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Abstract

The run-time for optimization tools used in
chip design has grown with the complexity of
designs to the point where it can take several
days to go through one design cycle which
has become a bottleneck. Designers want
fast tools that can quickly give feedback on a
design. Using the input and output data of
the tools from past designs, one can attempt
to build a machine learning model that pre-
dicts the outcome of a design in significantly
shorter time than running the tool. The ac-
curacy of such models is affected by the repre-
sentation of the design data, which is usually
a netlist that describes the elements of the
digital circuit and how they are connected.
Graph representations for the netlist together
with graph neural networks have been inves-
tigated for such models. However, the char-
acteristics of netlists pose several challenges
for existing graph learning frameworks, due
to the large number of nodes and the im-
portance of long-range interactions between
nodes. To address these challenges, we rep-
resent the netlist as a directed hypergraph
and propose a Directional Equivariant Hy-
pergraph Neural Network (DE-HNN) for the
effective learning of (directed) hypergraphs.
Theoretically, we show that our DE-HNN can
universally approximate any node or hyper-
edge based function that satisfies certain per-
mutation equivariant and invariant proper-
ties natural for directed hypergraphs. We
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compare the proposed DE-HNN with sev-
eral State-of-the-art (SOTA) machine learn-
ing models for (hyper)graphs and netlists,
and show that the DE-HNN significantly out-
performs them in predicting the outcome of
optimized place-and-route tools directly from
the input netlists. Our source code and the
netlists data used are publicly available at
https://github.com/YusuLab/chips.git.

1 Introduction

Chip design is a complicated process involving numer-
ous steps, many of which involve solving hard opti-
mization problems. Just consider the stage of the place
and route of a synthesized netlist: Here the input is
a netlist consisting of cells and nets, where cells refer
to functional units such as logic gates, and nets refer
to connections between cells. The goal is to produce
a layout of this netlist in a specific 2D region, where
gates are placed and connections among them are re-
alized by wires laid out across multiple layers (called
“routed”), all while aiming to optimize multiple key
properties (e.g, minimizing total wirelength and reduc-
ing congested “hotspots”). This place-and-route stage
is highly nontrivial to solve for large netlists, and re-
quires a time-consuming process in practice with mul-
tiple stages and iterations.

There therefore arises the need for data-driven meth-
ods to predict properties of a design directly without
the time-consuming place and routing process. To this
end, graph neural networks become natural choices,
given that the netlists are often represented as a graph
or a hypergraph. In this paper, we aim to develop
an efficient and effective graph learning architecture
to predict post-routing properties (e.g., wirelength or
congestion) for a synthesized netlist accurately.

The past decade has witnessed a tremendous growth
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of graph learning models. Two most popular fami-
lies are (i) message-passing neural networks (MPNNs)
(Gilmer et al., 2017; Jegelka, 2022), and (ii) trans-
former based approaches (e.g, survey (Müller et al.,
2023)). However, netlists present several challenges for
existing graph learning architectures: (i) their size can
be massive, from hundreds of thousands to millions of
nets, (ii) long-range interactions are important (e.g.,
properties of interest might be caused by long paths
and other long-range interactions), and (iii) properties
of post-routing netlists seem to depend on complex in-
formation of graph topology beyond simple statistics
such as in-/out-degrees (distributions).

Unfortunately, it is challenging for popular MPNNs to
capture long-range interactions, due to issues such as
over-smoothing of graph signals (Chen et al., 2020a)
and oversquashing bottlenecks (Topping et al., 2022).
MPNN’s ability in capturing graph motifs (e.g cy-
cles and trees) and higher-order structures is also
limited (Xu et al., 2019; Jegelka, 2022; Hy et al.,
2019). Transformer-based graph neural models appear
to be more effective in capturing long-range interac-
tions (Dwivedi et al., 2022; Ngo et al., 2023). However,
each transformer layer typically takes time quadratic
to the number of nodes. While there are sparse trans-
formers (Katharopoulos et al., 2020; Tay et al., 2022),
their representation power is also reduced. Further-
more, the primary ways for a graph transformer to
capture input graph topology have been either via ini-
tial position/structure encoding of nodes, or via the
use of certain pairwise graph distances to “reweight”
the attention (Zhang et al., 2023). In general, it is not
clear how sensitive a transformer based model is to
features in input graph topology (e.g., specific paths
which can be important to netlists properties).

Our work. In this paper, similar to (Xie et al.,
2021), we model a netlist as a directed hypergraph and
present a novel Directional Equivariant Hypergraph
Neural Networks (DE-HNN) for the effective learning
of (directed) hypergraphs. In particular, DE-HNN can
be used to predict properties (e.g., congestion or net-
wirelength) of a post-routed netlist directly from an
input netlist before performing the lengthy place-and-
route process. Our DE-HNN incorporates several new
ideas to address the aforementioned challenges posed
by netlists. Our contributions are as follows:

• We advocate for the modeling of a netlist as a di-
rected hypergraph. Indeed, a net usualy consists
of a driver gate/cell c, togehter with a set S of
“sinks”; see Section 2 and Figure 1. Recognizing
the difference between the driver gate and sinks in
the timing of a routed net, inspired by (Xie et al.,
2021), we represent a net as a directed-hyperedge

(c, S) to separate the roles of driver and sinks cells.
• We propose a learning model DE-HNN for directed
hypergraphs. Theoretically, we show (Theorem
1) that our DE-HNN can universally approximate
any node or hyperedge based function that satis-
fies certain permutation equivariant and invariant
properties natural for directed hypergraphs.

• On the practical front, to mitigate the issue of
large size of and long-range interactions in in-
put netlists, we use a hierarchy of virtual nodes
(VNs), which provides additional “bridges” to al-
low the integration of both local and global in-
formation while still maintaining original graph
topology (unless in a graph pooling approach);
see Figure 2 and Section 3.

• To make our initial node features more informa-
tive, in addition to using Laplacian eigenvectors to
provide position encoding as in (Kim et al., 2022;
Rampášek et al., 2022), we also use a topological
summary called persistent homology (Edelsbrun-
ner and Harer, 2010; Dey and Wang, 2022), which
can be used to encode the “shape” of graph motif
around each node in a multi-scale manner (e.g.,
(Zhao et al., 2020; Yan et al., 2021)).

• We compare our DE-HNN with several SOTA
machine learning models for (hyper)graphs and
netlists. Our model significantly outperforms
them in predicting different properties of post-
routed netlists directly from input netlists. We
provide careful ablation studies to demosntrate
the utilities of the use of directed hyperedge, (hi-
erarchical) VNs and persistence-based topolog-
ical summaries. Finally, we remark that ML
research for chip design currently suffers from
the scarcity of open-source benchmark datasets1.
We hope our datasets (which will be made pub-
licly available at https://github.com/YusuLab/
chips.git) can help bridge this gap. These
netlists (of sizes from 400K to 1.3M) can also serve
as benchmark for long-range graph interactions
for machine learning researchers.

While in this paper, we design DE-HNN with the goal
of netlists representation and learning, our architec-
ture as well as its theoretical results are general and
applicable to any directed hypergraphs.

Related work on machine learning models for
netlists. Earlier machine learning (ML) approaches
for netlist property (e.g, congestion) prediction assume
that the placement of cells (logic gates) are already

1Previous netlist property prediction work sometimes
releases the input netlist designs, which our paper also
uses. However, they do not release the resulting proper-
ties nor the post place-and-route netlists due to the use of
commercial tools.
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given, that is, the input are placed, but not yet routed.
They then convert the input to a 2D image or other
2D grid-based representations to predict the final con-
gestion map over this region using models such as con-
volutional neural networks (Tabrizi et al., 2018; Chen
et al., 2020b; Xie et al., 2018; Al-Hyari et al., 2021;
Liang et al., 2020; Chai et al., 2023; Alawieh et al.,
2020; Chen et al., 2022; Wang et al., 2022). How-
ever, the placement information is itself very time-
consuming to obtain. Furthermore, representing the
input as a 2D image makes it hard to capture local
and global connectivity information in the netlists.

Since a circuit is represented more accurately as a (hy-
per)graph, recent work deploys graph neural networks
(GNNs) for congestion prediction. The work of (Kirby
et al., 2019) constructs a homogeneous graph repre-
sentation of netlist in which each node corresponds to
a cell, and if two cells are connected by a net then
there exists an edge between those nodes in the graph,
and then applies Graph Attention Networks (GAT)
(Veličković et al., 2018). Later follow-up work includes
using node embedding computed from partitioned sub-
graph (to capture more global graph structure) (Ghose
et al., 2021) and using dual graph with both cell and
net features (Xie et al., 2021). Note that this conver-
tion of a net to a clique can lead to very large sized
cliques, and also loses net-specific topological informa-
tion. The SOTA approach for netlists representation
is (Yang et al., 2022), which introduces a heteroge-
neous (i.e., different edge types) graph construction,
called circuit graph, in which both cells and nets are
represented as nodes of a bipartite graph.

All these approaches still have the issues of capturing
long-range interaction essentially for netlists. As we
describe in “Our contributions”, our DE-HNN deploys
a suitable architecture, hierarchical virtual nodes, as
well as informative persistent homology features, to
build an effective graph learning model for netlists
(and other directed hypergraphs). Note that similar
to (Kirby et al., 2019; Yang et al., 2022), our DE-HNN
performs learning on netlists without placement in-
formation. If placement informtion is available, they
can easily be added to initial node position encoding.

2 Modeling netlists as directed
hypergraphs

Circuit netlists. A circuit netlist is a textual rep-
resentation of electronic components, such as logical
boolean gates, and the connections between them. A
(pre-placed, also called synthesized) netlist H consists
of a collection of cells (logic gates) C = {c1, . . . , cn},
and a set of nets N = {σ1, . . . , σm}. Each cell (gate)
has a certain number of input pins and an output pin.

The number of input pins is decided by the type of
this gate (e.g., an AND gate takes two inputs). For
every gate, its output will flow into the input pins of a
collection of other gates. This information is captured
by the concept of net, where a net σ ∈ N consists of
the output pin of a certain cell, called its driver cell
denoted by vσ ∈ C, together with all those sink cells,
denoted by Sσ ⊆ C, where the signal from this out-
put pin will flow into. In other words, a net can be
represented by a tuple σ = (vσ,Sσ). See Figure 1 (a).

Given such a netlist, standard chip design pipelines
will first lay it out in the physical space (placement).
Then in the routing stage, the connection from output
pin of one cell to the input of other cells are mapped to
the routing channels within the chip’s physical floor-
plan. Among other properties, one wishes to minimize
the total wirelength of each net, and to reduce rout-
ing “congestions”, which occurs when the number of
edges to be routed in a specific region of the floorplan
exceeds the available routing capacity. See Figure 4
in the Supplement for an illustration of a placed-and-
routed netlist.

Directed hypergraphs. The standard hypergraph
H is a tuple (V,Σ), where V is a set of nodes, Σ is a set
of hyperedge, and each e ∈ Σ is a subset of V ; i.e., e ⊆
V . A directed hypergraph

−→
H is a tuple (V,

−→
Σ), where

each directed hyperedge σ ∈
−→
Σ consists of an ordered

pair σ = (vσ, Sσ) with vσ ∈ V and Sσ ⊆ V . It is easy
to see that a netlist (C,N ) can be naturally viewed as
a directed hypergraph where we have: cell ⇔ node,
and net ⇔ directed hyperedge. See Figure 1 (b).

In what follows, we often use cells / nodes, as well as
nets / directed hyperedges, interchangeably. In fact,
for simplicity, we often use the terms “nodes” and
“nets” as they are more concise. We will also refer to
vσ and Sσ from a directed hyperedge σ = (vσ,Sσ) as
its driver and its sinks, respectively, just like in a net
σ.

Given a net σ ∈
−→
Σ, we say that it contains a node

v ∈ V , denoted by v ∈ σ, if v is either the driver, or
a sink of σ. Given a node v ∈ V , we say that a net σ
is incident on v if σ contains v. The collection of nets
incident to v is called the incident-net-set of v, denoted

by I(v) = {σ′ ∈
−→
Σ | v ∈ σ′}. For example, in Figure 1

(b), the incident-net-set of v3 is I(v3) = {σ1, σ2, σ5}.

In the chip design literature, a netlist is oftentimes
represented either (1) as a (directed) graph where two
cells are connected if they belong to a common net; or
(2) as a standard hypergraph where a net is a hyper-
edge consisting of the union of the driver cell and all
sink cells. The former can lead to huge cliques (as some
nets can consist of large number of cells) and also lose
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Figure 1: (a) A netlist with 7 cells C = {c1, . . . , c7} and

5 nets. For example, the output of gate c2 flows into cells

c3, c5, and c7, giving rise to the net σ = (c2, {c3, c5, c7}).
That is, the driver cell of σ is vσ = c2, while its sink-set

being Sσ = {c3, c5, c7}. (b) The corresponding directed

hypergraph
−→
H = (V,

−→
Σ) with 7 nodes and 5 hyperedges−→

Σ = {σ1, . . . , σ5}. Each node vi corresponds to cell ci,

and each hyperedge is marked as a shaded region.

sensitivity to the net topology. In the learning con-
text, the work of Xie et al. (2021) first separated the
role of the driver and sinks of a net in the represen-
tation of a netlist and provided justification for this
choice. Their final representation is still a graph rep-
resentation that is intuitively a directed version of the
so-called line graph for a hypergraph. However, con-
verting a hypergraph to a line graph is a lossy process.
The directed hypergraph provides a more informative
and cleaner representation: it both preserves the full
net information and differentiates between drivers and
sinks.

3 DE-HNN: a neural network for
directed hypergraphs

In this section, we first describe a basic neural network
(NN) model in Section 3.1, which we refer to as base-
DE-HNN, for the representation learning of directed
hypergraphs. We provide theoretical justification of
this model in Section 3.2. Then in Section 3.3, we
describe how to augment this base model to make it
more effective at capturing long-range interactions as
well as the multi-scale graph topology.

3.1 Base-DE-HNN

Our base-DE-HNN uses message-passing mechanisms.
However, it differs from standard MPNN (message-
passing neural networks) (Gilmer et al., 2017) in how
the messages are aggregated and updated, so as to pro-
cess node and net based features, as well as to respect
the direction of hyperedges.

More specifically, base-DE-HNN consists of L layers.

Consider an input directed hypergraph
−→
H = (V,

−→
Σ).

For the ℓ-th layer, each node v ∈ V (resp. each

net/directed hyperedge σ ∈
−→
Σ) will maintain a node

feature (resp. net feature) denoted as mℓ(v) (resp.

M ℓ(σ)). For simplicity, assume that mℓ(v),M ℓ(σ) ∈
Rdℓ are dℓ-dimensional vectors. Assume first that our
final goal is to predict net properties. The base-DE-
HNN will computemℓ(v) andM ℓ(σ) using feature rep-
resentations from the (ℓ−1)-th layers by the following
two steps:

[Node Update]: First, the features of each node
(cell) v ∈ V is updated using features of the set of
those nets containing it, that is, via the features of
those nets in the incident-net-set I(v) of v as follows:

mℓ(v) = Aggℓσ→v({{M ℓ−1(σ′)}}σ′∈I(v)), (1)

where {{ · }} denotes a multiset as some neighboring
nets could have identical feature representations. The
function Aggσ→v operates on a multiset and should be
invariant to the order of neighboring nets of v in I(v).
Similar to the Deep Set architecture (Zaheer et al.,
2017) which can hancle such permutation invariance
in multisets, we implement the function Aggσ→v by:

mℓ(v) =
∑

σ′∈I(v)

MLPℓ
1

(
M ℓ−1(σ′)

)
, (2)

where MLP1 stands for a multi-layer perceptron.
For example, the update of node feature for v4
in Figure 1 (b) is mℓ(v4) = MLPℓ

1

(
M ℓ−1(σ1)

)
+

MLPℓ
1

(
M ℓ−1(σ3)

)
as I(v4) = {σ1, σ3}. It is easy to

see that the update in Eqn (2) satisfies the needed
permutation invariance.

[Net Update]: Next, the features of each net σ =
(vσ,Sσ) is updated using the new node features for
those nodes contained in σ. Since the net (hyperedge)
σ is directed, we wish to separate the roles of its driver
node vσ and the set of sinks Sσ, that is,

M ℓ(σ) = Aggℓv→σ(m
ℓ(vσ), {{mℓ(v′)}}v′∈Sσ

) (3)

However, the update should not depend on the order-
ing of nodes in the sink set Sσ, i.e., Aggv→σ needs to
be permutation invariant w.r.t. its second parameter,
the multiset {{mℓ(v′))}}v′∈S(σ). We use the following

to implement Eqn (3) to guarantee the needed per-
mutation invariance of Aggv→σ w.r.t. the ordering of
nodes in Sσ:

M ℓ(σ) =MLPℓ
3

[
mℓ(vσ)⊕

( ∑
v′∈Sσ

MLPℓ
2(m

ℓ(v′))

)]
(4)

where MLP2 and MLP3 are multi-layer perceptrons,
and ⊕ denotes vector concatenation. For example, in
Figure 1, the update of σ1 = (v1, {v3, v4}) isM ℓ(σ1) =
MLPℓ

3

(
mℓ(v1)⊕ (MLPℓ

2(m
ℓ(v3)) +MLPℓ

2(m
ℓ(v4))

)
.

We note that if the target task is to predict node-level
features (instead of net-level features), then we will
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apply dual update rules where the roles of nets and
nodes will be swapped. Finally, in our implementa-
tion, we also add residuals (i.e, node / net features
from the previous level) to each node / net features
during the updates. There are L such layers, and in
the end, if the given task is a regression task, then
another linear layer ψ is applied to the values mL(·)
(resp. ML(·)) to generate the final node-based (resp.
net-based) regression function. During the training
process, the loss function in this case is the standard
mean squared error; that is, if it is a node-based re-
gression with ground-true function y : V → R, then
we have:

L(θ) = 1

|V |
∑
v∈V

[ψ(mL(v))− y(v)]2, (5)

where θ denotes the set of all learnable parameters in
the entire base-DE-HNN model. Node or net classifi-
cation tasks are handled similarly but with the cross-
entropy loss.

3.2 Theoretical analysis of DE-HNN

We now provide some theoretical guarantee of our
base-DE-HNN model. For simplicity, in what follows
we assume that our target (regression) functions are
net-valued functions2 (or simply net-functions) of the

form F :
−→
Σ → R. Our main result below holds for

node-valued functions via a symmetric argument.

Let us consider one update stage at a fixed layer ℓ ∈
[1, L]. From the net-function perspective, the goal of
the update stage is the following: At the beginning
of this stage, we start with input net features µσ :=

M ℓ−1(σ), for all σ ∈
−→
Σ. In the end, we obtain a set of

new features µ∗
σ :=M ℓ(σ) for each σ ∈

−→
Σ. If we view

this feature update as a function on net features, then

ideally, for any fixed σ ∈
−→
Σ, its new feature should

depend on the features of all its neighboring nets which
are those nets that share at least one node with σ.
However, note that the neighbors of σ are naturally
classified to two families:

(type-A) those in the set I(vσ) (recall I(v) is the set
of nets that contains node v), which are connected
to σ via the driver node vσ of σ; and

(type-B) those in
⋃

v′∈Sσ
I(v′), where each set I(v′)

are those nets connected to σ via a sink node v′

of σ (i.e., v′ ∈ Sσ). Note that
{
I(v′)

}
v′∈Sσ

is a

set of sets of neighboring (type-B) nets of σ.

For example, in Figure 1, for σ5 = {v3, {v5, v7}}, its
(type-A) neighbors are I(v3) = {σ1, σ2, σ5}, while

2The net-valued function is more natural for properties
such as net wirelength and congestion.

(type-B) is a set of sets {{σ2, σ4, σ5}, {σ2, σ5}}. It
is natural to model the desired update function for
the directed hyper-edges as follows, which differenti-
ate (type-A) and (type-B) neighbors of σ:

µ∗
σ = F

(
{{µσ′}}σ′∈I(vσ),

{{
{{µσ′}}σ′∈I(v′)

}}
v′∈Sσ

)
(6)

Note that the first variable, {{µσ′}}σ′∈I(vσ), con-
sists of the set of input feature representations of
(type-A) neighbors of σ, while the second variable,{{

{{µσ′}}σ′∈I(v′)

}}
v′∈Sσ

, is a set of sets3 (of net

features), constituting multisets of feature represen-
tations of those (type-B) neighbors of σ. The function
F should be invariant not only to the order within each
individual set I(u) for some cell u, but also invariant
to the order of nodes in the sink-set Sσ, i.e., the order
of sets {µσ′}σ′∈I(v′)’s within the outer-set in the sec-
ond variable of F . We refer to such a function F as
nested-permutation invariant.

Now recall that in our base-DE-HNN, at each layer
we perform update of node-feature by features of its
incident nets as described in Eqn (2), followed by the
update of net-features by the new features of those
nodes contained in σ as specified in Eqn (4). In other
words, one can think of the update of net features from
M ℓ−1(·) to M ℓ(·) to be the composition of updates in
Eqns (2) and (4). By construction, it is easy to see
that the composition of these two udpate steps indeed
gives rise to a nested-permutation invariant function.
However, can any nested-permutation invariant net-
function be represented (or approximated) by such a
composition of two steps? A priori, the answer to this
opposite direction is not clear at all as the iterative
updates factored through the node features appears
more restrictive. Our main theorem below shows that
the answer is in fact positive.

Theorem 1 (Simplified). Let F be any continuous,
nested-permutation invariant, net-value function as in
Eqn (6). For simplicity, assume both input nets and
output of M take values in a compact set B ⊂ Rd, a
connected compact subset of Rd. Then we have that F
can be rewritten as the following sum-decomposition

∀σ : F
(
{µσ′}σ′∈I(vσ),

{
{µσ′}σ′∈I(v′)

}
v′∈Sσ

)
= ρ

( ∑
σ′∈I(vσ)

ϕ1(µσ′),
∑
v′∈Sσ

ϕ2
( ∑
σ′∈I(v′)

ϕ1(µσ′)
))
(7)

where ϕ1 : Rd → Rd′
, ϕ2 : Rd′ → Rd′′

, and ρ are
continuous functions.

3For concision, we use “set” instead of “multiset” here.
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Recall that for the ℓ-th layer, the input feature for any
net σ′ is µσ = M ℓ−1(σ′). Now compare the right-
hand side of Eqn (7) with Eqns (2) and (4): it is easy
to see that by using MLP1 from Eqn (2) to approx-
imate the continuous function ϕ1, and using MLP2

and MLP3 from Eqn (4) to approximate continuous
functions ϕ2 and ρ respectively, we then have that our
iterative updates using Eqns (2) and (4) approximate
any desired update of the net features via a nested-
permutation invariant function as in Eqn (6). In other
words, the iterative message-passing update steps in
our base-DE-HNN provides an universal approxima-
tion of the desired nested-permutation invariant up-
date functions over nets. The proof of this theorem
and more discussions can be found in the Supplement.

3.3 Augmenting base-DE-HNN to DE-HNN

The base-DE-HNN provides an effective way to update
features for both nodes and hyperedges in an itera-
tive manner. We now describe further augmentation
strategies for the resulting DE-HNN to capture long-
range interactions as well as to be more senstive to the
multi-scale graph topology.

Hierarchy of virtual nodes. The standard
message-passing GNNs have difficulty to capture long-
range interaction due to issues such as over-smoothing,
over-squashing and under-reaching. Most GNNs used
in practice have few layers. Transformer-type mod-
els for graphs may alleviate the issue (Dwivedi et al.,
2022), but each self-attention layer requires quadratic
computation, which does not scale to large graphs.
Furthermore, it is not clear how to effectively encode
graph structures for transformers, even with the use
of initial position encoding (Müller et al., 2023) or
reweighting based on graph distances (Zhang et al.,
2023). Intuitively, we want to keep the simple and ef-
ficient message-passing framework over the input (very
sparse) hypergraph, but also have a way to propagate
long-range information among nodes that are far away
from each other (in terms of graph distances). We will
do so via the use of virtual nodes.

Specifically, a virtual node (VN) is an additional node
we add that is connected to all input nodes. This
effectively reduces the graph diameter to 2, and has
been a popular strategy in graph learning literature;
e.g. (Gilmer et al., 2017). However, note that mes-
sages cannot be directly passed between two nodes.
Instead, information of all nodes have to be aggre-
gated at the virtual node before being passed back
to all nodes. Nevertheless, (Cai et al., 2023) shows
that a message-passing GNN augmented by a sin-
gle VN can already approximate Lineaer Transformer
(Katharopoulos et al., 2020) and Performer (Choro-

Figure 2: A two-level hierarchy of virtual nodes (VNs).

manski et al., 2021) (as well as general transformers
to some extent) and bring significant empirical gains.

While adding a single VN will only linearly increase
the number of edges, the VN itself will have a high de-
gree and potentially become a computatoinal bottle-
neck. Furthermore, since the features of all nodes have
to be aggregated at the virtual node, the aggregated
messages will lose sensitivity to individual node fea-
tures. The benefits of adding a single VN thus dimin-
ishes as the graph becomes larger. We instead propose
to use a hierarchy of VNs as follows (see Figure 2).

• Given an input hypergraph
−→
H = (V,

−→
Σ), we first

use Metis (Karypis and Kumar, 1998) to partition
its node set to k disjoint subsets V = V1 ∪ V2 ∪
· · · ∪ Vk. In our experiments, we keep the sizes of
Vis roughly balanced, and therefore the value of
k varies as input graph size changes.

• We introduce a VN ωi for each subset Vi, for
i ∈ [1, k], and ωi is connected to all nodes in Vi.
These VNs are first-level VNs. Note that the total
number of edges added this way is only n = |V |.

• We further create a super-VN, denoted by ω0,
which connects to all the first-level VNs. This
introduce an additional k number of edges.

In what follows, we refer to nodes from input hy-
pergraphs as standard nodes. During the updating
of node/edge features, we will use heterogeneous up-
dates, where the aggregation functions at the first-level
VNs and super-VN are different from that at standard
nodes. Different from graph pooling, the use of ad-
ditional VNs keep the original hypergraph topology,
while they act as additional “bridges” and allow infor-
mation flow both at global (among far-apart nodes via
VNs) and local scales (along original edges).

As the input hypergraph becomes even larger, we
could use multiple layers in our hierarchy of VNs. Nev-
ertheless, we observe that two layers already yield good
performance in our current test cases. If nodes are
placed, one could partition the node set by spatial lo-
cations (e.g., by decomposing the rectangular region)
instead of using Metis.
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Initial positional / structural encodings. Fi-
nally, we aim to encode meaningful multi-scale features
for each node / hyperedge. To this end, for each node,
we add the Laplacian positional encoding consisting of
the function value of this node from the first s (s = 10
in our experiments) eigenvectors of the undirected ver-
sion of input hypergraph.

Furthermore, to better capture the “shape” of the
neighborhood of each node v in a more discriminative
and multi-scale manner, similar to (Yan et al., 2021;
Zhao et al., 2020), we use the so-called extended persis-
tence diagram (PD) summary induced by the shortest
path distance function within the r-hop neighborhood
of each node (r = 6 in our experiments) as an ini-
tial structural encoding for each node. Note that it is
known (Tian and Wang, 2019) that PDs constructed
this way can encode rich graph information of the r-
hop neighborhood of each node v (viewed as a local
motif around v), such as clustering coefficients, num-
ber of nodes at distance a ≤ r to v, number of in-
dependent cycles, etc. See the Supplement for more
details. Indeed, as our ablation study and results in
Supplement show, adding PDs improve both our and
previous graph learning models.

4 Experiments

4.1 Datasets

We used 12 of the Superblue circuits from
(Viswanathan et al., 2011, 2012) to evaluate our pro-
posed models and baselines. The Superblue circuits
are some of the most complex yet publicly available
circuits used in previous work about VLSI placement
and routing. The size of these netlists range from 400K
to 1.3M nodes, with similar number of nets. Note that
these hypergraphs are very sparse, although there are
a very small fraction of nets with large sizes. See
the Supplement for more detailed statistics of these
netlists, including the size of each design as well as the
statistics of target properties.

We pulled our designs from the RosettaStone (Kahng
et al., 2022) repository’s Skywater 130 nm technol-
ogy (Edwards, 2020) benchmark set. We then used a
commercial physical design tool to perform placement
optimization for each design with a utilization ratio
of 0.7. We exported global-routing congestion infor-
mation in the form of demand and capacity for each
global-route cell (GRC) in each routing layer.

4.2 Setup

Baselines. We compare with a range of SOTA base-
lines: (i) Graph Convolutional Networks (GCN) (Kipf

and Welling, 2017); (ii) a SOTA variant of Graph
Attention Networks (GATv2) (Brody et al., 2022);
(iii) Hypergraphs Message Passing Neural Network
(HMPNN) (Heydari and Livi, 2022); (iv) Hypergraph
(Neural) Networks with Hyperedge Neurons (HNHN)
(Dong et al., 2020); (v) A multiset function framework
for Hypergraph Neural Network (AllSet) (Chien et al.,
2022); (v) the SOTA graph-based model specifically
defined for netlist property predictions, NetlistGNN
(Yang et al., 2022). See the Supplement for more de-
tails on their architecture, including model complexity.
We also compare with the hypergraph convolutional
operator (HyperConv) (Bai et al., 2021) and Linear
Transformers (Katharopoulos et al., 2020). As both
models’ performances on average are not as good as
other baseline models, we include their results only in
the Supplement.

We compare these baselines with our DE-HNN model,
which we refer to as full-DE-HNN in results to differen-
tiate with base-DE-HNNmodel, whose performance we
also include for reference. Note that base-DE-HNN is
without persistence diagrams (PDs) as initial features
nor virtual nodes (VNs). We implement our DE-HNN
and the baselines with PyTorch (Paszke et al., 2019)
and PyTorch-geometric (Fey and Lenssen, 2019).

Features. For each cell, its initial features include:
type, width, height of gate, degree, degree distribu-
tion of a local neighborhood (summarized into a vec-
tor), top-10 Laplacian eigenvectors, and persistence di-
agram (PD) features (see Supplement). For all meth-
ods other than Linear Transformer, the initial net fea-
tures are the nets’ degrees. For Linear Transformer,
net features are obtained by averaging the features
of those nodes contained in it so as to provide more
topology information. (see Supplement). For a fair
comparison, the same initial cell/net features are used
for all models (other than our base-DE-HNN, which do
not have PDs as it is a base model without any aug-
mentation). One might wonder whether adding persis-
tence diagrams (PDs) features are beneficial for both
our method and baselines. Indeed as we show later
in Ablation study and in Supplement, using PDs im-
prove model performance for both our methods and
baselines. For example, it improves NetlistGNN by
3.6% on average in terms of demand regression in the
single-design setting.

Prediction tasks. We test three different tasks in
our experiments, including both net- and node-based
tasks. These tasks cover the types of experiments per-
formed by previous netlist prediction approaches.

• Net-based wirelength regression: We use
half-perimeter wirelength (HPWL), a common es-
timator used for wirelength calculation, to calcu-
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Table 1: Net-based wirelength regression. Last row “Im-

provement” refers to the improvement of our full DE-HNN

model over the best baseline approach for each metric.
Model Single-Design Cross-Design

RMSE ↓ MAE ↓ Pearson ↑ RMSE ↓ MAE ↓ Pearson ↑

GCN 1.762 1.276 0.750 1.691 1.276 0.746
GATv2 1.812 1.330 0.687 1.717 1.281 0.737
AllSet 1.718 1.264 0.760 1.837 1.348 0.695

HMPNN 1.841 1.368 0.710 1.785 1.335 0.710
HNHN 1.852 1.368 0.717 1.754 1.333 0.701

NetlistGNN 1.773 1.320 0.740 1.762 1.324 0.718
base DE-HNN 1.751 1.269 0.748 1.731 1.291 0.730
full DE-HNN 1.689 1.245 0.770 1.677 1.242 0.754

Improvement 1.7% 1.6% 1.3% 1.9% 2.6% 1.8%

Table 2: Net-based demand regression for each design.
Model Single-Design Cross-Design

RMSE ↓ MAE ↓ Pearson ↑ RMSE ↓ MAE ↓ Pearson ↑

GCN 9.321 6.163 0.570 6.571 5.024 0.365
GATv2 9.342 6.118 0.561 6.623 5.137 0.363
AllSet 9.072 5.745 0.632 6.120 4.820 0.345

HMPNN 9.342 6.118 0.561 6.979 5.356 0.306
HNHN 9.342 6.118 0.561 6.390 4.870 0.358

NetlistGNN 9.063 5.839 0.623 8.328 6.839 0.367
base DE-HNN 8.997 5.764 0.630 6.778 5.085 0.337
full DE-HNN 8.381 5.334 0.683 6.037 4.670 0.372

Improvement 7.5% 7.2% 8.1% 1.4% 4.1% 1.4%

late the wirelength of each net (Mirhoseini et al.,
2021). Similar to (Yang et al., 2022), we take the
log2 of the wirelength to reduce the range.

• Net-based demand regression: We predict
the net-based demand. Congestion happens when
demands exceeds capacity. There is no concensus
on how to define congestion (difference or ratio)
and we thus directly predict demand.

• Cell-based congestion classification: Similar
to (Yang et al., 2022) and (Wang et al., 2022),
we classify the cell-based congestion values (com-
puted as the ratio of demand/capacity) into (a) [0,
0.9], not-congested ; and (b) [0.9, inf]; congested.

Our experiments have two settings:

• Single-design: We train and evaluate on each
individual design separately. For each graph in
a design, we apply 4-fold cross-validation to ran-
domly split the nodes into 4 subsamples with same
sizes (25%/25%/25%/25%). We report the aver-
age performance across all 12 designs with cross-
validation applied to each design. The distribu-
tion of target values and the average performance
from cross-validation for each design can be found
in the Supplement.

• Cross-design: We aim to evaluate the ability of
the models to generalize to unseen netlist topolo-
gies. Following previous work (Yang et al., 2022),
we use 10 designs, Superblue1,2,3,5,6,7,9,11,14,16,
for training, superblue18 for validation, and su-
perblue19 for testing.

Table 3: Cell-based congestion classification.
Model Single-Design Cross-Design

Precision ↑ Recall ↑ F score ↑ Precision ↑ Recall ↑ F score ↑

GCN 0.761 0.857 0.802 0.633 0.997 0.773
GATv2 0.810 0.864 0.835 0.630 0.999 0.765
AllSet 0.782 0.837 0.804 0.645 0.964 0.773

HMPNN 0.774 0.826 0.792 0.633 0.999 0.772
HNHN 0.792 0.869 0.826 0.648 0.939 0.767

NetlistGNN 0.812 0.860 0.831 0.647 0.953 0.771
base DE-HNN 0.824 0.860 0.840 0.653 0.990 0.774
full DE-HNN 0.833 0.876 0.853 0.660 0.986 0.780

Improvement 2.6% 0.8% 2.2% 1.7% − 1.0%

4.3 Results

The test performance of all baselines and our meth-
ods (base-DE-HNN and full-DE-HNN) are shown in Ta-
bles 1, 2 and 3. For the regression tasks, to be compre-
hensive, we use three metrics: the Mean Squared Error
(MSE), the Mean Average Error (MAE), and the Pear-
son correlation (Pearson). For classification tasks, we
report the Precision, Recall, and F-Score. Note that
for MSE and MAE, the smaller the value is the better;
while for Pearson, Precision, Recall, and F-Score, the
larger the better. In all tables, we highlight the best
performance results in red, while the best among all
baseline models are colored blue (unless a baseline re-
sult is the best, in which case it will be red-colored).
In the last row of these tables, we show the Improve-
ment of our full-DE-HNN model over the best of all
baselines for each metric; note that our improvement
over any individual baseline can only be better than
this improvement. Our full-DE-HNN model outper-
forms all baselines, sometimes significantly. For exam-
ple, compared to NetlistGNN (Yang et al., 2022), the
previous SOTA for netlist representatin learning, our
improvement on average is around 5.3% for wirelength
prediction, and 8.6% for demand prediction, both in
terms of MAE. See the Supplement for the full results,
including the test performances for each design in the
single-design setting.

Ablation study. We carried out an ablation study
to understand the effects of the different strategies em-
ployed in our DE-HNN. In particular, the factors we
wish to test are: (a) the use of direction in model-
ing nets, (b) the use of persistence diagrams (PDs)
as features, and (c) the use of single and hierarchi-
cal VNs (virtual nodes). To this end, we compare
the performance of the following versions: (a) base-E-
HNN stands for treating a net as a standard hyperedge
(thus no direction), and using neither PD features
nor VNs. (b) base-DE-HNN is the base model for di-
rected hypergraph (described in Section 3.1) with nei-
ther PDs nor VNs. In other words, the difference be-
tween base-DE-HNN and base-E-HNN shows the effect
of adding directions. (c) base-DE-HNN+PD is the base
model with only PDs. Hence the difference between
(c) and (b) is to show the effect of PDs. (d) base-DE-
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HNN+PD+single VN is the base model with PD and
a single global VN. (e) Finally, full-DE-HNN is our full
model with PDs and a two-level hierarchy of VNs. The
results for net-based demand regression and cell-based
congestion classification are shown in Figure 3. Full
results are found in the Supplements, Other metrics
and tasks show a similar behavior. For example, for
demand prediction, from base-E-HNN, to adding direc-
tions, PDs, single VN, and finally two-level VNs, per-
formance improves over the previous version by 2.5%,
2.6%, 1.0% and 3.4%, respectively. Overall, full-DE-
HNN improves over the base-DE-HNN by around 6.8%,
while its improvement over base-E-HNN (base model
with no direction) is 9.2%.

Figure 3: Ablation study for net-based demand regression

(left, RMSE) and cell-based congestion classification (right,

F-score).

5 Conclusion

In this paper, we presented an effective model for rep-
resentation learning on directed hypergraphs. We con-
sidered learning on netlists, the hypergraph represen-
tation of circuits in chip design. This has great impor-
tance in practice but so far ML approaches for netlist
representation learning has been limited, partly due
to their huge sizes, long-range interactions, as well as
the scarsity of benchmark datasets. We introduced
several strategies to capture long-range interactions,
graph motifs, and to consider direction in a hyper-
edge. Our model significantly outperforms a range of
SOTA methods over a collection of chip designs. Our
datasets will be publicly available, which we hope will
facilitate further research on ML for chip design ap-
plications, pushing the ability of methods to capture
long-range interactions. Finally, while we significantly
outperformed other approaches, we note that in gen-
eral, improvements in the cross-design setting are less
prominent, potentially due to large variations in cir-
cuit designs. It will be interesting to further explore
this direction.
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lefschetz duality. Foundations of Computational
Mathematics, 9(1):79–103.

Dey, T. K. and Wang, Y. (2022). Computational
Topology for Data Analysis. Cambridge University
Press. 452 pages.

Dong, Y., Sawin, W., and Bengio, Y. (2020). Hnhn:
Hypergraph networks with hyperedge neurons.
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A More Background

Figure 4: Visulization of a circuit netlits in the post place-and-route stage: Each cell (ci) is positioned within
the physical layout of the chip and interconnected with other components following the net maps (σi).

A.1 Circuit netlists

A circuit netlist is a textual representation of electronic components, such as logical boolean gates, and
the connections between them. Figure 4 provides an example illustrating a circuit netlist consisting of five
components interconnected by five nets. After laying out the netlist in the physical space (placement), during
the routing stage, the edges of the netlist are mapped to the routing channels within the chip’s physical floorplan
(indicated by dashed lines in Figure 4). Routing congestion occurs when the number of edges to be routed in a
specific region of the floorplan exceeds the available routing capacity.
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A.2 Persistence homology based features

Persistent homology is one of the most important development in the field of topological data analysis in the
past two decades. It can encode meaningful topological features in a multi-scale manner and has already been
applied to numerous applications; see books (Edelsbrunner and Harer, 2010; Dey and Wang, 2022). Intuitively,
given a domain X, a p-th homology class (or informally, a p-th homological feature) essentially captures a family
of equivalent p-dimensional “holes” in X; for example, 0-, 1- and 2-dimensional homology captures connected
components, equivalent classes of loops and of 2-dimensional voids, respectively. The p-th homology group Hp(X)
(using Z2 coefficients) characterizes the space of p-th homological features of X, and its rank rank(Hp(X))
corresponds to the number of independent p-th homological features. For example, rank(H0(X)) denotes the
number of connected components of space X. If the domain X is a graph, then its 1-st homology group is
homeomorphic the space of cycles (loops), and rank(H1(X)) is simply the number of independent cycles.

Persistent homology is a modern extension of homology, where instead of a single space X, we now inspect a
sequence of growing spaces X1 ⊆ X2 ⊆ · · ·Xm = X, called a filtration 4. Intuitively, we can view this filtration
as an evolution of the space X. As the space grows, we track its corresponding topological features (as captured
by the homology groups introduced above). Sometimes new topological features (e.g., a new component, or a
hole) will appear, and sometimes they will disappear (e.g, a hole is filled and thus “disappear”). The persistent
homology (PH) captures such creation and death of topological features, and outputs a feature summary called
persistent diagram (PD), consisting of the birth-time and death-time of classes of topological features during this
evolution. In short, the PDs provide a multiscale summary for the topological features of X from the perspective
of filtration X1 ⊆ X2 ⊆ · · · ⊆ Xm. In the past few years, there have been a series of approaches to vectorize
PDs or to kernelize them for ML applications; see Chapter 13 of (Dey and Wang, 2022). In our work, we use
the so-called persistence images (Adams et al., 2017) to convert a PD to a finite dimensional vector to be used
as part of the node feature.

Persistence diagram (PD) induced from Netlists. We compute the persistence diagram (PD) based on the
following directed graph representation of the netlist (instead of using the directed hypergraph representation,
for easier computation of persistence).

In particular, given a netlist, we create a directed graph G = (V,E) where each node in V corresponds to a cell
in the netlist, while a directed edge is formed between the driver cell of some net with each of the sink in that
net; that is, each net σ = (vσ,Sσ) gives rise to a set of directed edges {(vσ, v)}v∈Sσ . We refer to this graph as
the star-graph induced by the input netlist.

Now, for each node v in the star-graph G, we create its k-ring out-flow neighborhood Gin
v which is simply the

subgraph in G spanned by all nodes reachable from v by a path of at most k hops. Symmetrically, the k-ring
in-flow neighborhood Gout

v of v is the subgraph of G spanned by all nodes such that v is reachable within k hops.
These two Gvs form the local motifs around v. We wish to obtain a feature vector summary for Gin

v and Gout
v .

To this end, similar to (Yan et al., 2021; Zhao et al., 2020), we use the so-called 0th extended persistence diagram
PD∗

v (Cohen-Steiner et al., 2009) of G∗
v (where ∗ ∈ {in, out}) induced by the shortest path distance function

to v as its summary. For our specific graph settig, using results of (Tian and Wang, 2019), one can show that
PD∗

v computed this way, is a concise summary that encodes rich information around v, including the number
of triangles incident to v, clustering coefficient of v, number of nodes at distance r ≤ k away from v, number of
crossing edges from distance-r nodes to distance (r + 1) nodes, certain “shortest” system of cycle basis passing
through v of G∗

v, and so on. Finally, each PD (for in-flow neighborhood and out-flow neighborhood of v) is
vectorized to persistent images as in (Adams et al., 2017), and we further vectorize (flatten) each image matrix
all together to generate a new vector as the persistent representation vector for each node.

A.3 Metis Partitioning

Metis (Karypis and Kumar, 1998) is currently State-of-the-art (SOTA) algorithm in chip design applications to
provide balanced k-way partitions for large graphs efficiently. We choose Metis due to its practical performance,
that it produces multiple clusters of balanced sizes, and the ease it is to control the size of the clusters. Besides
Metis, hMetis (Karypis et al., 1999) developed on the base of Metis for hypergraph parititioning is an alternative

4Note that persistent homology has been extended for much broader families of filtrations then the growing sequence
we describe here; see (Edelsbrunner and Harer, 2010; Dey and Wang, 2022).
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choice. In our paper we used Metis in case we need partitioning for other graph based methods we compare our
method with, and Metis will give us consistent partitioning. Nevertheless, we expect that hMetis can be used
without much impact to the performance of our pipeline.

B Theoretical Analysis

B.1 Preliminaries

Let D be a domain, such as Q,R, and Rd. Consider the set function f : 2D → codom(f) where D is a countable
domain. Then, we have

∀X ⊆ D : f(X) = ρ ◦ Φ(X), Φ(X) =
∑
x∈X

ϕ(x), (8)

where ϕ : D → codom(ϕ) ⊂ R, and ρ : codom(ϕ) → codom(f). This is the so-called sum-decomposable
representation of f via R in terms of (ϕ, ρ) basis functions. We refer to ambient space of codom(ϕ) (in Eqn (8),
it is R) as the model’s latent space (Zaheer et al., 2017). There is an extended sum-decomposable representation
of f on multisets whose elements are drawn from an uncountable domain (e.g., Rd) by restricting the size of
input multisets. Recently, Tabaghi and Wang (2023) proposed an encoder ϕ : Rd → codom(ϕ) ⊂ R2dN such that
for any continuous multiset function f : XN,B → codom(f) we have,

∀X ∈ XN,B : f(X) = ρ ◦ Φ(X),

where XN,B is the set of multisets of size N with elements drawn from B — a compact subset of Rd — and
Φ(X) =

∑
x∈X ϕ(x). The latent space dimension of this representation is 2dN . As a result of this representation,

Φ : XN,B → codom(Φ) is an injective map where codom(Φ) ⊂ R2dN . Furthermore, Tabaghi and Wang (2023)
show that ρ is continuous over the latent space R2dN .

At their core, sum-decomposable models rely on a bijection between multisets and encoded features, that is,
X = α ◦Φ(X) for any multiset X ∈ XN,B and a bijective map α. In the following proposition, we first generalize
this result to multisets with varied sizes.

Proposition 1. Let B be a connected compact subset of Rd. There exists a function ϕ : Rd → R2dN such that

∀X ∈ X≤N,B : X = α

(∑
x∈X

ϕ(x)

)
= α ◦ Φ(X)

where X≤N,B is all multisets of size ≤ N with elements from B, α is a continuous map over R2dN .

Proof. As mentioned earlier, Tabaghi and Wang (2023) proposed a continuous encoding function ϕ′ : Rd →
R2dN such that Φ′(x) =

∑
x∈X ϕ′(x) is an injective map over multisets with exactly N elements, that is,

(Φ′)−1 ◦ Φ′(X) = X where elements of multiset X is drawn from Rd and |X| = N 5.

Lemma 1. The function Φ′ is a homeomorphism.

Proof. The function Φ′ is continous and injective by contruction. We want to show that (Φ′)−1 is continuous
over codom(Φ′) = {Φ′(X) : X ∈ XN,B} where B is a compact and connected subset of Rd. The set XN,B is
compact; refer to Lemma 5 in (Tabaghi and Wang, 2023). Also, codom(Φ′) ⊆ R2dN forms a metric space with ℓ2
metric; Hence, it is also a Hausdorff space. By the inverse function theorem, Φ′ — a continuous bijection from a
compact space to a Hausdorff space — has a continuous inverse; see Proposition 13.26 in (Sutherland, 2009).

To extend the result of Lemma 1 to multisets of variable sizes, we follow the same proof sketch as the one used
for the one-dimensional case (Wagstaff et al., 2019). In particular, let x◦ ∈ Rd \ B where infx∈B ∥x− x◦∥2 > 0.

5Note that we trivially changed the notation from ϕ to ϕ′.
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Then, we define ϕ(x) = ϕ′(x)− ϕ′(x◦). For any multiset with M ≤ N elements from B, say X, we have

∀X ∈ X≤N,B : Φ(X) =
∑
x∈X

ϕ(x) =
∑
x∈X

ϕ′(x)−Mϕ′(x◦)

= Φ′(X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−M

}}) + const,

where const = −Nϕ′(x◦). This is in the sum-decomposable form. Since Φ′ is an injective map over XN,B, Φ is
also an injective map over X≤N,B. Specifically, we can derive a closed-form expression for its inverse as follows:(

Φ′−1 ◦ (Φ(X)− const
))

∩ B =
(
Φ′−1 ◦ Φ′(X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸

N−M

}})
)
∩ B

= (X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−M

}}) ∩ B

= X.

In other words, we have Φ−1(U) = Φ′−1(
U − const

)
∩ B for all U ∈ codom(Φ) = {Φ(X) : X ∈ X≤N,B}.

The function Φ : X≤N,B → codom(Φ) is a continuous bijection. Its domain is compact because it is a finite
union of comapct spaces, that is, X≤N,B = ∪n∈[N ]Xn,B. Furthermore, its codomain forms a metric space with
ℓ2 distance; Hence, it is also a Hausdorff space. Therefore, by an inverse function theorem, Φ has a continuous
inverse; (Sutherland, 2009). If we let α = Φ−1, we arrive at the Proposition’s statement.

Remark 1. Proposition 1 gurantees the continuity of α over a compact set codom(Φ) ⊂ R2dN . This function
can be continuously extended to the ambient space R2dN ; refer to the continuous extension theorem (Fitzpatrick,
1989).

B.2 Proof of Theorem 1

As discussed in the main text, the general net-value function is nested-permutation invariant and take the form
of Eqn (6) in the main text. In what follows, we provide the detailed version of Theorem 1 and show that such
nested-permutation invariant function adapts a nested sum-decomposition aligned with our DE-HNN’s node and
net update rules.

Theorem 1 (Detailed). Let F be any continuous, nested-permutation invariant, net-value function as in Eqn
(6). For simplicity, assume both input nets and output of M take values in a compact set B ⊂ Rd, a connected
compact subset of Rd. We also let Nv = max{|I(v)| : ∀v} and Nσ = max{|S(σ)| : ∀σ}. Then we have that F
can be expressed as the following sum-decomposition:

∀σ : F
(
{µσ′}σ′∈I(vσ),

{
{µσ′}σ′∈I(v′)

}
v′∈Sσ

)
= ρ
( ∑

σ′∈I(vσ)

ϕ1(µσ′),
∑
v′∈Sσ

ϕ2
( ∑
σ′∈I(v′)

ϕ1(µσ′)
))
,

where ϕ1 : Rd → Rd′(d,Nv), ϕ2 : Rd′(d,Nv) → Rd′′(d,Nv,Nσ), and ρ : Rd′(d,Nv) × Rd′′(d,Nv,Nσ) → Rd are continuous
functions.

Proof. The general net-value function takes the following form:

∀σ : F
(
{µσ′}σ′∈I(vσ),

{
{µσ′}σ′∈I(v′)

}
v′∈Sσ

)
.

We assume F is a continuous function that takes values in B, a connected compact subset of Rd, and Nv =
max{|I(v)| : ∀v}. From Proposition 1, there exist continuous functions ϕ1 and α1 such that

∀X ∈ X≤Nv,B : X = α1(
∑
x∈X

ϕ1(x)),
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where codom(ϕ1) ⊆ R2dNv , that is, the latent dimension depends on d and Nv which we denote as d
′
(d,Nv).

Therefore, we apply the result in Proposition 1 to sets of net values (of size at most Nv) and express F follows:

∀σ : F
(
{µσ′}σ′∈I(vσ),

{
{µσ′}σ′∈I(v′)

}
v′∈Sσ

)
= F

(
α1

( ∑
σ′∈I(vσ)

ϕ1(µ
′
σ)
)
,
{
α1

( ∑
σ′∈I(v′)

ϕ1(σ
′)
)}

v′∈Sσ

)
= F1

( ∑
σ′∈I(vσ)

ϕ1(µ
′
σ),
{ ∑

σ′∈I(v′)

ϕ1(σ
′)
}
v′∈Sσ

)

where F1(x, Y )
def.
= F(α1(x), {α1(y)}y∈Y ) for all x ∈ codom(Φ1) = {Φ1(Y ) =

∑
y∈Y ϕ1(y) : Y ∈ X≤Nv,B}

and any set Y with elements in codom(Φ1). Since both α1 and F are continuous functions, then F1 is also a
continuous function. 6

Next, we can apply the result of Proposition 1 to F1. The elements of the set
{∑

σ′∈I(v′) ϕ1(σ
′)
}
v′∈Sσ

take

values in codom(Φ1) — a connected compact subset of Rd′(d,Nv). If we assume |Sσ| ≤ Nσ for all σ, Proposition
1 claims that there exist continuous functions α2 and ϕ2 such that the following holds true:

∀σ : F1

( ∑
σ′∈I(vσ)

ϕ1(µ
′
σ),
{ ∑

σ′∈I(v′)

ϕ1(σ
′)
}
v′∈Sσ

)
= F1

( ∑
σ′∈I(vσ)

ϕ1(µ
′
σ), α2

( ∑
v′∈Sσ

ϕ2
( ∑
σ′∈I(v′)

ϕ1(σ
′)
)))

= ρ

( ∑
σ′∈I(vσ)

ϕ1(µ
′
σ),

∑
v′∈Sσ

ϕ2
( ∑
σ′∈I(v′)

ϕ1(σ
′)
))

where ρ(x, y)
def
= F1(x, α2(y)) for all x ∈ codom(Φ1) and y ∈ codom(Φ2)

def
= {

∑
z∈Z ϕ2(z) : Z ∈ codom(Φ1), |Z| ≤

Nσ}. The function ρ is a composition of continuous functions F1 and α2. Therefore, it is a continuous function.
Also, we have codom(ϕ2) ⊆ R2d′(d,Nv)Nσ , that is, the latent dimension depends on d,Nv, and Nσ which we denote
as d′′(d,Nv, Nσ). Finally, functions ϕ2 and ρ are continuous over compact domains codom(Φ1), and codom(Φ1)×
codom(Φ2). Therefore, they can be continuously extended to Rd′(d,Nv) and Rd′(d,Nv) × Rd′′(d,Nv,Nσ).

C Experimental details

C.1 Dataset Statistics

We report the sizes of each design and their cell/net-degrees distribution in Table 5, and net-based de-
mand/wirelength distributions in the Table 6. We can see that (hyper)graphs in our dataset are large and
sparse, ranging from 400K to 1.3M nodes. with few outliers that have high degrees. We also summarize the
more detailed distributions of net-based demand, net-based wirelength, and cell-based congestion in figure5.

C.2 Experiment Setup

We engineer the input features as Cell features and Net features. None of the following features contained
placement information or are computed from placement information. We engineer cell features as follows:

• We analyze the statistics in a design including the minimum and maximum of all cells’ width, height. Then,
we normalize all these quantities to be in the range [0, 1]. We concatenate them with the cell’s discrete
orientation and cell’s degree (number of nets each cell connecting to), that results into the cell’s input
feature vector.

• We calculate the top-10 eigenvectors of the graph Laplacian of the heterogenous graph as the positional
encoding (denoted as LapPE) for every cell and net.

• We compute the persistence diagram (denoted as PD) for each cell-node v on a directed graph G = (V,E),
as we mentioned earlier in A.2, as a common cell-node input feature vector for all baselines, to capture the
local topological information.

6We can use the matching distance to define a metric on multisets; refer to (Tabaghi and Wang, 2023) for details.
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• We also compute the degree distribution for each cell-node v based on their k-ring undirected neighborhood
Gv in the star-graph we introduced in A.2 to compute the persistence diagrams. However, we ignore the
direction when we compute the degree distribution.

For the net features, for all models other than linear Transformer, we initialize the features of each net σ =
(vσ,Sσ) as the net’s degree (i.e. number of cells each net connecting to). For Linear Transformer, in order to
provide better topology information, we instead initialize the features of each net σ = (vσ,Sσ) (denoted as
M(σ)) as the average of all the features of the nodes this net contains, computed as,

M(σ) =
1

|Sσ|+ 1
(m(vσ) +

∑
v′∈Sσ

m(v′)). (9)

As also described in the main text, for GCN and GATv2, we use the bipartite graph representation of the input
netlist, where there are two types of graph nodes: those corresponding to cells and those corresponding nets. If
a cell is contained in a net, then there is an edge between their respective graph nodes. We use heterogenous
message passing, where nodes corresponding to cells use a different message passing mechanism from nodes
corresponding to nets.

For GCN, GATv2, HyperConv, and all other HNN based models, we used 4 layers with 64 dimension each
layer as the setting. For Linear Transformer, we used 2 layers with 64 dimension each layer as the setting. For
NetlistGNN we used 4 layers with node dimension 64 and net dimension 64 as the setting. For E-HNN/DE-HNN
based models, we used 3 layers with node dimension 64.

We report the number of parameters, training time per epoch and total training epochs in the Table 4. We
aim to use similar number of parameters, although currently full-DE-HNNdoes have the highest number of
parameters, with NetlistGNN having the second largest. Interestingly, while they all take similar number of
epochs to converge, our DE-HNN in fact is much faster per epoch, so overall takes less time to train. We
used two NVIDIA A100-SXM4-80GB GPUs on Linux CentOS Stream system (Ver.8) for both single-design and
cross-design experiments.

Model GCN GATv2 HyperConv Lin. Transformer NetlistGNN AllSet HMPNN HNHN base-DE-HNN full-DE-HNN

Num. of parameters 218113 251905 218625 203201 364743 274433 276513 289565 272165 383105
Time per epoch (single design) 2.77 2.91 1.06 3.72 1.13 0.79 0.69 0.62 0.49 0.65

Total num. of epochs (single design) 878 775 670 636 716 689 691 699 673 810
Time per epoch (cross design) 33.20 36.28 12.28 55.37 16.51 11.35 4.14 5.37 5.26 5.50

Total num. of epochs (cross design) 478 482 473 471 455 460 472 468 479 473

Table 4: Comparison of Model complexity for all the models we used. We compare the number of parameters,
training time per epoch for single design (on average), total training epoches to converge for single design (on
average), trainig time per epoch for cross design, and total training epoches to converge for cross design.

C.3 More experimental results

In the main text, we have reported plots for ablation studies of different strategies used in our model. Here
in Table 7 we report detailed numbers for all three tasks: net-based wirelength regression, net-based demand
regression, and cell-based congestion classification across all the designs.

Besides ablation study over our models, as we mentioned in main paper, adding the persistence diagrams (PDs)
features are beneficial for both our method and baselines. We have already shown the benefits for our model
in the ablation studies in the main text and above. Here in Table 8, we show its benefits to the three best
performing baseline models: NetlistGNN, GCN, GATv2. As we can see, using PDs improve all these models.
Note that in the main text, when we report results of these baseline models, we are already reporting results
with PDs.

We show more detailed experimental results of single-design experiments for net-based wirelength regression in
Table 9, net-based regression in Table 10 and cell-based congestion classification in Table 11 for each design.
We also show more results of cross-design experiments for net-based wirelength regression, net-based demand
regression and cell-based congestion classification in Table 13. Similar to how we report the results in the main
paper, we highlight the models’ results with the best performance in red, and highlight the models (other than
our models) that with second best performance as blue. Interestingly, in the single design case, it appears that
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Design Cells Nets Cell-degree Net-degree

Min Max Mean STD Min Max Mean STD

Superblue1 797,938 821,523 0.0 1243 3.70 5.66 0.0 140605 3.58 155.85

Superblue2 951,166 985,117 0.0 1317 3.51 5.66 0.0 190487 3.39 192.22

Superblue3 901,254 925,667 0.0 2245 3.65 5.23 0.0 168630 3.55 175.91

Superblue5 727,341 803,681 0.0 1381 3.46 5.82 0.0 114259 3.13 128.03

Superblue6 998,122 1049,225 0.0 1689 3.57 4.03 0.0 179410 3.39 175.69

Superblue7 1319,052 1339,522 0.0 849 3.91 3.03 0.0 265765 3.85 230.24

Superblue9 810,812 830.308 0.0 1265 3.83 4.78 0.0 129541 3.74 202.42

Superblue11 923,355 954,144 0.0 1983 3.74 6.97 0.0 203194 3.63 294.36

Superblue14 604,921 627,036 0.0 1023 3.90 4.66 0.0 167911 3.76 300.30

Superblue16 671,284 696,983 0.0 1016 3.77 6.12 0.0 140741 3.63 238.58

Superblue18 459,495 468,888 0.0 1192 4.22 4.30 0.0 102047 4.14 150.74

Superblue19 495,234 510,258 0.0 1507 3.58 6.02 0.0 94682 3.48 135.31

Table 5: Dataset details & statistics. 1st column in the table shows the name of the design, 2nd column and 3rd
column show the number of cells and nets in each design, 4th-7th columns show the distribution of cell-degrees
for each design and 8th-11th columns show the distribution of net-degrees for each design.

Design Net-based demand Net-based wirelength Cell-based congestion

Min Max Mean STD Min Max Mean STD Min Max Mean STD

Superblue1 0.0 103.50 26.24 8.01 8.91 23.92 14.80 2.45 0.0 12.00 1.21 0.55

Superblue2 0.0 139.37 26.61 8.52 8.91 24.61 15.21 2.69 0.0 5.00 0.70 0.45

Superblue3 0.0 103.50 24.07 7.31 8.91 23.83 14.91 2.45 0.0 5.19 0.90 0.47

Superblue5 0.0 1203.25 41.62 32.00 8.91 24.06 15.68 2.96 0.0 78.92 1.27 0.94

Superblue6 0.0 980.33 33.83 27.45 8.91 23.83 14.88 2.57 0.0 74.15 1.35 1.15

Superblue7 0.0 495.25 23.89 5.34 8.91 23.93 14.89 2.48 0.0 43.38 1.09 0.33

Superblue9 0.0 79.50 22.47 8.02 8.91 23.83 14.71 2.42 0.0 5.0 0.74 0.46

Superblue11 0.0 75.00 20.05 6.54 8.91 24.17 15.11 2.38 0.0 8.0 0.93 0.36

Superblue14 0.0 401.41 23.42 9.11 8.91 23.67 15.06 2.48 0.0 46.85 1.06 0.65

Superblue16 0.0 1091.0 28.96 14.09 8.91 23.51 15.01 2.54 0.0 65.53 1.29 0.91

Superblue18 0.0 50.0 20.39 4.13 8.91 23.26 14.98 2.28 0.0 4.0 0.91 0.27

Superblue19 0.0 87.83 23.05 6.40 8.91 23.53 14.86 2.36 0.0 6.0 0.96 0.50

Table 6: Dataset details & statistics. This table shows the distribution of net-based demands for each design,
distribution of net-based logged wirelength for each design and the distribution of cell-based congestion values
for each design. Remind that cell-based congestion, as we described in the paper, we classify the cell-based
congestion values (computed as the ratio of demand/capacity) into (a) [0, 0.9], not-congested ; and (b) [0.9, inf];
congested.
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Figure 5: Net-based wirelength, net-based demand and cell-based congestion distributions of each design.

net-based wirelength regression

Model RMSE ↓ MAE ↓ Pearson ↑
base E-HNN 1.818 1.344 0.731
base DE-HNN 1.751 1.269 0.748

base DE-HNN+PD 1.731 1.257 0.754
base DE-HNN+PD+S. VN 1.724 1.253 0.758

full DE-HNN 1.689 1.245 0.770

net-based demand regression

RMSE ↓ MAE ↓ Pearson ↑
9.228 5.959 0.591
8.997 5.764 0.630
8.765 5.526 0.647
8.687 5.519 0.658
8.381 5.334 0.683

cell-based congestion classification

Precision ↑ Recall ↑ F score ↑
0.816 0.864 0.829
0.824 0.860 0.840
0.830 0.869 0.847
0.832 0.874 0.851
0.833 0.876 0.853

Table 7: Ablation Study: Full experimental results to show the improvements from base E-HNN to full DE-HNN.
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net-based wirelength regression

Model RMSE ↓ MAE ↓ Pearson ↑
NetlistGNN with no PD 1.818 1.344 0.731

NetlistGNN+PD 1.773 1.320 0.740

Improvement 2.5% 1.8% 1.2%

GCN with no PD 1.809 1.326 0.735
GCN+PD 1.762 1.276 0.750

Improvement 1.9% 3.6% 5.2%

GATv2 with no PD 1.920 1.401 0.659
GATv2+PD 1.812 1.330 0.687

Improvement 0.7% 0.6% 1.6%

net-based demand regression

RMSE ↓ MAE ↓ Pearson ↑
9.237 6.060 0.592
9.063 5.839 0.623

1.9% 3.6% 5.2%

9.698 6.453 0.547
9.321 6.163 0.570

3.9% 4.5% 4.2%

9.710 6.392 0.539
9.342 6.118 0.561

3.8% 4.3% 4.1%

cell-based congestion classification

Precision ↑ Recall ↑ F score ↑
0.806 0.855 0.818
0.812 0.860 0.831

0.7% 0.6% 1.6%

0.746 0.837 0.784
0.761 0.857 0.802

2.0% 2.4% 2.3%

0.802 0.856 0.811
0.810 0.864 0.835

1.0% 1.0% 3.0%

Table 8: Ablation Study: the effect of using persistence diagrams (PDs) to three best-performing baselines. For
each method, the 3rd row shows the percentage of improvement after using PD as part of the input features.
Note that in the main text, the results we reported are those baselines+PD.

the methods AllSet and NetlistGNN often perform the best among the baselines for net-length and net-based
demand regression tasks, while for the cell-based congestion classification, other models (e.g, GATv2) sometimes
perform the best among baselines. In cross-design experiments, GCN and GATv2 sometimes emerge as winners.
In the cases that a baseline model is better than our model, we highlight that baseline model’s results in red
instead.

Preliminary exploration with placement information. In this paper, we focus on the case when our input
do not have placement information (i.e, coordinates of cells). We also conducted some preliminary experiments to
examine the effect of adding cell placement information to initial node features, and use placement information
based partitioning instead of Metis. We first partition the nodes in netlist circuit (after placement) into k
bounding boxes Vi with fixed width and height as 0.8 millimeters. The number k is depending on the width and
height of each netlist circuit. With coordinates of cells added and bounding boxes based partitioning (for full-DE-
HNN), we rerun both single-design and cross-design net-based demand regression experiments on superblue19.
See Table 12 below. Placement information helps to improve the performance on average around 10% for MAE
and RMSE, and the improvement is more substantial in terms of Pearson Correlation. We aim to explore more
about how to effectively leverage placement information in the future works.
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Design Model RMSE ↓ MAE ↓ Pearson ↑

Superblue1

GCN 1.731 1.243 0.751
GATv2 1.742 1.253 0.742

HyperConv 1.988 1.413 0.645
AllSet 1.700 1.235 0.757

HMPNN 1.779 1.291 0.727
HNHN 1.813 1.319 0.720

NetlistGNN 1.761 1.276 0.735

base DE-HNN 1.774 1.274 0.731
full DE-HNN 1.657 1.203 0.771

Improvement 2.5% 2.6% 1.8%

Superblue2

GCN 2.011 1.487 0.714
GATv2 1.931 1.485 0.723

HyperConv 2.217 1.661 0.641
AllSet 1.817 1.353 0.775

HMPNN 1.981 1.480 0.723
HNHN 1.992 1.488 0.724

NetlistGNN 1.857 1.410 0.748

base DE-HNN 1.933 1.438 0.741
full DE-HNN 1.810 1.344 0.778

Improvement 0.4% 0.7% 0.4%

Superblue3

GCN 1.741 1.273 0.738
GATv2 1.716 1.270 0.748

HyperConv 1.941 1.438 0.661
AllSet 1.685 1.239 0.759

HMPNN 1.752 1.300 0.734
HNHN 1.769 1.303 0.729

NetlistGNN 1.689 1.239 0.754

base DE-HNN 1.765 1.271 0.741
full DE-HNN 1.679 1.234 0.761

Improvement 0.4% 0.4% 0.3%

Superblue5

GCN 1.892 1.428 0.801
GATv2 1.909 1.438 0.793

HyperConv 2.114 1.606 0.742
AllSet 1.842 1.361 0.810

HMPNN 2.224 1.754 0.706
HNHN 2.069 1.562 0.756

NetlistGNN 1.915 1.406 0.790

base DE-HNN 1.881 1.393 0.799
full DE-HNN 1.795 1.330 0.822

Improvement 2.6% 2.3% 1.5%

Superblue6

GCN 1.811 1.341 0.740
GATv2 1.782 1.322 0.751

HyperConv 1.928 1.435 0.702
AllSet 1.733 1.260 0.766

HMPNN 1.851 1.360 0.730
HNHN 1.859 1.365 0.727

NetlistGNN 1.940 1.452 0.725

base DE-HNN 1.786 1.296 0.749
full DE-HNN 1.689 1.233 0.780

Improvement 2.5% 2.1% 1.8%

Superblue7

GCN 1.842 1.315 0.710
GATv2 1.847 1.371 0.699

HyperConv 2.010 1.479 0.628
AllSet 1.753 1.295 0.733

HMPNN 1.889 1.409 0.681
HNHN 1.858 1.370 0.694

NetlistGNN 1.801 1.316 0.721

base DE-HNN 1.760 1.291 0.701
full DE-HNN 1.719 1.267 0.747

Improvement 1.9% 2.2% 1.9%

Design Model RMSE ↓ MAE ↓ Pearson ↑

Superblue9

GCN 1.819 1.338 0.697
GATv2 1.853 1.381 0.683

HyperConv 1.966 1.435 0.639
AllSet 1.684 1.238 0.750

HMPNN 1.827 1.355 0.695
HNHN 1.821 1.335 0.701

NetlistGNN 1.805 1.325 0.701

base DE-HNN 1.765 1.287 0.720
full DE-HNN 1.663 1.226 0.757

Improvement 1.2% 1.0% 0.9%

Superblue11

GCN 1.831 1.356 0.694
GATv2 1.814 1.349 0.702

HyperConv 1.986 1.468 0.633
AllSet 1.717 1.274 0.740

HMPNN 1.830 1.369 0.696
HNHN 1.834 1.353 0.697

NetlistGNN 1.780 1.291 0.707

base DE-HNN 1.741 1.290 0.731
full DE-HNN 1.690 1.257 0.751

Improvement 1.6% 1.3% 1.5%

Superblue14

GCN 1.792 1.331 0.739
GATv2 1.794 1.361 0.738

HyperConv 2.116 1.547 0.605
AllSet 1.756 1.299 0.750

HMPNN 1.873 1.415 0.707
HNHN 1.895 1.404 0.703

NetlistGNN 1.812 1.363 0.731

base DE-HNN 1.816 1.336 0.730
full DE-HNN 1.728 1.282 0.760

Improvement 1.6% 1.3% 1.3%

Superblue16

GCN 1.763 1.265 0.741
GATv2 1.741 1.267 0.751

HyperConv 2.047 1.446 0.639
AllSet 1.688 1.207 0.772

HMPNN 1.896 1.362 0.701
HNHN 1.816 1.312 0.731

NetlistGNN 1.773 1.274 0.736

base DE-HNN 1.705 1.218 0.767
full DE-HNN 1.656 1.194 0.782

Improvement 1.9% 1.1% 1.3%

Superblue18

GCN 1.635 1.249 0.739
GATv2 1.701 1.246 0.714

HyperConv 1.937 1.345 0.681
AllSet 1.664 1.246 0.730

HMPNN 1.769 1.335 0.686
HNHN 1.752 1.314 0.696

NetlistGNN 1.625 1.213 0.752

base DE-HNN 1.653 1.263 0.735
full DE-HNN 1.632 1.219 0.743

Improvement 0.4% 0.5% 1.2%

Superblue19

GCN 1.637 1.214 0.762
GATv2 1.634 1.198 0.765

HyperConv 1.910 1.405 0.666
AllSet 1.582 1.171 0.783

HMPNN 1.705 1.255 0.739
HNHN 1.752 1.288 0.727

NetlistGNN 1.635 1.205 0.765

base DE-HNN 1.641 1.208 0.763
full DE-HNN 1.557 1.153 0.792

Improvement 1.6% 1.5% 1.1%

Table 9: Average results of single-design net-based hpwl(wirelength) regression for each design, based on 4-fold
cross validations. Last row “Improvement” refers to the improvement of our full DE-HNN model over the best
baseline approach for each metric.
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Design Model RMSE ↓ MAE ↓ Pearson ↑

Superblue1

GCN 6.469 4.979 0.595
GATv2 6.409 4.964 0.612

HyperConv 6.662 4.951 0.224
AllSet 6.100 4.587 0.650

HMPNN 6.770 5.206 0.541
HNHN 6.394 4.825 0.610

Lin. Transformers 7.991 6.046 0.089
NetlistGNN 6.039 4.623 0.660

base DE-HNN 6.093 4.670 0.653
full DE-HNN 5.674 4.263 0.709

Improvement 6.0% 7.1% 7.4%

Superblue2

GCN 6.556 5.245 0.641
GATv2 6.736 5.288 0.616

HyperConv 7.654 6.151 0.374
AllSet 6.430 4.981 0.659

HMPNN 6.982 5.501 0.579
HNHN 6.699 5.217 0.625

Lin. Transformers 8.251 6.356 0.313
NetlistGNN 6.259 4.932 0.682

base DE-HNN 6.399 5.035 0.663
full DE-HNN 5.966 4.637 0.718

Improvement 4.7% 6.0% 5.3%

Superblue3

GCN 5.789 4.512 0.612
GATv2 5.837 4.558 0.565

HyperConv 6.468 5.149 0.265
AllSet 5.265 4.014 0.695

HMPNN 6.022 4.713 0.572
HNHN 5.686 4.338 0.631

Lin. Transformers 7.046 5.493 0.264
NetlistGNN 5.414 4.214 0.673

base DE-HNN 5.423 4.188 0.670
full DE-HNN 5.041 3.837 0.725

Improvement 4.3% 4.4% 4.3%

Superblue5

GCN 27.169 14.867 0.504
GATv2 27.343 14.754 0.508

HyperConv 29.563 15.817 0.107
AllSet 27.881 14.632 0.490

HMPNN 28.753 15.485 0.439
HNHN 28.314 15.309 0.473

Lin. Transformers 32.614 16.889 0.076
NetlistGNN 27.586 14.470 0.515

base DE-HNN 27.205 14.129 0.536
full DE-HNN 26.684 13.512 0.565

Improvement 1.8% 6.6% 9.7%

Superblue6

GCN 21.963 12.692 0.607
GATv2 21.492 12.119 0.629

HyperConv 25.615 13.356 0.128
AllSet 17.945 10.156 0.759

HMPNN 21.868 12.633 0.611
HNHN 17.735 10.094 0.767

Lin. Transformers 28.807 14.583 0.119
NetlistGNN 20.238 11.696 0.697

base DE-HNN 19.935 11.227 0.694
full DE-HNN 16.946 9.680 0.790

Improvement 4.4% 4.1% 3.0%

Superblue7

GCN 4.243 3.064 0.600
GATv2 4.403 3.247 0.561

HyperConv 4.689 3.327 0.225
AllSet 4.201 2.991 0.621

HMPNN 4.527 3.246 0.541
HNHN 4.458 3.165 0.557

Lin. Transformers 5.245 3.752 0.139
NetlistGNN 4.115 2.986 0.634

base DE-HNN 4.110 2.957 0.631
full DE-HNN 3.971 2.860 0.662

Improvement 3.5% 4.2% 4.4%

Design Model RMSE ↓ MAE ↓ Pearson ↑

Superblue9

GCN 6.871 5.156 0.520
GATv2 6.893 5.139 0.512

HyperConv 7.014 5.241 0.289
AllSet 6.184 4.576 0.640

HMPNN 7.152 5.367 0.467
HNHN 6.544 4.884 0.582

Lin. Transformers 8.007 5.934 0.092
NetlistGNN 6.511 4.796 0.589

base DE-HNN 2.990 2.228 0.696
full DE-HNN 5.685 4.237 0.709

Improvement 8.1% 7.4% 10.8%

Superblue11

GCN 5.693 4.224 0.502
GATv2 5.684 4.203 0.504

HyperConv 6.243 4.523 0.105
AllSet 5.115 3.792 0.625

HMPNN 5.974 4.402 0.418
HNHN 5.277 3.882 0.592

Lin. Transformers 6.576 4.678 0.034
NetlistGNN 5.176 3.830 0.617

base DE-HNN 5.214 3.855 0.608
full DE-HNN 4.918 3.677 0.666

Improvement 3.9% 3.0% 6.6%

Superblue14

GCN 7.261 4.827 0.584
GATv2 7.370 4.825 0.545

HyperConv 8.210 5.241 0.210
AllSet 7.162 4.565 0.619

HMPNN 7.687 4.992 0.540
HNHN 7.327 4.693 0.597

Lin. Transformers 8.853 6.168 0.176
NetlistGNN 6.872 4.444 0.642

base DE-HNN 6.874 4.453 0.639
full DE-HNN 6.533 4.211 0.684

Improvement 4.9% 5.2% 6.5%

Superblue16

GCN 11.774 8.242 0.391
GATv2 12.853 8.283 0.377

HyperConv 16.501 9.486 0.175
AllSet 12.558 7.837 0.469

HMPNN 13.539 8.582 0.312
HNHN 12.720 8.082 0.446

Lin. Transformers 14.020 8.827 0.003
NetlistGNN 12.982 8.385 0.353

base DE-HNN 12.282 7.946 0.465
full DE-HNN 11.867 7.644 0.520

Improvement - 2.5% 10.9%

Superblue18

GCN 3.061 2.262 0.681
GATv2 3.102 2.285 0.672

HyperConv 4.013 2.915 0.255
AllSet 3.057 2.294 0.674

HMPNN 3.246 2.446 0.624
HNHN 3.208 2.377 0.637

Lin. Transformers 4.090 2.913 0.154
NetlistGNN 2.882 2.173 0.726

base DE-HNN 2.990 2.228 0.696
full DE-HNN 2.855 2.136 0.730

Improvement 0.9% 1.7% 0.6%

Superblue19

GCN 5.034 3.734 0.616
GATv2 4.949 3.691 0.636

HyperConv 5.746 3.974 0.312
AllSet 4.682 3.474 0.685

HMPNN 5.294 3.980 0.571
HNHN 5.063 3.750 0.620

Lin. Transformers 6.315 4.565 0.127
NetlistGNN 4.683 3.520 0.681

base DE-HNN 4.946 3.720 0.632
full DE-HNN 4.429 3.317 0.723

Improvement 5.4% 4.5% 5.5%

Table 10: Results of single-design net-based demand regression for each design.
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Design Model Precision ↑ Recall ↑ F score ↑

Superblue1

GCN 0.839 0.944 0.888
GATv2 0.867 0.944 0.904

HyperConv 0.873 0.966 0.917
AllSet 0.880 0.955 0.916

HMPNN 0.866 0.968 0.916
HNHN 0.868 0.969 0.916

Lin. Transformers 0.853 0.941 0.895
NetlistGNN 0.862 0.936 0.920

base DE-HNN 0.876 0.967 0.920
full DE-HNN 0.885 0.969 0.925

Improvement 1.6% 0.5% 0.5%

Superblue2

GCN 0.741 0.657 0.697
GATv2 0.782 0.739 0.760

HyperConv 0.779 0.706 0.741
AllSet 0.727 0.664 0.694

HMPNN 0.730 0.587 0.649
HNHN 0.718 0.633 0.670

Lin. Transformers 0.752 0.530 0.621
NetlistGNN 0.765 0.614 0.682

base DE-HNN 0.796 0.717 0.755
full DE-HNN 0.797 0.767 0.782

Improvement 1.2% 9.7% 2.9%

Superblue3

GCN 0.731 0.837 0.780
GATv2 0.768 0.840 0.798

HyperConv 0.770 0.815 0.792
AllSet 0.728 0.773 0.747

HMPNN 0.711 0.777 0.739
HNHN 0.706 0.777 0.737

Lin. Transformers 0.749 0.757 0.753
NetlistGNN 0.786 0.814 0.799

base DE-HNN 0.791 0.819 0.805
full DE-HNN 0.817 0.816 0.816

Improvement 0.7% - 2.1%

Superblue5

GCN 0.745 0.932 0.834
GATv2 0.783 0.923 0.848

HyperConv 0.827 0.935 0.878
AllSet 0.795 0.939 0.861

HMPNN 0.788 0.932 0.853
HNHN 0.786 0.932 0.852

Lin. Transformers 0.798 0.911 0.851
NetlistGNN 0.844 0.933 0.885

base DE-HNN 0.842 0.938 0.887
full DE-HNN 0.852 0.940 0.894

Improvement 4.9% 1.3% 1.0%

Superblue6

GCN 0.837 0.921 0.877
GATv2 0.876 0.920 0.897

HyperConv 0.851 0.916 0.891
AllSet 0.817 0.940 0.874

HMPNN 0.809 0.965 0.879
HNHN 0.815 0.947 0.875

Lin. Transformers 0.833 0.906 0.868
NetlistGNN 0.819 0.928 0.889

base DE-HNN 0.859 0.928 0.892
full DE-HNN 0.885 0.930 0.906

Improvement 0.7% - 1.0%

Superblue7

GCN 0.839 0.980 0.904
GATv2 0.863 0.981 0.920

HyperConv 0.899 0.967 0.932
AllSet 0.888 0.956 0.921

HMPNN 0.874 0.962 0.916
HNHN 0.875 0.955 0.913

Lin. Transformers 0.792 0.870 0.891
NetlistGNN 0.868 0.918 0.923

base DE-HNN 0.900 0.938 0.887
full DE-HNN 0.908 0.969 0.937

Improvement 5.6% - 0.5%

Design Model Precision ↑ Recall ↑ F score ↑

Superblue9

GCN 0.684 0.556 0.613
GATv2 0.719 0.613 0.666

HyperConv 0.716 0.605 0.656
AllSet 0.675 0.505 0.577

HMPNN 0.612 0.418 0.495
HNHN 0.664 0.447 0.529

Lin. Transformers 0.649 0.551 0.596
NetlistGNN 0.778 0.568 0.656

base DE-HNN 0.740 0.647 0.690
full DE-HNN 0.695 0.653 0.673

Improvement - 6.5% 1.1%

Superblue11

GCN 0.634 0.896 0.743
GATv2 0.706 0.844 0.769

HyperConv 0.644 0.910 0.755
AllSet 0.620 0.946 0.749

HMPNN 0.627 0.927 0.748
HNHN 0.628 0.897 0.738

Lin. Transformers 0.671 0.691 0.680
NetlistGNN 0.691 0.914 0.787

base DE-HNN 0.677 0.863 0.759
full DE-HNN 0.719 0.850 0.789

Improvement 1.1% - 0.3%

Superblue14

GCN 0.763 0.891 0.822
GATv2 0.834 0.889 0.860

HyperConv 0.830 0.886 0.857
AllSet 0.809 0.863 0.835

HMPNN 0.819 0.858 0.838
HNHN 0.800 0.855 0.826

Lin. Transformers 0.735 0.764 0.749
NetlistGNN 0.827 0.870 0.787

base DE-HNN 0.856 0.876 0.866
full DE-HNN 0.856 0.902 0.878

Improvement 3.7% 10.6% 2.1%

Superblue16

GCN 0.713 0.926 0.807
GATv2 0.864 0.928 0.894

HyperConv 0.855 0.833 0.844
AllSet 0.844 0.827 0.833

HMPNN 0.838 0.821 0.829
HNHN 0.831 0.819 0.822

Lin. Transformers 0.810 0.831 0.815
NetlistGNN 0.779 0.912 0.865

base DE-HNN 0.874 0.823 0.847
full DE-HNN 0.895 0.910 0.903

Improvement 8.5% - 1.0%

Superblue18

GCN 0.779 0.845 0.811
GATv2 0.798 0.848 0.822

HyperConv 0.790 0.888 0.836
AllSet 0.753 0.892 0.816

HMPNN 0.763 0.888 0.821
HNHN 0.749 0.881 0.810

Lin. Transformers 0.775 0.852 0.812
NetlistGNN 0.868 0.939 0.902

base DE-HNN 0.798 0.890 0.842
full DE-HNN 0.807 0.886 0.845

Improvement - - -

Superblue19

GCN 0.812 0.894 0.851
GATv2 0.857 0.899 0.878

HyperConv 0.879 0.877 0.878
AllSet 0.870 0.866 0.868

HMPNN 0.861 0.862 0.862
HNHN 0.865 0.835 0.848

Lin. Transformers 0.809 0.880 0.843
NetlistGNN 0.869 0.946 0.856

base DE-HNN 0.883 0.885 0.884
full DE-HNN 0.895 0.910 0.903

Improvement 0.4% - 2.8%

Table 11: Results of single-design cell-based congestion classification for each design.
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Single-Design without placement Single-Design with placement Cross-Design without placement Cross-Design with placement

Model RMSE MAE Pearson RMSE (imp.) MAE (imp.) Pearson (imp.) RMSE MAE Pearson RMSE (imp.) MAE (imp.) Pearson (imp.)

GCN 5.034 3.734 0.616 4.495 (10.7%) 3.334 (10.7%) 0.717 (16.4%) 6.571 5.024 0.365 6.126 (6.8%) 4.709 (6.3%) 0.440 (20.5%)
GATv2 4.949 3.691 0.636 4.382 (11.4%) 3.112 (15.7%) 0.758 (19.2%) 6.623 5.137 0.363 5.812 (10.8%) 4.695 (8.6%) 0.442 (21.8%)

full DE-HNN 4.429 3.317 0.723 4.005 (9.6%) 2.987 (10.0%) 0.785 (8.6%) 6.037 4.670 0.372 5.795 (4.0%) 4.337 (7.1%) 0.452 (21.5%)

Table 12: Results of net-based demand regression for Superblue19. For each metric, the (imp.) refers to the
improvements when placement information added.

Wirelength Regression

Design Model RMSE ↓ MAE ↓ Pearson ↑

Superblue19

GCN 1.691 1.276 0.746
GATv2 1.717 1.281 0.737

Lin. Transformer 2.159 1.588 0.521
NetlistGNN 1.762 1.324 0.718

HyperConv 2.390 1.788 0.558
Allset 1.837 1.348 0.695

HMPNN 1.785 1.335 0.710
HNHN 1.754 1.333 0.701

base DE-HNN 1.731 1.291 0.730
full DE-HNN 1.677 1.242 0.754

Improvement 1.9% 2.6% 1.8%

Demand Regression

RMSE ↓ MAE ↓ Pearson ↑
6.571 5.024 0.365
6.623 5.137 0.363
6.564 4.819 0.086
8.328 6.839 0.367

8.569 5.294 0.241
6.120 4.820 0.345
6.979 5.356 0.306
6.390 4.870 0.358

6.778 5.085 0.337
6.037 4.670 0.372

1.4% 4.1% 1.4%

Congestion Classification

Precision ↑ Recall ↑ F score ↑
0.633 0.997 0.773
0.630 0.999 0.765
0.618 0.859 0.772
0.647 0.953 0.771

0.655 0.923 0.778
0.645 0.964 0.773
0.633 0.999 0.773
0.648 0.939 0.767

0.653 0.990 0.774
0.660 0.986 0.780

0.7% - 0.3%

Table 13: Results of cross-design net-based hpwl(wirelength) regression, net-based demand regression and cell-
based congestion classification for different netlist design, including comparisons with other HNN models.
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