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Abstract

Learning long-range interactions (LRI)
between distant nodes is crucial for many
graph learning tasks. Predominant graph
neural networks (GNNs) rely on local mes-
sage passing and struggle to learn LRI. In
this paper, we propose DRGNN to learn
LRI leveraging monotone operator theory.
DRGNN contains two key components: (1)
we use a full node similarity matrix beyond
adjacency matrix – drawing inspiration from
the personalized PageRank matrix – as the
aggregation matrix for message passing,
and (2) we implement message-passing on
graphs using Douglas-Rachford splitting to
circumvent prohibitive matrix inversion. We
demonstrate that DRGNN surpasses various
advanced GNNs, including Transformer-
based models, on several benchmark LRI
learning tasks arising from different appli-
cation domains, highlighting its efficacy in
learning LRI. Code is available at https:

//github.com/Utah-Math-Data-Science/

PR-inspired-aggregation.

1 INTRODUCTION
Graph that models interacting entities is ubiquitous
in real-world applications, e.g., social networks (Per-
ozzi et al., 2014), citation networks (Hamilton et al.,
2017), and molecular modeling (Gilmer et al., 2017).
The predominant message-passing graph neural net-
works (MP-GNNs) – based on local message-passing
mechanisms – are effective in leveraging inductive bias
of graph structures, excelling in graph deep learning
(Duvenaud et al., 2015; Kipf and Welling, 2017; Gilmer
et al., 2017; Corso et al., 2020; Satorras et al., 2021;
Thorpe et al., 2022).
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MP-GNNs, e.g., graph convolutional network (GCN)
(Kipf and Welling, 2017), usually update the fea-
tures of each node by aggregating the features of
its immediate (1-hop) neighbors. MP-GNNs encode
the graph structure into their message-passing mecha-
nism. Nevertheless, the locality of the message-passing
in MP-GNNs can overlook the long-range interac-
tions (LRI between distant nodes (Ying et al., 2021).
The failure in learning LRI is problematic for many
graph learning tasks. Taking the molecular prop-
erty prediction as an example, while the molecular
graph is typically represented as a covalent bond net-
work with atoms directly linked through these bonds,
the 3D folding of the molecule is also governed by
long-range non-covalent interactions between distant
atoms (Gilmer et al., 2017). This underlying principle
of LRI’s importance extends beyond molecules, find-
ing relevance in areas like semantic segmentation label
prediction in computer vision (Dwivedi et al., 2020) or
robotics (Kurin et al., 2020).

Increasing the depth of MP-GNNs appears to be an
obvious and plausible solution for learning LRI, as it
allows the message to iteratively propagate to distant
nodes. However, various studies have shown that deep
MP-GNNs perform much worse than shallow models
(Li et al., 2018; Oono and Suzuki, 2020). Further-
more, deep MP-GNNs are expensive in computational
and memory costs, especially in the backward pass,
which linearly scales with the number of layers. In
the context of LRI learning, MP-GNNs are shown to
have unsatisfactory performance (Ying et al., 2021).
Therefore, improving message-passing mechanisms for
MP-GNNs that can learn LRI effectively is desirable.

1.1 Our Contribution

We present DRGNN – a new MP-GNN model for
learning LRI effectively using a full (node) simi-
larity matrix as the aggregation matrix for message
passing rather than sparse adjacency matrices used in
existing MP-GNNs. The full similarity matrix emerges
from the Personalized PageRank matrix (Page et al.,
1998) augmented by a rank-one matrix; see Equation 2
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in Section 3. However, directly using the full similar-
ity matrix for message passing requires the prohibitive
matrix inversion.

We address the computational challenges in matrix in-
version by recognizing the monotonicity of the full sim-
ilarity matrix from a monotone operator viewpoint; see
Proposition 1 in Section 4. In particular, we reformu-
late the node representation – obtained from repeated
message passing with the full similarity matrix – as the
fixed point of an iterative equation. This idea aligns
with deep equilibrium models (DEQs) (Bai et al., 2019,
2022; Pokle et al., 2022; Winston and Kolter, 2020;
Gu et al., 2020; Baker et al., 2023), where the model’s
depth is task dependent. We notice that with a tai-
lored design of the equilibrium equation (Equation 3
in Section 4) and leveraging the Douglas-Rachford
(DR) splitting (Douglas and Rachford, 1956), we can
guarantee the fixed point exists and is unique and the
computation of the fixed point can be computed effi-
ciently without matrix inversion (See Subection 4.2.1).
As a result, our model’s computational complexity
aligns with that of GCN. Moreover, DRGNN enjoys
a constant memory footprint for backpropagation us-
ing implicit differentiation (Robinson, 1991).

1.2 Notations

We adopt the following notations throughout this pa-
per: We represent vectors, matrices, and operators
by lowercase boldface, uppercase boldface, and calli-
graphic letters, respectively. We use In and 1n to
denote the identity matrix and all-one vectors of size
n, respectively. We denote the adjacency matrix of
graph G as A, and we use D to denote the diagonal
matrix whose i-th diagonal element is the sum of the
i-th column of A. For the augmented adjacency ma-
trix, we introduce Ã = A + In. For the normalized
adjacency matrix, we use Ā = ÃD̃−1 to denote the
random walk matrix and Â = D̃−1/2ÃD̃−1/2 to de-
note the symmetrically normalized adjacency matrix.
We use the notation diag(B) to represent the vector
of diagonal elements of B.

1.3 Organization

We organize this paper as follows: In Section 2, we dis-
cuss the related work. In Sections 3 and 4, we present
the two key components of the proposed model. In
Section 5, we present the experimental results on var-
ious benchmark graph learning tasks. Missing details
and technical proofs are deferred to the appendix.

2 RELATED WORK

In this section, we review some related work. We first
review some GNN models that expand the receptive
field of message-passing beyond the immediate neigh-
bors. We then discuss the fixed-point neural networks.

Multi-hop message passing: A particular idea to
increase the receptive field of each node in MP-GNN
is to employ higher orders of the adjacency matrices
as the aggregation matrix (Wu et al., 2019; Gasteiger
et al., 2019a,b; Zhu and Koniusz, 2021; Chien et al.,
2021). A remarkable model is PPNP (Gasteiger et al.,
2019a), which uses the personalized PageRank matrix

(1 − α)(In − αÂ)−1 with α ∈ (0, 1) as its aggrega-
tion matrix. Using the Neumann expansion of the
matrix inverse, represented as (1 − α)(In − αÂ)−1 =

(1 − α)
∑∞

k=0 α
kÂk, we can deduce that PPNP’s ag-

gregation matrix attends to every node in the graph
based on graph informed node similarities. However,
the PPNP model is computationally expensive due to
using the dense Personalized PageRank matrix. This
challenge is further intensified when one seeks to stack
multiple such layers to boost the expressivity of GNNs.
To improve the efficiency of PPNP, Gasteiger et al.
(2019a) further propose APPNP using a truncated
Neumann approximation of the Personalized PageR-
ank matrix. However, the truncated Neumann approx-
imation inherently limits the receptive field of each
node. This becomes particularly problematic when the
depth required by the task is unknown. APPNP has
been generalized in (Gasteiger et al., 2019b; Zhu and
Koniusz, 2021; Chien et al., 2021) to incorporate gen-
eralized PageRank filters.

Graph Transformer: Transformer-based GNNs,
e.g., (Dwivedi and Bresson, 2020; Ying et al., 2021;
Kreuzer et al., 2021), leverage the self-attention mech-
anism between nodes and graph-related positional em-
beddings to learn node representations. Transformer-
based GNNs enable full node connectivity and show
remarkable performance in learning LRI (Ying et al.,
2021). However, Transformer-based GNNs possess a
weak inductive bias (Dosovitskiy et al., 2020); the posi-
tional embeddings may not reflect the graph structure,
resulting in less meaningful attention weights. More-
over, the quadratic complexity of the self-attention
mechanism makes Transformer-based GNNs compu-
tationally expensive even for moderately sized graphs.

Fixed-point neural networks: There has been a
line of works that learn representations as the fixed
point of some equilibrium equation; see, e.g., (Bai
et al., 2019; Gu et al., 2020; Bai et al., 2022). This
approach results in expressive models with adaptive
depth while maintaining a constant memory footprint
using implicit differentiation (Robinson, 1991; Bolte
et al., 2021). For the correct implementation and
training stability of the fixed-point neural networks,
one needs to ensure the well-posedness of the fixed-
point iteration – the existence and uniqueness of the
fixed point. A general well-posedness result is estab-
lished by Winston and Kolter (2020) that utilizes the
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Figure 1: Contrasting heatmaps (entries) of the three aggregation matrices for message passing on a grid graph.

Â captures immediate neighbors, whereas J and Π̃ppr cover the full graph, with J influenced by node degrees

and Π̃ppr reflecting fine details of the graph structure.

monotone operator theory and allows us to use op-
erator splitting schemes to find the fixed point. The
fixed-point neural networks are versatile and compet-
itive across various tasks including language model-
ing (Bai et al., 2019), semantic segmentation (Bai
et al., 2020), optical flow (Bai et al., 2022), and diffu-
sion models (Pokle et al., 2022).

In the context of graph learning, IGNN (Gu et al.,
2020) is a fixed-point GNN where each iteration in the
fixed-point solving process is modeled as a message-
passing step using the normalized adjacency matrix.
Given the fact that the memory cost in backward prop-
agation in each message-passing layer directly scales
with the number of edges and is linearly proportional
to the number of layers, IGNN’s constant memory cost
is favorable for graph learning tasks. This is particu-
larly true for graph learning tasks that require LRI as
the necessarily increased depth of a typical MP-GNN
model will incur a significant memory However, it is
pointed out that IGNN’s well-posedness constrains the
choices of weight matrix and poses instability in learn-
ing LRI (Baker et al., 2023).

Spectral GNNs: Spectral GNNs have also been
designed to learn LRI; remarkable examples include
BernNet He et al. (2021) and ChebyNet Defferrard
et al. (2016).

3 FULL SIMILARITY MATRICES

In this section, we discuss the motivation of the new
aggregation matrix for message passing in our model.
Consider a connected graph G = (V,E) with n nodes 1,

1The results in this section apply to graphs with multi-
ple connected components by considering the relevant ma-
trix as a block diagonal for each component.

one way to establish full node connectivity with the
minimal extra computational cost is to utilize rank
one matrices, e.g. 1

n1n1
⊤
n , which aggregates the av-

eraged features of all nodes. However, the averaged
feature is graph agnostic. Instead, one can turn to
use the matrix J = 1

tr(D̃)
diag(D̃1/2)diag(D̃1/2)⊤ to

establish full node connectivity. Notice that matrix J
accounts for node degrees; see the middle panel in Fig-
ure 1(b) for a visualization of using matrix J for a toy
graph. We notice that rank-one modeling of the pair-
wise similarity has been used in efficient Transformers
(Katharopoulos et al., 2020; Catania et al., 2023).

To further refine the above approach, we take inspira-
tion from the Personalized PageRank matrix. Instead
of directly relying on J for message passing, we inte-
grate it into the Personalized PageRank matrix. This
integration results in graph structure-aware full node
similarities that are suitable for message passing be-
tween arbitrary nodes, as we will see later.

Modified Personalized PageRank matrix: Let
Ā := ÃD̃−1 be the random walk matrix of the aug-
mented graph G. The Personalized PageRank matrix
Πppr is characterized by the following equation:

Πpprix = αĀΠpprix + (1 − α)ix,

where ix is the indicator vector of node x and α ∈ (0, 1)
balances the random walk and restart probabilities.
The Personalized PageRank matrix can be solved as

Πppr = (1 − α)
(
In − αĀ

)−1
. The entries of Πppr

represent nodes similarity characterized by the proba-
bility of reaching one node from another in a random
walk with restart probability 1−α (Fouss et al., 2016).

The Personalized PageRank matrix has been
used in MP-GNN models, such as PPNP and
APPNP (Gasteiger et al., 2019a). In these models,
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the random walk matrix Ā is replaced by its sym-
metrically normalized variant Â = D̃−1/2ÃD̃−1/2.
In our proposed DRGNN, we modify the Personalized
PageRank matrix by additionally incorporating the
rank one matrix J to enhance direct communication
between distant nodes and to benefit the compu-
tational efficiency; see Section 4 for details. The

modified Personalized PageRank matrix Π̃ppr satisfies

Π̃pprix = (αJ + βÂ)Π̃pprix + (1 − α− β)ix, (1)

which resolves to:

Π̃ppr = (1 − α− β)(In − (αJ + βÂ))−1. (2)

The entities of Π̃ppr characterize node similarities that
are influenced by the graph structure with coefficients
that balance the random walk, restart, and (degree

weighted) global average. The matrix Π̃ppr enables
multi-hop message-passing using a single MP-GNN
layer, which follows from Neumann series expansion:

(
In − αJ − βÂ

)−1
=

∞∑

k=0

(
αJ + βÂ

)k
.

We illustrate matrix Π̃ppr in a simple graph in the
right panel of Figure 1(b). However, as encountered in
PPNP (Gasteiger et al., 2019a), computing the inverse

of (In − αJ − βÂ) is prohibitive for large graphs. We
address this computational bottleneck using monotone
operator theory in the next section.

4 DRGNN

DRGNN learns node features by finding the fixed point
H∗ that satisfies the following equilibrium equation:

H = σ
(
2H − γ(In + αJ + βÂ)−1H − fΘ(X)

)
, (3)

where |β| < 1, α+ β + 1 > 0, and γ > 1 + |α|+ |β| are
learnable. Here, σ(·) is the activation function (e.g.,
ReLU), and fΘ(X) is a transformation of the input
node features X parameterized by Θ. The rationale
of the design in Equation 3 will be discussed in the
rest of this section.

Starting from H(0), one approach to find the fixed
point of Equation 3 is through the (damped) iteration
using the Forward-Backward (FB) splitting (Passty,
1979), with a certain damping value t > 0, one iterates:

H(i+1) = σ
(

(1 + t)H(i) − tγ(In + αJ

+ βÂ)−1H(i) − tfΘ(X)
)
,

(4)

for i = 0, 1, . . . ,K. This iteration terminates when the
difference between two consecutive iterations is smaller

than some threshold ϵ and then H(K+1) is taken as
the numerical fixed point H∗. Each iteration can be
viewed as one message-passing layer, then fixed point
H∗ is a result of multi-step message passing involv-
ing full node similarity matrix (In +αJ +βÂ)−1 with
its number of steps (depth) adaptive to the learning
task. Therefore, H∗ captures LRI between distant
nodes based on node similarities and also incorporates
the nonlinearities between message-passing steps. We
verify the improved LRI learning ability of DRGNN
over APPNP in Section 5; see also Figure 2 for a vi-
sual comparison of the learned features in APPNP and
DRGNN.

However, it remains unclear whether the dampened Pi-
card iteration converges to the fixed point H∗ and the
computation of the matrix inverse (In+αJ+βÂ)−1 in
each iteration is computationally expensive. We will
address these two challenges in the next two subsec-
tions.

4.1 Well-posedness of DRGNN

We discuss the existence and uniqueness of the
fixed point of Equation 3, i.e., the well-posedness of
DRGNN. Our solution comes from a monotone op-
erator theory viewpoint; see (Bauschke et al., 2011)
or Appendix B for background on monotone opera-
tor theory. We will show that the fixed point H∗ of
Equation 3 exists and is unique, even when directly
interpreting Equation 3 as an iterative scheme results
in a non-contractive operator.

According to the monotone operator theory, finding
the fixed point H∗ for Equation 3 is equivalent to
solving the following monotone inclusion problem (See
Appendix B for details): find 0 ∈ (F + G)(H) with F
and G being two set-valued functions, given as follows

F(H) =
(
γ
(
In + αJ + βÂ

)−1 − In

)
H

+ fΘ(X)

and G = ∂g,

(5)

where ∂g denotes the subgradient of a convex closed
proper function g that satisfies σ = proxt

g for some
t > 0. Here, the proximal operator is defined as
proxt

g(x) := arg minz

{
1
2∥x − z∥2 + t g(z)

}
for any

t > 0. Most commonly used activation functions,
such as ReLU, satisfy this condition. Specifically,
ReLU = proxt

g for ∀t > 0 with g being the indicator
of the positive octant, i.e. g(x) = I{x ≥ 0}.

It’s worth noting that the inclusion of 2H in equa-
tion 3 results in −In in F and it marks a significant
difference from what is used in the previous work that
connects monotone inclusion problem with fixed-point
neural networks (Winston and Kolter, 2020; Baker
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et al., 2023). This specific design will be a key factor
in achieving computational efficiency; see Equation 8
in the subsequent section.

According to the monotone operator theory, the mono-
tone inclusion problem Equation 5 admits a unique so-
lution if the linear operator F is strongly monotone.
In particular, we have the following result whose proof
can be found in Appendix A.

Proposition 1. The operator F is strongly monotone
if |β| < 1, α+β+1 > 0, and γ > 1+|α|+|β|. Moreover,
the monotone inclusion problem find 0 ∈ (F + G)(H)
with F and G defined in Equation 5 admits a unique
solution, and Equation 3 admits a unique fixed point.

4.2 Efficient Implementation of DRGNN

In this subsection, we present an efficient implemen-
tation of DRGNN. Specifically, in the forward pass,
the fixed-point nature of the hidden encoding allows
us to use any root finding solver for H∗ not necessar-
ily the Picard iteration (Equation 4) derived from FB
splitting. Peaceman-Rachford (PR) splitting (Peace-
man and Rachford, 1955) has also been studied in
the context of fixed-point neural networks (Winston
and Kolter, 2020; Baker et al., 2023). PR splitting
in general converges faster than FB splitting, but it
requires the computation of the matrix inverse that
originates from finding the resolvent for the opera-
tor F . As we will see in this subsection, our tailored
design of F allows us to compute the resolvent effi-
ciently by circumventing the computation of the ma-
trix inverse, which is a sharp contrast to the previous
work (Winston and Kolter, 2020; Baker et al., 2023).
We additionally opt for DR splitting (Douglas and
Rachford, 1956), which is an averaged version of PR
splitting that has a better convergence guarantee in
general (Ryu and Boyd, 2016), and we observed more
robust performance in comparison to PR splitting for
our setting. For the backward pass, the implicit differ-
entiation method from (Geng et al., 2021) is employed.

4.2.1 Forward Pass via DR Splitting

We now elaborate on DR splitting for solving the
monotone inclusion problem Equation 5 and hence to
obtain the fixed point H∗ of Equation 3. DR split-
ting is a powerful tool for solving monotone inclusion
problems (Ryu and Boyd, 2016). With operators F
and G defined in Equation 5, DR splitting solves the
monotone inclusion problem “find 0 ∈ (F + G)(H)”
by starting with an initialization2 of the intermediate

2In practice, we initialize the solver with the fixed point
found in the previous forward pass.

state U (0) , and then updates as follows:

U (i+1) =
1

2
CFCG(U (i)) +

1

2
I, (6)

where I denotes the identity operator, and the op-
erators RG and CG denote the resolvent and Cayley
operators of G, respectively. They are defined as

RG = (I + tF)−1, CG = 2RG − I, ∀t > 0.

Similarly, CF is the Cayley operator of the operator F .

Then the fixed point H∗ of Equation 3 is determined
by H∗ = σ(U∗). It is worth noting that both resol-
vent and Cayley operators are non-expansive for any
strongly monotone operator. DR splitting converges
linearly to H∗ for any choice of t > 0 when F is
strongly monotone and Lipschitz; see (Ryu and Boyd,
2016, Section 6) or Appendix B for details.

Plugging the detailed form of F and G in Equation 5
into Equation 6, we obtain the following iterative
schemes for the intermediate state U (i):

U (i+1/2) = 2σ(U (i)) −U (i)

U (i+1) = U (i) + V
(
U (i+1/2) − tfΘ(X)

)
− σ(U (i))

(7)
where

V :=
(
In + t(γ(In + αJ + βÂ)−1 − In)

)−1
.

As discussed above, DR splitting converges to H∗ lin-
early for any t > 0, and when t = 1, we have

V =
(
In + γ

(
In + αJ + βÂ

)−1 − In

)−1

=
1

γ
(In + αJ + βÂ).

(8)

Therefore, when using DR splitting in Equation 7 to
compute the fixed point of Equation 3, the needs of

computing
(
In + αJ + βÂ

)−1
and in the linear part

V of the resolvent operator RF cancel out. This is a
particular advantage of having −In in the operator F
which comes from our tailored design of Equation 3.

Initializing with the fixed point of the previ-
ous forward pass: In training, the learned function
fΘ(X) tends to stabilize as the model converges. Con-
sequently, the difference between fixed points in con-
secutive forward passes become negligible. Therefore,
it is natural to leverage the numerical fixed point from
the previous forward pass to initialize the iteration of
the new forward pass. This strategy has been adopted
to accelerate training fixed-point networks (Bai et al.,
2022; Pokle et al., 2022).
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(a) IGNN (b) APPNP (c) DRGNN

Figure 2: Node classification results on the binary Synthetic Chain task. The tasks consist of two stacked chains
from different classes, each of length 80, indexed from 0-79 and 80-159 respectively. The depicted results show
the predicted labels over progressive iteration steps which stems from unrolling in APPNP or fixed point iteration
in IGNN and DRGNN. We observe that IGNN fails to classify all nodes correctly and APPNP can correctly
classify all nodes after 80 iterations. In contrast, DRGNN is able to classify all nodes correctly after only a few
iterations, and the prediction probabilities of the two classes are well separated.

4.2.2 Backward Pass

By utilizing fixed-point encoding for learning node fea-
tures, the memory consumption for backpropagation
becomes independent of the number of iterations (lay-
ers) by using implicit differentiation. For simplicity,
we denote the DR splitting iteration in Equation 7 as
U (i+1) = FDR(U (i); fΘ(X)), H(i+1) = σ(U i+1). Let
θ represent a parameter in Θ. For any loss function ℓ,
by using the implicit differentiation, we have

∂ℓ

∂θ
=

∂ℓ

∂H∗
∂H∗

∂U∗ (In − JFDR
(U∗))

−1

× ∂FDR(U∗; fΘ(X))

∂θ
,

(9)

where JFDR
(U∗) is the Jacobian matrix of FDR eval-

uated at the fixed-point U∗. Note that the matrix
In − JFDR

(U∗) is invertible because the iteration of
DR splitting is contractive. According to Equation 9,
backpropagation only requires the gradient at the final
fixed point. We can disable automatic differentiation
during the fixed-point finding process and only run one
more iteration with automatic differentiation to use
the stored gradients for computing the true gradients
through Equation 9. However, the inverse Jacobian
term (In − JFDR

(U∗))−1 can be computationally ex-
pensive (Bai et al., 2019; Winston and Kolter, 2020).
In our implementation, we employ the inexact gradient
method (Geng et al., 2021), which can maintain the de-
scent direction. This method, also adopted in (Pokle
et al., 2022; Anil et al., 2022), significantly accelerates
backpropagation. This process involves locating the
fixed-point H∗ with automatic differentiation off, en-
abling it for a few more iterations, and using the stored
gradient to update DRGNN directly.

4.3 Time and Memory Complexities

In this section, we analyze the time and memory com-
plexities of DRGNN. Let n and |E| denote the number
of nodes and edges in the graph, respectively. We use d
to denote the feature dimension. We assume the graph
is sparse, which is common in graph learning. During
the forward pass, DRGNN has a time complexity of
O(|E|Md), where M represents the maximum number
of iterations. Correspondingly, its space complexity is
O(|E| + nd). DRGNN leverages the inexact gradients
to accelerate the backpropagation. Consequently, the
time complexity is O(|E|Pd), where P indicates the
number of inexact gradient computations. The space
complexity during the backward pass is O(P |E|+nd).
Our experiments align with findings in (Pokle et al.,
2022; Anil et al., 2022) that small values of P (less
than five) maintain high performance.

5 EXPERIMENTAL RESULTS

In this section, we validate the performance of
DRGNN on various graph learning tasks, including
both synthetic datasets and real-world peptide molec-
ular modeling datasets for LRI learning, as well as
graph transductive node classifications. We imple-
ment DRGNN using PyG (Fey and Lenssen, 2019) and
GraphGym (You et al., 2020) frameworks and conduct
all experiments on a single NVIDIA RTX 3090 GPU.

5.1 Learning LRI In Synthetic Datasets

In this subsection, we consider two synthetic datasets
that are designed to test the model’s ability to learn
LRI; the corresponding tasks provide controlled envi-
ronments where LRI is crucial for the model to achieve
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Figure 3: Accuracy for multi-class Synthetic Chains
over varying lengths with 10 classes and 20 chains.

high performance. We further provide a visual under-
standing of the learning process to demonstrate the
effectiveness of DRGNN in learning LRI.

5.1.1 Synthetic Chains Dataset

The Synthetic Chains node classification dataset (Gu
et al., 2020) consists of a collection of chains where
nodes within the same chain share identical labels.
However, only the starting node on each chain has
a meaningful feature as the one-hot indicator of the
class, while all other nodes carry zero-valued features.
To accurately classify all nodes on the chains, a model
must be able to propagate the class indicator feature
from the initial node to the distant nodes in the for-
ward pass without information loss. Consequently, the
Synthetic Chains task poses a significant challenge for
numerous GNN models, particularly when the depth of
GNN is not sufficient or the model is unstable in learn-
ing LRI. We consider both a binary Synthetic Chain
task consisting of 2 classes of 10 chains with 80 nodes
each and a multi-class Synthetic Chain task consisting
of 10 classes of 10 chains each. In both tasks, we follow
the training procedure in (Gu et al., 2020).

A visualization of the learning process in binary
classification: In Figure 2, we provide a visualization
of the learning process of APPNP, IGNN, and DRGNN
for binary Synthetic Chain classification. The itera-
tion step is characterized by the unrolling step in
APPNP and the fixed point iteration step in IGNN
and DRGNN. The prediction probabilities of the two
classes are shown as color intensity normalized to [0, 1].
We first train each model for 100 epochs and then use
the learned parameters to predict the node labels from
the learned features on the test graph at each iteration
step. Each model is provided with a total of 80 itera-
tion steps to propagate the node features. We observe
that IGNN fails to correctly classify all nodes and the

predicted probabilities of the two classes are not well-
separated. In contrast, both APPNP and DRGNN are
able to correctly classify all nodes, which shows the ef-
fectiveness of using the personalized PageRank-style
matrix for message passing in learning LRI. Addition-
ally, DRGNN quickly obtains the correct prediction
for all nodes while APPNP requires more iterations to
achieve the same result. This demonstrates the effec-
tiveness of the learned fixed point in DRGNN.

Multi-class classification: The multi-class classifi-
cation task poses a more challenging problem for the
models to learn LRI. Figure 3 illustrates the mean test
accuracy, calculated over 10 random initializations,
for baseline models trained on multi-class Synthetic
Chains with chain lengths varying from 10 to 100. In
this experiment, each architecture is tuned at chain
length 100 with 200 iterations. Although each model
is capable of fully propagating the node information,
only DRGNN consistently classifies chains accurately
across all investigated lengths. Additional results for
various models can be found in Appendix C.

5.1.2 Color-counting Dataset

The Color-counting dataset (Liu et al., 2022) intro-
duces a node classification task that is more challeng-
ing than the Synthetic Chains. This dataset uses the
same chain-like structure but rather than determining
node labels based on the starting node’s color, node
labels within each chain are assigned according to the
majority node color, encoded as one-hot feature vec-
tors. This setup emphasizes the need for GNNs to ac-
quire multiscale information in LRI learning for opti-
mal performance. In light of this, Liu et al. (2022) pre-
sented MGNNI, which surpasses other baseline models
on this dataset.

We compare DRGNN with MGNNI as well as APPNP
and GCN on this task. Therefore, the necessity of
identifying the majority color during message passing
raises additional challenges to learn LRI. We report the
mean test accuracy over 10 random initializations for
Color-counting chains of length 10 to 200 in Figure 4.
We observe that DRGNN obtains close to full accu-
racy across all chain lengths, while all other models fail
to learn LRI or identify the majority color. This vali-
dates the effectiveness of the DRGNN message-passing
scheme in complicated LRI learning tasks.

5.2 Learning LRI In Molecular Modeling

We explore the effectiveness of DRGNN in real-
world scenarios by evaluating its performance on the
Peptides-Func and Peptides-Struct molecular model-
ing datasets (Dwivedi et al., 2022). These datasets are
designed to test the model’s ability to learn LRI and it
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Model Peptides-func Peptides-struct

Train AP ↑ Test AP ↑ Train MAE ↓ Test MAE ↓
GCN∗ 0.8840 ± 0.0131 0.5930 ± 0.0023 0.2939 ± 0.0055 0.3496 ± 0.0013
GINE∗ 0.7682 ± 0.0154 0.5498 ± 0.0079 0.3116 ± 0.0047 0.3547 ± 0.0045
GatedGCN∗ 0.8695 ± 0.0402 0.5864 ± 0.0077 0.2761 ± 0.0032 0.3420 ± 0.0013
GatedGCN+RWSE∗ 0.9131 ± 0.0321 0.6069 ± 0.0035 0.2578 ± 0.0116 0.3357 ± 0.0006

Transformer+LapPE∗ 0.8438 ± 0.0263 0.6326 ± 0.0126 0.2403 ± 0.0066 0.2529 ± 0.0016
SAN+LapPE∗ 0.8217 ± 0.0280 0.6384 ± 0.0121 0.2822 ± 0.0108 0.2683 ± 0.0043
SAN+RWSE∗ 0.8612 ± 0.0219 0.6439 ± 0.0075 0.2680 ± 0.0038 0.2545 ± 0.0012
GraphGPS NA 0.6535 ± 0.0041 NA 0.2500 ± 0.0005
DRGNN (ours) 0.9481± 0.0237 0.6586± 0.0042 0.2193± 0.0151 0.2495± 0.0015

Table 1: Performance comparison of different models on LRI learning tasks with the Peptides-Func and Peptides-
Struct datasets. The results of the models marked with ∗ are taken from (Dwivedi et al., 2022) and GraphGPS re-
sults are taken from (Rampášek et al., 2022) and training performance is not available. GCN, GINE, GatedGCN,
and GatedGCN+RWSE are MP-GNN baselines while Transformer+LapPE, SAN+LapPE, SAN+RWSE, and
GraphGPS are Transformer-based models. DRGNN outperforms both MP-GNN and Transformer-based models
on both datasets in terms of both training and test performance, validating DRGNN’s ability to learn LRI.

Model ogbn-arxiv Computers Photo CS Physics

GCN∗ 71.74 ± 0.27 89.65 ± 0.52 92.70 ± 0.20 92.92 ± 0.12 96.18 ± 0.07
APPNP 71.74 ± 0.29 90.18 ± 0.17 94.32 ± 0.14 94.49 ± 0.07 96.54 ± 0.07

Graphormer∗ OOM OOM OOM 92.74 ± 0.14 OOM
SAN∗ OOM 89.83 ± 0.16 94.86 ± 0.10 94.51 ± 0.15 OOM
GraphGPS∗ OOM OOM 95.06 ± 0.13 93.93 ± 0.12 OOM
NAGphormer∗ NA 91.22 ± 0.14 95.49 ± 0.11 95.75± 0.09 97.34± 0.03
DRGNN (ours) 71.90± 0.04 95.15± 0.58 95.56± 0.47 94.89 ± 0.34 96.96 ± 0.16

Table 2: Performance comparison of different models on transductive node classification of Citation Networks.
Results marked with ∗ are reported in (Chen et al., 2023). Models that run out of memory are reported with OOM
and models without existing results with NA. GCN and APPNP are MP-GNN baselines, Graphormer, SAN, and
GraphGPS are Transformer-based models, and NAGphormer is a mixture of MP-GNN and Transformer-style
models. DRGNN achieves state-of-the-art results on Amazon-Computers and outperforms the baseline MP-GNN
models on each task.

is shown that Transformer-based models are more ef-
fective than MP-GNNs. Both datasets contain 15,535
graphs with a total of 2.3 million nodes, each repre-
senting a peptide with atoms as nodes and covalent
bonds as edges; see Figure 5 for an illustration. On
average, peptide graphs from these datasets consist of
about 150 nodes with a typical node degree nearing 2,
making them chain-like structures. Peptide-func is a
multi-label graph classification task and the goal is to
predict the functional properties of peptides. Peptide-
struct is a graph regression task and the goal is to
predict the 3D structure of peptides. In both cases,
capturing non-covalent LRI becomes vital for a GNN
model to excel in this setting.

We compare DRGNN against several strong base-
line models, including GCN (Kipf and Welling, 2017),

GINE (Xu et al., 2019), GatedGCN (Bresson and Lau-
rent, 2017) and its variant with random walk struc-
tural encoding (RWSE) GatedGCN+RWSE, Trans-
former (Vaswani et al., 2017) with Laplacian po-
sition encoding (LapPE), SAN variants (Kreuzer
et al., 2021) (SAN+LapPE and SAN+RWSE), and
GraphGPS (Rampášek et al., 2022). We summarize
the mean training and test performance over 10 ran-
dom initializations in Table 1, showing that DRGNN
outperforms all baseline models on both datasets in
terms of both training and test performance.

5.3 Learning Transductive Datasets

We further demonstrate the effectiveness of DRGNN
in learning LRI across five transductive node classifica-
tion tasks, including the citation networks Coauthor-
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Figure 4: Accuracy of DRGNN vs. a few strong base-
line models for the Color-counting dataset over vary-
ing lengths. DRGNN achieves close to full accuracy in
all experiments, while all other models’ performance
significantly degrades as the chain length increases.

Figure 5: Schematic representation of a peptide graph.
Atoms are depicted as nodes connected by covalent
bonds (edges). It is worth noting that the graph’s 3D
structure is further influenced by non-covalent inter-
actions, which are not inherently depicted in its graph
representation.

CS/Physics (Shchur et al., 2018), ogbn-arxiv (Hu
et al., 2020), and the co-purchasing networks Amazon-
Computers/Photo (Shchur et al., 2018). These tasks
consist of single large graphs with up to 170K nodes,
1.2M edges, and 23 length diameters, and contrast-
ing the prior mini-batch training on multiple molec-
ular graphs. Comprehensive dataset details can be
found in Appendix D.1. Consequently, the transduc-
tive tasks bring to light memory challenges for sev-
eral mainstream Transformer-based architectures and
illustrate the memory efficiency of DRGNN. We com-
pare against existing results from (Chen et al., 2023)
which serves to illustrate the difference between MP-
GNN and Transformer-based models. In particular,
the MP-GNN baselines are GCN and APPNP, the
Transformer-based architectures include Graphormer,
SAN, and GraphGPS, and the NAGphormer (Chen

et al., 2023) is a mixture of MP-GNN and Transformer-
style models.

Table 2 verifies the memory issues for promi-
nent Transformer-based models and illustrates the
strength of DRGNN. In particular, DRGNN achieves
the best performance on ogbn-arxiv and Amazon-
Computers/Photo and outperforms the baseline MP-
GNNs on all five tasks. DRGNN also outperforms
many Transformer-based models (only slightly inferior
to NAGphormer on Coauthor-CS/Physics), highlight-
ing its superior memory efficiency and effectiveness in
learning LRI for inductive tasks.

6 CONCLUSION

The 1-hop message-passing nature of many MP-GNNs
limits their ability to learn LRI, which is crucial for
many graph learning tasks. To effectively learn LRI,
We propose DRGNN leveraging a modified Person-
alized PageRank matrix – a full node similarity ma-
trix. DRGNN is designed and efficiently implemented
through the lens of monotone operator theory, which
allows us to circumvent the matrix inversion that
comes from the use of a full node similarity matrix.
We demonstrate the effectiveness of DRGNN over ex-
isting strong baseline models on various graph learn-
ing tasks, including synthetic datasets and benchmark
real-world datasets.
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(2019a). Predict then propagate: Graph neural net-
works meet personalized pagerank. In International
Conference on Learning Representations.



Justin Baker1,∗, Qingsong Wang1,∗, Martin Berzins1, Thomas Strohmer2, Bao Wang1

Gasteiger, J., Weißenberger, S., and Günnemann, S.
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Appendix for

Monotone Operator Theory-Inspired Message Passing for
Learning Long-Range Interaction on Graphs

The appendix is organized as follows. In Section A we provide the missing proofs for the theoretical results
in the main paper. In Section B we provide some background knowledge on monotone operator theory and
operator splitting schemes. In Section C we provide experimental results on an extended version of the multi-
class Synthetic Chain classification task. In Section D we present more details about the experimental setup,
including the dataset description in Section D.1, the model architecture details in Section D.2, the training
procedure in Section D.3, and the details about hyperparameters in Section D.4.

A Proof of Proposition 1

Proof of Proposition 1. Given that |β| < 1 and α + β + 1 > 0, we first show that the linear operator F is well

defined, that is the matrix inverse (In + αJ + βÂ)−1 exists. Note that J is a rank-one matrix with eigenvalues
0 with multiplicity n− 1 and 1 with multiplicity 1 and with eigenvector diag(D̃1/2). In particular, diag(D̃1/2) is

also an eigenvector of Â with eigenvalue 1. Hence, all the eigenvectors of Â are also eigenvectors of J . Therefore
the condition |β| < 1 and α + β + 1 > 0 guarantees that the eigenvalues of In + αJ + βÂ are all positive and

hence the matrix inverse (In +αJ + βÂ)−1 exists. This in particular shows that the operator F is well-defined.

Now we show that the linear operator F is strongly monotone whenever γ > 1 + |α| + |β|. Let F be the linear

part of F , i.e., F := γ
(
In + αJ + βÂ

)−1

− In, which is symmetric. We then need to show that the symmetric

matrix F is positive definite.

Let −1 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 1 be the eigenvalues of Â sorted in increasing order and the corresponding
eigenvectors be u1, . . . ,un. Let n be the index such that λn = 1 with eigenvector diag(D̃1/2). Then the
eigenvalue ηi of F that corresponds with the eigenvectors u1, . . . ,un are given as follows: ηi = γ

1+βλi
when i ̸= n

and ηn = γ
1+α+βλi

− 1. In particular, as γ > 1 + |α| + |β|, we have ηi > 0 for each i = 1, . . . , n. Therefore, F is
positive definite, and hence F is strongly monotone.

Along with the Lipschitzness for any linear operator, F , in this case, is both strongly monotone and Lipschitz.
Consequently, its Cayley operator CF contractive, and hence the monotone inclusion problem Equation 5 admits
a unique solution that can be solved using, e.g., Douglas-Rachford splitting (see Appendix B.3).

B Some Background about Monotone Operator Theory and Operator Splitting

B.1 Monotone operators

This section presents some results about monotone operators. An operator T on Rd is said to be monotone if

⟨T (x) − T (y),x− y⟩ ≥ 0, ∀x,y ∈ Rd.

Furthermore, we say the operator T is maximal monotone if there is no other monotone operator S s.t. the graph
of S contains the graph of T properly. It is easy to verify that every continuous monotone function F : Rd → Rd

is maximal monotone. We call an operator T : Rd ⇒ Rd m-strongly monotone or m-coercive if m > 0 and

⟨u− v,x− y⟩ ≥ m∥x− y∥2, ∀(x,u), (y,v) ∈ T .

We say T is strongly monotone if it is m-strongly monotone for some unspecified constant m ∈ (0,∞). The
following characterization of the monotonicity of linear and subdifferential operators is useful for our analysis of
the monotonicity in Section 4.

• Let F(x) = Gx+h be a linear operator where G ∈ Rd×d and h ∈ Rd. Then F is maximal monotone if and
only if G+G⊤ is semi-positive definite, denoted as G+G⊤ ⪰ 0 (0 stands for the matrix whose entries are
all zero) and m-strongly monotone if 1

2 (G + G⊤) ⪰ mI, that is 1
2 (G + G⊤) −mI is semi-positive definite.
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• Meanwhile, a subdifferential operator ∂f is maximal monotone if and only if f is a convex closed proper
function.

Recall the resolvent and Cayley operator of an operator G are defined by

RG = (I + tF)−1, CG = 2RG − I,

for any t, where I is the identity operator. The following results for the resolvent of linear and subdifferential
operators are used in Section 4:

• when F(x) = Gx + h is a linear operator, then

RF (x) =
(
In + tG

)−1
(x− th).

• when F = ∂f for some CCP function f , then the resolvent is given by the following proximal operator

RF (x) = proxt
f (x) := arg min

z

{1

2
∥x− z∥2 + tf(z)

}
.

If an operator F is strongly monotone, its resolvent RF is contractive, and its Cayley operator is non-expansive
(for any t > 0). If F is strongly monotone and Lipschitz, then its Cayley operator is also contractive, see (Ryu
and Boyd, 2016, Section 6).

B.2 Forward-Backward splitting

This section provides additional details for Section 4 about the monotone inclusion problem and the Forward-
Backward splitting method. We will first introduce the Forward-Backward splitting method and then show that
the monotone inclusion problem is equivalent to the fixed-point problem of the layer update Equation 3. Then
we derive the damped Picard iteration used in Equation 4.

Forward-backward (FB) splitting is a technique used to find a zero in the sum of operators, i.e., locate x such
that

0 ∈ (F + G)(x),

where F and G are maximal monotone, and F is single-valued. Then for any t > 0, we have

0 ∈ (F + G)(x) ⇔ 0 ∈ (I + tG)(x) − (I − tF)(x)

⇔ (I + tG)(x) ∋ (I − tF)(x)

⇔ x = RG(I − tF)(x).

Where the last step uses the definition of the resolvent operator RG := (I + tG)−1. Thus, x is a solution if and
only if it is a fixed point of RG(I − tF) for any t.

Equivalence between the fixed-point problem (Equation 3) and the monotone inclusion problem
(Equation 5). Recall that the monotone inclusion problem used in Equation 5 reads

F(H) = γ
(
In + αJ + βÂ

)−1

H −H + fΘ(X) and G = ∂g,

where G is such that RG is the activation function σ. Then for any t > 0, the FB splitting updates as the
following damped variant of Picard iteration

H(i+1) = σ

(
H(i) − t

(
γ
(
In + αJ + βÂ

)−1

H(i) −H(i) + fΘ(X)

))
, (10)

= σ

(
(1 + t)H(i) − tγ

(
In + αJ + βÂ

)−1

H(i) − tfΘ(X)

)
. (11)

Therefore, the FB splitting iteration recovers exactly the fixed-point formulation in Equation 3 when t = 1 and
the fixed-point in Equation 3 can be computed via a suitable damping factor t.
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B.3 Douglas-Rachford splitting

The Douglas-Rachford splitting method is derived by averaging the composition of two Cayley operators. For
any t > 0, the following equivalence relation holds:

0 ∈ (F + G)(x) ⇐⇒
(

1

2
I +

1

2
CFCG

)
(y) = y, x = RG(y)

This can be further expanded as:

0 ∈ (F + G)(x) ⇐⇒ 0 ∈ (I + tF)x− (I − tG)x

⇐⇒ 0 ∈ (I + tF)x− CG(I + tG)x

⇐⇒ 0 ∈ (I + tF)x− CGy, y ∈ (I + tG)x

⇐⇒ CGy ∈ (I + tF)RGy, x = RGy

⇐⇒ RFCGy = RGy, x = RGy

⇐⇒ CFCGy = y, x = RGy

⇐⇒
(

1

2
I +

1

2
CFCG

)
(y) = y, x = RG(y)

Then the fixed point iteration for this setup is:

xk+1/2 = RG(yk)

yk+1/2 = 2xk+1/2 − yk

xk+1 = RF (yk+1/2)

yk+1 = yk + xk+1 − xk+1/2

C Additional Experimental Results on Multi-class Chain Classification
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Figure 6: Node classification results on the multi-class Syn-
thetic Chain task with 10 chains from 10 classes each. The
length of each chain varies from 10 to 100. We observe that
DRGNN outperforms all other models on this task validating
the model’s ability to learn LRI.

In Figure 6 we extend the multi-class Synthetic
Chain task in Figure 3 to more models. This
includes baseline MP-GNNs GCNII (Chen et al.,
2020), more multi-hop style MP-GNNs such as
SGC (Wu et al., 2019), S2GC (Zhu and Koniusz,
2021), GPRGNN (Chien et al., 2021), as well as
fixed point graph neural networks EIGNN (Liu et al.,
2021), GIND (Chen et al., 2022), MIGNN (Baker
et al., 2023). We further include the model
IGNN(Init) that represents the IGNN model with
integrated technique as reusing fixed point initial-
ization from the previous epoch. We observe that
DRGNN outperforms all other models on this task,
validating the model’s ability to learn LRI effec-
tively.

D Additional Experimental Details

D.1 Dataset details

Synthetic Chains. The Synthetic Chains dataset (Gu et al., 2020) is created to assess LRI learning capabilities
of different models. The dataset is designed for both binary and multiclass classification tasks. Suppose there
are c classes, meaning there are c distinct types of chains. Aside from the one-hot class indicating features on
the first node of each chain, all other nodes only have zero features. Given c classes, nc chains per class, and l
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nodes per chain, the total number of nodes in the chain dataset is c× nc × l. In this task, we use the 5/15/80%
train/valid/test splits.

Color-counting. The Color-counting dataset (Liu et al., 2022) is introduced to further test the model’s ability
to learn LRI while processing multiscale information. The dataset contains a collection of chains, with each chain
containing 10 randomly selected nodes that are colored into one of two colors. Each node’s label is determined
by the majority color of the chain containing it. The dataset is balanced with 50% of the nodes in each class. In
this task, we use the 5/15/80% train/valid/test splits.

Peptides-func. The peptides-func is a multi-label graph classification task introduced in Dwivedi et al. (2022).
The dataset consists of 15,535 graphs with a total of 2.3 million nodes. Each graph is constructed from a peptide
sequence, where each node represents the heavy atom while the edges represent the chemical bonds between
them. The OGB library (Hu et al., 2020) molecular features are used in this dataset. There is a total of 10
classes that represent peptide functions, e.g., anti-bacterial, anti-viral, cell-cell communication, etc. on average
to 1.65 of the 10 classes. The labels are imbalanced, only 16.5% of the data is in the positive class, with the
richest class having 62.7% positives and the poorest 1.9%. The license of this dataset is CC BY-NC 4.0.

Peptide-struct. The peptide-struct is also introduced in Dwivedi et al. (2022) and contains the same graphs
as in the peptides-func dataset. This graph regression task aims to predict the peptide’s graph level 3D structure,
including inertia mass, inertia valence, length, sphericity, etc. The license of this dataset is CC BY-NC 4.0.

Transductive Datasets. The ogbn-arxiv is a large citation network with 169343 nodes and 1,166,243 edges
introduced in (Hu et al., 2020). Each node is an arXiv computer science paper, and each directed edge indicates
the source node cites the target node. The node feature is a 128-dimensional vector obtained from the word
embedding of the title and abstract of its corresponding paper. The Coauthor CS and Physics datasets are
introduced in (Shchur et al., 2018) represent co-authorship graphs from Microsoft Academic Graph. Each node
represents an author, and each edge indicates two authors have co-authored a paper. The node feature represents
the keywords of the corresponding authors’ papers, and the label of the node is the author’s most active field of
study. The Amazon Computers and Amazon Photo datasets are introduced in (Shchur et al., 2018) and represent
products bought together on Amazon. Each node represents a product, and each edge indicates two products
are frequently bought together. The node feature is constructed from the bag-of-words of the product’s reviews,
and the label of the node is the product’s category.

D.2 Model architectures

This section details the encoder, DRGNN, and decoder architectures used in Section 5. Additional hyperparam-
eter details are provided in Appendix D.4.

The general architecture for DRGNN includes three auxiliary learnable parameters α, β, γ as in Equation 3
and a bias term fΘ(·). The forward method is then performed via Equation 7. Fixed point iteration is first
calculated without gradients until convergence or the maximum number of iterations is reached. The iteration is
called again with gradients until the number of phantom gradients is reached. The maximum number of forward
iterations and the number of phantom gradient steps may be adjusted. The forward method also allows for
an optional initial guess to the iterative solver, which can significantly improve the computational efficiency of
DRGNN (see Section 5). DRGNN automatically stores an initial guess for static graphs. For dynamic graphs,
it is recommended that this value is augmented to the data and passed to the model with the batched data. We
provide a data augmentation transform using the PyG library (Fey and Lenssen, 2019) in the publically available
code.

Synthetic Chains. In the Synthetic Chains dataset, we use a single linear layer without bias followed by
a dropout layer for encoding. We then use the DRGNN layer with ReLU activation and a bias term of two
sequential linear layers without bias separated by a ReLU activation function. The DRGNN layer is followed
by a decoding process of a ReLU activation function followed by a linear layer without bias. Finally, model
predictions are generated using a logarithmic softmax activation.
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Color-counting. The color-counting dataset uses the same encoder and decoder architecture as the Synthetic
Chains dataset. The DRGNN layer uses a ReLU activation function and a bias term of two sequential linear
layers without bias separated by a ReLU activation function.

Peptides-func. The atomic information provided by the peptides-func dataset is first encoded using the Atom
encoder as in (Dwivedi et al., 2022). Then the feature is passed through four layers of DRGNN with LeakyReLU
activation and a GCN-style bias term. The decoder architecture is a two sequential linear layer. The hidden
dimension is chosen to be 300 for all layers to fit within the 500k parameter limit. The key hyperparameters are
provided in Table 3.

Peptides-struct. Similar to the peptides-func dataset, the atomic information provided by the peptides-struct
dataset is first encoded using the Atom encoder as in (Dwivedi et al., 2022). Then the feature is passed through
three layers of DRGNN with LeakyReLU activation and a GCN-style bias term. The decoder architecture is
a three-sequential linear layer. The hidden dimension is chosen to be 300 for all layers to fit within the 500k
parameter limit. The key hyperparameters are provided in Table 3.

Transductive Datasets. The transductive datasets use the same encoder and decoder architecture as the
Synthetic Chains dataset. The DRGNN layer uses a LeakyReLU activation function.

D.3 Training procedure details

In this section, we provide the training details for the experiments in Section 5. All experiments are run using
8 NVIDIA RTX3090 GPUs and timing and memory experiments run on single A100 GPUs provided by Google
Colab.

Synthetic Chains. The dataset is pre-processed by taking the symmetric normalized adjacency matrix. In
these tasks, we utilize the Adam optimizer (Kingma and Ba, 2014), cross entropy loss, and early stopping based
on the validation accuracy. Specifically, we train with a maximum of 2000 forward epochs with early stopping
if the validation accuracy does not improve after 100 epochs. We save the model at the epoch with the best
validation accuracy and use the saved model for testing.

Color-counting. The training procedure for the color-counting dataset is identical to the synthetic chains
dataset.

Peptides-func and Peptides-struct. We follow the same training procedure as in (Dwivedi et al., 2022).
The optimizer is AdamW (Loshchilov and Hutter, 2017) with a total of 250 epochs. The learning rate is halved
when the validation loss does not improve after 20 epochs. The fixed 75/15/15% train/valid/test splits are used.
The batch size is 128 for Peptides-func and Peptides-struct.

Transductive Datasets. The optimizer is AdamW (Loshchilov and Hutter, 2017) with a total of 100 epochs.
The learning rate follows a cosine scheduler with 5 warmup epochs. The random 60/20/20% train/valid/test
splits are used.

D.4 Hyperparameter details

To find the optimal hyperparameters of each model we use the hyperparameter searching range reported in
Table 3. In the interest of space, when the spacing between values is linear, we use the notation {min:max:step}.
For instance dropout may be abbreviated {0.0:0.8:0.1}. We use lr to denote the initial learning rate and wd

to denote the weight decay. For DRGNN, we use αinit to denote the initialization of α, βinit to denote the
initialization of β, γinit to denote the initialization of γ. max iter to denote the maximum number of forward
iterations, phantom grad to denote the number of steps used at the Phantom gradient stage, tol to denote the
tolerance used for fixed-point iteration.

Synthetic Chains. For all models we use 16 hidden features. Each model is tuned using Bayesian meta-
learning to maximize the test accuracy for 50 iterations. For binary classification, the models are tuned with a
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Hyperparameter Search Range

lr weight decay dropout

{1e-3, 5e-3, 8e-3, 9e-3, 1e-2} {0, 1e-12, 1e-8, 1e-6, 1e-5, 1e-3, 1e-2} {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

Model alpha gamma kappa theta K/layers/num eigenvec

APPNP {0.0:0.8:0.1} — — — {10:200:10}
EIGNN — {0.0:0.8:0.1} — — {10:100:10}
GCN — — — — {10:200:10}
GCNII {0.0:0.8:0.1} — — {0.0:0.8:0.1} {10:200:10}
IGNN — — {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99} — —
SGC — — — — {10:200:10}
S2GC {0.0:0.8:0.1} — — — {10:200:10}

Table 3: Search space for hyperparameter tuning using Bayesian meta-learning.

maximum of 200 aggregation steps, for multi-class classification the models are tuned at chain length 100. The
optimal hyperparameters are shown in Table 4.

Model Hyperparameters

APPNP {lr : 0.01, wd : 0.00001, hidden channels : 16, hidden layers : 1, dropout : 0.8, alpha : 1.0, K : 200}
EIGNN {lr : 0.01, wd : 0, hidden channels : 16, dropout : 0.5, num eigenvec : 100, gamma : 0.8}
GCN {lr : 0.01, wd : 0.001, hidden channels : 16, dropout : 0.0, hidden layers : 150}
GCNII {lr : 0.01, wd : 1e-5, hidden channels : 16, dropout : 0.0, hidden layers : 170, alpha : 0.0, theta : 0.0}
IGNN/IGNN(Init) {lr : 0.01, wd : 1e-6, hidden channels : 16, dropout : 0.5, kappa : 0.99}
SGC {lr : 0.009, wd : 1e-8, hidden channels : 16, dropout : 0.8, hidden layers : 1, K : 190}
S2GC {lr : 0.009, wd : 1e-8, hidden channels : 16, dropout : 0.3, hidden layers : 1, alpha : 0.8, K : 200}

DRGNN (Ours) {lr : 0.009, wd : 0, hidden channels : 16, dropout : 0.2, phantom grad : 10, beta : 0.9, gamma : 0.0}

Table 4: Synthetic Chains hyperparameters.

Color-counting. The same DRGNN hyperparameters are used in the color-counting task as in the Synthetic
Chains task.

Peptides-func and Peptides-struct We report the parameter count and the hyperparameters for the best-
performing models in Table 5. The hyperparameters are chosen based on the validation performance.

Dataset Hyperparameters Parameter Count

Peptides-func {lr : 0.001, wd : 1e-8, beta init : 2.0, dropout : 0.2, gamma init : 0.9,
hidden channels : 300, max iter : 50, phantom grad : 5, tol : 5e-5} 507k

Peptides-struct {lr : 0.0005, wd : 0, beta init : 0.9, dropout : 0.3, gamma init : 0.5,
hidden channels : 128, max iter : 50, phantom grad : 10, tol : 1e-5} 507k

Table 5: DRGNN hyperparameters on Peptides-func, Peptides-struct

Transductive Datasets. We report the hyperparameters for the best-performing models in Table 6. The
hyperparameters are chosen based on the validation performance.

Dataset Hyperparameters

ogbn-arxiv {lr : 0.01, wd : 1e-3, alpha init : −0.4, beta init : 0.4, gamma init : −10,
dropout : 0.0, hidden channels : 256, max iter : 20, phantom grad : 5, tol : 4e-5}

Computers {lr : 0.01, wd : 1e-3, alpha init : −0.4, beta init : 0.9, gamma init : 0.5,
dropout : 0.4, hidden channels : 512, max iter : 25, phantom grad : 3, tol : 4e-5}

Photo {lr : 0.01, wd : 1e-3, alpha init : −0.34, beta init : 0.39, gamma init : −9.42,
dropout : 0.4, hidden channels : 512, max iter : 35, phantom grad : 9, tol : 4e-5}

CS {lr : 0.01, wd : 1e-12, alpha init : −0.31, beta init : 0.38, gamma init : −20.0,
dropout : 0.1, hidden channels : 512, max iter : 32, phantom grad : 5, tol : 4e-5}

Physics {lr : 0.01, wd : 1e-12, alpha init : −0.31, beta init : 0.38, gamma init : −20.0,
dropout : 0.1, hidden channels : 512, max iter : 32, phantom grad : 5, tol : 4e-5}

Table 6: DRGNN hyperparameters on Transductive datasets.
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