(1/ζ)).

Now, we analyze the privacy guarantee. We already
know the AboveThreshold is private, and hence, it
suffices to consider the following procedure when
AboveThreshold always outputs “⊤”, which means
the dataset is well concentrated with respect to the
queries. We can show the sensitivity of the estimate
gi of the algorithm is bounded with the concentra-
tion, and hence, the privacy guarantee of the out-
puts {ĝi} can be proved via the property of Gaussian
Mechanism.

Let ai ∈ {⊤,⊥} be the output of AboveThreshold
for i-th query. Let E be the event that for all ai =
⊤, we have qi ≥ 4n

5 − α and for all ai = ⊥ we
have qi ≤ 4n

5 + α. Note that 4n
5 − α ≥ 2n

3 by the
value of α and the precondition that n ≥ 40 log(2T/ζ)

ε .
The guarantees of AboveThreshold (Lemma 2.4) also
imply that the measure of E is at least 1− ζ. Define
E′ to be the event w.r.t. input D′.

The following lemma upper bounds the sensitivity
of the mean of the sub-sampled datasets.

Lemma 3.5. For any i-th iteration and any neigh-
boring datasets D,D′, conditional on E and E′ and
conditional on ai = a′i, there exists a coupling Γi

over gi and g′i, such that for (x, y) drawn from Γi,
with probability at least 1− ζ,

∥x− y∥2 ≲
τ log(1/ζ)

n
.

Given the sensitivity bound of Lemma 3.5, we can
argue for indistinguishability of the outputs using
standard guarantees of the Gaussian mechanism.
Lemma 3.6. For any dataset D, if n ≥ 40 log(4T/δ)

ε ,
then for any neighboring dataset D′, the outputs of
Algorithm 1 with D and D′ as inputs are (ε, δ)-
indistinguishable.

Having estabilished the privacy guarantee of Algo-
rithm 1, we now prove its utility. The following
lemma shows that if the dataset is well concentrated
with respect to the query, then no user will be re-
moved in the outlier-removal stage with high prob-
ability, hence the estimate is nearly unbiased.
Lemma 3.7. For all i ∈ [T ], if (qi(Z1), . . . , qi(Zn))

is (τ, γ)-concentrated and n ≥ 8 log(T/γ)
ε , then with

probability at least 1− (T +1)γ, it holds that Si = D
for all i ∈ [T ].

Theorem 3.2 follows from Lemma 3.6 and
Lemma 3.7.

4 Optimal Rates for User-Level
DP-SCO

In this section, we present our main algorithm for
user-level DP-SCO based on the gradient estimation
procedure constructed above. Our algorithm lever-
ages the Stochastic Gradient Descent (SGD) over a
smoothed version of the loss function using random-
ized smoothing by applying the gradient estimation
procedure to get (nearly) unbiased stochastic gradi-
ents. We present the full details of the algorithm
in Algorithm 2.

Three key techniques are crucial for our algorithm
and its analysis: first, for a fixed θ ∈ Θ, a simple
concentration argument shows that the average gra-
dient of each user will lie with high probability in a
ball of small radius around the population gradient
(see Lemma 4.4)

∥∇L(θ;Zi)−∇LP(θ)∥ ≤
G log(nd/γ)√

m
.

This is not sufficient for our algorithms as we need
this property to hold for data-dependent θt. To
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this end, similarly to [Bassily and Sun, 2023], we use
the generalization properties of differential privacy
to show in Lemma 4.6 that a similar concentration
holds for ∇L(θt;Zi). Given this concentration, our
mean estimation procedure (Algorithm 1) adds lower
noise to estimate of the gradients.

Our second technique is based on the observation
that smoothness is necessary to obtain the full
potential of DP-SGD in user-level DP-SCO (sim-
ilarly to existing work that used SGD-based al-
gorithms for user-level DP-SCO [Levy et al., 2021,
Bassily and Sun, 2023]). Convergence rates of SGD
cause the limitation for non-smooth functions, which
depend on the second moment of the gradients,
whereas it depends on the variance for smooth func-
tions (Proposition 4.10). As averaging the gradi-
ents of m samples reduces the variance while keep-
ing the second moment the same, this yields bet-
ter performance for smooth functions. To address
this, we adopt randomized smoothing to smooth the
loss functions and apply SGD over the smoothed
functions. This is made possible due to our mean
estimation procedure, which only requires n ≥
log(mnd/δ)/ε, in contrast to prior work, which re-
quired n ≥

√
T/ε; this strict bound on the number

of rounds is not sufficient to obtain optimal rates
with randomized smoothing.

Finally, as we are using multi-pass SGD, an addi-
tional argument is needed to guarantee a low risk
for population error. To this end, we analyze the
stability of our algorithm for non-smooth functions
using [Bassily et al., 2020], which implies that our
algorithm has low generalization error.

Let Θr = {θ + y : θ ∈ Θ, ∥y∥ ≤ r}. The following
theorem summarizes our main result.
Theorem 4.1 (User-level DP-SCO). Let 0 <
ε < 10 and 0 < δ < 1. Algorithm 2
is user-level (ε, δ)-DP. Setting R̂ = R, r =
d1/4R̂√

T
, η = R̂

G ·min{
√
mnε

T
√

d log2(mnd/δ)
, 1
T 3/4 ,

√
nm
T }, τ =

G log(ndmeεT/δ)√
m

and T = O(m2n2 +mn
√
d), if Θ ⊂

Rd is a convex set of diameter R, {ℓ(:, z)}z∈Z is a
family of G-Lipschitz convex function over Θr, each
item in D is drawn i.i.d. from the underlying distri-
bution P , and n ≳ log(mdn/δ)

ε , then the output θ̂ of
Algorithm 2 satisfies

E
[
LP(θ̂)− min

θ⋆∈Θ
LP(θ

⋆)

]

≤ O

GR ·

 1√
nm

+

√
d log2(ndm/δ)

n
√
mε

 .

Algorithm 2: DP-SGD for user-level DP
1 Input: Dataset D = (Z1, . . . , Zn) ∈ (Zm)n,

private parameters (ε, δ), initial point θ0,
convolution parameter r, number of rounds T ,
stepsize η, concentration parameter τ , initial
distance R̂;

2 for t = 1, · · · , T do
3 Define a query qt(Z) = 1

m

∑m
j=1∇ℓ̂(θt; zi,j)

for Z ∈ Zm, See Equation (3) for the
definition ;

4 Run Algorithm 1 with query qt and
parameters D, ε, δ

2Tmnd , τ ;
5 Let gt be the output of Algorithm 1 ;
6 if gt ̸= ⊥ then
7 Update θt+1 ← Π(θt − ηgt);
8 end
9 else

10 Output: Initial point θ0;
11 Halt
12 end
13 end
14 Return: θ̂ = 1

T

∑
t∈[T ] θt

Remark 4.2. If we have a random initial point θ0
such that E[∥θ0−θ∗∥2] ≤ R′2 for θ∗ = argminLD(θ)
and some R′ < R, then we can replace the parameter
setting R̂ = R by R̂ = R′ in the population loss
bound and the dependence on R can be reduced to
R′ in the loss bound.
Remark 4.3. We define the functions on Θr rather
than Θ to make use of the randomized smoothing
technique. As r is much smaller than R, this im-
pact can be minimal. One can eliminate this domain
extension by applying other smoothing techniques,
such as the Moreau envelope smoothing method, but
this method will increase the gradient computation
cost.

We begin by showing that the gradients are concen-
trated. For any user Zi who holds m items denoted
by {zi,j}j∈[m] and any point θ ∈ Θ, we denote

∇ℓ̂(θ;Zi) :=
1

m

∑
j∈[m]

∇ℓ(θ + yj ; zi,j), (3)

the average stochastic gradients of all items owned
by Zi, where yj ∼ nr is drawn independently of θ
and zi,j for the randomized smoothing.

Our goal is to eventually prove that
{∇ℓ̂(θt;Zi)}Zi∈D are concentrated. To this
end, we start with proving concentration for
{∇ℓ̂(θ;Zi)}Zi∈D for a fixed θ ∈ Θ.
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Lemma 4.4. For any fixed θ and for each Zi, if each
item in Zi is drawn i.i.d. from P, with probability
at least 1− γ/n, we have

∥∇ℓ̂(θ;Zi)−∇L̂P(θ)∥ ≤
G log(nd/γ)√

m
,

One issue with applying Lemma 4.4 to demon-
strate the concentration property of the stochas-
tic gradients is that the dataset D and the points
{θi}i∈[T ] are not independent. To tackle this, simi-
larly to [Bassily and Sun, 2023], we make use of the
generalization properties of private mechanisms. We
need the following lemma.
Lemma 4.5 (Lemma 3.7 in [Feldman et al., 2022]).
Let ALG be an (ε, δ)-DP algorithm with respect the
input D. Then there exists an (2ε, 0)-DP algorithm
ALG′, such that

dTV (ALG(D),ALG′(D)) ≤ δ.

Lemma 4.6 (Similar to Theorem 3.4
in [Bassily and Sun, 2023]). Suppose D =
{zi,j}i∈[n],j∈[m] are drawn i.i.d. from the dis-
tribution P. In Algorithm 2, for all t ∈ [T ],
{∇ℓ̂(θt;Zi)}Zi∈D is (τ, γ′)-concentrated for

τ =
G log(nd/γ)√

m
, γ′ = T (e2εγ +

δ

2Tmnd
).

Having established the concentration property of
{∇ℓ̂(θt;Zi)}Zi∈D, we can bound the utility of our
procedure for the empirical function L̂D. Now, we
turn to prove the upper bounds for the general-
ization error, which needs the following well-known
Lemma.
Lemma 4.7 ([Bousquet and Elisseeff, 2002]). For
an algorithm ALG, a dataset D = {zi,j}i∈[n],j∈[m]

drawn i.i.d. from the distribution P. If we replace
one random data zi,j in D by a fresh new sample z′i,j
from P and get the dataset D′ and let ALG(D) be
the (random) output of the algorithm, one has

E
D,ALG

[
LP(ALG(D))− LD(ALG(D))

]
= E

D,z′
i,j ,ALG

[
ℓ(ALG(D); z′i,j)− ℓ(ALG(D′); z′i,j)

]
.

As we are considering Lipschitz functions, if we can
bound the total variation distance between ALG(D)
and ALG(D′) where D and D′ differs from one single
item, named by algorithmic stability, then we can
bound the generalization error. Formally, we define
the algorithmic stability of ALG as follows:

Λ(ALG) := dTV (ALG(D),ALG(D′)),

where dTV (ALG(D),ALG(D′)) denotes the total
variation distance between ALG(D) and ALG(D′).
Notably, the user-level differential privacy concerns
replace m data of one user, while the algorithmic
stability only concerns replacing one single item of
a user. We have the following Lemma.
Lemma 4.8 (Lemma 3.1 in [Bassily et al., 2020]).
Let (xt)t∈[T ] and (yt)t∈[T ] be two trajectories of run-
ning SGD for G-Lipschitz convex function f , that
is xt = Π(xt−1 − η∇f(xt−1)) and yt = Π(yt−1 −
η∇f ′(yt−1)). Suppose ∥∇f(xt) − ∇f ′(xt)∥ ≤ at ≤
2G for all t ∈ [T ], then

∥xT − yT ∥ ≤ 2G

√ ∑
t∈[T−1]

η2t + 2
∑

t∈[T−1]

ηtat.

We use ALG to represent Algorithm 2. Then, we can
bound the algorithmic stability of ALG based on the
unbiased property of our mean estimate procedure
(Lemma 3.7) constructed in the previous section.
Lemma 4.9 (Algorithmic stability bound). Sup-
pose {Zi} are drawn i.i.d. from the underlying
distribution P. Suppose τ ≥ G log(ndmeεT/δ)√

m
and

n ≳ log(mdn/δ)
ε , with probability at least 1 − δ

mnd ,
the stability of Algorithm 2 is bounded as follows:

Λ(ALG) ≤ Gη
√
T +

GηT

nm
.

Finally, to prove our main result, we need the fol-
lowing convergence rates for SGD.
Proposition 4.10 (SGD, [Bubeck, 2015]). Con-
sider a convex function f over a convex domain
X. Suppose the random initial point x0 satisfies
E[∥x0 − x∗∥] ≤ R2 where x∗ = argminx∈X f(x).
Assume the unbiased stochastic oracle is such that
E[∥g̃(x)∥2] ≤ σ2. Running gradient descent with step
size η satisfies

E

[
1

T

T∑
t=1

f(xt+1)−min
x∗

f(x∗)

]
≤ R2

ηT
+ ησ2.

Moreover, if the function f is β-smooth and the
unbiased stochastic oracle is such that E[∥g̃(x) −
∇f(x)∥2] ≤ σ2, then running SGD for T steps with
step size η satisfies that

E

[
1

T

T∑
t=1

f(xt+1)−min
x∗

f(x∗)

]
≤ (β +

1

η
)
R2

T
+

ησ2

2
.

Combining these lemmas, we prove Theorem 4.1 in
the Appendix.



Hilal Asi, Daogao Liu

4.1 Implication for Strongly convex
functions

Building on our optimal algorithm for the convex
setting, in the section, we proceed to obtain op-
timal rates for the strongly convex case using the
localization framework [Feldman et al., 2020]. The
idea is to iteratively run Algorithm 2 for log log(mn)
rounds, where at each round, we run it with im-
proved parameters. We present the full details in
the Appendix, and defer the full proof to the sup-
plement with detailed parameter settings therein.

Algorithm 3: User-level DP-SCO for strongly
convex functions

1 Input: Dataset D = (Z1, . . . , Zn) ∈ (Zm)n,
privacy parameters (ε, δ), initial point θ0;

2 Set k = ⌈log logmn⌉;
3 Divide D into k disjoint datasets {Di}i∈[k],

where Di is of size ni := n/2k+1−i;
4 for i = 1, · · · , k do
5 Run Algorithm 2 with

Di, ε, δ, θi−1, ri, Ti, ηi, τi, R̂i as inputs, and
get its output θi;

6 end
7 Output: θ̂ = θk;

Theorem 4.11 (Strongly convex case). For 0 < ε <
10, 0 < δ < 1, Algorithm 3 is user-level (ε, δ)-DP.
Under the same assumptions as in Theorem 4.1, ad-
ditionally assuming that n > log(mdn) log(mdn/δ)

ε and
the functions are µ-strongly convex, then with proper
parameter settings, Algorithm 3 outputs θ̂ such that

E
[
LP(θ̂)− min

θ⋆∈Θ
LP(θ

⋆)

]
≤ O

(
G2

µ

(
1

nm
+

d log2(ndm/δ)

n2mε2

))
.

5 Conclusion

In this work, we have studied user-level DP-SCO
and proposed new efficient algorithms that obtain
near-optimal rates even in the non-smooth setting.
There remain open questions in this domain. First,
our rates are optimal up to logarithmic factors and
we leave it for future work to improve these fac-
tors. Moreover, our algorithms requires number
of rounds T ≥ n2m2 · min(1, n2/d), and it re-
mains open whether there is a more efficient algo-
rithm. In particular, are there linear time algorithms
for user-level DP-SCO in the smooth setting, simi-

lar to the item-level setting where such results are
known [Feldman et al., 2020]?
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A Preliminaries

Lemma A.1 (Chernoff-Hoefflding Bound). Let X1, · · · , Xn be independent Bernoulli random variables such
that E[Xi] = pi. Let X =

∑
i∈[n] Xi and µ = E[X]. Then we know for any λ > 0, we have

Pr[X ≥ (1 + λ)µ] ≤ exp(− λ2µ

2 + λ
).

A.1 AboveThreshold

The pseudocode of AboveThreshold can be found below for completeness.

Algorithm 4: AboveThreshold
1 Input: Dataset D = (Z1, . . . , Zn), threshold ∆ ∈ R, privacy parameter ε;
2 Let ∆̂ := ∆− Lap( 2ε );
3 for t = 1 to T do
4 Receive a new query qt : Zn → R ;
5 Sample νi ∼ Lap( 4ε );
6 if qt(D) + νi < ∆̂ then
7 Output: ai = ⊥;
8 Halt;
9 else

10 Output: ai = ⊤;
11 end
12 end
13 end

B Missing Proofs in Section 3

B.1 Proof of Lemma 3.3

Lemma 3.3. For any neighboring dataset D,D′ that differs in one user, let pi = (pi,1, · · · , pi,n) be the
probability for users to be selected into Si for D, and let p′i be the corresponding probability for D′. Then

∥pi − p′i∥1 ≤ 2.

Proof. Without loss of generality, let D = (Z1, Z2, . . . , Zn) and D′ = (Z ′
1, Z2, . . . , Zn) differ in the first user.

Note that fi,j has sensitivity 1 for j ̸= 1, hence |pi,j − p′j,j | ≤ 1/n for all j ̸= 1. Moreover, |pi,1 − p′i,1| ≤ 1.
Therefore, ∥pi − p′i∥1 ≤ 2.

B.2 Proof of Lemma 3.4

Lemma 3.4. Let p, p′ ∈ [0, 1]n such that ∥p−p′∥1 ≤ 10, and let V and V ′ be drawn from Ber(p) and Ber(p′)
respectively. For any ζ ∈ (0, 1), there exists a coupling Γ over V and V ′ such that for (x, y) drawn from Γ,
with probability at least 1− ζ,

∥x− y∥1 ≤ O(log(1/ζ)).

Proof. We construct the coupling by considering each coordinate separately. Let pi and p′i be the i-th
coordinate of p and p′ respectively. Consider i-th coordinate, without losing generality, let pi ≥ p′i. Then,
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we set

(xi, yi) =


(1, 1), w.p. p′i
(1, 0), w.p. pi − p′i
(0, 0), w.p. 1− pi

And coordinates are independent of each other. We draw (x, y) from the coupling Γ, and set Xi = 1 if
xi = yi and, Xi = 0 otherwise. Hence we know {Xi} are independent Bernoulli random variables such that
E[Xi] = |pi − p′i|. By Lemma A.1, we know

Pr[∥x− y∥1 ≥ O(log(1/ζ))] = Pr[
∑
i

Xi ≥ O(log(1/ζ))] ≤ ζ.

This completes the proof.

B.3 Proof of Lemma 3.5

Recall that the event E corresponds to the success of AboveThreshold in all time-steps for the dataset D.
Similarly, E′ is defined for D′. More precisely, let E be the event that for all ai = ⊤, we have qi ≥ 4n

5 − α
and for all ai = ⊥ we have qi ≤ 4n

5 + α. Define E′ to be the event w.r.t. input D′.
Lemma 3.5. For any i-th iteration and any neighboring datasets D,D′, conditional on E and E′ and
conditional on ai = a′i, there exists a coupling Γi over gi and g′i, such that for (x, y) drawn from Γi, with
probability at least 1− ζ,

∥x− y∥2 ≲
τ log(1/ζ)

n
.

Proof. If ai = a′i = ⊥, then both gi and g′i will be 0.

Consider the non-trivial case when ai = a′i = ⊤. As sconci (D, τ) > 2n
3 , we know there exists Z∗ ∈ D such

that
∑

Z∈D 1(∥qi(Z∗) − qi(Z)∥ ≤ τ) ≥ 2n
3 . Let Hi = {Z ∈ D : ∥qi(Z) − qi(Z

∗)∥ ≤ τ} be the set of
users whose queried values are close to Z∗. We know Hi ⊂ Si. Moreover, we can argue for any Z ∈ Si,
∥qi(Z) − qi(Z

∗)∥ ≤ 4τ . The same argument holds for D′, that is there exists Z ′∗ ∈ D′, such that H ′
i ⊂ S′

i

and for any Z ∈ S′
i, ∥qi(Z)− qi(Z

′∗)∥ ≤ 4τ .

We know ∥qi(Z∗)− qi(Z
′∗)∥ ≤ 2τ , as there exists Z in D∩D′ such that ∥qi(Z∗)− qi(Z)∥ ≤ τ and ∥qi(Z ′∗)−

qi(Z)∥ ≤ τ . Hence for any point Z1, Z2 ∈ Si ∪ S′
i, ∥qi(Z1)− qi(Z2)∥ ≤ 10τ .

Note that gi =
1

|Si|
∑

Z∈Si
qi(Z) and g′i =

1
|S′

i|
∑

Z∈S′
i
qi(Z). By Lemma 3.3 and Lemma 3.4, we know there

exists a Coupling Γi over Si and S′
i such that if we draw (S, S′) from Γi, with probability at least 1− ζ, we

have

∥S − S′∥0 ≲ log(1/ζ).

Assume |S′| ≥ |S| without loss of generality and let Z0 ∈ S. Note that we have

∥gi − g′i∥2 =

∥∥∥∥∥ 1

|S|
∑
Z∈S

qi(Z)− 1

|S′|
∑
Z∈S′

qi(Z)

∥∥∥∥∥
2

=
1

|S′|

∥∥∥∥∥ |S′|
|S|

∑
Z∈S

qi(Z)−
∑
Z∈S′

qi(Z)

∥∥∥∥∥
2

=
1

|S′|

∥∥∥∥∥ |S′| − |S|
|S|

∑
Z∈S

qi(Z) +
∑
Z∈S

qi(Z)−
∑
Z∈S′

qi(Z)

∥∥∥∥∥
2

=
1

|S′|

∥∥∥∥∥∥ |S
′| − |S|
|S|

∑
Z∈S

qi(Z) +
∑

Z∈S\S′

qi(Z)−
∑

Z∈S′\S

qi(Z)

∥∥∥∥∥∥
2
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≤ 1

|S′|

∥∥∥∥∥∥ |S
′| − |S|
|S|

∑
Z∈S

qi(Z) +
∑

Z∈S\S′

qi(Z)− |S′ \ S| · qi(Z0)

∥∥∥∥∥∥
2

+
1

|S′|

∥∥∥∥∥∥|S′ \ S| · qi(Z0)−
∑

Z∈S′\S

qi(Z)

∥∥∥∥∥∥
2

(i)
=

1

|S′|

∥∥∥∥∥∥ |S
′| − |S|
|S|

∑
Z∈S

(qi(Z)− qi(Z0)) +
∑

Z∈S\S′

(qi(Z)− qi(Z0))

∥∥∥∥∥∥
2

+
1

|S′|

∥∥∥∥∥∥
∑

Z∈S′\S

(qi(Z0)− qi(Z))

∥∥∥∥∥∥
2

(ii)

≤ 10τ

|S′|
· ((|S′| − |S|) + |S \ S′|+ |S′ \ S|)

(iii)

≲
τ log(1/ζ)

n
.

where (i) follows since |S′|−|S|+ |S \S′| = |S′ \S|, and (ii) follows since maxZ1,Z2∈S∪S′ ∥qi(Z1)−qi(Z2)∥2 ≤
10τ , and (iii) follows since ∥S − S′∥0 ≲ log(1/ζ) and hence |S′| − |S|+ |S′ \ S|+ |S \ S′| ≲ log(1/ζ).

This completes the proof.

B.4 Proof of Lemma 3.6

Lemma 3.6. For any dataset D, if n ≥ 40 log(4T/δ)
ε , then for any neighboring dataset D′, the outputs of

Algorithm 1 with D and D′ as inputs are (ε, δ)-indistinguishable.

Proof. Let {ai}i∈T = {⊤,⊥}T be the outputs of Algorithm 4 with input D, where if ai = ⊥ we set aj = ⊥
for all j ≥ i. Define the {a′i} correspondingly with input D′. Then by Theorem 2.4, we know {ai} and {a′i}
are (ε/2, 0)-indistinguishable.

Now conditional on that E and E′ hold. If ai = a′i = ⊥, then the algorithm halts and outputs the initial
point, hence no privacy leakage.

Our proof proceeds by assuming the Gaussian noise vi we add is drawn from N (0, 4τ2T log(1/ζ′) log(1/δ′)
n2ε2 ).

Then the statement follows from setting ζ ′ and δ′.

Under the assumption on n ≥ 40 log(2T/ζ′)
ε , for any b ∈ {⊤,⊥}T , by Lemma 3.5, the Union Bound, we know

there exists a coupling over {gi}i∈T and {g′i}i∈T , such that for ({xi}, {yi}) drawn from Γ, with probability
at least 1− Tζ ′,

for all i ∈ [T ], ∥xi − yi∥ ≲
τ log(1/ζ ′)

n
.

By the guarantee of the Gaussian Mechanism and the composition [Bun and Steinke, 2016], we know

Pr[{gi + νi} ∈ O | E, {ai} = b] ≤ eε/2 Pr[{g′i + ν′i} ∈ O | E′, {a′i} = b] + δ′ + Tζ ′,

where we note that the Gaussian noise of {νi} and {ν′i} are independent of the Laplacian noise we add in
Algorithm 4.

To conclude, letting {gi + νi} be the sequence of output, we have for any event O,

Pr[{gi + νi} ∈ O] =Pr[{gi + νi} ∈ O | E] Pr[E] + Pr[{gi + νi} ∈ O | ¬E] Pr[¬E]

≤ Pr[{gi + νi} ∈ O | E] Pr[E] + ζ ′

=
∑

b∈{⊤,⊥}T

Pr[{gi + νi} ∈ O | E, {ai} = b] Pr[E, {ai} = b] + ζ ′

≤
∑

b∈{⊤,⊥}T

eε/2(Pr[{g′i + ν′i} ∈ O | E′, {a′i} = b] + δ′) Pr[E, {ai} = b] + (T + 1)ζ ′
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≤
∑

b∈{⊤,⊥}T

eε/2 Pr[{g′i + ν′i} ∈ O | E′, {a′i} = b] Pr[E, {ai} = b] + (T + 1)ζ ′ + eε/2δ′.

Note that the randomness of {ai} and whether E holds comes from the Laplacian variables we draw. By
the privacy guarantee of AboveThreshold, for any b ∈ {⊤,⊥}T , we have

Pr[{ai} = b] ≤ eε/2 Pr[{a′i} = b].

It is not hard to observe that

Pr[{ai} = b, E] ≤ eε/2 Pr[{a′i} = b, E′] + eε/2ζ ′.

Hence

Pr[{gi + νi} ∈ O]

≤
∑

b∈{⊤,⊥}T

eε/2 Pr[{g′i + ν′i} ∈ O | E′, {a′i} = b] Pr[E, {ai} = b] + (T + 1)ζ ′ + eε/2δ′

≤
∑

b∈{⊤,⊥}T

eε Pr[{g′i + ν′i} ∈ O | E′, {a′i} = b] Pr[E′, {a′i} = b] + (T + 1 + eε)ζ ′ + eε/2δ′

Setting ζ ′ = δ
2(eε+1+T ) and δ′ = δ

2eε/2
, we get the Noise scale as stated in the pseudo-code of Algorithm 1

and complete the proof.

B.5 Proof of Lemma 3.7

Lemma 3.7. For all i ∈ [T ], if (qi(Z1), . . . , qi(Zn)) is (τ, γ)-concentrated and n ≥ 8 log(T/γ)
ε , then with

probability at least 1− (T + 1)γ, it holds that Si = D for all i ∈ [T ].

Proof. To prove the lemma, we have to show that AboveThreshold will succeed (output ⊤) for each i ∈ [T ],
and that the outlier-removal stage will not remove any item from the set.

To this end, fix any i ∈ [T ]. Under the precondition that (qi(Z1), . . . , qi(Zn)) is (τ, γ)-concentrated, we know
that sconci (D, τ) = n with probability 1 − γ for each i ∈ [T ]. Moreover, the guarantees of AboveThreshold
(Lemma 2.4) imply that it will output “⊤” with probability at least 1−γ/T for each i ∈ [T ] when sconci (D, τ) =
n. Finally, under the event that (qi(Z1), . . . , qi(Zn)) is τ -concentrated, we have that fi,j = n for each user
Zj ∈ D, and hence Zj will be added into Si. The statement follows by applying a union bound.

C Missing Proof in Section 4

C.1 Proof of Lemma 4.4

Lemma 4.4. For any fixed θ and for each Zi, if each item in Zi is drawn i.i.d. from P, with probability at
least 1− γ/n, we have

∥∇ℓ̂(θ;Zi)−∇L̂P(θ)∥ ≤
G log(nd/γ)√

m
,

Proof. The lemma follows from the concentration of Norm Subgaussian random variables (Lemma 2.7).
Specifically, we know for each zi,j ∈ Zi, E∇ℓ̂(θ+yj ; zi,j)−∇L̂P(θ) = 0, and ∥∇ℓ̂(θ+yj ; zi,j)−∇L̂P(θ)∥ ≤ 2G,
which implies ∇ℓ̂(θ + yj ; zi,j)−∇L̂P(θ) is zero-mean and nSG(2G). The statement follows.
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C.2 Proof of Lemma 4.6

Lemma 4.6 (Similar to Theorem 3.4 in [Bassily and Sun, 2023]). Suppose D = {zi,j}i∈[n],j∈[m] are drawn
i.i.d. from the distribution P. In Algorithm 2, for all t ∈ [T ], {∇ℓ̂(θt;Zi)}Zi∈D is (τ, γ′)-concentrated for

τ =
G log(nd/γ)√

m
, γ′ = T (e2εγ +

δ

2Tmnd
).

Proof. It suffices to prove that for each t ∈ [T ], {∇ℓ̂(θt;Zi)}Zi∈D is (τ, e2εγ + δ
2Tmnd )-concentrated. Note

that by Theorem 3.2 and the parameter settings in the precondition, Algorithm 2 is user-level (ε, δ
2Tnmd )-

DP. Then there exists an (2ε, 0)-DP ALG′ such that dTV (ALG(D),ALG′(D)) ≤ δ/2Tmnd by Lemma 4.5.
Let {θ′t}t∈[T ] be the output of ALG′(D). It suffices to show for any t ∈ [T ], {∇ℓ̂(θ′t;Zi)}Zi∈D is (τ, e2εγ)-
concentrated.

Let fZi
(Z) be the density of Zi = Z and and fZi

(Z | θ′t = θ) be the density conditional on θ′t = θ. Similarly,
we let fθ′

t
(θ) and fθ′

t
(θ | Zi = Z) be the (conditional) density of θ′t. For any θ, Z, we have

fZi
(Z | θ′t = θ)

fZi
(Z)

=
fθ′

t
(θ | Zi = Z)

fθ′
t
(θ)

≤ e2ε,

where the last inequality comes from the privacy guarantee of ALG′.

One has

Pr
Zi,θ′

t

[
∥∇ℓ̂(θ′t;Zi)−∇L̂P(θ

′
t)∥ ≥ τ

]
=

∫ ∫
fθ′

t
(θ)fZi(Z | θ′t = θ)1(∥∇ℓ̂(θ;Z)−∇L̂P(θ)∥ ≥ τ)dZdθ

≤e2ε
∫ ∫

fθ′
t
(θ)fZi

(Z)1(∥∇ℓ̂(θ;Z)−∇L̂P(θ)∥ ≥ τ)dZdθ.

Note that for any θ, we have ∫
fZi(Z)1(∥∇ℓ̂(θ;Z)−∇L̂P(θ)∥ ≥ τ)dZ ≤ γ/n.

Then by union bound, we know {∇ℓ̂(θ′t;Zi)}Zi∈D is (τ, e2εγ)-concentrated which completes the proof as
dTV (ALG(D),ALG′(D)) ≤ δ/2Tmnd.

C.3 Proof of Lemma 4.9

Lemma 4.9 (Algorithmic stability bound). Suppose {Zi} are drawn i.i.d. from the underlying distribution
P. Suppose τ ≥ G log(ndmeεT/δ)√

m
and n ≳ log(mdn/δ)

ε , with probability at least 1 − δ
mnd , the stability of

Algorithm 2 is bounded as follows:

Λ(ALG) ≤ Gη
√
T +

GηT

nm
.

Proof. We use Lemma 4.8 to upper bound the stability of our algorithm. As we are using fixed step sizes
ηt = η, Lemma 4.8 implies that

Λ(ALG) ≤ 2G

√ ∑
t∈[T−1]

η2t + 2
∑

t∈[T−1]

ηtat

≤ 2Gη
√
T + 2η

∑
t∈[T−1]

at
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Thus it suffices to upper bound at for all t ∈ [T ].

By Lemma 4.6, we know for all t ∈ [T ], {∇ℓ̂(θt;Zi)}Zi∈D is (τ, γ′)-concentrated for

τ =
G log(nd/γ)√

m
, γ′ = T (e2εγ +

δ

2Tmnd
).

Then by Theorem 3.2 and Lemma 3.7, we know

gt ∼2γ′
1

nm

∑
Zi∈D

∑
zi,j∈Zi

∇ℓ̂(θt + yj ; zi,j) + ν,

where ν is Gaussian noise independent of the data. Thus we have at ≤ G
nm . Setting γ = δ

2Te2ε completes
the proof.

C.4 Proof of Theorem 4.1

Theorem 4.1 (User-level DP-SCO). Let 0 < ε < 10 and 0 < δ < 1. Algorithm 2 is user-level (ε, δ)-
DP. Setting R̂ = R, r = d1/4R̂√

T
, η = R̂

G · min{
√
mnε

T
√

d log2(mnd/δ)
, 1
T 3/4 ,

√
nm
T }, τ = G log(ndmeεT/δ)√

m
and T =

O(m2n2 +mn
√
d), if Θ ⊂ Rd is a convex set of diameter R, {ℓ(:, z)}z∈Z is a family of G-Lipschitz convex

function over Θr, each item in D is drawn i.i.d. from the underlying distribution P , and n ≳ log(mdn/δ)
ε ,

then the output θ̂ of Algorithm 2 satisfies

E
[
LP(θ̂)− min

θ⋆∈Θ
LP(θ

⋆)

]

≤ O

GR ·

 1√
nm

+

√
d log2(ndm/δ)

n
√
mε

 .

Proof. The privacy guarantee of Algorithm 2 follows from the privacy guarantee of our mean estimation
procedure (Algorithm 1), as Algorithm 2 is post processing of the outputs of Algorithm 1.

Now, we prove utility. Let θ̂ = 1
T

∑
t∈[T ] θt denote the output of the algorithm. We upper bound the error

by splitting it to two terms: one for generalization error and empirical error,

E
[
LP(θ̂)− min

θ∗∈Θ
LP(θ

∗)

]
= E

[
LP(θ̂)− LD(θ̂)

]
+ E

[
LD(θ̂)−min

θ∈Θ
LD(θ)

]
+ E

[
min
θ∈Θ

LD(θ)− min
θ∗∈Θ

LP(θ
∗)

]
≤ E

[
LP(θ̂)− LD(θ̂)

]
+ E

[
LD(θ̂)−min

θ∈Θ
LD(θ)

]
. (4)

where the second inequality holds since E[minθ∈Θ LD(θ)] ≤ minθ∗∈Θ LP(θ
∗).

For the empirical quantity (the second quantity in Equation (4)), first note that the error caused by ran-
domized smoothing is Gr (Lemma 2.5), hence

E
[
LD(θ̂)−min

θ∈Θ
LD(θ)

]
≤ E

[
L̂D(θ̂)−min

θ∈Θ
L̂D(θ)

]
+ 2Gr.

As our algorithm basically applies noisy SGD over L̂D, we now use Proposition 4.10 to bound the empirical
error. By Lemma 3.7 and Theorem 3.2, we have

gt ∼δ/Tnmd ∇L̂D(θt−1) + ζ,

where ζ ∼ N (0, G2T log2(Tmnd/δ)
mn2ε2 ). Hence we know the variance of the stochastic (sub)gradients we get

is bounded by O(G
2Td log2(Tmnd/δ)

mn2ε2 ). Moreover, we know that ℓ̂ is G
√
d

r -smooth by Lemma 2.5. Thus,
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Proposition 4.10 now implies that

E[L̂D(θ̂)−min
θ

L̂D(θ)] ≲

(
G
√
d

r
+

1

η

)
R2

T
+

ηG2Td log2(Tmnd/δ)

mn2ε2
+

GRδ

mnd
,

where the term GRδ
mnd comes from the failure probability.

Now we proceed to upper bound the generalization error (first quantity in Equation (4)). Combining
Lemma 4.7 and Lemma 4.9, and the assumption that the functions are G-Lipschitz, we get

E[LP(θ̂)− LD(θ̂)] ≤ G2η
√
T +

G2ηT

nm
+

GRδ

mnd
.

Overall, combining these together and putting them back into Equation (4), we get

E
[
LP(θ̂)− min

θ∗∈Θ
LP(θ

∗)

]
≲
G
√
dR2

rT
+

R2

ηT
+

ηG2Td log2(Tmnd/δ)

mn2ε2
+Gr +G2η

√
T +

G2ηT

nm
+

GRδ

mnd
.

Optimizing the above parameters by setting r = d1/4R√
T

, η = R
G ·min{

√
mnε

T
√

d log2(Tmnd/δ)
, 1
T 3/4 ,

√
nm/T}, we get

E
[
LP(θ̂)− min

θ∗∈Θ
LP(θ

∗)

]
≲ GR ·

d1/4√
T

+
1

T 1/4
+

√
d log2(Tmnd/δ)
√
mnε

+
1√
nm

 .

By setting T = O(m2n2 +mn
√
d), we have

E
[
LP(θ̂)− min

θ∗∈Θ
LP(θ

∗)

]
≲ GR ·

 1√
nm

+

√
d log2(ndm/δ)

nε
√
m

 ,

which completes the proof.

C.5 Proof of Theorem 4.11

Theorem 4.11 (Strongly convex case). For 0 < ε < 10, 0 < δ < 1, Algorithm 3 is user-level (ε, δ)-DP.
Under the same assumptions as in Theorem 4.1, additionally assuming that n > log(mdn) log(mdn/δ)

ε and the
functions are µ-strongly convex, then with proper parameter settings, Algorithm 3 outputs θ̂ such that

E
[
LP(θ̂)− min

θ⋆∈Θ
LP(θ

⋆)

]
≤ O

(
G2

µ

(
1

nm
+

d log2(ndm/δ)

n2mε2

))
.

Proof. Let L∗
P = minθ∗∈Θ LP(θ

∗), ∆i := E[LP(θi) − L∗
P ] and R2

i := E[∥θi − θ∗∥2]. Due to the strong
convexity, we know 1

2µR
2
i ≤ ∆i.

Let C > 2 be the constant hidden in the population loss bound in Theorem 4.1. For i ≥ 0, define Ei :=
4C2G2

µ ( 1
nim

+ d log2(nidm/δ)
n2
i ε

2m
) and we know Ei/Ei+1 ≤ 4. Define Di = 16Ei

2i
√

2G2

µ ·
1

16E0
. By the definition,

we know

Di+1

16Ei+1
= 2i

√
2G2

µ
· 1

16E0
≤
√

Di

16Ei
,

√
DiEi+1 = 4

√
EiEi+1

2i

√
2G2

µ
· 1

4E1
≤ 16Ei+1

2i+1

√
2G2

µ
· 1

4E1
= Di+1.
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Hence by setting k ≥ log log(D1/(16E1)), then Dk

16Ek
≤ 2. Note that E0 ≥ 4C2G2

µnm , and D0 = 2G2

µ . We

get D0

16E0
≤ mn and setting k = log log(mn) is large enough to get Dk ≤ 32Ek. Note that ∆0 ≤ 2G2

µ and
R0 ≤ 2G

µ by the strong convexity and assumption on being Lipschitz.

For j ≥ 1, set R̂j =
√
2Dj−1/µ, rj =

d1/4R̂j√
Tj

, ηj =
R̂j

G · min{
√
mnjε

Tj

√
d log2(mnjd/δ)

, 1

T
3/4
j

,
√
njm

Tj
}, τ =

G log(njdmeεTj/δ)√
m

and Tj = O(m2n2
j + mnj

√
d). As nj ≥ n/ log(nm) ≥ log(mdn/δ)

ε by the precondition,

R0 ≤ R̂1 = 2G
µ , by Theorem 4.1 and our parameter setting, recursively we know

∆j ≤CGR̂j · (
1

√
njm

+

√
d log2(njdm/δ)

njε
√
m

)

≤CG
√
2Dj−1/µ · (

1
√
njm

+

√
d log2(njdm/δ)

njε
√
m

)

≤CG
√

2Dj−1/µ ·
√

µEj

2C2G2

≤
√

Dj−1Ej ≤ Dj ,

where we used
√
a+
√
b ≤

√
2(a+ b) for a, b > 0. We know Ri ≤

√
2∆i

µ ≤
√

2Di

µ = R̂i+1 recursively as well.

After k-iteration, we have

E[LP(θk)− L∗
P ] = ∆k ≤ Dk ≤ 32Ek = O(

G2

µ
(
1

nm
+

d log2(ndm/δ)

n2ε2m
)).

The statement follows.
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