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Abstract

AI-enabled precision medicine promises a
transformational improvement in healthcare
outcomes. However, training on biomedical
data presents significant challenges as they
are often high dimensional, clustered, and of
limited sample size. To overcome these chal-
lenges, we propose a simple and scalable ap-
proach for cluster-aware embedding that com-
bines latent factor methods with a convex clus-
tering penalty in a modular way. Our novel
approach overcomes the complexity and limi-
tations of current joint embedding and cluster-
ing methods and enables hierarchically clus-
tered principal component analysis (PCA), lo-
cally linear embedding (LLE), and canonical
correlation analysis (CCA). Through numeri-
cal experiments and real-world examples, we
demonstrate that our approach outperforms
fourteen clustering methods on highly under-
determined problems (e.g., with limited sam-
ple size) as well as on large sample datasets.
Importantly, our approach does not require
the user to choose the desired number of clus-
ters, yields improved model selection if they
do, and yields interpretable hierarchically clus-
tered embedding dendrograms. Thus, our
approach improves significantly on existing
methods for identifying patient subgroups in
multiomics and neuroimaging data and en-
ables scalable and interpretable biomarkers
for precision medicine.
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1 INTRODUCTION

In modern medicine, interpretable clustering of pa-
tients into distinct subtypes is increasingly important
for personalized biomarker discovery, diagnosis, progno-
sis, and treatment selection (Sørlie et al., 2001, Santos
et al., 2015, Drysdale et al., 2017, Singh and Pandey,
2018, Qian et al., 2019, Bonacchi et al., 2020, Bishop
et al., 2022, Buch et al., 2023). To facilitate adop-
tion by healthcare professionals, we need explainable
models for clustering that can be trained even when
only limited data is available. However, due to the
“curse of dimensionality”, similarity metrics (and thus
clustering algorithm outcomes) degrade in high dimen-
sions (the “p > N ” setting common in medical imaging,
genomics, and multiomics, where we have p correlated
variables and N observations fewer than p). As a result,
it is popular to use a two-stage procedure where high
dimensional data are first embedded into a low-rank
representation, and then clustered in the resulting la-
tent space. The mapping to the low-rank space (e.g.,
component loadings) are then often used to explain
which variables are important (e.g., which differences
in brain regions or genes relate to cluster differences
(Drysdale et al., 2017, Danda, 2021, Gharavi et al.,
2021, Ciortan and Defrance, 2022).

Unfortunately, such two-stage procedures can lead to
suboptimal and hard-to-explain results (Chang, 1983),
as in the first stage the embedding may ignore impor-
tant structure in the data relevant to separating clusters
in the second stage (see Fig. 1). These issues motivate a
need for joint clustering and embedding methods. Iden-
tical concerns extend to multiple datasets (multiview
learning problems), where clustering and embedding
has also typically been approached as a two-stage pro-
cess, e.g., canonical correlation analysis (CCA) followed
by clustering (Chen et al., 2008, Chen and Schizas,
2013, Drysdale et al., 2017, Du et al., 2017, Ouyang,
2019, Buch et al., 2023). Recently, exciting new meth-
ods have emerged for jointly clustering and embedding



Simple and Scalable Algorithms for Cluster-Aware Precision Medicine 2

data, including cluster-aware feature selection (Wang
and Allen, 2021), CCA mixture models (Fern et al.,
2005, Lei et al., 2017), non-negative matrix factoriza-
tion (NMF)-based models (Fogel et al., 2016, Wu and
Ma, 2020, Zhou et al., 2021), and a number of neural
networks (e.g., Huang et al. (2014), Wang et al. (2015),
Yang et al. (2016), Mautz et al. (2020), Shin et al.
(2020), Lakkis et al. (2021), Boubekki et al. (2021)).
Although pioneering, these existing approaches involve
complicated many-objective or deep neural network for-
mulations that prioritize clustering over explainability
and tend to perform poorly in limited data cases, so
far limiting adoption.

Here, to develop an explainable and scalable approach
to joint clustering and embedding relevant to precision
medicine, we show a straightforward addition of a con-
vex clustering penalty to standard embedding methods
yields a simple, theoretically tractable, and modular
approach to joint clustering and embedding that is
highly competitive in practice and enjoys theoretical
benefits over convex clustering in the “large dimensional
limit” (LDL) regime appropriate for p > N data (in
the LDL regime p/N → c for constant c as p,N →∞)
(Johnstone, 2001, Paul, 2007, Benaych-Georges and
Nadakuditi, 2011, Dobriban, 2017, Aparicio et al., 2020,
Bao and Wang, 2022, Couillet and Liao, 2022).

Main contributions and significance:
1. We introduce a modular cluster-aware embedding

strategy appropriate for precision medicine applica-
tions along with 3 fast/scalable algorithms that solve
linear, locally linear, and multiview instantiations.

2. We prove PCMF dominates convex clustering in the
LDL regime appropriate for high dimensional data.

3. Our approach does not require specifying cluster
number. Instead it outputs interpretable per-cluster
embeddings organized as a dendrogram.

4. Still, we introduce a model selection procedure for
our approach that dominates standard methods.

5. Our approach performs competitively against state-
of-the-art methods on 17 real-world datasets.

2 RELATED WORK: CONVEX
CLUSTERING

Classically, solving clustering problems using discrete
optimization is known to be NP-hard. However, by
relaxing the hard clustering constraint to a convex
penalty (Pelckmans et al., 2005), clustering can be
reformulated as a convex optimization problem. In such
“convex clustering”—also referred to as “clusterpath” or
“sum-of-norms” clustering—the fitting procedure trades
off approximating the data well with minimizing the
sum of between-observation distances via a penalty, λ.
The number of clusters is indirectly controlled by this

hyperparameter, and when solved along a path of λ
values, convex clustering converges (Radchenko and
Mukherjee, 2017, Chi and Steinerberger, 2019) and can
exactly recover true data partitions among a mixture of
Gaussians (Hocking et al., 2011, Lindsten et al., 2011,
Jiang et al., 2020). Further, the solution path can
be visualized as a dendrogram to reveal hierarchical
structure among clusters (Weylandt et al., 2020).

More explicitly, for data matrix X ∈ RN×p with N
observations in the rows and p variables in the columns,
convex clustering finds estimate X̂ by solving:

minimize
X̂∈RN×p

1

2
∥X − X̂∥2F + λ

∑
i<j

wij∥X̂i· − X̂j·∥q. (1)

Tuning λ thus trades off a data approximation term
with a convex clustering penalty (which comes from a
Lagrangian relaxation of an inequality constraint on the
sum of the convex q-norms of differences between the
approximated observations—typically q ∈ {1, 2,∞}).
Importantly, weights wij > 0 constrained to be nonzero
for nearest neighbors (Chi and Lange, 2015, Wang
and Allen, 2021) can speed up optimization and in-
crease flexibility in modeling local structure in the
row differences, such as with a radial basis function
(wij = exp(−γ∥Xi· −Xj·∥22) (Hocking et al., 2011, Chi
and Lange, 2015), multiplicative weights (Jiang et al.,
2020), or properly scaling kernels (Fodor et al., 2022).

Recent theoretical and algorithmic developments for
convex clustering (Tan and Witten, 2015, Chiquet et al.,
2017, Panahi et al., 2017, Sui et al., 2018, Weylandt,
2019, Jiang et al., 2020, Lin and Chen, 2021, Sun
et al., 2021, Fodor et al., 2022) improve practically
and theoretically on solving the problem Eq. (1) (Hock-
ing et al., 2011, Chi and Lange, 2015, Panahi et al.,
2017, Weylandt et al., 2020, Sun et al., 2021). Cru-
cially, a warm-started ADMM (alternating direction
method of multipliers (Glowinski and Marroco, 1975,
Gabay and Mercier, 1976, Boyd et al., 2011) approach—
Algorithmic Regularization—was recently introduced
to enable feasible computation of dense convex cluster-
ing λ paths, speeding convergence more than 100-fold
(Weylandt et al., 2020). Multiple studies have extended
convex clustering, leading to new approaches to bi-
clustering (Allen et al., 2014, Chi and Lange, 2015),
multiview clustering (Wang and Allen, 2021), and su-
pervised convex clustering (Wang et al., 2023). These
existing approaches do not allow the same variables to
contribute differently to multiple clusters, and do not
use the convex clustering penalty for joint clustering
and embedding, as we do here.
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Figure 1: PCMF for explainable joint PCA and hierarchical clustering. a. Scatterplot of reconstructed ground
truth data (scatterplots show PCA reconstruction of rank r = 4) for 3-class problem; p = 20;N1 = 100 (blue),
N2 = 25 (red), N3 = 25 (orange), colored by true cluster membership. b. Spectral clustering sequentially
followed by PCA (r = 4) on clustered data. c. PCA (r = 4) sequentially followed by spectral clustering on
PCA components. d. Joint PCA and clustering with PCMF (r = 4;λ = 3.0). Two-step procedures in b-c fail
to find correct clusters while PCMF succeeds. b-d. Color indicates predicted clusters. e. PCMF paths for
variable 1 fit along decreasing penalty path (λ =∞ to λ = 0). f. Interpretable PCMF dendrogram estimated
from paths. g. PCMF coefficients accurately fit ground truth cluster-specific coefficients used to generate data.
PCMF coefficients v2, v3, and v4 approximate true cluster coefficients (“slopes”) v∗

1 (blue), v∗
2 (red), and v∗

3

(orange); v1 corresponds to cluster means intercept vector (not shown). h. Calculating variance explained by
each PCMF component shows the rank r = 4 model correctly captures the three cluster slopes and 1D-direction
along which cluster means vary. ACC, Accuracy; Coeffs., coefficients; PCA, principal component analysis

3 OUR APPROACH: PCMF

3.1 Pathwise Clustered Matrix Factorization
(PCMF) problem formulation

We propose using the convex clustering penalty as
a modular addition to common embedding methods
to make them cluster-aware (that is, to enable them
to jointly cluster and embed). More explicitly, given
a data matrix X ∈ RN×p (with N observations in
the rows, p variables in the columns, and rank R ≤
min(N, p)), an embedding of X: X̂ ∈ M (where M
is a low-dimensional manifold), and a loss function
L(·, ·) : RN×p × RN×p → R+, we can express our
general problem as:

minimize
X̂∈M

L(X, X̂) + λ
∑
i<j

wij∥X̂i· − X̂j·∥q, (2)

where the penalty term is identical to that used in
convex clustering above but now applied to a jointly
embedded X̂ ∈ M. To demonstrate the utility of
this strategy, we let M be the set of rank-r matri-
ces,Mr, and begin with among the most well-known
and widely-employed embedding algorithms: the trun-
cated singular value decomposition (tSVD) (Eckart and
Young, 1936). In this case, expressing the embedding

constraint X̂ ∈ Mr explicitly in terms of the tSVD,
Eq. (2) yields the PCMF problem:

minimize
X̂,Ur,Sr,Vr

1

2
∥X − X̂∥2F + λ

∑
i<j

wij∥X̂i· − X̂j·∥q

subject to X̂ − UrSrV
T
r = 0, UT

r Ur = V T
r Vr = Ir,

Sr = diag(s1, . . . , sr),

(3)

for s1 ≥ s2 ≥ · · · ≥ sr > 0. Here the rank-r ≤ R
tSVD embedding is given by X̂ = UrSrV

T
r , subject

to the usual orthogonality constraints on the first r
left and right singular vectors (collected in Ur and Vr,
respectively) and the standard ordering of the first
r singular values on the diagonal of Sr (Eckart and
Young, 1936). Without loss of generality, we assume X
has been centered—a case where the tSVD is also called
principal components analysis (PCA). Note that when
r = R (that is, if rank(X̂) = rank(X)), this problem re-
duces to the standard convex clustering problem Eq. (1)
as a special case. We next present efficient algorithmic
approaches to solving this nonconvex problem.
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3.2 PCMF dendrograms for explainability
and model selection

PCMF fits a path of solutions along a sequence of
values of λ (Fig. 1e–f), and when using the ℓ2-norm
(q = 2) (as we do below, given its desirable rotational
symmetry), not all members of a cluster are shrunk to
exactly the same value (Hocking et al., 2011). Previous
work has forced hard clustering at each agglomerative
stage along the λ path (Hocking et al., 2011, Weylandt
et al., 2020, Jiang et al., 2020). This may artificially
force observations into one cluster that may then later
switch to another, resulting in nonsmooth paths in
practice. We instead introduce letting the paths be
unconstrained and smooth while solving divisively, and
then to generate a dendrogram using a wrapper func-
tion that estimates sequential split points from the
fully-fit paths by sequentially testing whether increas-
ing the number of clusters at each step would improve
overall model fit in terms of the penalized log-likelihood.
Clustering at each λ is performed on the weighted affin-
ity matrix generated from differences matrix defined by
the dual variables as recommended in Chi and Lange
(2015). Thus, this procedure estimates the connected
components of the affinity graph defined by the dual
variables at each value of λ. Further details on model
selection are described in Appendix §2.9.

3.3 Solving PCMF with Algorithmic
Regularization

Because in most cases it is desirable for many weights
wij in the convex clustering penalty to be exactly zero
(Chi and Lange, 2015), we first re-represent the relevant
nonzero distances more efficiently as a sparse graph, G.
We then introduce an auxiliary variable G = DX̂ ∈
R|E|×p, where D ∈ R|E|×N is a sparse matrix containing
the weighted pairwise distances defined by edges E .
This allows us to rewrite the PCMF problem as:

minimize
X̂,G,Ur,Sr,Vr

1

2
∥X − X̂∥2F + λ

∑
ℓ∈E

wℓ∥Gℓ·∥q

subject to X̂ − UrSrV
T
r = 0, G−DX̂ = 0,

UTU = V TV = Ir, Sr = diag(s1, . . . , sr),

(4)

for s1 ≥ · · · ≥ sr > 0, which yields a problem sepa-
rable in its objective and penalty subject to (noncon-
vex) constraints—a common application for ADMM.
Algorithm 1 shows the resulting updates. Critically,
we have added Algorithmic Regularization (Weylandt
et al., 2020) along the λ path. ADMM solutions fit
along a path of λs benefit from “warm-starting” by
initializing the next problem along the path at the
previous solution. Algorithmic Regularization (AR)
takes this to the extreme, shortening steps along the
path and decreasing the number of ADMM iterations

at each point to a small number (making K small in Al-
gorithm 1). For an appropriately chosen step size, this
has been proven to converge to the true path solutions
and to speed up the computation of path estimation by
> 100-fold (Weylandt et al., 2020). This significantly
improves computational feasibility as our algorithm
requires solving over many path penalty (λ) values
(see Appendix §2 for derivation, convergence details,
computational complexity, and consensus algorithm).

Algorithm 1 PCMF

Input: data X, path {λ}, weights w, ρ ≥ 1,
Notation: data mean X, rank r, iteration k,
norm q ∈ {1, 2,∞}, pairwise distance matrix D,
proximal operator of Pw,q(·): proxλ

ρPw,q(·)

1: G0 ← Z0
1 ← DX; X̂ ← Z0

2 ← X, (U0
r , S

0
r , V

0
r ) ←

SVDr(X̂), L = chol(I + ρI + ρDTD)
2: for λ ∈ {λ} do
3: for k = 1, . . . ,K do
4: X̂k+1 ← L−TL−1

(
X + ρDT (Gk − Zk

1 ) +

ρ(Uk
r S

k
r V

kT
r − Zk

2 )
)

5: Gk+1 ← proxλ
ρPw,q(G)(DX̂k+1 + Zk

1 )

6: (Uk+1
r , Sk+1

r , V k+1
r )← SVDr(X̂

k+1 + Zk
2 )

7: Zk+1
1 ← Zk

1 +DT X̂k+1 −Gk+1

8: Zk+1
2 ← Zk

2 + X̂k+1 − Uk+1
r , Sk+1

r , V k+1
r

9: end for
10: Save current path solutions: X̂λ ← X̂K , Gλ ←

GK , (Ur,λ, Sr,λ, Vr,λ)← (UK
r , SK

r , V K
r )

11: Initialize for next path solution: X̂0 ← X̂K ,
G0 ← GK , (U0

r , S
0
r , V

0
r )← (UK

r , SK
r , V K

r )
12: end for
13: return pathwise solutions:
{X̂λ}, {Gλ}, {Ur,λ}, {Sr,λ}, {Vr,λ}

3.4 A nonlinear extension: locally linear
PCMF (LL-PCMF)

Next, we introduce a locally linear PCMF problem
and a Penalized Alternating Least Squares (PALS)
(Roweis and Saul, 2000) algorithm to solve it. For clar-
ity (and without loss of generality), we center and
scale X, set s1 = 1, and consider the rank-1 ver-
sion of the PCMF problem (which can be general-
ized to rank-r using an appropriate deflation approach;
see Appendix §2.3). Then denoting the ith column
vector of XT as xi = (XT )·i and defining penalty
P̃w,q(u,v) =

∑
(i,j)∈E wij∥uiv − ujv∥q, we can write

the rank-1 tSVD with a convex clustering penalty (see
Appendix §2.3) as:

minimize
u,v

N∑
i=1

1

2
∥xi − uiv∥22 + λP̃w,q(u,v)

subject to ∥u∥22 = 1, ∥v∥22 = 1.

(5)
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To introduce the overparameterization necessary for
convex clustering we replace the single vector v with a
matrix V ∈ Rp×N containing column vectors vi = V·i
(denoting the set of these column vectors as {v}i, i =
1, . . . , N)—this allows each observation to potentially
be its own cluster in the limit λ → 0. Note this is
the same overparameterization as in the standard con-
vex clustering problem Eq. (1). Defining Pw,q(u, V ) =∑

(i,j)∈E wij∥uivi − ujvj∥q, we arrive at the overpa-
rameterized problem:

minimize
u,V

N∑
i=1

1

2
∥xi − uivi∥22 + λPw,q(u, V )

subject to ∥u∥22 = 1, ∥vi∥22 = 1, i = 1, . . . , N.

(6)

Next, by removing the cross-terms in the penalty we
allow u and v to independently vary and the locally-
defined weights wij to apply to the embedding (making
it locally linear). We do this by replacing Pw,q(u,v)
with Qu

w,q(u) =
∑

(i,j)∈E wij |ui − uj | and QV
w,q(V ) =∑

(i,j)∈E wij∥vi − vj∥q. Then using fixed values from
iterate k, yku,i = xT

i v
k
i and yk

v,i = uk
i xi, we get updates:

uk+1 ← argmin
u

N∑
i=1

∥yku,i − ui∥22 + λQu
w,q(u)

subject to ∥u∥22 = 1, i = 1, . . . , N,

(7a)

{vi}k+1 ← argmin
{vi}

N∑
i=1

∥yk
v,i − vi∥22 + λQV

w,q(V )

subject to ∥vi∥22 = 1, i = 1, . . . , N. (7b)

Note these iterative PALS updates for LL-PCMF are
just convex clustering problems with constraints, and
thus given some convex clustering solver ConvexClus-
ter (Appendix Algorithms 4–5), we arrive at our algo-
rithm for LL-PCMF (see Appendix Algorithm 3 and
Appendix §2.3 for algorithm and derivation).

3.5 A multiview extension: Pathwise
Clustered CCA (P3CA)

We next extend our approach to multiview learning,
where we aim to jointly learn low-rank correlation struc-
ture while clustering observations across multiple data
views (i.e., fitting canonical correlation analysis or CCA
within clusters). To do so, we follow a derivation sim-
ilar to LL-PCMF (note it is also straightforward to
derive a linear P3CA by instead replacing the SVD
with CCA in Alg. 1), introducing the overparame-
terized pathwise clustered canonical correlation analy-
sis (P3CA) optimization problem (recall vi = V·i are
column vectors of V ∈ Rp×N ). We have data ma-
trices X ∈ RN×pX , Y ∈ RN×pY , and variables ui ∈
RpX , vi ∈ RpY , and we define Σi = XT

i· Yi· ∈ RpX×pY

and Qw,q(V ) =
∑

(i,j)∈E wij∥vi−vj∥q. This yields the
penalized rank-1 CCA problem:

minimize
{ui},{vi}

−
N∑
i=1

uT
i Σivi + λQw,q(U) + λQw,q(V )

subject to ∥ui∥22 = 1, ∥vi∥22 = 1, (8)

for i = 1, . . . , N . Without inequality constraints, this
is a biconvex problem in the {ui} and {vi} when the
subproblems are relaxed by fixing x̃i = Σivi and ỹi =
ΣT

i ui at each subiterate:

{ui}k+1 ← argmin
{ui}

N∑
i=1

1

2
∥x̃i − ui∥22 + λQw,q(U)

subject to ∥ui∥22 = 1, i = 1, . . . , N, (9a)

{vi}k+1 ← argmin
{vi}

N∑
i=1

1

2
∥ỹi − vi∥22 + λQw,q(V )

subject to ∥vi∥22 = 1, i = 1, . . . , N. (9b)

Each update is again a constrained convex cluster-
ing problem, leading to Algorithm 2. Empirically, for
sufficiently small steps sizes, Algorithmic Regulariza-
tion closely approaches the ADMM solutions with a
significant speed up (see Appendix §2.1 and §2.8 for
derivation and computational complexity).

Algorithm 2 Pathwise Clustered Canonical Correla-
tion Analysis (P3CA)

Input: data (X,Y ), path {λ}, weights w, ρ ≥ 1,
Notation: iter. k, data means (X̄, Ȳ ), vi = V·i,
x̃i = (X̃i·)

T , ỹi = (Ỹi·)
T , norm q ∈ {1, 2,∞}

1: U ← X̄, V ← Ȳ
2: for λ ∈ {λ} do
3: for k = 1, . . . ,K do
4: x̃k+1

i ← Σiv
k
i (Σi = Xi·Y

T
i· ∈ RpX×pY ) for i =

1, . . . , N

5: u
k+ 1

2
i ← ConvexCluster(X̃k+1, Uk, λ,w, q)

6: uk+1
i ← prox∥·∥2

2
(u

k+ 1
2

i ) for i = 1, . . . , N

7: ỹk+1
i ← ΣT

i u
k+1
i (ΣT

i = Yi·X
T
i· ∈

RpY ×pX ) for i = 1, . . . , N

8: v
k+ 1

2
i ← ConvexCluster(Ỹ k+1, V k, λ,w, q)

9: vk+1
i ← prox∥·∥2

2
(v

k+ 1
2

i ) for i = 1, . . . , N
10: end for
11: Save path solutions: UK

i· ← uKT
i ; V K

i· ←
vKT
i for i = 1, . . . , N ; (Uλ, Vλ)← (UK , V K)

12: Initialize: (U0, V 0)← (UK , V K)
13: end for
14: return pathwise solutions {Uλ}, {Vλ}
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3.6 Theory: PCMF for Gaussian Mixture
Model (GMM) data in the Large
Dimensional Limit (LDL) regime

Here we show that our approach dominates convex clus-
tering in the p > N LDL regime relevant to precision
medicine, offering a constructive proof for inadmissi-
bility of convex clustering in the case of “nontrivially”
clustered GMM data following recent results from ran-
dom matrix theory (RMT) (Couillet and Liao, 2022).

Definition 1 “Nontrivial” GMM data. We ob-
serve N i.i.d. data vectors xi ∈ Rp drawn from
the K-class GMM with fixed class sizes N1, . . . , NK

(with
∑K

k=1 Nk = N) gathered in data matrix X =
[x1, . . . ,xN ]T ∈ RN×p, with p ∼ N or p > N such
that p/N → c ∈ (0,∞) and Na/N → ca ∈ (0, 1)
as N,Na, p → ∞. Letting Ca be the set of obser-
vations from class a for a ∈ {1, . . . ,K} such that
xi ∼ N (µa, Ca) ⇐⇒ xi ∈ Ca with C1, . . . , Ck distinct
and of bounded norm. To ensure that cluster separation
is nontrivial as N, p→∞ we take ∥xi∥ to be of order
O(
√
p) and ∥µa−µb∥ = O(1) for a, b ∈ 1, . . . ,K; a ̸= b.

See Appendix §3 for additional details and motivation.

Proposition 1 For clustering the nontrivial GMM data
in the LDL regime, PCMF asymptotically dominates
standard convex clustering.

Proposition 2 For clustering the nontrivial GMM
data in the LDL regime, the local linear relaxation LL-
PCMF asymptotically dominates convex clustering.

Proposition 3 PCMF generalizes kernel spectral clus-
tering (kSC) to joint clustering and embedding.

We briefly explain these results here leaving proofs
to the Appendix §3. To prove Proposition 1, we let
C◦ =

∑k
a=1

Na

N Ca and note that due to “universality”
results from RMT (see Couillet and Liao (2022) Ch.
2) the GMM assumption is often (though not always)
equivalent to requiring xi ∈ Ca : xi = µa + C

1/2
a zi

(where zi is a random vector with i.i.d. zero mean, unit
variance, and suitably bounded higher-order moment
entries) (Couillet and Liao, 2022). We then consider
the convex clustering penalty “element-wise” and find
that:∑
i,j∈E

f

(
1

p
∥x̂i − x̂j∥22

)
=

∑
i,j∈E

f

(
2

p
C◦ +O(p−1/2)

)
,

(10)

where we have subsumed weights wij and the square
root into f(·) and normalized by p. The equality
in Eq. (10) follows from expanding and considering
each term given these assumptions, and indicates if
we consider entry-wise distances in the LDL regime,
all entries are dominated by the constant O(1) term
2tr C◦/p regardless of the values of a and b. Further

∥µa − µb∥22/p = O(p−1) is dominated by the O(p1/2)
noise terms, indicating convex clustering’s entry-wise
distance approach does not allow discrimination here.

However, by instead considering the data “matrix-wise”
via embedding, we find that there is important discrim-
inative information available in the low-rank structure
of the Euclidean distances. In particular, although the
matrix is again dominated by a O(N)-norm constant
matrix 2tr C◦/p · 1N1T

N , this rank-1 term can be dis-
carded leaving resolvable spectral information about
the covariance traces in the O(N−1/2)-norm rank-2
second dominant term. Subsequent order O(1) terms
contain usable discriminative information about the
means. Thus, using a low-rank embedding in the convex
clustering term (PCMF) allows discrimination in the
nontrivial GMM case and standard convex clustering
does not. The proof of Proposition 2 follows similarly.
Proposition 3 follows from noting that the differences
in the penalty term can be represented through an ap-
plication of the Laplacian of the weight-induced graph
such that PCMF is jointly optimizing both a (kernel)
spectral embedding and a clustering on that embedding
(see Appendix §3 for proofs). Together, these propo-
sitions show PCMF outperforms convex clustering in
p > N problems and formalize its relationship to kSC.

4 EXPERIMENTAL SETUP

We measure clustering accuracy (ACC) using PCMF,
LL-PCMF, and P3CA against 14 other clustering meth-
ods on 17 real-world datasets (Table 1): (1) PCA/CCA
+ K-means (Hotelling, 1933, 1936, MacQueen, 1967,
Hastie et al., 2009), (2) Ward (Hastie et al., 2009), (3)
Spectral (Hastie et al., 2009), (4) Elastic Subspace (You
et al., 2016a,b), (5) gMADD (Sarkar and Ghosh, 2020,
Paul et al., 2021), (6) HDCC (Bouveyron et al., 2007,
Bergé et al., 2012), (7) Leiden (Traag et al., 2019), (8)
Louvain (Blondel et al., 2008), (9) DP-GMM (Escobar
and West, 1995, You et al., 2016a), (10) convex cluster-
ing (hCARP) (Weylandt et al., 2020), (11) PCA/CCA
+ convex clustering hCARP, (12) Deep Embedding
Clustering (DEC) (Xie et al., 2016), (13) IDEC (Guo
et al., 2017), and (14) CarDEC (Lakkis et al., 2021).
See Appendix §5 for hyperparameters and additional
experimental details.

5 EXPERIMENTAL RESULTS

We assessed the efficacy of our unsupervised cluster-
aware embedding method on a total of 39 datasets
comprised of 22 synthetic datasets and 17 biomedical
datasets. We measured the clustering accuracy (ACC;
accuracy of clustering vs. ground-truth clusters) of
PCMF, LL-PCMF, and P3CA in comparison to 15



Amanda M. Buch, Conor Liston, Logan Grosenick 7

Table 1: 17 real-world datasets in Main Text Tables 2-3 and cluster discovery analysis.

Dataset Variables (p) Samples (N) Classes

(1) NCI 6, 830 genes (expression) (X) 64 13 cell types
(2) SRBCT 2, 318 genes (expression) (X) 88 4 cancer diagnoses
(3) Mouse 16, 944 genes (scRNA-seq) (X) 125 7 mouse organ types

(4) Tumors 11, 931 expression/methylation (X) 142 3 cancer diagnoses
(5) Tumors-Large 11, 931 expression/methylation (X) 400 3 cancer diagnoses
(6) Monkey-LGN 45, 768 genes (expression) (X) 1, 801 2 cell types
(7) Mouse-LGN 39, 670 genes (expression) (X) 1, 818 2 cell types

(8) MNIST 784 image pixels from 28 x 28 pixel image (X) 36, 000 6 digit types
(9) MNIST Fashion 784 image pixels from 28 x 28 pixel image (X) 36, 000 6 clothing types
(10) Human-ATAC 21, 972 chromatin profiles (X) 30, 480 2 cell types

(11) COVID-19 (Multiview) 403 metabolites (X); 382 proteins (Y ) 45 3 severities
(12) NCI (Multiview) 1, 000 genes (expression) (X); 100 genes (expression) (Y ) 64 13 cell types

(13) SRBCT (Multiview) 1, 000 genes (expression) (X); 100 genes (expression) (Y ) 88 4 cancer diagnoses
(14) Mouse (Multiview) 1, 000 genes (scRNA-seq) (X); 100 genes (scRNA-seq) (Y ) 125 7 mouse organ types

(15) Tumors (Multiview) 1, 000 genes (expression) (X); 100 genes (expression) (Y ) 142 3 cancer diagnoses
(16) Autism Spectrum Disorder (ASD) (Multiview) 3 behaviors (X); 20 RSFC features (Y ) 299 Unknown (discovery analysis)

(17) Palmer Penguin (Multiview) 2 features (X); 2 features (Y ) 342 3 penguin species

Discovery Dataset Calculate coefficient path (PCMF)(1)

Validate solution(4) Potential clinical utility(6)

Assess biological interpretation(5)
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b

1. Understanding pathophysiology
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4. Prioritizing precision biomarkers
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Figure 2: Flow diagram of PCMF on Tumors-Large dataset. a. Discovery dataset split into in-sample for training
and hold-out for testing. b. Flow diagram of cluster-aware embedding and interpretation steps: 1. Calculate
coefficient paths using PCMF. 2. Perform model selection on paths. 3. Calculate embedding dendrogram
from paths and selected model. 4. Validate solution using cluster accuracy (if labeled data) and/or PCMF
coefficient stability. 5. Biological interpretation (e.g., top-weighted coefficients as biomarkers, gene set enrichment,
protein-protein interaction network (PPI), pathway analysis). 6. Examples of potential clinical utility.

other clustering approaches, including 3 deep embed-
ded clustering approaches (Figs. 1,2,3,4, Tables 2,3,
Appendix Tables 1–6; Appendix Figs. 1–9). One can
also use our model selection approach on the PCMF
solution paths when the number of clusters is unknown,
and evaluating on synthetic and biomedical data we
significantly outperform standard cluster number selec-
tion methods including Silhouette, Calinski-Harabasz,
and Davies-Bouldin statistics (see Appendix §2.9).

In small N biomedical datasets (underdetermined,
p > N), we found LL-PCMF and P3CA outperform
all methods except DEC/IDEC on SRBCT (Table 2,
Appendix Table 1,3,4). In 12 synthetic datasets, we
found that PCMF and LL-PCMF with nearest neigh-
bors N.N. = 25 performs competitively in accuracy,
especially for p > N (p = 200, p = 2, 000; Appendix
Table 1). To evaluate the PCA interpretation of PCMF
embeddings, we compared and showed high similarity
to tSVD estimates fit within ground-truth clusters (Fig.
1g, Appendix Table 2, and Appendix Fig. 2).

Next, we evaluated PCMF on large (many observations

N) datasets, using a consensus formulation for scalabil-
ity. Standard convex clustering cannot run on datasets
of this size (i.e., N > 1, 000). In large N biomedical
and synthetic datasets, we found PCMF outperforms
other methods on in-sample and held-out test set data
(Table 3, Fig. 3, Appendix Fig. 2, Appendix Table 2).

In the tumors-large dataset (N = 400), we found
PCMF model coefficients for the F-Box And Leucine
Rich Repeat Protein 2 (FBXL2) gene reveal a cluster
hierarchy between GBM, lung, and breast cancer while
a two-step approach has degraded cluster membership
(Fig. 3a-c). Branching structure reflects the suspected
role of FBXL2 as a metastatic biomarker of breast-
to-lung metastasis (Wang et al., 2019) and suggests a
druggable target (Deng et al., 2020). In Fig. 3d, Spear-
man’s correlations between the PCMF score and pro-
lactin receptor (PRLR) gene expression reveal strong
slope differences between the 3 cancer tumors. PRLR
is a mammary proto-oncogene (Sa-Nguanraksa et al.,
2020, Grible et al., 2021), and a prognostic biomarker
of GBM progression (higher expression with shorter
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Table 2: Clustering accuracy on small real-world datasets (“MV” abbreviates “Multiview”).

NCI SRBCT Mouse Tumors COVID-19-MV Penguins-MV NCI-MV SRBCT-MV Mouse-MV Tumors-MV
Variables (p) 6, 830 2, 318 16, 944 11, 931 403; 382 2; 2 1, 000; 100 1, 000; 100 1, 000; 100 1, 000; 100
Samples (N) 64 88 125 142 45 342 64 88 125 142
Classes 13 4 7 3 3 3 13 4 7 3

PCMF 43.79% 51.8% 73.6% 92.25% n.a. n.a. n.a. n.a. n.a. n.a.
LL-PCMF 64.06% 55.42% 80.00% 97.89% n.a. n.a. n.a. n.a. n.a. n.a.
P3CA n.a. n.a. n.a. n.a. 91.11% 98.25% 56.25% 65.06% 63.20% 98.59%
PCA + K-means 39.06% 40.96% 45.60% 50.00% n.a. n.a. n.a. n.a. n.a. n.a.
CCA + K-means n.a. n.a. n.a. n.a. 51.11% 79.82% 31.25% 37.35% 27.20% 50.70%
Ward 56.25% 40.96% 46.40% 94.37% 68.89% 96.78% 51.56% 40.96% 30.40% 94.36%
Spectral 43.75% 43.37% 45.60% 93.66% 82.22% 96.78% 50.00% 43.37% 40.00% 93.66%
Elastic Subspace 59.38% 49.40% 73.60% 94.37% 51.11% 97.37% 48.43% 40.96% 52.00% 94.37%
gMADD 42.19% 46.99% 42.40% 72.54% 51.11% 67.25% 39.06% 44.58% 35.20% 58.45%
HDCC 59.38% 34.94% 29.60% 50.00% 40.00% 88.01% 51.50% 38.55% 29.60% 50.00%
Leiden 50.00% 46.99% 68.00% 71.12% 82.22% 40.06% 48.43% 46.99% 49.60% 71.13%
Louvain 42.19% 48.19% 76.00% 94.34% 82.22% 65.20% 45.31% 48.19% 60.80% 93.66%
DP-GMM 46.88% 43.37% 54.40% 85.92% 73.33% 68.42% 45.31% 44.58% 39.20% 92.96%
hCARP 43.75% 46.99% 36.00% 75.25% 71.11% 79.82% 34.37% 43.37% 30.40% 93.66%
PCA + hCARP 37.50% 46.99% 47.20% 46.48% n.a. n.a. n.a. n.a. n.a. n.a.
CCA + hCARP n.a. n.a. n.a. n.a. 46.67% 95.32% 29.69% 46.99% 30.40% 38.73%
DEC 45.31% 71.08% 46.40% 94.37% 86.67% 88.89% 54.69% 65.06% 33.60% 94.37%
IDEC 48.44% 67.47% 61.60% 92.96% 73.33% n.a. n.a. n.a. n.a. n.a.
CarDEC 51.56% 40.96% 75.20% 90.14% 84.44% n.a. n.a. n.a. n.a. n.a.

Table 3: Clustering accuracy (ACC) and time elapsed (TOC) for consensus PCMF on large datasets.
(“X” indicates computationally infeasible to run. “T” indicates infeasible due to run time out.)

Tumors-Large Monkey-LGN Mouse-LGN MNIST Fashion MNIST Human-ATAC Synthetic
Variables (p) 11, 931 45, 768 39, 670 784 784 21, 972 1, 000

Samples (N) 400 1, 801 1, 818 36, 000 36, 000 30, 480 100, 000

Classes 3 2 2 6 6 2 4

In-sample Hold-out In-sample Hold-out In-sample Hold-out In-sample Hold-out In-sample Hold-out In-sample Hold-out In-sample Hold-out

PCMF 100.00% 100.00% 99.10% 98.40% 96.10% 66.99% 99.93% 88.33% 99.94% 81.41% 84.60% 86.51% 100.00% 100.00%
PCA + K-means 89.75% 100.00% 68.20% 92.81% 66.61% 51.23% 29.64% 29.64% 45.00% 45.48% 78.32% 77.95% 50.09% 50.00%
Ward 90.50% n.a. 67.80% n.a. 86.20% n.a. –X– n.a. –X– n.a. –X– n.a. –X– n.a.
Spectral 92.00% n.a. 65.50% n.a. 97.30% n.a. –X– n.a. –X– n.a. –X– n.a. –X– n.a.
gMADD 61.50% n.a. 85.10% n.a. 60.60% n.a. –X– n.a. –X– n.a. –X– n.a. –X– n.a.
Leiden 66.25% n.a. 28.70% n.a. 31.20% n.a. 60.62% n.a. 38.31% n.a. 49.40% n.a. 10.88% n.a.
Louvain 72.25% n.a. 30.10% n.a. 39.00% n.a. 69.88% n.a. 42.26% n.a. 51.50% n.a. 10.85% n.a.
DEC 99.25% n.a. 93.90% n.a. 92.50% n.a. –T– n.a. –T– n.a. 86.60% n.a. –T– n.a.
IDEC 86.50% n.a. –T– n.a. –T– n.a. 55.25% n.a. 48.98% n.a. –T– n.a. –T– n.a.

survival in males) (Asad et al., 2020) and therapeutic
target (Asad et al., 2019, Sa-Nguanraksa et al., 2020).
PRLR is strongly but oppositely associated with GBM
(R = −0.81) and breast tumor clusters (R = 0.45),
as suggested for triple-negative breast cancer–shows
higher expression is associated with lower recurrence
and longer survival (Motamedi et al., 2020).

Next, in a small N COVID-19 dataset (Shen et al.,
2020) we show that P3CA identifies hierarchical clus-
tered metabolome-proteome embeddings that predict
both severity (ACC = 91.11% in Table 2) and potential
biomarkers. Severity hierarchy is not well represented
in the two-step approach; Fig. 4a-b. Cluster-specific
P3CA score Spearman’s correlations with Carboxypep-
tidase B2 (CPB2) and Apolipoprotein M (APOM) pro-
teins (Fig. 4c-d) show opposite relationships—CPB2
(a known predictor of severe illness and a therapeutic
target (Foley et al., 2015, Zhang et al., 2021, Claesen
et al., 2022) is strongly associated with the severe clus-
ter (R = −.8). APOM (known to associate with less
severity and better prognosis (Shen et al., 2020, Cos-
griff et al., 2022) is only strongly associated with the
not severe P3CA cluster (R = 0.69). Protein-protein
interaction (PPI) networks constructed using the top

25 cluster-associated proteins reveal only a small PPI
network for the healthy cluster with just 5/25 COVID-
19-related genes versus large, highly-connected PPI
networks with 15-18 COVID-19-related genes in the
others (Fig. 4e-h; see methods in Appendix §5).

Finally, we show P3CA’s utility for discovering autism
spectrum disorder (ASD) subgroups, relevant to per-
sonalized diagnosis (Drysdale et al., 2017, Grosenick
et al., 2019, Buch et al., 2023) (Appendix §4.3). We
find strong differences in associations of ASD (Martino,
2014, 2017) subtype embeddings with behavior and
brain connectivity (Appendix Fig. 9 and Appendix
Tables 5–6), consistent with known ASD subpopula-
tion differences on behaviors with prefrontal cortex to
somatosensory cortex, posterior parietal cortex, and
middle temporal gyrus (Buch et al., 2023). Subject-
level P3CA embedding coefficients are robust to data
perturbation (cosine similarity: 0.93± 0.05 for U esti-
mates and 0.97± 0.03 for V estimates; 10 subsamples).
Notably, our approach provides more distinct cluster
separation along a single P3CA dimension, and im-
proves interpretability relative to current SOTA meth-
ods in neuroimaging for this ASD subtyping problem
(Buch et al., 2023).
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Figure 4: P3CA identifies COVID-19-severity clusters and embeddings using protein (p = 382) and metabolite
(p = 403) abundances from N = 45 individuals. a. Dendrogram shows hierarchical clustering on CCA embedding
(CCA—> Ward clustering) fails to identify clusters. b. P3CA dendrogram shows P3CA accurately identifies
clusters (ACC = 91.11%). c-d. Scatterplots/boxplots show distribution of protein abundance versus P3CA
protein scores for each individual colored by P3CA-predicted clusters. r: correlation between abundances and
P3CA protein score (i.e., canonical variate). e-h. Protein-protein interaction (PPI) networks for top 25 proteins
associated with each P3CA-predicted cluster. Colored text: cluster-specific proteins; yellow node: COVID-19-
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6 DISCUSSION AND CONCLUSION

AI-enabled precision medicine promises dramatic im-
provements in healthcare, but facilitating adoption
by healthcare professionals will require explainable,
effective, and scalable methods appropriate for biomed-
ical data. To meet this need, we have introduced
a simple and interpretable joint clustering and em-
bedding strategy using a modular convex clustering
penalty. We instantiate our approach in three scalable
algorithms that solve linear (PCMF), nonlinear (LL-
PCMF), and multiview (P3CA) problems, and show
that our method dominates standard convex clustering

in the LDL regime. Empirically, our results are highly
competitive against classical and SOTA clustering ap-
proaches and have superior explainability to SOTA
clustering approaches, enabling discovery of an inter-
pretable hierarchy of cluster-wise embeddings that can
predict diagnosis- and prognosis-relevant biomarkers.
Still they have limitations: they are less flexible than
neural network methods and thus may be dominated
by such approaches in observation-rich cases. Over-
all, we present a simple and effective approach to help
customize biomarker discovery, diagnosis, prognosis,
and treatment selection that is particularly effective in
data-limited p > N cases.
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Code availability

Code may be found at: https://github.com/CARVE-
AI.
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Figure 1: Examples of the three types of synthetic datasets considered in Appendix Table 1 for comparing other
standard clustering methods and PCMF. Note: Sample sizes and means are slightly different than in Appendix
Table 1, but the distributions are representative. Points are colored by class labels predicted by clustering method.

1 SOCIETAL IMPACT

We introduce a new interpretable method to decompose latent structure in clustered data, which has many
potential positive applications for society, including as a tool to decode multiomic and neurobiological heterogeneity
underlying medical disorders such as cancer and neuropsychiatric disorders. Our method is also general in that
it can be applied to different types of data to learn latent covariance structure that exists within clusters of
single-view or multiview data. As with any clustering algorithm, the potential for negative societal impact depends
on the dataset and the intended use of the analysis. It will be critical for the use of such clustering algorithms to
be on datasets that following ethical guidelines in terms of data collection and data use. The robustness and
explainability provided by our methods for unbalanced, small clusters could enable positive or negative impacts
on underrepresented classes depending on its application.
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2 PROBLEM FORMULATION, DERIVATIONS, AND ALGORITHMS

2.1 Pathwise Clustered Matrix Factorization (PCMF)

Derivation:

Denote the PCMF optimization problem for truncated SVD of rank r:

minimize
X̂,G,Ur,Sr,Vr

1

2
∥X − X̂∥2F + λPw,q(G) (1)

subject to X̂ − UrSrV
T
r = 0, UT

r Ur = V T
r Vr = Ir,

Sr = diag(s1, . . . , sr), s1 ≥ . . . ≥ sr > 0,

G−DX̂ = 0.

For simplicity we suppress the rank subscripts letting U = Ur, S = Sr, V = Vr in the following. We use the
multi-convex scaled form of ADMM (Boyd et al., 2011a), yielding ADMM updates from the augmented Lagrangian
with penalty parameter ρ > 0:

X̂k+1 ← argmin
X̂∈RN×p

1

2
∥X − X̂∥2F +

ρ

2
∥UkSkV k − Zk

2 ∥2F (2)

+
ρ

2
∥DX̂ −Gk − Zk

1 ∥2F ,

Gk+1 ← argmin
G∈R|E|×p

λPw,q(G) +
ρ

2
∥DX̂k+1 −G+ Zk

1 ∥2F , (3)

(Uk+1, Sk+1, V k+1)← argmin
U∈RN×r,V ∈Rp×r ,

UTU=V TV=Ir,
S=diag(s1,...,sr), s1≥···≥sr>0

∥X̂k+1 − USV T + Zk
2 ∥2F , (4)

Zk+1
1 ← Zk

1 +DX̂k+1 −Gk+1, (5)

Zk+1
2 ← Zk

2 + X̂k+1 − Uk+1Sk+1V k+1,T . (6)

Note that the Gk+1 update can be re-expressed using the proximal operator for Pw,q(G), since

argmin
G∈R|E|×p

λPw,q(G) +
ρ

2
∥DX̂k+1 −G+ Zk

1 ∥2F = argmin
G∈R|E|×p

λ

ρ
Pw,q(G) +

ρ

2

∥∥∥G−
(
DX̂k+1 + Zk

1

)∥∥∥2

F

= proxλ
ρ
Pw,q(G)

(
DX̂k+1 + Zk

1

)
. (7)

Further, due to the Eckhart-Young Theorem (Eckart and Young, 1936), the solution to the (Uk+1, Sk+1, V k+1)

update can be expressed as simply the SVD of X̂k+1 + Zk
2 . Further, writing out the the primal update, taking

the gradient with respect to X̂ and setting the gradient equal to zero yields updates:

X̂k+1 ← (I + ρI +DTD)−1(X + ρDT (Gk − Zk
1 ) + ρ(UkSkV k − Zk

2 )). (8)

Finally, letting LLT = I + ρI +DTD, we obtain the updates in Main Text Algorithm 1 (reproduced as “Appendix
Algorithm 1” here for ease of reference).
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Algorithm 1 PCMF

Input: data X, path {λ}, weights w, ρ ≥ 1,
Notation: data mean X, rank r, iteration k,
norm q ∈ {1, 2,∞}, pairwise distance matrix D,
proximal operator of Pw,q(·): proxλ

ρPw,q(·)

1: G0 ← Z0
1 ← DX; X̂ ← Z0

2 ← X, (U0
r , S

0
r , V

0
r )← SVDr(X̂), L = chol(I + ρI + ρDTD)

2: for λ ∈ {λ} do
3: for k = 1, . . . ,K do
4: X̂k+1 ← L−TL−1

(
X + ρDT (Gk − Zk

1 ) + ρ(Uk
r S

k
r V

kT
r − Zk

2 )
)

5: Gk+1 ← proxλ
ρPw,q(G)(DX̂

k+1 + Zk
1 )

6: (Uk+1
r , Sk+1

r , V k+1
r )← SVDr(X̂

k+1 + Zk
2 )

7: Zk+1
1 ← Zk

1 +DT X̂k+1 −Gk+1

8: Zk+1
2 ← Zk

2 + X̂k+1 − Uk+1
r , Sk+1

r , V k+1
r

9: end for
10: Save current path solutions: X̂λ ← X̂K , Gλ ← GK , (Ur,λ, Sr,λ, Vr,λ)← (UK

r , S
K
r , V

K
r )

11: Initialize for next path solution: X̂0 ← X̂K , G0 ← GK , (U0
r , S

0
r , V

0
r )← (UK

r , S
K
r , V

K
r )

12: end for
13: return pathwise solutions:
{X̂λ}, {Gλ}, {Ur,λ}, {Sr,λ}, {Vr,λ}

Table 1: Clustering accuracy of PCMF on two-class data (10 runs per synthetic data type). We generate X from
two distributions that differ in centroid and slope: non-overlapping clusters (centroids ∈ {−0.2, 0.2}), overlapping
clusters (centroids ∈ {−0.05, 0.05}), or non-overlapping but unbalanced cluster size (centroids ∈ {−0.2, 0.2}). δ
indicates the fraction of variables redundantly containing signal. N.N. denotes number of nearest neighbors used
in the convex clustering penalty.

Non-overlapping Non-overlapping Overlapping Overlapping Unbalanced Unbalanced
δ = 0.5;N1, N2 = 50 δ = 0.2;N1, N2 = 50 δ = 0.5;N1, N2 = 50 δ = 0.2;N1, N2 = 50 δ = 0.5;N1 = 80, N2 = 20 δ = 0.2;N1 = 80, N2 = 20

ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI

p = 200
PCA+K-means 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.06 ± 0.07 0.10 ± 0.11 1.0 ± 0.0 1.0 ± 0.0 0.16 ± 0.0 0.28 ± 0.0 0.16 ± 0.0 0.28 ± 0.0
Ward 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.31 ± 0.36 0.40 ± 0.32 1.0 ± 0.0 1.0 ± 0.0 0.16 ± 0.0 0.28 ± 0.0 0.16 ± 0.0 0.28 ± 0.0
Spectral 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.16 ± 0.0 0.28 ± 0.0 0.16 ± 0.0 0.28 ± 0.0
DP-GMM 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.25 ± 0.10 0.33 ± 0.11 1.0 ± 0.0 1.0 ± 0.0 0.16 ± 0.0 0.28 ± 0.0 0.16 ± 0.0 0.28 ± 0.0
Elastic Subspace 0.16 ± 0.09 0.25 ± 0.13 0.06 ± 0.10 0.09 ± 0.14 0.80 ± 0.09 0.75 ± 0.09 0.09 ± 0.08 0.14 ± 0.11 0.05 ± 0.04 0.05 ± 0.03 0.03 ± 0.03 0.04 ± 0.03
gMADD 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.01 0.02 ± 0.02 0.61 ± 0.48 0.61 ± 0.48 0.16 ± 0.01 0.27 ± 0.02 0.16 ± 0.0 0.28 ± 0.0
PCMF; No N.N. 0.01 ± 0.03 0.03 ± 0.04 0.0 ± 0.01 0.01 ± 0.01 0.11 ± 0.30 0.12 ± 0.30 0.0 ± 0.01 0.01 ± 0.01 0.01 ± 0.03 0.03 ± 0.04 0.0 ± 0.01 0.01 ± 0.01
LL-PCMF; No N.N. 0.54 ± 0.46 0.54 ± 0.45 0.60 ± 0.49 0.60 ± 0.49 0.09 ± 0.18 0.11 ± 0.18 0.14 ± 0.26 0.13 ± 0.22 0.54 ± 0.46 0.54 ± 0.45 0.60 ± 0.49 0.60 ± 0.49
PCMF; N.N. = 25 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
LL-PCMF; N.N. = 25 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.62 ± 0.45 0.64 ± 0.42 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

p = 2000
PCA+K-means 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.05 ± 0.08 0.09 ± 0.12 1.0 ± 0.0 1.0 ± 0.0 0.16 ± 0.0 0.28 ± 0.0 0.16 ± 0.0 0.28 ± 0.0
Ward 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.24 ± 0.26 0.34 ± 0.22 1.0 ± 0.0 1.0 ± 0.0 0.16 ± 0.0 0.28 ± 0.0 0.16 ± 0.0 0.28 ± 0.0
Spectral 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.13 ± 0.05 0.23 ± 0.09 0.16 ± 0.0 0.28 ± 0.0
DP-GMM 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.35 ± 0.32 0.41 ± 0.30 1.0 ± 0.0 1.0 ± 0.0 0.16 ± 0.0 0.28 ± 0.0 0.16 ± 0.0 0.28 ± 0.0
Elastic Subspace 0.08 ± 0.11 0.13 ± 0.16 0.09 ± 0.12 0.14 ± 0.16 0.39 ± 0.08 0.32 ± 0.06 0.11 ± 0.06 0.20 ± 0.10 0.06 ± 0.04 0.05 ± 0.03 0.04 ± 0.04 0.04 ± 0.04
gMADD 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.01 0.01 ± 0.02 0.80 ± 0.39 0.81 ± 0.38 0.16 ± 0.01 0.27 ± 0.02 0.16 ± 0.0 0.28 ± 0.0
PCMF; No N.N. 0.41 ± 0.49 0.43 ± 0.47 0.0 ± 0.0 0.0 ± 0.01 0.0 ± 0.0 0.02 ± 0.02 0.40 ± 0.49 0.40 ± 0.49 0.40 ± 0.49 0.43 ± 0.47 0.0 ± 0.01 0.01 ± 0.02
LL-PCMF; No N.N. 0.43 ± 0.45 0.42 ± 0.45 0.44 ± 0.46 0.44 ± 0.45 0.06 ± 0.11 0.08 ± 0.15 0.14 ± 0.28 0.14 ± 0.27 0.43 ± 0.45 0.42 ± 0.45 0.44 ± 0.46 0.44 ± 0.45
PCMF; N.N. = 25 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
LL-PCMF; N.N. = 25 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

2.2 Consensus PCMF

We show the consensus formulation of PCMF in Appendix Algorithm 2 and discuss correcting for batch effects in
the following subsection.

Correcting for batch effects in Consensus PCMF solution paths:
Differences in batch means result in very similar but slightly shifted paths for the different batches, an effect that
results in problems for our dendrogram fitting approach. We therefore correct for the batch effects using the
following procedure: (1) cluster on the last solution in the solution path (at λ = 0), (2) for each of these clusters,
calculate its centroid at each time point and trace this path back to λ =∞, (3) do this for all terminal clusters to
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yield a corrected set of paths that can then be input into our dendrogram fitting procedure.

In Appendix Algorithm 2, we split X into B batches. For each batch we store the batch mean µb and center
Xb by subtracting µb. The X̂b

k+1
and Gk+1 updates are run on each batch Xb and then the X̂b

k+1
across B

batches are stacked prior to calculating the SVD. This yields an almost-centered Uk+1, Sk+1, V k+1 that needs to
be batch corrected by accounting for the individual batch means. We recalculate T k+1 = Uk+1Sk+1 by the dot
product of the update (X̂b

k+1
+ Z2

k) + the Xb mean µb with the non-centered V k+1. Finally, we re-calculate
the Uk+1 by dividing the centered T k+1 by Sk+1 and unit normalizing the Uk+1. This yields a consensus Uk+1

update that is equivalent to the centered SVD Uk+1 update. We use this Uk+1 for the Z1
k+1
b and Z1

k+1
b updates

that we calculate in each batch. Finally, we stack the output X̂b

k+1
across batches to yield X̂k+1.

Figure 2: PCMF identifies a hierarchy of clustered matrix factorizations (X̂) along a convex penalty path (λ). a.
Observations for first two variables colored by class for a synthetic dataset with 20 classes (N = 1, 000; p = 100).
b. Consensus PCMF path dendrogram of X̂ using 10 mini-batches of Nbatch = 100. c. Comparison of PCMF
embeddings (r = 1; USV0 from PCMF) to per-cluster tSVD (r = 1; USV0 from SVD). The two estimates are
shown plotted against one another with colors indicating the 20 classes. We calculated the tSVD within each
cluster using the ground truth clustering. The PCMF rank-one matrices per-cluster were highly similar to those
found using tSVD within each ground truth cluster.

Table 2: Comparison of PCMF embeddings to per-cluster tSVD. Using the ground truth clustering, we calculated
the tSVD within each cluster to find the within-cluster singular value S and singular vectors U and V . We
compared these to the estimates from PCMF. S, U , and V for the 20 classes estimated by PCMF are highly
similar to the S, U , and V calculated by the tSVD within ground truth clusters. This indicates that PCMF is
successfully approximating the true within-cluster tSVD estimates (uncentered PCA).

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S (PCMF) 122.55 122.50 113.04 112.99 96.58 96.53 87.29 87.01 73.04 73.09 66.00 65.99 49.55 49.35 35.39 35.37 23.76 23.52 9.37 9.46
S (SVD) 122.55 122.51 113.05 113.00 96.59 96.54 87.23 87.03 73.04 73.09 66.01 66.00 49.59 49.38 35.41 35.38 23.87 23.56 9.42 9.54
U0:20 (PCMF) 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
U0:20 (SVD) 0.14 0.18 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.14 0.14 0.14 0.14 0.14
V0,0:20 (PCMF) -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
V0,0:20 (SVD) -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
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Algorithm 2 Consensus PCMF
Input: data X, ↓ path {λ}, weights w, pairwise distance matrix D
Notation: data mean X, batch b, batch mean µb, concatenate

f
, rank r, iteration k, norm q, ρ > 0

Initialize:
1: Split X into B batches and demean

X =
fB
b=1Xb = X1 ∥X2 ∥ · · · ∥Xb

2:
fB
b=1 µb = Xb −Xb

3: L = chol(I + ρI + ρDTD)
4: for b = 1, . . . , B do
5: G0

b = Z1
0
b = DXb

6: X̂b = Z2
0
b = X

7: end for
8: (Ur

0, Sr
0, Vr

0)← SVDr(X̂)
ADMM:

9: for λ ∈ {λ} do
10: for k = 1, . . . ,K do
11: for b = 1, . . . , B do
12: X̂b

k+1
← L−TL−1

(
Xb + ρDT (Gk

b − Z1
k
b ) + ρ(Ur

k
bSr

kVr
kT − Z2

k
b )
)

13: Gk+1
b ← proxλ/ρ,q(·,·)(DX̂b

k+1
+ Z1

k
b ;wb)

14: end for
15: X̂k+1 =

fB
b=1 X̂b

k+1
, Z2

k =
fB
b=1 Z2

k
b

16: (U b
k+1
r , Sk+1

r , V b
k+1
r )← SVDr(X̂

k+1 + Zk
2 )

17: T k+1
r ← (X̂k+1 + Zk

2 + µb)V b
k+1
r

18: Uk+1
r ← T k+1

r /Sk+1
r

19: (Uk+1
r )·j =

(Uk+1
r )·j

∥(Uk+1
r )·j∥2

2

20: for b = 1, . . . , B do
21: Z1

k+1
b ← Z1

k
b +DT X̂b

k+1
−Gk+1

b

22: Z2
k+1
b ← Z2

k
b + X̂b

k+1
− Ur

k+1
b , Sr

k+1, Vr
k+1

23: end for
24: end for
25: X̂λ ← X̂K =

fB
b=1 X̂b

K
, Gλ ← GK =

fB
b=1G

K
b

26: (Ur,λ, Sr,λ, Vr,λ)← (UK
r , S

K
r , V

K
r )

27: for b = 1, . . . , B do
28: X̂b

0
← X̂b

K
, G0

b ← GK
b

29: end for
30: (Ur

0, Sr
0, Vr

0)← (Ur
K , Sr

K , Vr
K)

31: end for
32:
33: return {X̂λ}, {Gλ}, {Ur,λ}, {Sr,λ}, {Vr,λ}
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2.3 Locally Linear (LL)-PCMF

Algorithm 3 LL-PCMF

Input: data X, decreasing path {λ}, weights w
Notation: data mean X, samples N , iteration k, norm q ∈ {1, 2,∞}, ρ ≥ 1

1: V 0 ← X, s0 = 1
2: for λ ∈ {λ} do
3: for k = 1, . . . ,K do
4: yku,i = xT

i v
k
i , i = 1, . . . , N

5: uk+ 1
2 ← ConvexCluster(yk

u,u
k, q)

6: uk+1 ← prox∥·∥2
2
(uk+ 1

2 )

7: yk+1
v,i = uk+1

i xi, i = 1, . . . , N

8: {vi}k+
1
2 ← ConvexCluster(Y k+1

v , V k, λ,w, q)

9: {vi}k+1 ← prox∥·∥2
2
(v

k+ 1
2

i ), i = 1, . . . , N
10: end for
11: sKi ← uKi xT

i v
K
i

12: Save current path solutions: (uλ, sλ, Vλ)← (uK , sK , V K)
13: Initialize for next path solution: (u0, s0, V 0)← (uK , sK , V K)
14: end for
15: return pathwise solutions {uλ}, {sλ}, {Vλ}

Derivation and the rank-1 problem:

We present a Penalized Alternating Least Squares (PALS) approach that provides a local linear fitting
of per-cluster factors. Without loss of generality, we consider the rank-1 version of this problem. Note this can be
generalized to rank-r using our orthogonalized deflation procedure described in Appendix §2.5, or another an
appropriate deflation approach (Mackey, 2008, Witten et al., 2009).

Consider the PCMF optimization problem:

minimize
X̂,Ur,Sr,Vr

1

2
∥X − X̂∥2F + λ

∑
i<j

wij∥X̂i· − X̂j·∥q (9)

subject to X̂ − UrSrV
T
r = 0,

UT
r Ur = V T

r Vr = Ir, Sr = diag(s1, . . . , sr),
s1 ≥ s2 ≥ · · · ≥ sr > 0,

we note that the first part of the objective can be expanded as:

1

2
∥X − X̂∥2F =

1

2
tr
(
(X − X̂)T (X − X̂)

)
=

1

2
∥X∥2F − tr

(
X̂TX

)
+

1

2
∥X̂∥2F

=
1

2
∥X∥2F − tr

(
VrSrU

T
r X

)
+

1

2
tr
(
VrSrU

T
r UrSrV

T
r

)
=

1

2
∥X∥2F − tr

(
SrU

T
r XVr

)
+

1

2

r∑
i=1

s2i

=
1

2
∥X∥2F −

r∑
i=1

siu
T
i Xvi +

1

2

r∑
i=1

s2i , (10)

where vr and ur are column vectors, and that the final two equivalences use the fact that UTU = Ir, V
TV = Ir.

In the rank-1 case (r = 1), and letting u = u1, v = v1, and denoting the first singular value s, this can be



Appendix: Simple and Scalable Algorithms for Cluster-Aware Precision Medicine 8

rewritten:

minimize
X̂,s,u,v

1

2
∥X∥2F − suTXv +

s2

2
+ λ

∑
i<j

wij∥X̂i· − X̂j·∥q, (11)

subject to X̂i· = suiv
T , ∥u∥22 = 1, ∥v∥22 = 1, s > 0.

By simplifying by setting s = 1 (see the subsection 4.3 for an approach with more general s) and considering at
the gradient of the objective, we can see this problem has the same solution as the following problem (Witten
et al., 2009):

minimize
X̂,u,V

− uTXv + λ
∑
i<j

wij∥X̂i· − X̂j·∥q, (12)

subject to X̂i· = uiv
T , ∥u∥22 = 1, ∥v∥22 = 1.

Augmenting the rank-1 problem for PCMF:

However, this formulation does not allow our rank-1 problem to approximate every element of X with
a corresponding element of X̂ as required by the convex clustering formulation. To remedy this, we introduce the
overparameterization, letting vi = V·i (the ith column of matrix V ∈ Rp×N ):

minimize
X̂,u,V

N∑
i=1

−uiXi·vi + λ
∑
i<j

wij∥X̂i· − X̂j·∥q, (13)

subject to X̂i· = uivi, ∥u∥22 = 1, ∥vi∥22 = 1, i = 1, . . . , N,

where each row of X is now approximated by a potentially unique value X̂i· = uivi, just as in the convex
clustering problem. This overparameterization means that the solution to the first term in the optimization
problem solved for PCMF is able to fit each data point exactly, except to the extent that it is limited by the
penalty term. This leads to the nearest-neighbor or kernel-based weights in the penalty term determining the
locally linear approximation to the data.

Next, letting xi = (Xi·)
T (a column of XT ), we note that due to the quadratic equality constraints ∥u∥22 =

1, ∥vi∥22 = 1, i = 1, . . . , N , the following relationships hold:

1

2

N∑
i=1

∥xT
i vi − ui∥ =

1

2

N∑
i=1

vT
i xix

T
i vi −

N∑
i=1

uix
T
i vi +

N∑
i=1

u2i

=
1

2

N∑
i=1

vT
i xix

T
i vi −

N∑
i=1

uix
T
i vi + 1, (14)

and

1

2
∥uixi − vi∥ =

1

2
u2ix

T
i xi − uixT

i vi + vT
i vi = −uixT

i vi +
1

2
xT
i xi + 1, (15)

and therefore it follows that (letting yku,i = xT
i v

k
i and yk

v,i = uki xi) the updates:

uk+1 ← argmin
u

N∑
i=1

−uixT
i v

k
i + λPw,q(u, V

k), subject to ∥u∥22 = 1, (16)

{vi}k+1 ← argmin
{vi}

N∑
i=1

−uk+1
i xT

i vi + λPw,q(u
k+1, V ), (17)

subject to ∥vi∥22 = 1, i = 1, . . . , N,
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have the same solutions as the updates:

uk+1 ← argmin
u

N∑
i=1

∥yku,i − ui∥22 + λPw,q(u, V
k), subject to ∥u∥22 = 1, (18)

{vi}k+1 ← argmin
{vi}

N∑
i=1

∥yk+1
v,i − vi∥22 + λPw,q(u

k+1, V ), (19)

subject to ∥vi∥22 = 1, i = 1, . . . , N.

To enforce the quadratic equality constraints, we use proximal projection (Parikh and Boyd, 2014) updates
following K iterations of the u and {vi} updates, projecting onto the squared L2 unit ball associated with the
equality constraints as intermediate steps in the algorithm. Thus if k = 1 we would have:

uk+ 1
2 ← argmin

u

N∑
i=1

∥yku,i − ui∥22 + λPw,q(u, V
k), (20)

uk+1 ← prox∥·∥2
2
(uk+ 1

2 ), (21)

{vi}k+
1
2 ← argmin

{vi}

N∑
i=1

∥yk+1
v,i − vi∥22 + λPw,q(u

k+1, V ), (22)

{vi}k+1 ← prox∥·∥2
2
(v

k+ 1
2

i ), i = 1, . . . , N, (23)

where

prox∥·∥2
2
(a) =

{ a
∥a∥2

2
if ∥a∥22 > 1

a if ∥a∥22 ≤ 1.
(24)

To decrease computation time and significantly increase the flexibility of fitting per-cluster factors with r = 1,
we remove the cross terms in the penalty; we relax the problem formulation by replacing Pw,q(u,v) with
Qu

w,q(u) =
∑

(i,j)∈E wij |ui − uj | and QV
w,q(V ) =

∑
(i,j)∈E wij∥vi − vj∥q.

This yields updates:

uk+1 ← argmin
u

N∑
i=1

∥yku,i − ui∥22 + λQu
w,q(u), subject to ∥u∥22 = 1, (25)

{vi}k+1 ←argmin
{vi}

N∑
i=1

∥yk+1
v,i − vi∥22 + λQV

w,q(V ), subject to ∥vi∥22 = 1, i = 1, . . . , N. (26)

We find that by relaxing Pw,q(u, V ) to Qu
w,q(u) and QV

w,q(V ) in our iterations, there is no need to recompute the
difference matrix for each penalty, allowing the Cholesky factorization associated with that matrix to be cached
to speed up computations (often significantly) and still yielding good clustering performance (see experiments in
Appendix Table 1).

Both updates are standard convex clustering problems that are solvable in a number of ways. Here we use
ADMM updates that can be easily incorporated into an Algorithmic Regularization scheme to speed up the
rate of convergence in the optimization problem (described in Appendix §2.7 below). We use the updates from
(Weylandt et al., 2020) (see their Appendix Algorithms 1 and 2), and we will subsequently refer to this convex
clustering solver algorithm as ConvexCluster (rewritten in our notation in Appendix Algorithms 4 and 5).
Here we implement ConvexCluster as an ADMM solver that can be scaled using consensus, but other convex
clustering solvers could be used instead. Putting these together, we obtain Appendix Algorithm 3. Finally, for
additional intuition as to why such multi-block algorithms may be advantageous, see (Goncalves et al., 2019),
although note that when fit along the regularization path the PCMF objective is not guaranteed to monotonically
decrease (see Appendix Fig. 4a).

Allowing different singular values for different clusters in rank-1 LL-PCMF:

Above we have glossed over an important detail regarding the fitting of LL-PCMF singular values.
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Somewhat more flexibly than the linear PCMF algorithm, the LL-PCMF relaxation allows both u and {vi} to
vary quite flexibly such that distinct clusters may be fit easily when r = 1. This highlights the question (also of
relevance in the linear PCMF case, but perhaps less obviously): what if distinct clusters have different singular
values in this rank-1 LL-PCMF case?

One possible solution to this problem is the following. Returning to our overparameterization where we set
vi = V·i (for V ∈ Rp×N ), we now also overparameterize the singular value, letting each observation have its
own si for i = 1, . . . , N . From above (noting that now X̂i· = siuiv

T
i· ), we would like the following minimization

problem to be solved:

minimize
s,u,V

∑
i

−siuiXi·vi +
1

2

∑
i

s2i + λ
∑
i<j

wij∥siuivi· − sjujvj·∥q, (27)

subject to ∥u∥22 = 1, ∥vi∥22 = 1, i = 1, . . . , N.

If we continue to use the relaxed penalties Qu
w,q(u) =

∑
(i,j)∈E wij |ui−uj | and QV

w,q(V ) =
∑

(i,j)∈E wij∥vi−vj∥q
as above (allowing them to not depend on the si), then we can ignore the penalty term in the above problem and,
given fixed estimates uK and {vi}K , instead solve:

minimize
s

∑
i

−siuKi Xi·v
K
i +

1

2

∑
i

s2i . (28)

Taking the gradient of the objective with respect to s, setting it equal to zero, and solving we then obtain the
solution (leading to line 11 of Appendix Algorithm 3):

sKi ← uKi xT
i v

K
i (29)

Algorithm 4 ConvexCluster(yk
u,λ,u

k
λ, q): u Update

Input: Auxiliary variable yk
u, previous iterate uk, norm q

Notation: pairwise distance matrix D, iteration k, ρ ≥ 1
Initialize (if k = 0):

1: L = chol(I + ρI + ρDTD)
2: W2 = Z2 = Dyu

0

ADMM:
3: uk+ 1

2 = L−TL−1
(
yu

k + ρDT (W2
k − Z2

k)
)

4: W2
k+1 = proxλ/ρ,∥·∥2

2
(Duk+ 1

2 + Z2
k)

5: Z2
k+1 = Z2

k +Duk+ 1
2 −W2

k+1

6: return u
k+ 1

2

λ

Algorithm 5 ConvexCluster(Y k+1
v,λ , V k

λ , λ,w, q): V Update

Input: Auxiliary variable Y k+1
v , previous iterate V k, penalty λ, weights w, norm q

Notation: pairwise distance matrix D, iteration k, ρ ≥ 1
Initialize (if k = 0):

1: L = chol(I + ρI + ρDTD)
2: W1 = Z1 = DX
ADMM:

3: V k+ 1
2 = L−TL−1

(
Y k+1
v + ρDT (W1

k − Z1
k)
)

4: W1
k+1 = proxλ/ρ,∥·∥2

2
(DV k+ 1

2 + Z1
k)

5: Z1
k+1 = Z1

k +DV k+ 1
2 −W1

k+1

6: return V
k+ 1

2

λ



Amanda M. Buch, Conor Liston, Logan Grosenick 11

ConvexCluster algorithm:

We remark in the manuscript that to solve the convex clustering problem we use the ADMM approach
of Weylandt et al. (2020) — see their Appendix Algorithms A1 and A2 for details and our Appendix Algorithms
4 and 5 below for use. We choose this ADMM approach in particular as it is efficient and amenable to running for
just a few ADMM iterations at each step inside our own iterative algorithms, allowing us to apply Algorithmic
Regularization along the path of solutions.

2.4 Pathwise Clustered Canonical Correlation Analysis (P3CA)

Algorithm 6 Pathwise Clustered Canonical Correlation Analysis (P3CA)

Input: data (X,Y ), path {λ}, weights w, ρ ≥ 1,
Notation: iter. k, data means (X̄, Ȳ ), vi = V·i,
x̃i = (X̃i·)

T , ỹi = (Ỹi·)
T , norm q ∈ {1, 2,∞}

1: U ← X̄, V ← Ȳ
2: for λ ∈ {λ} do
3: for k = 1, . . . ,K do
4: x̃k+1

i ← Σiv
k
i (Σi = Xi·Y

T
i· ∈ RpX×pY ) for i = 1, . . . , N

5: u
k+ 1

2
i ← ConvexCluster(X̃k+1, Uk, λ,w, q)

6: uk+1
i ← prox∥·∥2

2
(u

k+ 1
2

i ) for i = 1, . . . , N

7: ỹk+1
i ← ΣT

i u
k+1
i (ΣT

i = Yi·X
T
i· ∈ RpY ×pX ) for i = 1, . . . , N

8: v
k+ 1

2
i ← ConvexCluster(Ỹ k+1, V k, λ,w, q)

9: vk+1
i ← prox∥·∥2

2
(v

k+ 1
2

i ) for i = 1, . . . , N
10: end for
11: Save path solutions: UK

i· ← uKT
i ; V K

i· ← vKT
i for i = 1, . . . , N ; (Uλ, Vλ)← (UK , V K)

12: Initialize: (U0, V 0)← (UK , V K)
13: end for
14: return pathwise solutions {Uλ}, {Vλ}

Following previous work in p > N problems, we treat the covariance matrices in this problem as diagonal (Dudoit
et al., 2002, Tibshirani et al., 2003, Witten et al., 2009) , and let Σ = XTY resulting in the simplified problem:

maximize
u,v

uTΣv subject to ∥u∥22 = 1, ∥v∥22 = 1. (30)

In order to generalize this to convex clustering, we once again must introduce an overparameterization to allow
(when λ→ 0) one unique parameter for each element of the matrix we are trying to approximate (in this case Σ).
We do this by constructing the outer product matrices of the rows of X and Y as Σi = XT

i· Yi· ∈ RpX×pY , and
then denoting the vectors ui = (Ui·)

T and vi = (Vi·)
T and penalty function Qw,q(A) =

∑
(i,j)∈EA

wij∥ai − aj∥q,
we define the P3CA problem as:

maximize
U,V

N∑
i=1

uT
i Σivi − λQw,q(U)− λQw,q(V ), (31)

subject to ∥ui∥22 = 1, ∥vi∥22 = 1, i = 1, . . . , N.



Appendix: Simple and Scalable Algorithms for Cluster-Aware Precision Medicine 12

Following similar logic as we did for Appendix Algorithm 3 above yields updates:

x̃k+1
i ← Σiv

k
i (Σi = XT

i· Yi· ∈ RpX×pY ) for i = 1, . . . , N, (32)

u
k+ 1

2
i ← argmin

ui

N∑
i=1

∥x̃k+1
i − ui∥22 + λQw,q(U) for i = 1, . . . , N, (33)

uk+1
i ← prox∥·∥2

2
(u

k+ 1
2

i ) for i = 1, . . . , N, (34)

ỹk+1
i ← ΣT

i u
k+1
i (ΣT

i = Yi·X
T
i· ∈ RpY ×pX ) for i = 1, . . . , N, (35)

vi
k+ 1

2 ← argmin
vi

N∑
i=1

∥ỹk+1
i − vi∥22 + λQw,q(V ) for i = 1, . . . , N, (36)

vi
k+1 ← prox∥·∥2

2
(v

k+ 1
2

i ) for i = 1, . . . , N, (37)

and once again noting that the u
k+ 1

2
i and v

k+ 1
2

i updates are convex clustering problems solvable using plugin
algorithm ConvexCluster (see Appendix §2.3 and Appendix Algorithm 5), we arrive at the updates in Main
Text Algorithm 2 (reproduced here as Appendix Algorithm 6 for reference).

2.5 Orthogonalized Deflation for LL-PCMF and P3CA

LL-PCMF and P3CA: Solving for rank r > 1 via orthogonalized deflation. To solve rank r > 1
LL-PCMF and P3CA problems, one can use a sequential rank-1 embedding and orthogonalized deflation with
renormalization procedure (see Appendix Algorithms 7 and 8 and the LL-PCMF example in Appendix Fig.
3). We build on work from Kruger and Joe Qin (2003) (see §2.2, Eq. 6-9 for the orthogonalized deflation
procedure they use to solve partial least squares) and Grosenick et al. (2013) for renormalization (see page 311 in
§ "Rescaling coefficients to account for ‘double shrinking’" ). Alternatively, other appropriate deflation procedures
could be implemented, such as those outlined in Mackey (2008) or Witten et al. (2009). Note this procedure
requires specifying which λ to use for specifying the PCMF/P3CA coefficients used to project the data for the
PCMF/P3CA scores, which we choose here as the last (smallest) λ along the path.

Defining the rank-r PCMF score as (note here we use r to indicate the rth rank):

XPC,r = uλ,rsλ,r = XVλ,r, (38)

where uλ,r and Vλ,r, are the first r PCMF coefficients in their columns at path penalty, λ, and XPC,r is the
rank-r PCMF score of the data matrix X, the r + 1st deflation is given by:

Xr+1 = (I − Puλ,r
) X = X −XPC,r (XPC,r

TXPC,r)
−1 XPC,r

T X, (39)

where Puλ,r
= XPC,r (XT

PC,rXPC,r)
−1 XPC,r

T is the usual orthogonal projection matrix on the rank-r subspace
of the column space of XPC,r.

As the convex clustering penalty may cause coefficient shrinkage, we also modify these to “un-shrink” each deflation
estimate by estimate scalar coefficients βuλ,r

that returns the shrunk rank-r projection of the data to the same
scale as the data, such that:

Xr+1 = (I − Puλ,r
) X = X − βu(λ,r) XPC,r (XPC,r

TXPC,r)
−1 XPC,r

T X, (40)

where the coefficient βuλ,r
is obtained using univariate regression model:

X = βuλ,r
Puλ,r

X + ϵuλ,r
. (41)

For P3CA, we perform this procedure analogously on the data matrices, X and Y , with respect to the P3CA
scores for X and Y (X and Y projected into the P3CA embedding subspace using P3CA coefficients U and V
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accordingly). We then follow a similar procedure for P3CA (see Appendix Algorithm 8), except define the rank-r
P3CA scores pair (sometimes called “canonical variate” pair) as:

XU,r = XrUλ,r

YV,r = YrVλ,r, (42)

where U and V are the P3CA coefficients.

Algorithm 7 LL-PCMF rank r > 1 via orthogonalized deflation
Input: data X
Notation: set of path solutions along decreasing path {λ}, singular vectors u and V ,
singular value s, principal component for rth rank XPC,r, vectorize [:]
1: {uλ,r=1}, {sλ,r=1}, {Vλ,r=1} ← Algorithm: LL-PCMF(X)
2: Xr=1 = X
3: for r = 1, . . . , rmax do
4: Set λ← λmin

5: XPC,r = XrVλ,r
6: Puλ,r

= XPC,r (XT
PC,rXPC,r)

−1 XPC,r
T

7: Xr+1 = Xr − Puλ,r
Xr

8: Solve Xr[:] = βuλ,r
Xr+1[:] + ϵuλ,r

9: Xr+1 = βuλ,r
Xr+1

10: {uλ,r+1}, {sλ,r+1}, {Vλ,r+1} ← Algorithm: LL-PCMF(Xr+1)
11: end for
12: return {uλ,r+1}, {sλ,r+1}, {Vλ,r+1}

Algorithm 8 P3CA rank r > 1 via orthogonalized deflation

Input:data (X,Y )
Notation: set of path solutions along decreasing path {λ}, coefficients U and V ,
P3CA scores for rth rank (XU,r, YV,r), vectorize [:]
1: {Uλ,r=1}, {Vλ,r=1} ← Algorithm: P3CA(X,Y )
2: Xr=1 = X and Yr=1 = Y
3: for r = 1, . . . , rmax do
4: Set λ← λmin

5: XU,r = XrUλ,r

6: PXλ,r
= XU,r (XT

U,rXU,r)
−1 XU,r

T

7: Xr+1 = Xr − PXλ,r
XU,r

8: Solve Xr[:] = βXλ,r
Xr+1[:] + ϵUλ,r

9: Xr+1 = βXλ,r
Xr+1

10: YV,r = YrVλ,r
11: PYλ,r

= YV,r (Y T
V,rYV,r)

−1 YV,r
T

12: Yr+1 = Yr − PYλ,r
YV,r

13: Solve Yr[:] = βYλ,r
Yr+1[:] + ϵVλ,r

14: Yr+1 = βYλ,r
Yr+1

15: {Uλ,r+1}, {Vλ,r+1} ← Algorithm: P3CA(Xr+1, Yr+1)
16: end for
17: return {Uλ,r+1}, {Vλ,r+1}
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Figure 3: Example of rank-2 LL-PCMF using orthogonalized deflation (see Alg. 7) for a two-class problem. a.
Reconstructed rank-1 LL-PCMF estimates, X̂r=1 (fit with N.N. = 15; ρ = 1.5; γ = 2.0;K = 5 ADMM iterations),
evolving as λ decreases (five solutions along the path are shown). b. Reconstructed rank-2 LL-PCMF estimates,
X̂r=1,2 (fit with N.N. = 15; ρ = 1.5; γ = 2.0;K = 5 ADMM iterations), evolving as λ decreases (five solutions
along the path are shown). Dark dots indicate X̂r colored by LL-PCMF predicted clusters. Light dots indicate X
colored by true clusters. ACC indicates the accuracy of LL-PCMF predicted clusters at each λ path solution
compared to the true cluster membership. Note rank-2 LL-PCMF shown in b achieves perfect cluster recover
earlier in the solution path (λ = 0.0482) with more cluster separation compared to rank-1 LL-PCMF shown in a.
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2.6 Convergence of PCMF, LL-PCMF, and P3CA Algorithms

We ran simulations for PCMF, LL-PCMF, and P3CA, and found that when fitting along a path of λs, the
objective for these algorithms, although generally decreasing, can increase. We observe this most frequently near
the first split point and, for PCMF, more for problem ranks that are smaller than warranted by the number of
clusters (Appendix Fig. 5). We note that like many ADMM algorithms our approach seems to work well in
practice, but a monotonic decrease of the objective is not guaranteed.

The data-generating parameters used for the datasets in Appendix Fig. 4a-b were 3 classes with Nclass =
50, class = 1, . . . , 3, p = 20, cluster centroids ∈ {−0.35, 0.0, 0.35}, and variable redundancy δ = 1. In Appendix
Fig. 4c, the data-generating parameters were 5 classes with Nclass = 20, class = 1, . . . , 5, p = 50, cluster centroids
∈ {−1.5, 1.5, 0.0, 0.01,−0.4}, and variable redundancy δ = 1. For fitting PCMF, LL-PCMF, and P3CA, ρ was set
to 1.0, γ was set to 2.0, the number of ADMM iterations per λ penalty was set to K = 100, and the number of
nearest neighbors N.N. was set to 25. For PCMF, we fit the model using problem ranks 1 ≤ r ≤ 10 (Appendix
Fig. 4a), and for LL-PCMF and P3CA, we fit the model using the r = 1 problem formulation (Appendix Fig. 4b).
For the penalty path, we varied the value of λ along a path of 50 evenly spaced points in the interval e[5,−20] after
initializing with λ =∞ (10 iterations), such that the penalty decreased along the path of embedding solutions.

Note, in Appendix Fig. 4 we set K = 100 to ensure convergence at each λ, however, in practice a typical range for
our implementation of the Algorithmic Regularization approach (see details in Appendix §2.7) is K ∈ [5, 15]. We
use K = 5 for all other experiments shown in our figures and tables (as detailed in §5) unless specified otherwise
in the specific legend or description.

Figure 4: Empirical convergence of PCMF, LL-PCMF, and P3CA algorithms along λ path. a. PCMF fit to
3-class data (p = 20; Nclass = 50, class = 1, 2, 3; K = 100; see Appendix §2.6 for further details) across a range
of 1 ≤ r ≤ 10. b. LL-PCMF fit to the same data using the same hyperparameters and r = 1. c. P3CA fit
to 5-class multiview data (p = 20; Nclass = 50, class = 1, . . . , 5; K = 100; see text for further details) using
the same hyperparameters and r = 1. In all cases while the objective trends downward, it can locally increase
with increasing iteration and decreasing λ, empirically demonstrating that the path-wise objective is not strictly
decreasing. K denotes the number of ADMM iterations per λ.

2.7 Algorithmic Regularization (AR) vs. Alternating Direction Method of Multipliers (ADMM)

A warm-started ADMM (alternating direction method of multipliers (Glowinski and Marroco, 1975, Gabay and
Mercier, 1976, Boyd et al., 2011b) approach—Algorithmic Regularization—was recently introduced to enable
feasible computation of dense convex clustering λ paths, speeding convergence more than 100-fold (Weylandt
et al., 2020).

Note that in Main Text Algorithms 1–2 (reproduced here in Appendix Algorithms 1 and 6) and Appendix
Algorithm 3 and 2, it is possible to obtain Algorithmic Regularization (AR) as presented previously (Weylandt
et al., 2020) by setting K = 1, or to approach convergence at each value of λ by setting K large. We prefer to
run K = 5 to K = 15 iterations at each value of λ, allowing some convergence at each value along the path.
Appendix Fig. 5 compares AR (K = 5) paths to ADMM (K = 100) paths using Algorithm 1 (PCMF) to solve a
four cluster problem; we show the first two variables out of p = 200 for data with 25 observations per class and
means ∈ {−1.0,−0.4, 0.4, 1.0}, and compare the resulting number of clusters, the likelihood function (objective),
the coefficient paths, and the estimated dendrograms for AR vs. ADMM.
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Figure 5: Comparison of PCMF using algorithmic regularization (AR) and PCMF using alternating direction
method of multipliers (ADMM). a. Ground truth data for 4-class problem (p = 200; 25 observations per class;
r = 1). b–c. Model selection for PCMF with b. AR or c. ADMM. Plots show the index along the penalty path
versus the log-likelihood objective (blue) and the number of clusters (red) chosen using our correlation statistic
model selection procedure. d. PCMF path (first three variables shown) and e. dendrogram (first variable shown)
for PCMF using AR. f. PCMF path (first three variables shown) and g. dendrogram (first variable shown) for
PCMF using ADMM. The resulting number of clusters chosen along the path, the evolution of the likelihood
function (objective), the resulting coefficient paths, and the estimated dendrograms are qualitatively similar, with
the AR estimates appearing as smoothed versions of the converged ADMM solutions.

2.8 Computational Complexity

Each PCMF ADMM iteration has a worst case complexity of O(N2p) per iteration for q ∈ {1, 2} and
O(N2p+ log p) for q = ∞ due to the ADMM convex clustering subproblem (Min et al., 2018), and since the
tSVD is O(N2p). As the AR approach runs to convergence by warm-starting along the path of λ rather than
iterating to convergence at each λ, for a path of length M this leads to worst case complexity of O(N2pMK) for
q ∈ {1, 2} and O(N2pMK + log p) for q =∞ (for K iterations per λ, which is typically small, e.g., K ∈ [5, 15]).
This worst-case can be improved upon significantly in practice (Chi and Lange, 2015) with the local weights and
nearest neighbors approaches (rendering Cholesky factorization in the ADMM sparse), as well as by caching the
Cholesky decomposition (Chi and Lange, 2015, Weylandt et al., 2020).

The Penalized Alternating Least Squares (PALS) formulation used for LL-PCMF relies on alternating
solves of convex clustering problems using ADMM and projections onto constraint sets. The convex clustering
steps dominate the complexity, again each with worst case complexity O(N2p) per iteration for q ∈ {1, 2} and
O(N2p+ log p) for q =∞ due to the ADMM convex clustering subproblem (Min et al., 2018), leading to the same
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overall path-wise complexity as the PCMF ADMM approach: O(N2pMK) for q ∈ {1, 2} and O(N2pMK + log p)
for q =∞. LL-P3CA has similar complexity: O(N2pxMK) for q ∈ {1, 2} and O(N2px + log p) for q =∞ where
px is the larger of the two datasets number of variables (that is, w.l.o.g. we let px ≥ py).

This overall quadratic dependence on N in these approaches at first seems quite limiting if we would like to scale to
problems with large N , and might lead one to question the decision to use ADMM approaches given the existence
of potentially faster AMA (Chi and Lange, 2015) and semismooth Newton based augmented Lagrangian methods
(Sun et al., 2021) for standard convex clustering (that is, without joint embedding). However, as shown in very
recent work on scaling standard convex clustering (Fodor et al., 2022), there are quite significant advantages to
the ADMM approach’s ready scalability via consensus-optimization approaches. In our case, ADMM’s established
performance on non-convex problems and our need to additionally manage the O(N2p) time complexity of
embedding both provide significant additional justifications to using this approach.

Thus, to overcome the potentially limiting quadratic dependence on N due to convex clustering with ADMM
and our embedding approach, we developed a consensus ADMM approach for our methods that allows us
to run batch-wise updates in parallel on mini-batches with size Nb (with Nb << N). In this case, the ADMM
consensus approach is dominated by the primal updates that it runs in parallel, allowing worst case O(Nb

2pMK)
for q ∈ {1, 2} and O(Nb

2pMK + log p) for q =∞. Empirically, this means that our consensus ADMM method
can run on cases with large N and p where state-of-the-art methods for standard convex clustering fail (e.g.,
CARP (Weylandt et al., 2020); see Main Text Table 3), and scale to problems larger than those shown to date for
standard convex clustering (Sun et al., 2021) while—unlike any other existing convex clustering methods—also
solving the joint embedding problem.

2.9 Pathwise Dendrogram Algorithm for Model Selection

Pathwise dendrogram algorithm:

Let m = 1, . . . ,M index the decreasing path {λ} such that {λ} = {λ1 > · · · > λm > · · · > λM ≥ 0}.
Then to estimate a dendrogram from the smooth paths of the dual variables {Gλm

}, we start at λ1 (chosen
large enough to yield only one cluster) and then proceed along the decreasing path of λm > λm+1. At each step,
we make a binary choice between (a) keeping the same number of clusters cm+1 ← cm, or (b) augmenting the
number of clusters cm+1 ← cm + 1 . To make this choice, we find the partitions of the graph defined by Gλm+1

(see Chi and Lange (2015)) into cm and cm+1 clusters, and then compare:

loglik1(X, X̂(cm), λm) =
1

2
∥X − X̂(cm)∥2F + λm

∑
(i,j)∈E

wij∥X̂i·(cm)− X̂j·(cm)∥q, (43)

and

loglik2(X, X̂(cm + 1), λm) =
1

2
∥X − X̂(cm + 1)∥2F + λm

∑
(i,j)∈E

wij∥X̂i·(cm + 1)− X̂j·(cm + 1)∥q, (44)

where X̂(cm) is X̂ clustered so that its rows are replaced by cm unique centroids (that is, X̂ is clustered to
have exactly cm unique rows). If loglik1 > loglik2 then cm+1 ← cm + 1, otherwise cm+1 ← cm. This ensures a
dendrogram fit along the paths with knots in the number of clusters appearing only when the improvement in
model fit exceeds the additional cost of adding another cluster to the penalty. In our experiments, to approximate
the portion of the graph defined by the {Gλm

}, we use spectral clustering (Appendix Fig. 5). As this algorithm
uses K-means clustering on the eigenvectors of the affinity matrix estimated from the differences Gλm

= DX̂λm
,

it introduces random variation in the resulting dendrograms. We therefore choose to take the median of several
runs of the pathwise dendrogram algorithm as the final estimate of the dendrogram, which we refer to as
Dendrogram({Gλ}).

Although this approach performs well in our experiments, other approaches to graph partitioning applied to the
graph defined by {Gλm

} are worth exploring, as they may provide more stable or more efficient approaches. Finally,
it is critical to note that the dendrogram denotes the evolution of the centroids, not the individual observations
(although these do become the individual observations in the limit λ → 0. It is possible, although rare, for
observations to switch class membership as the centroid dendrogram is estimated, thus while the result will always
be a tree structure, we take the end-leaf membership as final assignment in these cases and trace membership back
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up the estimated dendrogram post hoc for such cases to avoid ambiguity and satisfy the definition of a dendrogram.

A correlation-test-statistic-based heuristic for the number of clusters:

Previous work has shown a close relationship between convex clustering and single-linkage hierarchical
clustering by examining the dual problems of the convex clustering optimization problem and a related problem
that has the same connected component structure as single-linkage hierarchical clustering (see Lemmas 2-4 in
Tan and Witten (2015)). Other work developing correlation tests of significance for the number of connected
components in the graphical lasso (Friedman et al., 2007) fit along a path of penalty parameters that control
model sparsity, have shown that this problem is also equivalent to thresholded single-linkage hierarchical
clustering on correlations (G’Sell et al., 2013). Taken together, these findings suggest that extending the same
correlation test statistic for the graphical lasso to the convex clustering problem in order to choose the best
number of clusters for a given dataset may be fruitful.

In particular, let {Gλt
} for t = 1, . . . , T be the values or “knots” at which the number of clusters chosen by the

pathwise dendrogram algorithm change along path {Gλm} (so Gλm ∈ {Gλt} if and only if Gλm → Gλm+1 =⇒
cm+1 = cm + 1), then we note that as in (G’Sell et al., 2013) the λ1 > · · · > λt > · · · > λT correspond to the
subset of knots at which the connected components of the estimate change. This naturally leads to a set of
hypotheses, H1, . . . ,HT , where the hypothesis Ht is that each connected component of the true dendrogram
is contained within the connected component defined by the estimated Dendrogram({Gλ}) ∀λ < λt. To test
these hypotheses, we note that the convex clustering problem is related to the group lasso estimator on the rows
of Gλ, yielding the potential test statistic:

Tt = Nλt(λt − λt+1), (45)

an adaptation of the correlation test originally developed for the lasso in (Lockhart et al., 2014). However, as our
problem is nonconvex due to the SVD constraint on convex clustering, and as we note that unlike the graphical
lasso problem our observations can switch components along the path (hypotheses are not strictly nested), here
we note this approach as an effective (see Appendix Tables 3 and 4 below) heuristic rather than an asymptotic result.

Model selection results for choosing the number of clusters:

We performed experiments evaluating the accuracy of our correlation-statistic-based model selection ap-
proach in synthetic datasets and four of our real-world datasets from Main Text Table 1 and compared it against
three standard model selection criteria for five other clustering methods (including deep clustering).

We compare our model selection approach to three standard model selection criteria for clustering (taking the
maximum Silhouette, Calinski-Harabasz, and Davies-Bouldin scores over a range of a possible 1-12 clusters)
applied to two sequential embedding and clustering methods (PCA + K-means and PCA + Spectral clustering), to
standard Spectral clustering, to subspace clustering (Elastic Subspace Clustering), and clustering with deep neural
networks (DEC). These are generated to fall within the “non-trivial” clustering regime described in Definition 1 of
Appendix §3. We found our approach compares very favorably with standard methods applied across the other
methods on these challenging clustering problems (Appendix Table 3). We thus present this as an additional
strength of our method: if model selection is desired, the method we propose appears quite robust and effective.
Our model selection procedure is thus consistent with the clear visible separation of the coefficient paths and
dendrograms into the correct number of clusters that we see throughout the Main Text and Appendix examples.

To further validate our model selection approach, we applied the same comparison to four real-world datasets
used in the paper: NCI, SRBCT, MouseOrgans, and GBMBreastLung (Appendix Table 4). We find that our
model selection approach, coupled with PCMF and LL-PCMF, yields model selection results that compare quite
favorably to standard cluster selection metrics (maximum Silhouette, Calinski-Harabasz, and Davies-Bouldin
scores taken over 2-12 clusters) applied to applied to two sequential embedding and clustering methods (PCA
+ K-means and PCA + Spectral clustering), to standard Spectral clustering, to subspace clustering (Elastic
Subspace Clustering), and clustering with deep neural networks (DEC).
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Table 3: Comparison of Model Selection Across Methods on Synthetic Data. Each value in the table is the mean
± standard deviation for 10 independently generated synthetic datasets of the specified number of clusters with
and each cluster containing samples. Correlation Statistic is our model selection approach described in Appendix
§2.9. C.-H., Calinski-Harabasz; Corr. Stat., Correlation Statistic, D.-B., Davies-Bouldin; Sil., silhouette

2 clusters 3 clusters 4 clusters 5 clusters 6 clusters

PCMF Corr. Stat. 2.0± 0.0 3.1± 0.3 4.0± 0.0 5.6± 0.6 6.0± 0.0
LL-PCMF Corr. Stat. 2.5± 0.5 3.1± 0.3 3.8± 1.6 3.9± 2.1 5.4± 1.4

PCA + K-means Sil. 8.2± 0.8 8.2± 1.8 9.9± 0.8 10.7± 0.6 10.9± 0.3
PCA + K-means C.-H. 10.2± 0.98 11.0± 0.0 10.5± 0.50 6.5± 4.5 2.0± 0.0
PCA + K-means D.-B. 2.0± 0.0 2.0± 0.0 2.4± 0.49 2.7± 0.8 3.9± 1.1

Spectral Sil. 6.2± 1.6 6.3± 0.9 8.8± 1.3 9.8± 1.0 9.1± 2.6
Spectral C.-H. 7.8± 0.40 10.8± 0.4 10.3± 1.0 9.0± 2.5 6.5± 3.5
Spectral D.-B. 2.0± 0.0 2.4± 0.49 3.8± 0.7 3.3± 0.6 3.5± 1.3

PCA + Spectral Sil. 5.3± 1.62 6.6± 1.50 8.5± 1.12 9.7± 1.0 11.0± 0.0
PCA + Spectral C.-H. 8.2± 0.98 11.0± 0.0 9.9± 0.83 9.8± 2.6 3.0± 2.7
PCA + Spectral D.-B. 2.0± 0.0 2.4± 0.49 3.1± 0.94 4.3± 0.9 5.0± 0.7
Elastic Subspace Sil. 4.0± 0.0 5.0± 0.0 7.0± 0.0 9.0± 0.0 10.4± 0.5
Elastic Subspace C.-H. 4.1± 0.3 5.0± 0.0 7.5± 0.9 9.0± 0.0 10.4± 0.5
Elastic Subspace D.-B. 9.8± 0.98 2.8± 2.4 3.8± 2.4 2.0± 0.0 3.8± 1.4

DEC Sil. 3.7± 2.69 6.6± 2.37 6.7± 2.32 7.4± 3.0 5.2± 2.7
DEC C.-H. 4.4± 2.84 5.6± 1.90 7.4± 3.2 7.9± 2.1 5.2± 2.5
DEC D.-B. 2.6± 0.8 7.9± 2.43 5.2± 2.2 5.7± 2.4 7.9± 2.6

Table 4: Model selection across methods on real-world datasets. Correlation Statistic (Corr. Stat.) is described
in §2.9. C.-H., Calinski-Harabasz; D.-B., Davies-Bouldin; Sil., silhouette

NCI SRBCT Mouse Tumors

Variables (p) 6, 830 2, 318 16, 944 11, 931
Samples (N) 64 88 125 142

True Number of Classes 9 4 7 3

PCMF Corr. Stat. 7 5 7 3
LL-PCMF Corr. Stat. 4 4 8 3

PCA + K-means Sil. 11 10 2 11
PCA + K-means C.-H. 4 2 2 4
PCA + K-means D.-B. 6 2 2 6

Spectral Sil. 5 7 2 5
Spectral C.-H. 3 2 2 3
Spectral D.-B. 3 2 2 3

PCA + Spectral Sil. 2 7 2 2
PCA + Spectral C.-H. 2 5 2 2
PCA + Spectral D.-B. 3 2 2 3
Elastic Subspace Sil. 11 7 2 11
Elastic Subspace C.-H. 2 7 3 2
Elastic Subspace D.-B. 3 2 2 3

DEC Sil. 10 11 3 7
DEC C.-H. 5 11 3 7
DEC D.-B. 9 10 2 6

Model selection for known number of clusters:

Given a prespecified number of clusters c (if for example, we know the number of desired clusters be-
forehand), we may want to choose a best model conditional on c. As there may be more than one value of m for
which c = cm, we choose the m that solves

minimize
m

loglik1

(
X, X̂(cm), λm

)
subject to cm = c. (46)
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3 THEORETICAL PROOF: PCMF DOMINATES CONVEX CLUSTERING
FOR P>N (LDL) DATA

Here we offer a constructive proof for inadmissibility of convex clustering in the case of asymptotically “nontrivial”
p > N GMM clustering by showing that PCMF dominates convex clustering for such data using results from
random matrix theory (RMT) in the large dimensional limit (LDL) regime. This regime (also known as the
Kolmogorov regime or the p > N regime) corresponds to the case where the number of variables p are on the
same order as the number of observations N , specifically to the asymptotic case p/N → c ∈ (0,∞) as N, p→∞.
Note that ∥ · ∥ denotes the operator norm and that we have overloaded O(·) here to indicate O(·), Θ(·), or Ω(·)
from standard computer science notation (its exact meaning will be clear from context).

Definition 1 “Nontrivial” GMM data (Couillet and Liao, 2022). We consider observing N i.i.d. data vectors
xi ∈ Rp drawn from the K-class GMM with fixed class sizes N1, . . . , NK (with

∑K
k=1Nk = N) gathered in

data matrix X = [x1, . . . ,xN ]T ∈ RN×p, with p ∼ N or p > N such that p/N → c ∈ (0,∞) and Na/N →
ca ∈ (0, 1) as N,Na, p → ∞. Letting Ca be the set of observations from class a for a ∈ {1, . . . ,K} such that
xi ∼ N (µµµa, Ca) ⇐⇒ xi ∈ Ca with C1, . . . , Ck distinct and of bounded norm. To ensure that cluster separation
is nontrivial as N, p→∞ we take ∥xi∥ to be of order O(p1/2) and ∥µµµa − µµµb∥ = O(1) for a, b ∈ 1, . . . ,K; a ̸= b.
Note that Definition 1 deviates somewhat here from the typical, probabilistic GMM definition to highlight that
we are drawing from different clusters. Also note that for lightness of notation xi denotes a row vector of X (that
is, xi = Xi·). Note that this case is considered asymtotically “nontrivial” because it ensures that asymptotic
clustering is neither trivially easy nor impossible when p,N →∞, as the cases below will demonstrate.

Proposition 1. For clustering the nontrivial Gaussian Mixture Model (GMM) data in the low dimensional limit
(LDL) regime, PCMF asymptotically dominates standard convex clustering.

Proof. Our proof proceeds in two parts, closely following recent results in RMT (see Ch. 2 and Ch. 4 in Couillet
and Liao (2022)). We first show that convex clustering asymptotically fails to discriminate classes in the nontrivial
GMM clustering problem, and then second show that PCMF asymtotically succeeds for the exact same regime.
Together these imply that PCMF dominates convex clustering as an estimator for nontrivially clustered GMM
data in the LDL regime.

We first note that the GMM assumption in many cases can be taken to be equivalent to requiring xi ∈ Ca :

xi = µµµa + C
1/2
a zi where zi is a random vector with i.i.d. zero mean, unit variance, and suitably bounded

higher-order moment entries. Intriguingly, recent RMT results show that in the LDL regime this model has the
same asymptotic statistics as a number of much more complicated models (see, e.g. Ch. 8 in Couillet and Liao
(2022)). Next we define C◦ =

∑k
a=1

Na

N Ca and C◦
a = Ca−C◦ as the average and centered covariances, and ψψψ as a

vector with elements [ψψψ]i = zTi Cazi − tr Ca/p, and note that by straightforward central limit theorem arguments
[ψψψ]i = O(p−1/2).

With these definitions in place, we again consider the standard convex clustering optimization problem, re-expressed
in terms of the entries and rows of X and X̂ as:

minimize
X̂

1

2

∑
i

∑
j

∥xij − x̂ij∥22 + λ
∑
i<j

f

(
1

p
∥x̂i − x̂j∥22

)
. (47)

Note we have subsumed the important weights wij and an element-wise square root into function f(·) and we
normalize by the number of variables p (without loss of generality) to be in compliance with the defined normed
quantities in Definition 1. For i ̸= j we can expand the terms inside f(·) "entry-wise" as:

1

p
∥x̂i − x̂j∥22 =

2

p
tr C◦ +

1

p
∥µµµa −µµµb∥22 +

1

p
tr (C◦

a + C◦
b )−

2

p
zTi C

−1/2
a C

−1/2
b zj +

1

p
zTi Cazi

− 2

p
tr Ca +

1

2
zTj Cbzj −

1

p
tr Cb +

2

p
(µµµa −µµµb)

T (C1/2
a zi − C1/2

b zj)

=
2

p
C◦ +O(p−1/2). (48)

The final equality follows by considering each term given the nontrivial GMM data assumptions and RMT
data representation made above. Note that critically this means if we consider the entry-wise distances in the
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p,N →∞; p/N → c regime, all entries are dominated by the constant 2tr C◦/p, which is O(1), regardless of the
values that a and b take, and ∥µµµa −µµµb∥22/p = O(p−1) which is dominated by the noise terms which are O(p1/2).

This shows that an entry-wise distance approach like that taken in convex clustering does not work for discrimi-
nation in this regime.

However, if we consider information “spread across” the many variables in their spectrum, we see that there is
important discriminative information available in the low-rank structure of the Euclidean distances. In particular,
letting M = [µµµ1, . . . ,µµµk] ∈ Rp×k, d = diag(JMTZ), W = [C

1/2
1 Z1, . . . , C

1/2
k Zk] ∈ Rp×N , t = {tr C◦

a/p}ka=1 ∈ Rk,
and defining A − diag(·) as an operator that returns matrix A with diagonal entries set to zero, we can look
"matrix-wise": {

1

p
∥x̂i − x̂j∥22

}N

i,j=1

=
2

p
tr C◦ · 1N1T

N +
1

p
J{∥µµµa −µµµb∥22}ka,b=1J

T

+ (ψψψ + Jt)1T
N + 1N (ψψψ + Jt)T − 2

p
WTW

+
2

p
(d1T

N + 1NdT )− 2

p
(JMTW +WTMJ)− diag(·). (49)

In this case, although the matrix is again dominated by the O(N)-norm matrix 2tr C◦/p · 1N1T
N , there is now

critically usable information in the O(N−1/2)-norm rank-2 matrix (ψψψ+ Jt)1T
N + 1N (ψψψ+ Jt)T . Indeed, it is easily

shown this matrix gives access to the covariance traces through terms that are O(p1/2) by looking at the second
dominant eigenvector of the Euclidean matrix (as commonly done in spectral clustering). Further, the smaller
order O(1) terms:

1

p
J{∥µµµa −µµµb∥22}ka,b=1J

T +
2

p
(d1T

N + 1NdT )− 2

p
(JMTW +WTMJ)− diag(·), (50)

contain usable and asymptotically available discriminative information about the means (Couillet and Liao, 2022).

PCMF—which relies on using a rank-r embedding X̂ ∈Mr—gives direct access to this “matrix-wise” spectral
information (through the tSVD), and therefore asymptotically allows discrimination. PCMF thus asymptotically
dominates “element-wise” clustering methods like convex clustering in the LDL regime, as the latter cannot
discriminate clusters in the nontrivial GMM clustering problem.

Proposition 2. For clustering the nontrivial GMM data in the LDL regime, the locally linear relaxation
(LL-PCMF) asymptotically dominates convex clustering.

Proof. The proof follows readily from showing that the spectral information available in PCMF is also available to
the LL-PCMF embedding (e.g., that LL-PCMF recovers PCMF as a special case). First note that the deflation
and augmentation scheme used in LL-PCMF allows each ui and vi to freely approximate the data, constrained
only their relationships to other observations through the kernel induced by the local weights of the convex
clustering (or relaxed convex clustering) penalty (see, e.g. (27)). This induces the following locally linear weighting
scheme:

minimize
X̂

1

2

∑
i

∑
j

∥xij − wij x̂ij∥22 + λ
∑
i<j

f

(
1

p
∥x̂i − x̂j∥22

)
. (51)

In the standard convex clustering formulation where X̂ is unconstrained, this results in the previously described
clustering with local fitting behavior (Hocking et al., 2011). Considering the LL-PCMF formulation without the
convex penalty relaxation, it is easy to see that by setting all weights wij = 1 for all i, j we recover a sequential
rank-1 deflation scheme (Mackey, 2008, Witten et al., 2009) to solving the uniformly-weighted PCMF problem,
and thus our method inherits the results of Proposition 1. Finally, to accommodate the relaxed LL-PCMF
formulation, we note that the non-relaxed and relaxed penalties differ substantively only in the multiplicative
cross-terms of the penalty (terms that contain uiujvT

i vj , i, j = 1, . . . , N in the non-relaxed case) being relaxed to
additive terms (terms that instead contain uiuj − vT

i vj , i, j = 1, . . . , N). This strictly expands the solution space
for the ui and vi variables such that the relaxed LL-PCMF problem solutions contain the non-relaxed LL-PCMF
solutions (of which the PCMF solutions are a subset as described above). This implies that LL-PCMF, by relying
on a (local) low-rank embedding X̂ ∈M that gives “matrix-wise” access to the (local) spectral information of the
data and can asymptotically allow discrimination in the LDL regime given appropriately chosen weights.
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Proposition 3. PCMF generalizes kernel spectral clustering (kSC) to joint clustering and embedding. Proof.
First we remind the reader that in PCMF the final hard clustering at each λ is performed on the weighted affinity
matrix generated from the differences matrix G = DX̂ (defined by the dual variables as described in previous
work (Chi and Lange, 2015). After thresholding, this procedure estimates the connected components of the
resulting graph at each value of λ, specifically by looking at the low-rank spectrum of the Laplacian and clustering
on it. Each hard clustering along the PCMF coefficient paths is thus equivalent to spectral clustering (or kernel
spectral clustering for kernel or nearest neighbor weights wij). Indeed, in practice we have used an off-the-shelf
kernel spectral clustering algorithm applied to the adjacency matrix of the thresholded affinity matrix for each λ.
Thus, in the case λ = 0 where the solution exactly interpolates the data X (and so G = DX), PCMF recovers
kernel spectral clustering on X exactly (with the kernel defined by the weights wij applied to data row differences
G = DX to generate the weighted affinity graph). In this sense, PCMF is trivially a generalization of kSC.

Beyond this special case of λ = 0 being exactly kSC, there is some additional potential depth and intuition to the
generalization. In particular, recall that spectral clustering generally proceeds by applying K-means clustering to
the first r eigenvectors of the normalized adjacency matrix (or the last r eigenvectors of the normalized Laplacian).
And recall that the convex clustering penalty with q = 0 has been shown to be equivalent to K-means clustering
(up to an additional penalty term) (Tan and Witten, 2015), and convex clustering can thus be thought of as a
form of “convex K-means”. If we inspect the terms of the PCMF problem,

minimize
X̂∈Mr

∥(X − X̂∥2F︸ ︷︷ ︸
tSVD

+λ
∑
i,j∈E

kernel︷︸︸︷
wij ∥X̂i· − X̂j·∥q︸ ︷︷ ︸

convex k-means

, (52)

we see that the first term can be conceptualized as finding the rank-r spectrum (tSVD) of the data at the same
time that the second term applies convex K-means clustering to the weighted adjacency matrix of this data
projected onto its first r eigenvectors. This gives us some intuition for results like those shown in the Main Text
Fig. 1, where PCMF clearly outperforms kSC on cluster-aware embedding by jointly learning a good embedding
and appropriate clustering.

Finally, it is worth noting that problems like that detailed in the proof of Proposition 1 are precisely the approach
that spectral clustering is meant to solve, as it uses spectral information spread out across the Euclidean distance
matrix. However, we see here that by jointly shrinking towards the embedding and the clustering, we can
potentially improve both while generalizing spectral clustering and not requiring that the number of clusters be
preordained. Further, note that in standard spectral clustering, where f(·) is linear, if the means and covariance
traces are equal (as in the synthetic “overlapping cluster” examples we show in our synthetic examples above),
no spectral information can be retrieved that is of use in discrimination (as only mean and covariance trace
information are available). This shows that a method where f is nonlinear (or contains nonlinear, local weights)
is required for discrimination in such problems (and is consistent with the significant performance improvement
afforded PCMF by using the nonlinear nearest neighbors approach to penalty weights).

Together, these propositions show how PCMF outperforms convex clustering asymptotically for a class of nontrivial
p > N problems and relates it formally and intuitively to kernel spectral clustering.



Amanda M. Buch, Conor Liston, Logan Grosenick 23

4 EXTENDED RESULTS

4.1 PCMF on Synthetic Data

PCMF, LL-PCMF, and P3CA: What are the hyperparameters and what is their impact?

The hyperparameters for the globally linear PCMF (PCMF) are augmented Lagrangian parameter
(ρ), weight (γ), N.N. (nearest neighbors), the number of ADMM iterations (K), and the convex clustering
penalty (λ) and the global problem rank of the full low-rank embedding (r).

The hyperparameters for the locally linear PCMF (LL-PCMF) are augmented Lagrangian parameter (ρ),
weight (γ), N.N. (nearest neighbors), the number of ADMM iterations (K), and the convex clustering penalty
(λ).

The hyperparameters for pathwise canonical correlation analysis (P3CA), which we implement as a
multiview generalization of LL-PCMF) are augmented Lagrangian parameter (ρ), weight (γ), N.N. (nearest
neighbors), the number of ADMM iterations (K), the number of CCA iterations (κ), and the convex clustering
penalty (λ).

ρ is the augmented Lagrangian parameter. Although ADMM can in some cases be quite sensitive to choices of
the augmented Lagrangian parameter ρ, we find our algorithm to be stable across a range of common ρ values
(Appendix Fig. 7).

γ is the weight on each connection in the convex clustering penalty and influences the cluster fusion along the
convex clustering path. In practice, we set this to γ = 2.0. Though this parameter could be tuned to optimize
performance, we find the solution path to not be highly sensitive to small variations in the γ parameter (Appendix
Fig. 6).

N.N. is the nearest neighbors parameter and controls the number of connections and nested structure of the
solution path; it influences cluster fusion and the time to solve the algorithm (Appendix Fig. 6).

K, the number of ADMM iterations per λ, controls convergence at each penalty on the path since we use
Algorithmic Regularization (see Appendix §2.7; Appendix Fig. 5).

κ in P3CA is the number of CCA iterations per K, and influences convergence per ADMM iteration, K, to the
CCA optimization. We set this to κ = 2.

λ, the convex clustering penalty controls the convergence to the clustering solution, as with algorithmic regular-
ization (see Appendix §2.7) K is set to a smaller number than total convergence. Unless otherwise specified, we
set the convex clustering penalty path to initialization using K = 10 λ =∞ followed by 150 evenly spaced points
in the interval λ = e[10,−10], such that the penalty decreased along the path of embedding solutions.

Figure 6: LL-PCMF varying nearest neighbors (N.N.) and weights (γ). a. Ground truth data for 4-class problem;
p = 20;N1 = 100 (blue), N2 = 50 (orange), N3 = 20 (red), N4 = 50 (green). The first two variables of the
data are plotted with light points showing raw data and dark points showing data reconstructed from low rank
estimates, colored by true cluster membership (PCA rank r = 5). b–i. PCMF paths for variable 1 fit along
decreasing penalty path (λ =∞ to λ = 0) varying N.N. and γ.
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Figure 7: LL-PCMF model estimates for the Tumors dataset for four different augmented Lagrangian parameters
(ρ = 1.0, 1.5, 2.0, 2.5) along the convex penalty (λ) path. Paths are stable across the four ρ values.

4.2 P3CA on Palmer Penguin dataset

Figure 8: P3CA identifies penguin species-specific embeddings (left: bill-related; right: body-related). a. X data
and c. Y data colored by P3CA clusters from λ path penalty (blue arrows). b. Ground truth clusters for X and
Y . d-e. P3CA paths for X and Y (color indicates variable; pink is intercept).

Here we demonstrate an application of P3CA on a simple real world dataset, the Palmer Penguins dataset (Horst
et al., 2020). The Palmer Penguin dataset consists of four body measurements in N = 342 penguins from three
species (adélie, chinstrap, and gentoo penguins). For illustration of P3CA, we split the four measurements into
two data views: X with bill length and bill depth (“bill-related” measurements) and Y with flipper length and
body mass (“body-related” measurements) (Appendix Fig. 8b). We applied P3CA to this multiview phenotypic
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dataset and found that P3CA recovered the three penguin species with high accuracy (accuracy = 98.25%; Main
Text Table 2; Appendix Fig. 8a,c) and identified a hierarchy of cluster-specific embeddings (“Bill-related” in
Appendix Fig. 8d and “Body-related” in Appendix Fig. 8e).

4.3 P3CA on Autism Spectrum Disorder (ASD) Neuroimaging Dataset

We highlight three cluster solutions along the P3CA path for behavior (as λ decreases) and show where the
behavior-related P3CA variate (U) intercept splits—indicating at least two clusters (Appendix Fig. 9). We find
the solution from sequential CCA+K-means (Appendix Fig. 9c) identifies a similar ASD-related brain-behavior
embedding, but fails to fully separate the two clusters along this embedding. (similar to prior sequential CCA
followed by clustering approaches in neuropsychiatry (Drysdale et al., 2017, Grosenick et al., 2019, Buch et al.,
2023).

Further, the resulting correlations between ASD behaviors and the P3CA variate are significantly different
across clusters (Appendix Table 5) as well as between ASD brain connections and the P3CA variate (Appendix
Table 6)—consistent with known ASD subpopulation differences on RRBs and verbal IQ and prefrontal cortex
to somatosensory cortex, posterior parietal cortex, and middle temporal gyrus. There are no ground truth
clusters (biological subtypes of ASD is an open problem), so we measure cluster composition stability and U
and V coefficients by randomly holding out 30% of data in 10 replicates (yielding 10 datasets of N = 209 X-Y )
and calculating the P3CA path over 50 λ values in each subsample. For each subsample, we compare cluster
assignment and subject-level U and V coefficients with those of the corresponding subjects when P3CA was
calculated using the full dataset (N = 299, Appendix Fig. 9). We find that subject-level U and V coefficients are
stable (cosine similarity of 0.93± 0.05 for U estimates and 0.97± 0.03 for V estimates).

Table 5: Correlations Between ASD Behaviors and P3CA variate. Bold text indicates correlations, |r| ≥ 0.20.
RRB, repetitive/restricted behaviors/interests

Cluster 1 Cluster 2 Combined

RRB -0.50 -0.05 -0.45
Verbal IQ -0.25 -0.63 -0.63

Social Affect -0.16 -0.35 -0.58

Figure 9: P3CA identifies distinct biological subtypes of ASD patients using multivariate clinical behavior (X = 3)
features and functional brain connectivity (Y = 20 top features). a. P3CA path diagram of behavior-related
P3CA scores with clustering solutions at λs indicated by line (see intercept splitting at red arrow). b. P3CA
clustering solution separates ASD patients along the brain-behavior embedding. c. P3CA clusters are much
better separated and more robust than sequential CCA followed by K-means clustering. Abbreviations: CCA,
canonical correlation analysis; RRB, repetitive/restricted behaviors/interests
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Table 6: Correlations between functional brain connectivity and P3CA variate. Bold text indicates correlations,
|r| ≥ 0.20. ACC, anterior cingulate cortex; antPFC, anterior prefrontal cortex; IFGorb, Orbital part of inferior
frontal gyrus; IPL, inferior parietal lobe; ITG, inferior temporal gyrus; L, left; M1, primary motor cortex; MCC,
midcingulate cortex; MFG, middle frontal gyrus; mOFC, medial orbitofrontal cortex; MOG, medial orbital gyrus;
MTG, middle temporal gyrus; NAcc, nucleus accumbens; PCC, posterior cingulate cortex; PPC, posterior parietal
cortex; R, right; S1, primary somatosensory cortex; SFG, superior frontal gyrus; SMA, supplementary motor area;
SOG, superior orbital gyrus; SPL, superior parietal lobule; VLPFC, ventrolateral prefrontal cortex; VMPFC,
ventromedial prefrontal cortex.

Cluster 1 Cluster 2 Combined

L MTG – L thalamus -0.16 -0.03 -0.23
L paracentral/S1 – R VMPFC/IFGorb -0.04 -0.20 -0.21

R SOG – L cerebellum -0.11 -0.05 -0.19
R ITG/MTG – R PCC -0.21 -0.06 -0.27

L insula – L MOG -0.13 -0.10 -0.05
R MTG/ITG – L MTG -0.09 -0.14 -0.21

L antPFC/SFG – L NAcc -0.03 -0.01 -0.19
L precentral/M1 – R VMPFC/mOFC -0.09 -0.14 -0.21

R ACC/MCC – R VLPFC/MFG -0.09 -0.05 -0.13
R VMPFC/IFGorb – R PPC/SPL -0.18 -0.25 -0.31

R SMA/ACC – L MOG -0.08 -0.14 -0.01
R VMPFC/IFGorb – L PPC/IPL -0.11 -0.39 -0.24

R temp pole – L MTG -0.04 -0.06 -0.15
R temp pole – L thalamus -0.28 -0.07 -0.21

R VLPFC/MFG – R MTG -0.20 -0.05 -0.20
R ACC/MCC – L ventral putamen -0.00 -0.03 -0.02

L lingual – L VLPFC/IFGorb -0.10 -0.04 -0.11
R VMPFC/IFGorb – L lingual -0.14 -0.10 -0.21

L cuneus – L fusiform -0.14 -0.10 -0.24
L lingual – L ACC -0.03 -0.04 -0.03

5 EXPERIMENTAL METHODS AND DATASETS

Here we include details on experimental methods, synthetic dataset generation, and real-world datasets.

5.1 Synthetic Dataset Generation

We use 20 synthetic dataset types in our study.

Synthetic dataset 1. Main Text Figure 1: We generate synthetic data for a 3-class problem with p = 20
and N1 = 100 (blue), N2 = 25 (red), N3 = 25 (orange), colored by true cluster membership in Main Text Fig. 1
with δ = 1.0, σ = 0.08, and cluster centroids 1,2,3 ∈ {−0.35, 0.0, 0.35} accordingly. The seed for data generation
was set to ensure the three-class dataset is reproducible.

Synthetic datasets 2–13. Appendix Figure 1 and Appendix Table 1 include 12 types of two clustered-
data in a single view with p = 200, or p = 2000 variables and variable redundancy set by δ = 0.5 or δ = 0.2, the
fraction of variables containing signal. Varying p and δ, we generate data from two separate distributions with
different slopes and cluster means in three variations: non-overlapping clusters (cluster centroids ∈ {−0.2, 0.2};
N1 = 50;N2 = 50), overlapping clusters (cluster centroids ∈ {−0.05, 0.05}; N1 = 50;N2 = 50), or non-overlapping
but unbalanced cluster size (cluster centroids ∈ {−0.2, 0.2}; N1 = 80;N2 = 20).

For each dataset generated, the seed was set to ensure the two-cluster data was reproducible. Within a single
dataset, for each cluster a random matrix of N x p with the specified mean and σ = 0.075 was generated. Next,
u was generated as a random matrix of N x 1 and v was generated as a random matrix of p x 1. We selected
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δ ∗ p features from a randomly permuted order of the total p features and added v[i] ∗ u to X[:, i] where i is the
feature (column). Finally, we standardized features over samples (rows) by removing the mean and scaling to unit
variance, and added a column of ones as an intercept to the features. We compare results based on the adjusted
rand index (ARI) and the normalized mutual information (NMI).

Synthetic datasets 14–15. Appendix Figures 2,5 and Appendix Table 2: In Appendix Fig. 2a-b and 5,
we generate synthetic data for a 4-class problem with p = 200, N1 = 25 (blue), N2 = 25 (red), N1 = 25 (green),
N2 = 25 (orange), δ = 0.5, σ = 0.075, and cluster centroids 1,2 ∈ {−1.0, 1.0,−0.4, 0.4}.

In Appendix Figs. 2c-d, 2 and Table 2, we generate synthetic data for a 4-class problem with p = 100, N1 = 250
(blue), N2 = 250 (red), N3 = 250 (green), N4 = 250 (orange), δ = 0.5, σ = 0.075, and cluster centroids
1,2,3,4,5,6,7,8,9,10 ∈ {−5.2, 5.2,−4.8, 4.8,−4.1, 4.1,−3.7, 3.7,−3.1, 3.1,−2.8, 2.8,−2.1, 2.1,−1.5, 1.5,−1.0, 1.0,
−0.4, 0.4}.

Synthetic datasets 16–18. Appendix Figure 4: The data-generating parameters used for the datasets in
Appendix Fig. 4a-b were 3 classes with Nclass = 50, class = 1, . . . , 3, p = 20, cluster centroids ∈ {−0.35, 0.0, 0.35},
and variable redundancy δ = 1. In Fig. 4c, the data-generating parameters were 5 classes with Nclass = 20, class =
1, . . . , 5, p = 50, cluster centroids ∈ {−1.5, 1.5, 0.0, 0.01,−0.4}, and variable redundancy δ = 1. For fitting PCMF,
LL-PCMF, and P3CA, ρ was set to 1.0, γ was set to 2.0, the number of ADMM iterations per λ penalty was set
to K = 100, and the number of nearest neighbors N.N. was set to 25. For PCMF, we fit the model using problem
ranks 1 ≤ r ≤ 10 (Appendix Fig. 4a), and for LL-PCMF and P3CA, we fit the model using the r = 1 problem
formulation (Appendix Fig. 4b). For the penalty path, we varied the value of λ along a path of 50 evenly spaced
points in the interval e[5,−20] after initializing with λ =∞ (10 iterations), such that the penalty decreased along
the path of embedding solutions.

Synthetic dataset 19. Appendix Figure 3: We generate synthetic data for a 2-class problem with p = 50,
N1 = 20 (blue), N2 = 30 (orange), δ = 1.0, σ = 0.75, and cluster centroids 1,2 ∈ {−1, 1} with two true
slopes/principal directions per cluster.

Synthetic dataset 20. Appendix Figure 6: We generate synthetic data for a 4-class problem with p = 20,
N1 = 100 (blue), N2 = 50 (orange), N3 = 20 (red), N4 = 50 (green), δ = 1.0, σ = 0.08, and cluster centroids 1,2
∈ {−0.35,−0.1, 0.05, 0.35}.

5.2 Real-World Datasets

NCI dataset. The NCI Cancer Genomics dataset consists of cDNA microarray gene expression levels in
p = 6, 830 genes measured in N = 64 cell lines from 13 cell types. We did not apply any preprocessing to the
data, as the data had already been cleaned and prepared for use as a standard dataset. The data was originally
prepared and released at http://genome-www.stanford.edu/nci60/ and is presently accessible on the (Hastie
et al., 2009) book’s website: https://hastie.su.domains/ElemStatLearn/datasets. The original data came
from the (Ross et al., 2000) study. The cell classes and frequency per class are the following: 7 breast cancer
cells, 5 central nervous system (CNS) cancer cells, 7 colon cancer cells, 1 K562B-repro (leukemia cell from a
leukemia subtype cell line), 1 K562A-repro (leukemia cell from a leukemia subtype cell line), 6 leukemia cells,
1 MCF7A-repro (mamammary adenocarcinoma cell from a breast cancer subtype cell line), 1 MCF7D-repro
(mamammary adenocarcinoma from a breast cancer subtype cell line), 8 melanoma cells, 9 non-small cell lung
cancer (NSCLC) cells, 6 ovarian cancer cells, 2 prostate cancer cells, 9 renal cancer cells, and 1 unknown cancerous
cell.

SRBCT dataset. The SRBCT Cancer Genomics dataset consists of cDNA microarray gene expression
levels in p = 2, 318 genes measured in N = 88 small, round blue-cell tumors (SRBCTs) of childhood samples
from 4 cancer diagnostic categories. We did not apply any preprocessing to the data, as the data had already
been cleaned and prepared for use as a standard dataset, however, we did combine the N = 63 training and
N = 25 test set samples to maximize the sample size. The data was originally prepared and released at
http://genome-www.stanford.edu/ and is presently accessible on the (Hastie et al., 2009) book’s website:
https://hastie.su.domains/ElemStatLearn/datasets. The original data came from the (Khan et al., 2001)
study. The SRBCTs of childhood classes and frequency per class are the following: 11 Ewing family of tumors

http://genome-www.stanford.edu/nci60/
https://hastie.su.domains/ElemStatLearn/datasets
http://genome-www.stanford.edu/
https://hastie.su.domains/ElemStatLearn/datasets
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(EWS: class 1), 29 rhabdomyosarcoma (RMS: class 2), 18 neuroblastoma (NB: class 3), 25 non- Hodgkin lymphoma
(NHL/BL: class 4), and 5 unlabeled in the test set (class "NA").

Mouse dataset. The Mouse Organ Cancer Genomics dataset consists of single-cell RNA-sequencing
in p = 16, 944 genes measured in N = 125 mouse organ samples from 7 different mouse organs collected in the
Tabula Muris study (Tabula Muris Consortium et al., 2018, Kopf et al., 2021). The organ classes and frequency
per class are the following: 36 heart, 4 kidney, 37 large intestine, 8 liver, 8 lung, 20 spleen, 12 thymus. The 125
samples is a representative sample from the full dataset of N = 6, 232 mouse organ samples. Data was scaled to
be between 0 and 1 and genes were filtered to remove genes whose expression had low variance across rows (0.2
quantile) following previously published preprocessing steps for this dataset (Kopf et al., 2021).

Tumors dataset. The Multiomics Cancerous Tumor dataset consists of p = 11, 931 multiomics measure-
ments (concatenated measures from gene expression levels, DNA methylation, miRNA expression to obtain 1
data matrix) in tumor samples from N = 142 patients for 3 cancer diagnoses (glioblastoma multiforme (GBM),
breast invasive carcinoma (BIC), and lung adenocarcinoma) from The Cancer Genome Atlas Program (TCGA)
Research Network [https://www.cancer.gov/tcga] and curated by (Franco et al., 2021). The Tumors dataset
classes and frequency per class are the following: 71 GBM cancer, 35 breast cancer, 36 lung cancer. The N = 142
samples is a representative sample from the full dataset of 424 patient samples. Gene expression levels, DNA
methylation, miRNA expression measurements for each cancer type (GBM, BIC, and lung adenocarcinoma) were
concatenated and then the three cancer types were merged such that all cancer types had the same features with
no missing values. Data was scaled as following:

Xn =
Xi − xmin

xmax − xmin
(53)

where Xi is the data for feature i while xmax and xmin are the minimum and maximum absolute value of the
feature respectively. Xn is the normalized feature over rows. This followed previously published preprocessing
steps for these datasets (Franco et al., 2021).

Tumors-Large dataset. The Multiomics Cancerous Tumors-Large dataset is the same dataset as the
Tumors dataset, and is preprocessed in the same way, however with the full sample being used. It consists of
consists of p = 11, 931 single-view dataset (concatenated measures from gene expression levels, DNA methylation,
miRNA expression to obtain 1 data matrix) in tumor samples from N = 400 patients in the training set and
N = 24 patients in the test set for 3 cancer diagnoses (glioblastoma multiforme (GBM), breast invasive carcinoma
(BIC), and lung adenocarcinoma). The Tumors dataset classes: GBM cancer, breast cancer, lung cancer, and the
samples per class varied with the training/test set cross-validation fold.

Monkey-LGN dataset. The Monkey-LGN Dataset consists of p = 45, 768 genes (expression) (X) measured
from N = 1, 801 cells of 2 cell types.

Mouse-LGN dataset. The Mouse-LGN Dataset consists of p = 39, 670 genes (expression) (X) measured
from N = 1, 818 cells of 2 cell types.

MNIST dataset. The MNIST dataset was loaded from keras.datasets in Python, and we applied Y
preprocessing step. We used six MNIST digit classes, 0,1,2,3,4,5, and the samples per class varied with the
training/test set cross-validation fold.

MNIST Fashion dataset. The MNIST fashion dataset was downloaded from X, and we applied Y
preprocessing step. We used six MNIST fashion classes, 0 (T-shirt/top), 1 (Trouser), 2 (Pullover), 3 (Dress), 4
(Coat), 5 (Sandal), and the samples per class varied with the training/test set cross-validation fold.

Human-ATAC dataset. The Human-ATAC Dataset consists of p = 21, 972 chromatin profiles (X) from
30, 480 cells from 2 cell types.

COVID-19 dataset. The COVID-19 multiomics dataset was downloaded from (Shen et al., 2020). We
used data samples corresponding to healthy subjects, moderate COVID-19 severity, and severe COVID-19 patients.

https://www.cancer.gov/tcga
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The dataset consisted of pX = 403 metabolites and pX = 382 proteins from N = 45 subjects (N = 14 healthy
controls, N = 18 moderate COVID, N = 13 severe COVID) (Shen et al., 2020). We ran P3CA on using these X
and Y datasets and separately CCA followed by K-means clustering for comparison. For comparison to other
single-view clustering methods, we stacked the X and Y such that XY = 45 N x 785 p and used this XY as the
input into each algorithm.

NCI (Multiview) dataset. The NCI (Multiview) dataset is the same dataset as the NCI dataset,
however, we now split the dataset into X and Y such that: X = 64 N x p[variables 1−1,000] and Y = 64 N x
p[variables 1,001−1,100] and ran P3CA on using these X and Y datasets and separately CCA followed by K-means
clustering for comparison. For comparison to other single-view clustering methods, we stacked the X and Y such
that XY = 64 N x p[variables 1−1,100] and used this XY as the input into each algorithm.

SRBCT (Multiview) dataset. The SRBCT (Multiview) dataset is the same dataset as the SRBCT
dataset, however, we now split the dataset into X and Y such that: X = 88 N x p[variables 1−1,000] and Y = 88 N
x p[variables 1,001−1,100] and ran P3CA on using these X and Y datasets and separately CCA followed by K-means
clustering for comparison. For comparison to other single-view clustering methods, we stacked the X and Y such
that XY = 88 N x p[variables 1−1,100] and used this XY as the input into each algorithm.

Mouse (Multiview) dataset. The Mouse (Multiview) dataset is the same dataset as the Mouse dataset,
however, we now split the dataset into X and Y such that: X = 125 N x p[variables 1−1,000] and Y = 125 N x
p[variables 1,001−1,100] and ran P3CA on using these X and Y datasets and separately CCA followed by K-means
clustering for comparison. For comparison to other single-view clustering methods, we stacked the X and Y such
that XY = 125 N x p[variables 1−1,100] and used this XY as the input into each algorithm.

Tumors (Multiview) dataset. The Tumors (Multiview) dataset is the same dataset as the Tumors
dataset, however, we now split the dataset into X and Y such that: X = 142 N x p[variables 1−1,000] and Y = 142 N
x p[variables 1,001−1,100] and ran P3CA on using these X and Y datasets and separately CCA + K-means clustering
for comparison. For comparison to other single-view clustering methods, we stacked the X and Y such that
XY = 142 N x p[variables 1−1,100] and used this XY as the input into each algorithm.

Autism spectrum disorder (ASD) dataset. The autism spectrum disorder (ASD) dataset consists
of p

X
= 3 clinical symptoms and p

Y
= 20 resting state functional connectivity (RSFC) features measured from

resting state functional MRI (rsfMRI) neuroimaging in N = 299 patients with ASD (top 20 RSFC correlated
with three clinical symptoms; see Appendix and (Buch et al., 2023, Drysdale et al., 2017, Grosenick et al., 2019)
for feature selection methods). The three clinical symptoms are verbal IQ (VIQ), ADOS-2 social affect CSS, and
ADOS-2 repetitive behaviors and restricted interests (RRB) CSS. Datasets were collected from subjects as part of
the ABIDE studies (Martino, 2014, 2017). The ADOS-2 is the Autism Diagnostic Observation Schedule-Second
Edition CSS, a standardized observational scale for diagnosing ASD. CSS stands for the calibrated severity score.

Following standard preprocessing of the rsfMRI (Buch et al., 2023, Drysdale et al., 2017, Grosenick et al., 2019,
Satterthwaite et al., 2012), we calculated the RSFC matrices for each subject by the Pearson correlation between
247 regions of interest (ROIs) from the Power brain atlas (Power et al., 2011). We next performed feature selection
based on previous methods (Buch et al., 2023, Drysdale et al., 2017, Grosenick et al., 2019) by calculating the
Spearman correlation between each RSFC feature (p = 30, 381 unique RSFC) and each clinical symptom in 1,000
subsamples of 95% of the subjects (N = 284) and ranked RSFC features by the number of subsamples in which
the RSFC had a significant correlation (p < 0.05) to one of the clinical symptoms. This rank list represented the
relative importance of each RSFC feature to predicting clinical symptoms in ASD. We selected the top 20 RSFC
from this rank list. For each view (X and Y ), we add a column of ones as a free variable in which the U and V
coefficients can capture differences in cluster means. Thus the input into the analysis included the pX = 4 (three
clinical symptoms concatenated with a column of N = 299 ones as an intercept term) and pY = 21 (20 most
predictive RSFC features concatenated with a column of N = 299 ones as an intercept term) in N = 299 patients
with ASD.

All human neuroimaging and behavioral data from the ABIDE I and II datasets is anonymized, there is no
protected health information included, and the datasets are publicly available with approval. Protocols for human
subject research in the ABIDE datasets are included in the study details for each of the 17 study sites for ABIDE
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I and 19 study sites for ABIDE II (see http://fcon_1000.projects.nitrc.org/indi/abide). Thus we did
not collect any data using human subjects for this study, and all information about IRB approval and participant
compensation can be found in the original datasets collected by the ABIDE I and II consortia. As we using rsfMRI
data and the behavioral measures included are from standardized behavioral and clinical scales (intelligence
quotient and ADOS-2), participants were not shown text instructions during MRI scanning.

Palmer Penguin (Multiview) dataset. The Palmer Penguin Dataset consists of four body measurements
in N = 342 penguins from three species. For illustration of P3CA, we split the four measurements into two views:
X with bill length and bill depth; Y with flipper length and body mass. The Palmer Penguin dataset classes and
frequency per class are the following: 151 Adélie penguins, 68 Chinstrap penguins, 123 Gentoo penguins.

5.3 Protein-Protein Interaction Network

To assess interpretation of the cluster-specific P3CA embeddings for the COVID-19 dataset, we performed a
graph-based network analyis called Protein Protein Interaction (PPI) network analysis using the top 25 proteins
whose expression/abundance was most correlated (Spearman correlation) with the P3CA embedding for each
severity cluster. We converted protein IDs to standardized HGNC gene names and separately input each
25 gene name list into the online NetworkAnalyst (https://www.networkanalyst.ca/) platform (1 per PPI
model/cluster) (Xia et al., 2014, 2015, Zhou et al., 2019). The seeds and interaction partners were used to build a
zero-order PPI subnetwork, meaning each PPI only included proteins that were from the input 25 protein/gene
seeds. We calculated the degree (number of connections) for each protein/gene in the PPI networks and used
Enrichr (https://maayanlab.cloud/Enrichr/) (Chen et al., 2013, Kuleshov et al., 2016, Xie et al., 2021) to
identify the overlap between proteins in the PPI networks known to be associated with COVID-19.

5.4 Dendrograms and Interpretation

We construct PCMF dendrograms following the procedure outlined in Main Text §3.2. For comparison to the
result when using a two-step embedding then clustering method, we compare the results in Main Text Figs. 2
and 3 to an embedding method (PCA or CCA) followed sequentially by agglomerative hierarchical clustering. We
cut the hierarchical clustering dendrogram at the true number of clusters for comparison and then calculate and
report the clustering accuracy from the two-step procedure.

5.5 Hyperparameters

PCMF, LL-PCMF, and P3CA: How is the rank tuned?

We have not tuned the rank as we focused on the rank 1 case for all experiments where we compare
the rank 1 globally linear PCMF against the rank 1 locally linear LL-PCMF formulation. In the consensus
version of PCMF, we set the rank to be of higher order to increase flexibility of the clustering solution and to
accommodate “spurious” local nonlinearities that may be present in the huge-sample datasets. Future work can
explore the tuning of the rank, by incorporating rank as a hyperparameter to a standard cross-validation scheme
with train/validation/test set folds.

Cluster comparison methods: What hyperparameters did we use?

In comparison, for the deep clustering methods, the Louvain, and the Leidein method, we implemented a finer
hyperparameter grid for tuning as detailed below. With additional hyperparameter tuning on a finer grid, we
expect our PCMF and P3CA model may be further optimized.

For Deep Embedding Clustering, we tuned the following hyperparameters: batch size (15, 30), finetune
iterations (100, 1000), iterations for layerwise pretraining (100, 1000), and maximum iterations for clustering
(100, 200). Layer sizes and other parameters were set to the defaults in the model code from https://github.
com/fferroni/DEC-Keras.

For Improved Deep Embedding Clustering, we tuned the following hyperparameters: batch size (15, 30),
pretraining epochs (100, 1000) and training epochs (100, 1000). Layer sizes and other parameters were set to the
defaults in the model code from https://github.com/dawnranger/IDEC-pytorch.

http://fcon_1000.projects.nitrc.org/indi/abide
https://www.networkanalyst.ca/
https://maayanlab.cloud/Enrichr/
https://github.com/fferroni/DEC-Keras
https://github.com/fferroni/DEC-Keras
https://github.com/dawnranger/IDEC-pytorch
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For CarDEC, we tuned the following hyperparameters: number of neighbors (5, 10, 15, 20, 25) and number of
top genes (100, 500).

For Louvain and Leidein, we tuned the number of neighbors (5, 10, 15, 20, 25).

The optimal hyperparameters for these deep clustering and Louvain and Leidein methods were as follows (N.N.
indicates number of nearest neighbors):

1. For the NCI dataset: Leiden with 5 N.N.; Louvain with 15 N.N.; DEC with batch size 15, finetune
iterations 100, layerwise iterations 100, cluster iterations 200; IDEC with batch size 30, pretrain iterations
100, and train iterations 1000; CarDEC with 5 N.N. and 100 top genes.

2. For the SRBCT dataset: Leiden tied with 10, 20, or 25 N.N.; Louvain with 15 N.N.; DEC with batch
size 15, finetune iterations 1000, layerwise iterations 1000, cluster iterations 100; IDEC with batch size 30,
pretrain iterations 100, and train iterations 100; CarDEC with 10 N.N. and tied with 100 or 200 top genes.

3. For the Mouse Organs dataset: Leiden tied with 20 or 25 N.N.; Louvain with 15 N.N.; DEC with batch
size 15, finetune iterations 100, layerwise iterations 100, cluster iterations 100; IDEC with batch size 30,
pretrain iterations 100, and train iterations 100; CarDEC with 15 N.N. and 100 top genes.

4. For the Tumors dataset: Leiden tied with 15, 20, or 25 N.N.; Louvain tied with 20 or 25 N.N.; DEC tied
with batch size 15 or 30, finetune iterations 100 or 1000, layerwise iterations 100 or 1000, cluster iterations
100 or 200; IDEC with batch size 15, pretrain iterations 100, and train iterations 100; CarDEC with 20 N.N.
and 200 top genes.

5. For the COVID-19 dataset: Leiden tied with 20 or 25 N.N.; Louvain with 10 N.N.; DEC with batch size
15, finetune iterations 1000, layerwise iterations 100, cluster iterations 200; IDEC with batch size 30, pretrain
iterations 100, and train iterations 100; CarDEC with 5 N.N. and 200 top genes.

6. For the Tumors-large dataset: Leiden with 40 N.N.; Louvain with 40 N.N. IDEC with batch size 15,
pretrain iterations 100, and train iterations 100.

7. For the MNIST dataset: Leiden with 10 N.N.; Louvain with 40 N.N.; IDEC with batch size 15, pretrain
iterations 100, and train iterations 100.

8. For the FashionMNIST dataset: Leiden with 40 N.N.; Louvain with 40 N.N.; IDEC with batch size 15,
pretrain iterations 100, and train iterations 100.

9. For the Synthetic dataset: Leiden with 40 N.N.; Louvain with 25 N.N.
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