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Abstract

We consider the problem of learning to play
a repeated contextual game with unknown
reward and unknown constraints functions.
Such games arise in applications where each
agent’s action needs to belong to a feasible
set, but the feasible set is a priori unknown.
For example, in constrained multi-agent re-
inforcement learning, the constraints on the
agents’ policies are a function of the un-
known dynamics and hence, are themselves
unknown. Under kernel-based regularity as-
sumptions on the unknown functions, we de-
velop a no-regret, no-violation approach that
exploits similarities among different reward
and constraint outcomes. The no-violation
property ensures that the time-averaged sum
of constraint violations converges to zero as
the game is repeated. We show that our
algorithm referred to as c.z.AdaNormalGP,
obtains kernel-dependent regret bounds, and
the cumulative constraint violations have
sublinear kernel-dependent upper bounds. In
addition, we introduce the notion of con-
strained contextual coarse correlated equilib-
ria (c.z.CCE) and show that ϵ-c.z.CCEs can
be approached whenever players follow a no-
regret no-violation strategy. Finally, we ex-
perimentally demonstrate the effectiveness of
c.z.AdaNormalGP on an instance of multi-
agent reinforcement learning.

Several real-world problems such as auctions, traffic
routing, and multi-robot applications involve multi-
ple self-interested agents that repeatedly interact with
each other. Such problems can be described as repeated
games (Cesa-Bianchi and Lugosi, 2006). In most cases,
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the underlying game is unknown to the agents, con-
sider, for example, the outcome of an auction or travel
times in a transportation network. Thus, a significant
body of research has focused on deriving algorithms
that allow agents to learn a strategy that is aligned
with their goals.

The goal of a given learning agent in a repeated game is
to maximize her cumulative reward. However, without
making any assumptions about other agents’ learning
approach, such a goal is difficult to attain. In this set-
ting, a non-trivial yet attainable performance measure
is no-regret. A learning agent aims to learn a no-regret
strategy by repeatedly playing an action and observ-
ing the corresponding reward. Existing no-regret algo-
rithms for repeated games (Littlestone and Warmuth,
1994; Freund and Schapire, 1995) are based on the as-
sumption that agents can play any action.

In many practical scenarios, however, agents’ actions
are subject to a variety of constraints, and a priori the
set of feasible actions may not be known. These con-
straints can represent various requirements, such as
safety regulations (Sun et al., 2017; Usmanova et al.,
2020), fairness considerations, or task-specific limita-
tions (Guo et al., 2022). For example, in thermal
control of buildings, the occupants’ comfort tempera-
ture and energy cost are functions of the temperature
controller parameters and unknown if the dynamics of
the controller are unknown. The problem of no-regret
learning under unknown constraints has been gaining
increasing attention (see related work below). How-
ever, this problem has not been sufficiently explored
in a game setting.

In this paper, we consider the class of contextual games
with unknown constraints. Repeated contextual games
(Sessa et al., 2020) generalize the class of static games,
where agents additionally observe contextual informa-
tion at each round. In routing games, for instance,
agents may observe the network’s capacity or weather
conditions. Leveraging the context information, the
agents can learn a no-regret policy, which maps the
observed context to their actions which results in a
stronger notion of regret. In constrained games, how-
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ever, the agents need to operate within the boundaries
of their unknown constraints. We thus address learn-
ing a no-regret no-violation strategy for a constrained
contextual game, where no-violation implies a sublin-
ear bound on the cumulative constraint violations.

Related work. No-regret learning under unknown
constraints has been extensively studied by various
research fields including online convex optimization
(Guo et al., 2022; Yi et al., 2021), black-box op-
timization (Xu et al., 2023), reinforcement learning
(RL) (Wei et al., 2022), and multi-agent reinforce-
ment learning (MARL) (Chen et al., 2022). In safety-
critical applications, a line of research (Sui et al.,
2015; Turchetta et al., 2019) has focused on developing
methods, where no constraint violations are tolerated.
These methods are restricted to a single-player setting
and require knowing an initially feasible point. For
many real-world problems, however, it may be suffi-
cient to restrict the amount of constraint violations.
In designing a controller to regulate the temperature
in a building (Di Natale et al., 2022), for instance,
deviating from the occupants’ comfort temperature is
tolerable but should be avoided. Several works (Sun
et al., 2017; Yu and Neely, 2020; Wei et al., 2022; Zhou
and Ji, 2022) consider the so-called soft constraints, in
which the goal is to limit the sum of constraint func-
tion values over the rounds. Thus, violations at one
round can be compensated in a different round. In
our paper, we consider a stronger notion of constraint
satisfaction over rounds. In particular, we aim to limit
the cumulative constraint violations rather than val-
ues (Yi et al., 2021; Guo et al., 2022; Xu et al., 2023).
Perhaps closest to ours is the setup of constrained on-
line optimization (Yi et al., 2021; Guo et al., 2022),
where the unknown time-varying loss and constraint
functions are convex. In our setup of repeated games
with unknown constraints, the reward of each agent is
static and the time-variations are due to the depen-
dence of the reward function on the actions of other
agents. Our goal is to leverage this structure of the
game to achieve improved no-regret no-violations, in
the absence of convexity and with the inclusion of con-
textual information.

Incorporating contextual information into no-regret
learning has been extensively studied in the bandit
literature (Slivkins, 2014) for reward functions that
depend linearly on context features (Li et al., 2010;
Chu et al., 2011; Lin et al., 2022) and more generally
for reward functions that are an arbitrary linear func-
tion of the contexts’ images in some corresponding re-
producing kernel Hilbert space (RKHS) (Krause and
Ong, 2011; Valko et al., 2013). The RKHS assump-
tion has been considered in contextual games (Sessa
et al., 2020) and contextual no-regret algorithms have

been derived for this class of games. While Sessa et al.
(2020) leveraged the game structure to improve the
regret rate compared to an online learning scenario, it
did not incorporate unknown constraints and thus, did
not come with a provable violation bound.

Contributions.

We propose a novel no-regret, no-violation algorithm
c.z.AdaNormalGP for playing unknown contextual
games with constraints. For the handling of con-
straints in no-regret learning, we establish a connec-
tion between playing a (contextual) game with un-
known constraints and the sleeping expert problem
(Blum, 1995; Freund et al., 1997). The sleeping ex-
pert problem was initially formulated to address dy-
namically available action sets rather than constraints
on the action sets. While our feasible action set is
static, the challenge in our setting is that this set is a
priori unknown. To derive a no-regret algorithm with
bounded rate of constraint violation, we exploit the
assumption that similar contexts and agents’ actions
lead to similar reward and constraint values and sim-
ilarly to Sessa et al. (2020) and Xu et al. (2023) use
the RKHS framework to learn the reward and con-
straint functions online based on past game data. In
particular, we view an action as an asleep expert if it is
infeasible with respect to the estimate of the constraint
function at a given round.

We establish a regret rate and a cumulative constraint
violation rate for our algorithms c.z.AdaNormalGP.
Concretely, c.z.AdaNormalGP with K actions obtains
the following bounds after T rounds:

• For finite context spaces, c.z.AdaNormalGP
achieves O(

√
|Z|T logK + γT

0

√
T ) regret and

O(γT
m

√
T ) cumulative constraint violation for each

m ∈ [M ].

• For infinite context spaces, c.z.AdaNormalGP

achieves O(T
d+1
d+2

√
log(K) + γT

0

√
T ) regret and

O(γT
m

√
T ) cumulative constraint violation for each

m ∈ [M ].

Our regret rate is the same, up to logarithmic fac-
tors in T and K, as those for unconstrained contextual
games. Our violation rate matches that of Xu et al.
(2023), which only considers a static online optimiza-
tion problem without any context. We further define
a new notion of constrained contextual Coarse Cor-
related Equilibria (c.z.CCE) for constrained contex-
tual games and show that c.z.CCEs can be approached
whenever agents follow a no-regret, no-violation algo-
rithm such as c.z.AdaNormalGP.
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1 Problem Setup

We consider a repeated contextual game among N
agents or players, where the two terms are used in-
terchangeably. At every round, each player selects a
feasible action and receives a payoff which depends on
the action profile chosen by all players and the context
at that round. More formally, let Ai denote the action
set of player i and let Z represent the set of possible
contexts. We assume Af

i (z) := {ai ∈ Ai | gi,m(ai, z) ≤
0, ∀m ∈ [M ]} to be the context-dependent feasible ac-
tion set, where z ∈ Z and {gi,m : Ai × Z → R}m∈[M ] is
a set containing M constraint functions. Furthermore,
define ri : A × Z → [0, 1] to be the reward function of
each player i, where A := A1 × . . . × AN is the joint
action space. We assume that each agent’s reward
function ri and constraint functions gi,m, m ∈ [M ], are
unknown to her, and thus also her context-dependent
feasible action set Af

i (z) for all z ∈ Z. Then, a repeated
contextual game with unknown constraints proceeds as
follows. At every round t, context zt is revealed. The
players observe zt and, based on it, simultaneously
each player i ∈ [N ] selects an action ati ∈ Ai which
needs to be feasible, i.e., at

i ∈ Af
i (z

t). Then, players ob-
tain rewards ri(a

t
i, a

t
−i, z

t) and constraints gi,m(ati, z
t),

where m ∈ [M ] and at
−i := (at

1, . . . , a
t
i−1, a

t
i+1, . . . , a

t
N ).

We define Πi to be the set of all policies πi : Z →
Ai mapping contexts to actions. After T rounds, the
performance of player i is measured by the constrained
contextual regret :

RT
i = max

πi∈Πi

T∑
t=1

ri(πi(z
t), at

−i, z
t)−

T∑
t=1

ri(a
t
i, a

t
−i, z

t)

s.t. gi,m(πi(z
t), zt) ≤ 0, ∀m ∈ [M ], ∀t ≥ 1.

(1)

We define the cumulative constraint violation for each
constraint gi,m with m ∈ [M ] as:

VT
i,m =

T∑
t=1

[gi,m(at
i, z

t)]+, (2)

where [x]+ := max{0, x}. The constrained contextual
regret, short regret, measures the gain player i could
have achieved by following her best feasible fixed policy
in hindsight had the sequence of other players’ actions
{a−i}Tt=1, the reward ri(·) and the constraint gi,m(·)
functions been known to her. The cumulative con-
straint violation measures the accumulated violations
over all rounds T for each constraint function. A strat-
egy is no-regret for player i if RT

i /T → 0 as T → ∞.
Similarly, we call a strategy no-violation for player i if
VT
i,m/T → 0 for all m ∈ [M ] as T → ∞.

Repeated contextual games with unknown constraints
generalize the class of repeated static games in two
ways: Firstly, as discussed in Sessa et al. (2020) and

Valko et al. (2013), the game may change from round
to round due to a potentially different context zt. Sec-
ondly and so far unaddressed by the literature, the ac-
tion set Ai of each player may be subject to unknown
(context-dependent) constraints. This makes this gen-
eralization challenging as a priori a player does not
know whether an action is feasible or not.

The problem we address in this paper is the design
of an algorithm that is simultaneously no-regret and
no-violation. To ensure that the learning problem is
meaningful, we assume that a feasible policy exists for
each player.

Assumption 1 (Feasibility assumption). We assume
that for each agent i ∈ N the following problem

max
πi∈Πi

T∑
t=1

ri(πi(z
t), at−i, z

t)

s.t. gi,m(πi(z
t), zt) ≤ 0, ∀m ∈ [M ],∀t ≥ 1

(3)

is feasible with optimal constrained solution π∗
i .

Observe that this is a natural assumption for requir-
ing no-cumulative violation. In particular, in a non-
contextual game setting this assumption is equivalent
to assuming that a feasible action exists.

1.1 Feedback model and regularity
assumption

At the end of each round, player i receives feedback
information that she can use to update her strategy
and thereby improve her performance in terms of re-
gret and constraint violations. In a full-information
feedback model player i observes her reward for any
action ai ∈ Ai given the other players’ actions at−i and
the observed context zt, i.e., rti = [rti(ai, a

t
−i, z

t)]ai∈Ai .
A more realistic feedback model is bandit feedback,
where player i observes her reward rti(a

t
i, a

t
−i, z

t) for
the played action profile at. In the constrained set-
ting, we extend the term bandit feedback such that
after each round player i additionally observes her con-
straint values gi,m(ati, z

t), for all m ∈ [M ], for her
played action ati. Additionally, in many practical set-
tings player i can observe the other players’ played ac-
tions at−i or some aggregative function γ(at−i) thereof,
e.g. in routing games, agents may observe the total
occupancy of each edge in the road network, or in
electricity markets, agents may observe the aggregate
load.

Assumption 2 (Feedback assumption). We consider
a noisy bandit feedback model, where, at every round t,
player i observes a noisy measurement of the reward
r̃ti = ri(a

t
i, a

t
−i, z

t) + ϵti and a noisy measurement of
each constraint g̃ti,m = gi,m(ati) + ϵti,m. The noise ϵti
is σi,0-sub-Gaussian and ϵti,m is σi,m-sub-Gaussian for



Multi-Agent Learning in Contextual Games under Unknown Constraints

each m ∈ [M ]. Furthermore, we assume player i also
observes the played actions at−i of the other players.

Attaining no-regret and no-violation is impossible
without any regularity assumptions on the reward and
constraint functions (Srinivas et al., 2010). In many
practical settings, including routing games and ther-
mal control, similar inputs lead to similar rewards and
constraint values which implies some regularity in the
reward and constraint functions. In the application of
thermal control, for instance, similar choices of control
input parameters and set point temperatures result in
similar energy consumption and room temperature.

Assumption 3 (Regularity assumption). We assume
the action set Ai is finite with |Ai| = K and consider
a general context set Z ⊆ Rd. Let X = A×Z. We as-
sume the unknown reward function ri : A × Z → [0, 1]

has a bounded norm ∥ri∥ki,0 =
√

⟨ri, ri⟩ki,0 ≤ Bi,0 in

a reproducing kernel Hilbert space (RKHS, see (Ras-
mussen and Williams, 2005)) associated with a posi-
tive semi-definite kernel function ki,0(·, ·). The RKHS
is denoted by Hki,0(X ). We further assume bounded
variance by restricting ki,0(x, x

′) ≤ 1 for all x, x′ ∈ X .
Let Xi = Ai × Z. Similarly, we assume each unknown
constraint function gi,m : Ai × Z → [0, 1], m ∈ [M ],
has a bounded norm ∥gi,m∥ki,m ≤ Bi,m in a RKHS as-
sociated with a positive semi-definite kernel function
ki,m(·, ·). The RKHS is denoted by Hki,m(Xi) and we
assume that ki,m(xi, x

′
i) ≤ 1 for all xi, x

′
i ∈ Xi.

For general RKHS Hk(X ) with positive semi-definite
kernel function k(·, ·), the RKHS norm ∥f∥k measures
smoothness1 of f ∈ Hk(X ) with respect to the kernel
function k(·, ·), while the kernel k(·, ·) encodes simi-
larities between different points x, x′ ∈ X . Assuming
that some unknown function has a bounded norm in
an RKHS is standard in black-box optimization (Srini-
vas et al., 2010; Chowdhury and Gopalan, 2017) and
was recently also exploited in repeated (contextual)
games (Sessa et al., 2019, 2020). It is analogous to as-
suming bounded weights in linear parametric bandits
(Chu et al., 2011; Abbasi-Yadkori et al., 2011). The
bound of 1 on k(x, x′) is only required to obtain scale-
free bounds. Otherwise, if k(x, x′) ≤ n for all x, x′ ∈ X
or ∥f∥k ≤ nB, our bounds increase by a factor of n
(Agrawal and Goyal, 2013). Typical kernel choices are
the Squared Exponential, Matérn and the polynomial
kernel:

1This can be seen from |f(x) − f(x′)| = |⟨f, k(x, ·) −
k(x′, ·)⟩| ≤ ∥f∥k∥k(x, ·) − k(x′, ·)∥k for any f ∈ Hk(X ),
using the reproducing property and Cauchy-Schwarz in-
equality.

kSE(x, x
′) = exp

(
− s2

2l2

)
,

kMatérn(x, x
′) =

21−ν

Γ(ν)

(
s
√
2ν

l

)ν

Bν

(
s
√
2ν

l

)ν

,

kpoly(x, x
′) =

(
b+

xTx′

l

)d

,

where l, ν, b > 0 are kernel hyperparameters, s = ∥x−
x′∥2 encodes similarities between points x, x′ ∈ X , and
Bν(·) is the modified Bessel function. We emphasize
that Assumption 2 and 3 allow player i to learn about
her unknown reward ri and constraint gi,m functions.

The Gaussian process (GP) framework can be used to
learn unknown functions f ∈ Hk(X ) with ∥f∥k < ∞
since such functions can be modeled as a sample from
a GP (Rasmussen and Williams, 2005, Section 6.2).
A GP over X is a probability distribution over func-
tions f(x) ∼ GP(µ(x), k(x, x′)), specified by its mean
and covariance functions µ(·) and k(·, ·), respectively.
A GP prior GP(0, k(·, ·)) over the initial distribution
of the unknown function f , where k(·, ·) is the kernel
function associated with the RKHS Hk(X ), is used to
capture the uncertainty over f . Then, the GP frame-
work can be used to predict function values f(x) for
any points x ∈ X based on a history of measurements
{yτ}tτ=1 at points {xτ}tτ=1 with yτ = f(xτ ) + ϵτ and
ϵτ ∼ N (0, σ2). Conditioned on the history of measure-
ments, the posterior distribution over f is a GP with
mean and variance functions:

µt(x) = kt(x)⊤(Kt + σ2It)−1yt (4)

(σt)2(x) = k(x, x)− kt(x)⊤(Kt + σ2I)−1kt(x), (5)

where kt(x) = [k(xτ , x)]tτ=1, y
t = [yτ ]tτ=1, and Kt =

[k(xτ , xτ ′
)]tτ,τ ′=1 is the kernel matrix.

In the next section, we present our algorithm which ex-
ploits the feedback model and the regularity assump-
tion to derive a no-regret no-violation algorithm. We
focus on the perspective of a single player and drop
the subscript i wherever this is possible without caus-
ing confusion.

2 The c.z.AdaNormalGP Algorithm

In our approach, we build upper confidence bounds
on the reward function and lower confidence bounds
on the constraint functions using the GP framework
proposed in the previous section. We thereby obtain
optimistic estimates of the reward and the constraints
which enable us to derive bounds for the regret and
cumulative constraint violations. Particularly, for the
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Algorithm 1 c.z.AdaNormalGP algorithm

1: for t = 1, . . . , T do
2: Observe context zt.
3: if ∃m ∈ [M ] such that minπi∈Πi

LCBt
m(πi(z

t), zt) > 0

then
4: Declare infeasibility.

5: end if
6: Compute distribution pt(zt) using zt and

7: [aτ
i , a

τ
−i, z

τ , r̃τ ]t−1
τ=1

8: Sample ati ∼ pt(zt), where

ptai
(zt) =

{
ptai

(zt)∑
ai∈Ai

pt
ai

(zt)
, if LCBt

m(ai, z
t) ≤ 0 ∀m ∈ [M ],

0, otherwise.

9: Observe noisy reward r̃t and constraints

10: g̃tm and action profile at−i.

11: Append (at
i, a

t
−i, r̃

t, zt) and (at
i, g̃

t
m, zt) to the

12: history of play.

13: Update µt
0, σ

t
0 and µt

m, σt
m via (4)-(5).

14: end for

constraints, we use lower confidence bounds to ensure
that even in early rounds when we have poor esti-
mates of the constraints, we can find feasible actions.
Considering optimistic estimates of the constraints is
not limiting since as the amount of past game data
increases over the rounds uncertainty about the un-
known constraints decreases and thus the confidence
bounds shrink towards the true constraint functions

Making use of past game data [(aτ
i , a

τ
−i, r̃

τ , g̃τm)]t−1
τ=1, at

round t, the posterior mean µt
m(·) and posterior vari-

ance (σt
m)2(·), for m ∈ {0}∪ [M ], can be used to obtain

an upper and a lower confidence bound on r and gm,
respectively:

UCBt
m(x) := µt−1

m (x) + βt
mσt−1

m (x), ∀x ∈ X (6)

LCBt
m(x) := µt−1

m (x)− βt
mσt−1

m (x), ∀x ∈ X , (7)

where X = A × Z for the reward function r and
Xi = Ai × Z for each constraint function gm. Param-
eter βt

m controls the width of the confidence bound.
Importantly, if βt

m is specified adequately, the reward
r and the constraint functions gm are bounded from
below and above by the lower LCBt

m and the upper
UCBt

m confidence bound with high probability. For
the reward function, for example, if βt

0 is specified as

βt
0 = B0 + σ0

√
2(γt−1

0 + 1 + log(1/δ)), then LCBt
0(x) ≤

r(x) ≤ UCBt
0(x), for all x ∈ X and t ≥ 1, with proba-

bility at least 1− δ (Chowdhury and Gopalan, 2017).
Here, γt

0, the maximum information gain (Srinivas
et al., 2010), is a kernel-dependent quantity which for
the reward r is defined as:

γt
0 := max

A⊂X :|A|=t
I(yA; rA).

Quantity I(yA, rA) denotes the mutual information be-
tween the true reward values rA = [r(x)]x∈A and the
noisy reward measurements yA = [r(x) + ϵ]x∈A. It
quantifies the maximal reduction in uncertainty about
r after observing points A ⊂ X and their correspond-
ing noisy measurements yA. The maximum informa-
tion gain γt

m of each constraint function gm is defined
analogously.

We now introduce constrained contextual AdaNor-
malGP (c.z.AdaNormalGP) algorithm for repeated
contextual games with a priori unknown constraints
on the action set of each player. At each round,
c.z.AdaNormalGP observes context zt and checks
whether a feasible action exists with respect to any
LCBt

m estimate of constraint gm, since the constraints
gm are unknown. The algorithm then computes a
context-dependent distribution pt(zt) ∈ ∆K over the
action set Ai based on the UCBt

0 estimate of the re-
ward r and the observed context zt. Here ∆K denotes
the K-dimensional probability simplex. The distribu-
tion is renormalized to assign zero weight to an action
ai ∈ Ai which is infeasible with respect to any LCBt

m

estimate, m ∈ [M ]. A feasible action ati is sampled
from the renormalized distribution. Once the compu-
tation rule of pt(zt) (line 6 of Algorithm 1) is specified,
c.z.AdaNormalGP is well-defined.

Consider a fixed context z ∈ Z. We establish that
playing a repeated game with unknown constraints is
equivalent to playing a sleeping expert problem (Blum,
1995; Freund et al., 1997). In the sleeping expert
problem, at each round, each expert (action ai) re-
ports whether it is awake (feasible) or asleep (infeasi-
ble). Since the constraint functions gm are unknown,
c.z.AdaNormalGP maintains an optimistic estimate of
the set of feasible actions at each round, defined as
the set of actions Ai for which, for all m ∈ [M ],
LCBt

m(ai, z
t) ≤ 0. Thus, in a repeated game with un-

known constraints, the set of awake experts at round t
corresponds to the set of feasible actions with respect
to the LCBt

m estimate of each constraint gm for all
m ∈ [M ]. Leveraging this connection, we specify a
computation rule of pt(zt) based on the update rule of
the sleeping expert algorithm AdaNormalHedge (Luo
and Schapire, 2015). In the following, we specify pt(zt)
when the context space Z is finite (Algorithm 2). In
Appendix A.2.2 we specify a computation rule pt(zt)
for an infinite context space and provide bounds on
the regret and the cumulative constraint violations for
this setting. (Algorithm 3).

Remark 1. The above-established connection implies
that for a fixed context z ∈ Z, any update rule that cor-
responds to an update rule of a sleeping expert problem
can be used to obtain high probability regret bounds.
Moreover, since any sleeping expert problem can be re-
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duced to a regular expert problem (Freund et al., 1997),
any update rule that corresponds to the update rule of
the reduced expert problem can be used to obtain high
probability regret bounds for repeated games with un-
known constraints. These bounds depend on the regret
obtained by the expert algorithm. We formally intro-
duce and study general regret bounds in Appendix A.2
for the case of finite and infinite context spaces.

2.1 Finite number of contexts

When the context set Z is finite, on a high level the
distribution pt(zt) ∈ ∆K (line 6 of Algorithm 1) is
computed by maintaining a distribution for each con-
text z ∈ Z which is updated whenever z is observed.
Thus, playing a repeated contextual game reduces to
playing |Z| repeated static games. For a specific con-
text z ∈ Z the update rule is defined as the general
update rule of AdaNormalHedge (Luo and Schapire,
2015). Under this computation rule of pt(zt), summa-
rized in Algorithm 2, c.z.AdaNormalGP achieves the
following high-probability bounds.

Theorem 1. Fix δ ∈ (0, 1). Under Assumptions 1-
3, if a player plays according to c.z.AdaNormalGP
with pt(zt) computed according to Algorithm 2 and

βt
m = Bm + σm

√
2(γt−1

m + 1 + log(2(M + 1)/δ)) for all
m ∈ {0} ∪ [M ], then with probability at least 1− δ:

RT = O
(√

|Z|T (log(K) + log(B) + log(1 + log(K))+√
T log(2/δ) + βT

0

√
TγT

0

)
(8)

VT
m = O

(
βT
m

√
TγT

m

)
, ∀m ∈ [M ], (9)

where B = 1 + 3
2

1
K

∑K
ai=1(1 + log(1 + Ct

i (ai))) ≤ 5
2
+

3
2
log(1 + T ) .

We provide a detailed proof in Appendix A.1.1.

Corollary 1. Under the same assumptions as
in Theorem 1, if a player plays according to
c.z.AdaNormalGP with |Z| = 1, then with probabil-
ity 1− δ the following regret2 bound for repeated static
games with unknown constraints holds:

RT = O
(√

T (log(K) + log(B) + log(1 + log(K))+√
T log(2/δ) + βT

0

√
TγT

0

)
.

The high probability bound on the cumulative con-
straint violations is the same as in Theorem 1.

In repeated contextual games, c.GPMW (Sessa
et al., 2020) algorithm achieves O(

√
|Z|T logK +

2The static games setup is recovered by assum-
ing zt = z0 for all t and the regret is defined as
RT = maxai∈Ai

∑T
t=1 ri(ai, a

t
−i) −

∑T
t=1 ri(a

t
i, a

t
−i) subject to

gi,m(ai, z
t) ≤ 0, ∀m ∈ [M ], ∀t ≥ 1.

√
T log(2/δ)+βT

0

√
TγT

0 ) which is the same as our regret
bound up to logarithmic terms. Following the same
arguments as in the proof of Theorem 1, AdaNormal-
Hedge can be extended to the contextual setting which
implies a O(

√
|Z|T (log(K) + log(B) + log(1 + logK)) +√

T log(2/δ)) bound on the contextual sleeping ex-
pert regret. Note that, unlike AdaNormalHedge,
c.z.AdaNormalGP does not consider full-information,
but obtains a regret bound that is equal up to the
term O(βT

0

√
TγT

0 ). Furthermore, both c.GPMW and
AdaNormalHedge do not provide bounds on the cumu-
lative constraint violations. In constrained black-box
optimization, CONFIG (Xu et al., 2023) algorithm ob-
tains a bound on the cumulative constraint violations
which is the same as ours.

2.2 Game equilibria

In the previous section, we focused on the perspective
of a single player and did not make any assumptions
about how the other players select their actions. It
is known that if all players follow a no-regret dynam-
ics a coarse correlated equilibrium (CCE) can be ap-
proached (Hart and Mas-Colell, 2000). A CCE of a
game is a probability distribution ρ ∈ ∆|A| such that

Ea∼ρ

[
ri(a)

]
≥ Ea∼ρ

[
ri(a

′
i, a−i)

]
, ∀i ∈ N , a′i ∈ Ai.

In other words, if an action profile is sampled from
a CCE, then in expectation each player is better off
following the sampled action than playing any other
action. To deal with repeated contextual games, Sessa
et al. (2020) introduced the notion of contextual CCEs
(z.CCE) and extended the results of Hart and Mas-
Colell (2000) to this setting. In the following, we
introduce the notion of constrained contextual CCEs
(c.z.CCE) to address the fact that only a subset of a
player’s action set is feasible.

Definition 1. Let z1, . . . , zT be the revealed sequence
of contexts. A constrained contextual coarse correlated
equilibrium is a joint policy ρ : Z → ∆|A| such that

1

T

T∑
t=1

Ea∼ρzt

[
[gi,m(ai, z

t)]+
]
≤ 0

1

T

T∑
t=1

Ea∼ρzt

[
ri(a, z

t)
]
≥ 1

T

T∑
t=1

Ea∼ρzt

[
ri(πi(z

t), a−i, z
t)
]
,

for all i ∈ N , m ∈ [M ] and for all feasible πi ∈ Πi, i.e.,
gi,m(πi(z

t), zt) ≤ 0 for all t = [T ]. An ϵ-c.z.CCE is a joint

policy ρ : Z → ∆|A| such that the above two inequalities
are satisfied up to ϵ > 0 accuracy.

The above definition requires that for a fixed context
an action profile sampled from a c.z.CCE is feasible in
expectation. To illustrate, suppose ρ is a c.z.CCE and
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Algorithm 2 Update rule for finite context space Z
Set R1

ai
(z) = 0, C1

ai
(z) = 0 and let p1(z) be the uniform distribution ∀z ∈ Z.

1: for t = 2, . . . , T do
2: Compute reward estimate r̂t with r̂t(ai) = min{1, UCBt0(ai, a

t
−i, z

t)}, ∀ai ∈ Ai.
3: Set for zt and every ai ∈ Ai with E[r̂t(at

i)] = pt(zt)⊤r̂t:

Rt
ai
(zt) =

{
Rt−1

ai
(zt) + (r̂t(ai)− E[r̂t(at

i)]), if LCBtm(ai, z
t) ≤ 0, ∀m ∈ [M ],

Rt−1
ai

(zt), otherwise.
(10)

Ct
ai
(zt) =

{
Ct−1

ai
(zt) + |r̂t(ai)− E[r̂t(at

i)]|, if LCBtm(ai, z
t) ≤ 0, ∀m ∈ [M ],

Ct−1
ai

(zt), otherwise.
(11)

4: Update pt+1
ai

(zt) =
w(Rt

ai
(zt),Ct

ai
(zt))∑

ai∈Ai
w(Rt

ai
(zt),Ct

ai
(zt))

, where w(R,C) = 1
2
(exp([R+1]2+/3(C+1))− exp([R−1]2+/3(C+

1))).

5: end for

suppose there is a trusted device that, for any context
zt, samples a joint action from ρ(zt). When complying
with such a device in expectation each player’s action
is feasible and each player is better off than when using
any other feasible policy πi.

Next, we show that a c.z.CCE can be approached when
all players minimize their constrained contextual re-
gret. We first define the empirical joint policy ρT at
round T as

ρTz (a) =

{
1
Tz

|{t ∈ [T ] : zt = z, at = a}|, if z ∈ ZT

1
|A| , ow.,

(12)

where Tz = |{t ∈ [T ] : zt = z}| is the number of rounds
that context z was revealed and ZT ⊆ Z is the set of
revealed contexts. Note that for unobserved contexts
ρTz can be any arbitrary distribution.

Proposition 1. After T rounds, the empirical joint
policy ρT is an ϵ-c.z.CCE of the played constrained
contextual game with ϵ ≤ max{ϵ1, ϵ2}, where ϵ1 =
maxi∈N RT

i /T and ϵ2 = maxi∈N ,m∈[M ] VT
i,m/T .

We provide a detailed proof in Appendix A.2.3. Propo-
sition 1 implies that if all players follow no-regret, no-
violation dynamics then the empirical joint policy ρT

converges to a c.z.CCE of the constrained contextual
game, as T → ∞.

3 Experiments

Here, we focus on the application of our approach to
a realistic multi-building temperature control design
problem. In Appendix A.3.1 we benchmark our algo-
rithm against existing approaches for randomly gener-
ated contextual N -player games.

3.1 Temperature controller design

Optimizing a building’s energy consumption is of
prime importance, both for ecological and economical
reasons, as nearly 40% of the total energy is consumed
by the building sector (Laustsen, 2008) and the price
of electricity has been surging over the last few years.
Several recent works have looked at this problem from
a single agent perspective, using Bayesian optimiza-
tion (Fiducioso et al., 2019), control or reinforcement
learning (Di Natale et al., 2022). These approaches do
not account for the dependence of the electricity price
on the aggregate consumption of energy of multiple
buildings. Our work particularly accounts for this de-
pendence, generalizing the single-player approaches to
a multi-player game setting.

We tune temperature controllers for multiple build-
ings using c.AdaNormalGP3 with the goal of reducing
the buildings’ energy cost while satisfying operational
constraints, such as pleasant room temperature.

We abstract this problem as follows: We consider three
buildings i ∈ {1, 2, 3} with a single thermal zone which
we simulate using Energym (Scharnhorst et al., 2021)
and Modelica (Fritzson and Engelson, 1998). Each
building is equipped with a heat pump which, sim-
ilarly to Xu et al. (2023), is regulated by a propor-
tional controller (Ang et al., 2005). The decision vari-
able of each building corresponds to the parameters
ai = (Ki, SPi, STi) of the building’s proportional con-
troller, where Ki is the controller gain, SPi is the set
point temperature during the day, and STi the switch-
ing time from day- to nighttime set point temperature.
Fixing the selected control parameters ai, we simu-
late the energy consumption and temperature of the
building based on the Energym and Modelica mod-

3We do not consider contexts in this application and
thus refer to Algorithm 1 as c.AdaNormalGP.
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els for a fixed period. After this period, the building
observes its electricity cost Ji(ai, a−i) which is an ag-
gregate function of the total energy consumption, and
observes the maximum temperature deviation gi(ai)
from the setpoint temperature. Based on this feed-
back each building aims to tune its control parameters
to reduce its energy cost while at the same time ensur-
ing that the temperature stays within some occupant-
specific comfort range.

In our experiments4, we discretize the space of con-
trol parameters and let each building select its con-
trol parameters ai according to c.AdaNormalGP. We
simulate the energy consumption and temperature for
two days. Similarly to Hall et al. (2022), we model
the cost function as an affine function of the aggregate
consumption:

Ji(ai, a−i) =

48∑
h=1

(
c1

3∑
i=1

lhi (ai) + c2

)
lhi (ai),

where lhi (ai) denotes the energy consumption of build-
ing i at hour h. The positive constants c1 and c2 repre-
sent different price rates which depend on whether the
energy is consumed during peak or off-peak hours. We
further require that the maximum temperature devi-
ation from the setpoint temperature during the night
remains below an occupant-specific threshold:

max
h∈1,...,48

ghi (ai)− gi,thr ≤ 0.

Figure 1: Mean temperature over 48 hours, where the
control inputs are sampled from the weights learned
by c.AdaNormalGP (top) and GPMW (bottom).

4The code is made available at Github.

Figure 2: Mean energy cost achieved by
c.AdaNormalGP, GPMW, and uniformly at random
sampled control inputs for each round t = 1, . . . T .
The minimum feasible- and the minimum cost are
found exhaustively over the entire action space.

We compare the performance of c.AdaNormalGP with
GPMW (Sessa et al., 2019), which neglects constraints
on the maximum temperature deviation from the oc-
cupant’s comfort range. To run c.AdaNormalGP and
GPMW, we use the polynomial kernel for the cost
function and the squared exponential kernel for the
constraint function and run both algorithms for T =
500 rounds. For example, for building 1, Figure 1
shows the mean room temperature over 48 hours re-
sulting from 1000 control inputs a1 that are sampled
according to c.AdaNormalGP (top) and GPMW (bot-
tom). Following c.AdaNormalGP the mean tempera-
ture stays within the occupant’s comfort range during
the nighttime whereas under GPMW the deviation of
the mean temperature exceeds the threshold and thus
is below the occupant’s comfort range. Furthermore,
following c.AdaNormalGP and GPMW each building
learns to select control parameters that, given the
other buildings’ energy demand, reduce the building’s
energy cost compared to the case where the control
parameters are selected uniformly at random. This is
shown in Figure 2 for building 1. Although the en-
ergy cost is lower when following GPMW than when
following c.AdaNormalGP such a cost is not attain-
able when also respecting the constraints on the occu-
pant’s comfort temperature range. In conclusion, fol-
lowing c.AdaNormalGP each building not only learns
to select feasible control parameters but also attains
nearly the minimal cost achievable under the temper-
ature constraints.

4 Conclusion and further discussion

We considered the problem of repeated contextual
games under unknown constraints. Establishing a con-
nection between this problem and the sleeping ex-
pert problem, we proposed the constrained contextual

https://github.com/amaddux9/Multi-Agent-Learning-in-Contextual-Games-under-Unknown-Constraints/tree/main
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c.z.AdaNormalGP algorithm, a no-regret no-violation
algorithm for playing such games with finite and in-
finite context spaces. Our algorithm attains high
probability regret and cumulative constraint violation
bounds, where the former is comparable to bounds
obtained in the unconstrained setting. We further
showed that if all players follow no-regret, no-violation
dynamics then the empirical joint policy converges
to a c.z.CCE of the constrained contextual game as
the game is repeated infinitely often. We demon-
strated the effectiveness of c.z.AdaNormalGP on a
multi-building temperature control design problem.
Future research directions include learning in repeated
games with coupling constraints.
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A Appendix

A.1 Supplementary Material for Section 2

For proving Theorems 1, 3, 4 and 5 we make use of the following lemma and theorem.

Lemma 1. (Chowdhury and Gopalan, 2017, Theorem 2) Let Hk be the RKHS of real-valued functions on X ⊂ Rd

with underlying kernel function k. Consider an unknown function f : X → R in Hk such that ∥f∥k ≤ D, and
the sampling model yt = f(xt) + ϵt, where ϵt is σ-sub-Gaussian (with independence between times). By setting

βt = D + σ
√
2(γt−1 + 1 + log(1/δ))

the following holds with probability at least 1− δ:

|µt−1(x)− f(x)| ≤ βtσt−1(x), ∀x ∈ X , ∀t ≥ 1,

where µt−1(·) and σt−1(·) are given in (4)-(5). Here, γt−1 denotes the maximum information gain, a kernel-
dependent quantity defined in Section 2.

Theorem 2. (Luo and Schapire, 2015, Theorem 3) For the sleeping expert problem, the regret of AdaNormal-
Hedge5 is bounded as follows:

RT (ai) =

T∑
t=1

1ai,t(E[lt]− lt(ai)) ≤
√

3CT
ai
(log(K) + log(B) + log(1 + log(K))),

≤
√

3T (log(K) + log(B) + log(1 + log(K)))

(13)

where lt(ai) is the loss of action (expert) ai ∈ Ai, lt = [lt(ai)]ai∈Ai ∈ [0, 1]K is the loss vector of all actions
(experts), CT

ai
=

∑T
t=1 |E[l

t(at
i)] − lt(ai)| and B = 1 + 3

2
1
K

∑
ai∈Ai

(1 + log(1 + CT
ai
)) ≤ 5

2
+ 3

2
log(1 + T ). Here, 1ai,t

denotes the indicator function defined as:

1ai,t =

{
1, if action (expert) ai is available (awake) at round t,

0, otherwise.

A.1.1 Finite number of contexts: Proof of Theorem 1

In this section, we provide a proof for Theorem 1. By making use of Lemma 1, we first show that upper and
lower confidence bounds hold simultaneously for the reward and all constraint functions. Next, we show that
c.z.AdaNormalGP does not declare infeasibility with high probability if the underlying game is feasible. We
then prove an upper bound on the cumulative constraint violations making use of the previous two results and
techniques from GP optimization Srinivas et al. (2010) to account for not knowing the true constraint functions.
To obtain an upper bound on the regret we leverage that for each context z ∈ Z a separate distribution is
maintained and analyze the regret obtained by each context z ∈ Z. Fixing a context z ∈ Z, the proof further
follows by decomposing the regret into the sum of two terms. The first term corresponds to the regret that a
player incurs with respect to the optimistic reward estimates, i.e., the upper confidence bounds, when the set of
feasible actions is a priori unknown. This term can be upper bounded by Theorem 2 thanks to the connection
between constrained games and the sleeping expert problem. The second term stems from not knowing the true
reward function and can be upper bounded by using techniques from GP optimization.

Lemma 2. With probability 1− δ
2 the following holds simultaneously:

LCBt
0(a, z) ≤ r(a, z) ≤ min{1,UCBt

0(a, z)}, ∀a ∈ A,∀z ∈ Z,∀t ≥ 1,

LCBt
m(ai, z) ≤ gm(ai, z) ≤ UCBt

m(ai, z), ∀ai ∈ Ai,∀z ∈ Z,∀t ≥ 1,∀m ∈ [M ],
(14)

with βt
m = Bm + σ

√
2(γt−1

m + 1 + log(2(M + 1)/δ)) for m ∈ {0} ∪ [M ].

5We consider AdaNormalHedge (Algorithm 1 in Luo and Schapire (2015)), where the ptai
is predicted via equation (3)

in Luo and Schapire (2015).
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Proof. By Lemma 1 and since the true unknown reward function r lies in [0, 1], with probability at least 1− δ
2(M+1)

the reward function can be upper and lower bounded as follows:

LCBt
0(a, z) ≤ r(a, z) ≤ min{1,UCBt

0(a, z)}, ∀a ∈ A, ∀z ∈ Z, ∀t ≥ 1, (15)

where the upper- and lower confidence bounds UCBt
0(a, z) and LCBt

0(a, z) are defined as in (6)-(7) and βt
0 =

B0 +σ
√

2(γt−1
0 + 1 + log(2(M + 1)/δ)). Analogously, with probability at least 1− δ

2(M+1)
each unknown constraint

function gm, m ∈ [M ], can be upper and lower bounded as follows:

LCBt
m(ai, z) ≤ gm(ai, z) ≤ UCBt

m(ai, z), ∀ai ∈ Ai, ∀z ∈ Z, ∀t ≥ 1, (16)

where UCBt
m(ai, z) and LCBt

m(ai, z) are defined as in (6)-(7) and βt
m = Bm + σ

√
2(γt−1

m + 1 + log(2(M + 1)/δ)).

Note that the confidence bounds LCBt
0(a, z), UCBt

0(a, z), LCB
t
m(ai, z) and UCBt

m(ai, z), m ∈ [M ], are random
variables since they depend on the random sampling process of the algorithm (line 7 of Algorithm 1) and on
noisy observations of the reward r̃t and constraints g̃tm, m ∈ [M ]. Define E0 := ∩a∈A ∩z∈Z ∩t∈[T ]{LCBt

0(a, z) ≤
r(a, z) ≤ min{1,UCBt

0(a, z)}} and define Em := ∩ai∈Ai ∩z∈Z ∩t∈[T ]{LCBt
m(ai, z) ≤ gm(ai, z) ≤ UCBt

m(ai, z)} for all
m ∈ [M ]. Then, using De Morgan’s law, the union bound and (15)-(16) we have

P(∩M
m=0Em) = 1− P((∩M

m=0Em)C) = 1− P(∪M
m=0E

C
m)

≥ 1−
M∑

m=0

P(EC
m)

≥ 1−
M∑

m=0

δ

2(M + 1)
= 1− δ

2
.

Lemma 3. With probability 1− δ
2 , c.z.AdaNormalGP (line 3 of Algorithm 1) does not declare infeasibility.

Proof. By Assumption 1 the problem given in (3) is feasible and has optimal solution π∗
i , i.e.,

π∗
i ∈ arg max

πi∈Πi

T∑
t=1

r(πi(z
t), at−i, z

t)

s.t. gm(πi(z
t), zt) ≤ 0, ∀m ∈ [M ],∀t ≥ 1.

By Lemma 2, with probability 1− δ
2 , LCB

t
m(ai, z) ≤ gm(ai, z) for all ai ∈ Ai, z ∈ Z, m ∈ [M ], and t ≥ 1. Thus,

by setting ai = π∗
i (z

t) with probability 1− δ
2 we have that LCBt

m(π∗
i (z

t), zt) ≤ 0 for all m ∈ [M ] and t ≥ 1 and
infeasibility is not declared.

We proceed with upper-bounding the cumulative constraint violations for each constraint.

Lemma 4. With probability at least 1 − δ
2
the cumulative constraint violations VT

m for each constraint gm,
m ∈ [M ], are upper-bounded as follows:

VT
m = O

(
βT
m

√
TγT

m

)
, ∀m ∈ [M ].
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Proof. With probability at least 1− δ
2 the following holds:

VT
m =

T∑
t=1

[gm(ati, z
t)]+ (17)

=

T∑
t=1

[gm(ati, z
t)− LCBt

m(ati, z
t) + LCBt

m(ati, z
t)]+ (18)

≤
T∑

t=1

[gm(ati, z
t)− LCBt

m(ati, z
t)]+ +

T∑
t=1

[LCBt
m(ati, z

t)]+ (19)

≤
T∑

t=1

[UCBt
m(ati, z

t)− LCBt
m(ati, z

t)]+ +

T∑
t=1

[LCBt
m(ati, z

t)︸ ︷︷ ︸
≤0

]+ (20)

≤
T∑

t=1

[UCBt
m(ati, z

t)− LCBt
m(ati, z

t)]+ (21)

≤ 2βT
m

T∑
t=1

σt−1
m (ati, z

t) (22)

≤ C1β
T
m

√
TγT

m, (23)

where equation (20) follows from Lemma 2 and holds with probability at least 1 − δ
2
. Equation (21) follows

from the fact that the sampled action ati at each round t is feasible with respect to the lower confidence bound
LCBt

m(·) for all m ∈ [M ] (line 7 of Algorithm 1) and that with probability at least 1 − δ
2
infeasibility is not

declared. Equation (22) follows firstly from the definition of UCBt
m(·) in (6) and UCBt

m(·) in (7) and the fact
that βt

m is increasing in t.The last equation makes use of (Srinivas et al., 2010, Lemma 5.4) which provides an
upper bound on the sum of posterior standard deviations, where C1 = 8

log(1+σ−2)
.

Next, we proceed with upper-bounding the constrained contextual regret, short regret.

Lemma 5. Conditioned on equation (14) in Lemma 2 holding true, the constrained contextual regret RT is
upper-bounded with probability 1− δ

2 by:

RT = O
(√

|Z|T (log(K) + log(B) + log(1 + log(K)) +
√

T log(2/δ) + βT
0

√
TγT

0

)
.

Proof. Recall the definition of regret:

RT = max
πi∈Πi

T∑
t=1

r(πi(z
t), at−i, z

t)−
T∑

t=1

r(ati, a
t
−i, z

t)

s.t. gm(πi(z
t), zt) ≤ 0, ∀m ∈ [M ],∀t ≥ 1,

=

T∑
t=1

r(π∗
i (z

t), at−i, z
t)−

T∑
t=1

r(ati, a
t
−i, z

t).

Note that for a finite context space Z, c.z.AdaNormalGP maintains a separate distribution pt(z) for each context
z ∈ Z, where pt(zt) is computed according to Algorithm 2. Thus, the regret notion can be rewritten as:

RT =
∑
z∈Z

∑
t:zt=z

r(π∗
i (z

t), at−i, z
t)− r(ati, a

t
−i, z

t).
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The reward and thus RT can be further upper bounded as follows:

RT =
∑
z∈Z

∑
t:zt=z

r(π∗
i (z

t), at−i, z
t)− r(ati, a

t
−i, z

t)

≤
∑
z∈Z

∑
t:zt=z

min{1,UCBt
0(π

∗
i (z

t), at−i, z
t)} − (LCBt

0(a
t
i, a

t
−i, z

t)) (24)

≤
∑
z∈Z

∑
t:zt=z

min{1,UCBt
0(π

∗
i (z

t), at−i, z
t)} − (UCBt

0(a
t
i, a

t
−i, z

t)− 2βt
0σ

t−1
0 (ati, a

t
−i, z

t))

≤
∑
z∈Z

∑
t:zt=z

min{1,UCBt
0(π

∗
i (z

t), at−i, z
t)} −min{1,UCBt

0(a
t
i, a

t
−i, z

t)}

+

T∑
t=1

2βt
0σ

t−1
0 (ati, a

t
−i, z

t)

≤
∑
z∈Z

∑
t:zt=z

(min{1,UCBt
0(π

∗
i (z

t), at−i, z
t)} −min{1,UCBt

0(a
t
i, a

t
−i, z

t)}) + C1β
T
0

√
TγT

0 , (25)

where in equation (24) we used equation (14) from Lemma 2 and in equation (25) we again used (Srinivas et al.,
2010, Lemma 5.4) with C1 = 8

log(1+σ−2) .

To further upper-bound RT we rely on the Hoeffding-Azuma inequality (Cesa-Bianchi and Lugosi, 2006,
Lemma A.7). Note that the collection of random variables {V t}Tt=1 defined as V t := min{1,UCBt

0(a
t
i, a

t
−i, z

t)}−∑
ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)} forms a martingale difference sequence6. Then, the Hoeffding-Azuma
inequality is applicable and the following holds with probability at least 1− δ/2:∑

z∈Z

∑
t:zt=z

∣∣min{1,UCBt
0(a

t
i, a

t
−i, z

t)} −
∑

ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}
∣∣ ≤ √

T/2 log(2/δ). (26)

Here, we used that V t ∈ [0, 1] and
∑

z∈Z
∑

t:zt=z 1 = T . Plugging equation (26) into equation (25), with
probability at least 1− δ/2, we obtain the following upper bound on RT :

RT ≤
∑
z∈Z

∑
t:zt=z

(
min{1,UCBt

0(π
∗
i (z

t), at−i, z
t)} −

∑
ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}
)

+
√

T/2 log(2/δ) + C1β
T
0

√
TγT

0 .

(27)

Define the function f t(·) = min{1,UCBt
0(·, at−i, z

t)}. Since we conditioned on equation (14) in Lemma 2 holding

true, UCBt
0(·) ≥ 0 since r(·) ≥ 0 and thus f t(·) ∈ [0, 1]K . For a fixed z ∈ Z, the first term in equation (27) can

be rewritten as: ∑
t:zt=z

min{1,UCBt
0(π

∗
i (z

t), at−i, z
t)} −

∑
ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}

=
∑

t:zt=z

f t(π∗
i (z

t))−
∑

ai∈Ai

ptai
(zt)f t(ati) (28)

=
∑

t:zt=z

1π∗
i (z

t),t

(
f t(π∗

i (z
t))−

∑
ai∈Ai

ptai
(zt)f t(ati)

)
, (29)

where for all ai ∈ Ai we define:

1ai,t :=

{
1, if LCBt

m(ai, z
t) ≤ 0 for every m ∈ [M ],

0, otherwise.
(30)

Since we conditioned on equation (14) in Lemma 2 holding true, 1π∗
i (z

t),t equals 1 for all t ≥ 1 and therefore
equation (28) and equation (29) are equivalent. Now observe that equation (29) is precisely the regret which a

6{V t}Tt=1 forms a martingale difference sequence with respect to U1, . . . , UT , where Ut ∈
[∑k−1

j=1 ptj(z
t),

∑k
j=1 ptj(z

t)
)
if and

only if at
i = k.
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player with reward function f t(·) ∈ [0, 1] incurs in a sleeping experts problem after Tz =
∑T

t=1 1{zt=z} repetitions
of the game. Here Tz denotes the number of times context zt is revealed. As mentioned previously, for each
context z ∈ Z a distribution pt(z) is maintained which is updated whenever the revealed context zt equals
z. The update rule for each distribution (Line 3 − 4 in Algorithm 2) corresponds exactly to that of general
AdaNormalHedge proposed in Luo and Schapire (2014). Thus, at each round t action ati is chosen according
to general AdaNormalHedge with the set of sleeping experts [1ai,t]ai∈Ai defined as in equation (30) and which
receives the full information feedback r̂t = [f t(ai)]ai∈Ai . Concretely, ati is sampled from a subset of awake
experts, respective available actions, where an action ai ∈ Ai is available at round t, if 1ai,t = 1, and unavailable
if 1ai,t = 0.

In summary, equation (29) corresponds to the regret incurred by the general AdaNormalHedge algorithm after
Tz repetitions and can therefore be upper-bounded by Theorem 2:∑

t:zt=z

1π∗
i (z

t),t

(
f t(π∗

i (z
t))−

∑
ai∈Ai

ptai
(zt)f t(ati)

)
≤

√
3Tz(log(K) + log(B) + log(1 + log(K))), (31)

where B ≤ 5
2 + 3

2 log(1 + Tz).

Now summing over all contexts z ∈ Z and using the Cauchy-Schwarz inequality, we can further upper-bound
equation (27) with probability at least 1− δ/2:

RT ≤
∑
z∈Z

∑
t:zt=z

min{1,UCBt
0(π

∗
i (z

t), at−i, z
t)} −

∑
ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}

+
√

T/2 log(2/δ) + C1β
T
0

√
TγT

0

≤
∑
z∈Z

√
3Tz(log(K) + log(B) + log(1 + log(K))) +

√
T/2 log(2/δ) + C1β

T
0

√
TγT

0

≤
√

|Z|
∑
z∈Z

3Tz(log(K) + log(B) + log(1 + log(K))) +
√
T/2 log(2/δ) + C1β

T
0

√
TγT

0

=
√

|Z|3T (log(K) + log(B) + log(1 + log(K))) +
√
T/2 log(2/δ) + C1β

T
0

√
TγT

0

Proof. (of Theorem 1) By combining Lemma 2-5 Theorem 1 follows. In particular it follows by standard proba-
bility arguments:

P(Ẽ1 ∩ Ẽ2) = 1− P((Ẽ1 ∩ Ẽ2)
C)

= 1− P(ẼC
1 ∪ ẼC

2 )

≥ 1− (P(ẼC
1 ) + P(ẼC

2 ))

≥ 1− (
δ

2
+

δ

2
) = 1− δ,

where Ẽ1 corresponds to equation (14) in Lemma 2 and Ẽ2 corresponds to equation (26). By Lemma 1 and the
Hoeffding-Azuma inequality, respectively, the following holds P(ẼC

1 ) ≤ δ/2 and P(ẼC
2 ) ≤ δ/2.

A.1.2 Infinite (large) number of contexts

If the context space Z is large or infinite, we additionally assume that under the optimal feasible policy similar
contexts lead to a similar performance Sessa et al. (2020). In the design of a thermal controller, contexts could
refer to weather conditions which forms an infinitely larges set. Then, similar weather condition, e.g. the outdoor
temperature, result in similar control input parameters under the optimal feasible policy.

Assumption 4. The optimal feasible policy in hindsight π∗
i (·) in (3) is Lp-Lipschitz, i.e.,

|π∗
i (z)− π∗

i (z
′)| ≤ Lp∥z − z′∥1, ∀z, z′ ∈ Z.
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Algorithm 3 Update rule for infinite context space Z
Set ϵ > 0, C = {z1}, R1

ai
(z1) = 0, C1

ai
(z1) = 0, and let p1(z1) be the uniform distribution.

1: for t = 2, . . . , T do
2: Set zt = argminz∈C ∥zt − z∥1.
3: if ∥zt − zt∥1 > ϵ then
4: Add zt to C, set zt = zt, R1

ai
(zt) = 0, C1

ai
(zt) = 0, and pt(zt) as the uniform distribution.

5: else
6: Compute reward estimate r̂t with r̂t(ai) = min{1, UCBt0(ai, at−i, z

t)}, ∀ai.
7: Compute for zt and all ai ∈ Ai, Rt

ai
(zt) and Ct

ai
(zt) via eq. (10) and (11) in Alg. 2.

8: Update pt+1
ai

(zt) via eq. (4) in Alg. 2 and set pt+1(zt) = pt+1(zt).
9: end if

10: end for

Moreover, the reward function ri(·) is Lr-Lipschitz with respect to the first component, i.e.,

|ri(ai, a−i, z)− ri(a
′
i, a−i, z)| ≤ Lr∥ai − a′i∥1,

for all ai, a
′
i ∈ Ai, all a−i ∈ A−i and z ∈ Z.

Furthermore, we assume Z ⊆ [0, 1]d to obtain a scale-free regret bound and for simplicity, we consider context-
independent constraints gm : Ai → R, m ∈ [M ]. Assumption 1 then implies that gm(π∗

i (z
t)) ≤ 0 for all

m ∈ [M ].

Similarly to Hazan and Megiddo (2007); Sessa et al. (2020), the distribution pt(zt) ∈ ∆K (line 6 of Algorithm
1) is computed by building an ϵ-net Clarkson (2005); Krauthgamer and Lee (2004) of the context space Z in a
greedy fashion as new contexts are revealed. Concretely, at each round t, either a new L1-ball centered at zt

is created, if zt is more than ϵ away from the closest ball, or zt is assigned to the closest L1-ball. In the latter
case, pt(zt) is computed via the general AdaNormalHedge Luo and Schapire (2015) update rule using only past
game data of those rounds τ < t for which zτ belongs to the same L1-ball as z

t. Under this computation rule of
pt(zt), summarized in Algorithm 3, c.z.AdaNormalGP achieves the following high-probability bounds.

Theorem 3. Fix δ ∈ (0, 1). Under Assumptions 1-4, if a player plays according to c.z.AdaNormalGP with pt(zt)

computed according to Algorithm 3 and βt
m = Bm + σm

√
2(γt−1

m + 1 + log(2(M + 1)/δ)) for all m ∈ {0} ∪ [M ], then
with probability at least 1− δ:

RT = O
(
(LrLp)

d
d+2T

d+1
d+2

√
log(K) + log(B) + log(1 + log(K)) +

√
T/2 log(2/δ) + 2βT

0

√
TγT

0

)
VT
m = O

(
βT
m

√
TγT

m

)
, ∀m ∈ [M ],

where B = 1 + 3
2

1
K

∑K
ai=1(1 + log(1 + Ct

i (ai))) ≤ 5
2
+ 3

2
log(1 + T ).

In repeated contextual games, c.GPMW Sessa et al. (2020) algorithm also considers infinite context spaces

and achieves similar contextual regret bound for this setting, namely, O((LrLp)
d

d+2 T
d+1
d+2

√
logK +

√
T log(2/δ) +

βT
0

√
TγT

0 ). In the following, we provide a proof for Theorem 3.

Proof. Lemmas 2-4 in Appendix A.1.1 remain valid for infinite context space Z and context-independent con-
straints gm : Ai → R, where Assumption 1 implies gm(π∗

i (z
t)) ≤ 0 for all m ∈ [M ]. Thus, to prove Theorem 3 it

remains to show an upper bound on the regret. We leverage that |C| separate distributions for all ϵ-close contexts
z ∈ Z are maintained, where |C| is the total number of L1-balls created up to round T . Thus, similarly to the
proof of Theorem 1, we analyze the regret obtained by each L1-ball separately. For each L1-ball (fixed z ∈ C),
the proof further follows by decomposing the regret into the sum of two terms. The first term corresponds to
the regret that a player incurs by considering the same distribution for ϵ-close contexts rather than a separate
distribution for each context z ∈ Z. However, this term can be upper-bounded by making use of Lipschitzness
(Assumption 4). The second term can be bounded using the same proof techniques as in Theorem 1. The
theorem then follows from the same standard probability arguments as in the proof of Theorem 1.
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Lemma 6. Conditioned on equation (14) in Lemma 2 holding true, the constrained contextual regret RT is
upper-bounded with probability 1− δ

2 by:

RT = O
(
(LrLp)

d
d+2T

d+1
d+2

√
log(K) + log(B) + log(1 + log(K)) +

√
T/2 log(2/δ) + 2βT

0

√
TγT

0

)
.

Proof. Note that for infinite (large) context space Z, c.z.AdaNormalGP builds an ϵ-net of the context space by
creating new L1-balls in a greedy fashion to compute pt(zt) (Algorithm 3). Thus, after T game rounds, the ϵ-net
consists of the set of contexts z ∈ Z, denoted by C, that form the centers of the balls created so far. Moreover,
the variable zt indicates the center of the ball that context zt belongs to. Thus, the regret can be rewritten as:

RT =
∑
z∈C

∑
t:zt=z

r(π∗
i (z

t), at−i, z
t)− r(ati, a

t
−i, z

t)

=
∑
z∈C

∑
t:zt=z

r(π∗
i (z

t), at−i, z
t)− r(π∗

i (z), a
t
−i, z

t)︸ ︷︷ ︸
L−RT

+
∑
z∈C

∑
t:zt=z

r(π∗
i (z), a

t
−i, z

t)− r(ati, a
t
−i, z

t)︸ ︷︷ ︸
R−RT

,

where in the last equality we add and subtract the term r(π∗
i (z), a

t
−i, z

t).

The first term L− RT can be bounded by making use of Assumption 4, namely, the Lr-Lipschitzness of r(·) in
its first argument and Lp-Lipschitzness of the the optimal feasible policy π∗

i (·):

L−RT ≤
∑
z∈C

∑
t:zt=z

Lr∥π∗
i (z

t)− π∗
i (z)∥1 ≤

∑
z∈C

∑
t:zt=z

LrLp∥zt − z∥1 ≤ LrLpTϵ (32)

where we used that ∥zt − z∥1 ≤ ϵ by definition of the ϵ-net (line 3 and 6 Algorithm 3).

Next, we proceed with bounding R − RT . The reward and thus R − RT can be further upper bounded by the
same arguments and steps (see equation (24) and (25)) as in the proof of Lemma 5:

R−RT ≤
∑
z∈C

∑
t:zt=z

r(π∗
i (z), a

t
−i, z

t)− r(ati, a
t
−i, z

t)

≤
∑
z∈C

∑
t:zt=z

(min{1,UCBt
0(π

∗
i (z), a

t
−i, z

t)} −min{1,UCBt
0(a

t
i, a

t
−i, z

t)}) + C1β
T
0

√
TγT

0 , (33)

where C1 = 8
log(1+σ−2) .

The Hoeffding-Azuma inequality (Cesa-Bianchi and Lugosi, 2006, Lemma A.7) in (26) remains applicable in the
case where the context set Z is infinite. Thus, with probability at least 1 − δ/2 we obtain the following upper
bound on R−RT :

R−RT ≤
∑
z∈C

∑
t:zt=z

(
min{1,UCBt

0(π
∗
i (z), a

t
−i, z

t)} −
∑

ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}
)

(34)

+
√

T/2 log(2/δ) + C1β
T
0

√
TγT

0 .

Define the function f t(·) = min{1,UCBt
0(·, at−i, z

t)}. Since we conditioned on equation (14) in Lemma 2 holding

true, UCBt
0(·) ≥ 0 since r(·) ≥ 0 and thus f t(·) ∈ [0, 1]K . Similarly to equation (28) and (29), for a fixed z ∈ C,

the first term in equation (34) can be rewritten as:∑
t:zt=z

min{1,UCBt
0(π

∗
i (z), a

t
−i, z

t)} −
∑

ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}

=
∑

t:zt=z

f t(π∗
i (z))−

∑
ai∈Ai

ptai
(zt)f t(ati) (35)

=
∑

t:zt=z

1π∗
i (z),t

(
f t(π∗

i (z))−
∑

ai∈Ai

ptai
(zt)f t(ati)

)
, (36)
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where for all ai ∈ Ai we define:

1ai,t :=

{
1, if LCBt

m(ai) ≤ 0 for every m ∈ [M ],

0, otherwise.
(37)

Since we conditioned on equation (14) in Lemma 2 holding true, 1π∗
i (z),t

equals 1 for all t ≥ 1 since z ∈
{z1, · · · , zT } and thus LCBt

m(π∗
i (z)) ≤ gm(π∗

i (z)) ≤ 0. Therefore, equation (35) and equation (36) are equivalent.
Observe that equation (36) is precisely the regret with respect to π∗

i (z) which a player with reward functions

f t
i (·) ∈ [0, 1] incurs in a sleeping experts problem after Tz =

∑T
t=1 1{zt=z} repetitions of the game. Here Tz

denotes the number of times the revealed context zt belonged to the ball centered at z ∈ C. Note, furthermore,
that for each context z ∈ C a distribution pt(z) is maintained which is updated whenever context zt belongs to
the ball with center z. The update rule for each distribution (Line 7 − 8 in Algorithm 3) corresponds exactly
to that of general AdaNormalHedge proposed in Luo and Schapire (2014). Thus, at each round t, action ati is
chosen according to general AdaNormalHedge with the set of sleeping experts [1ai,t]ai∈Ai defined as in equation
(37) and which receives the full information feedback r̂t = [f t(ai)]ai∈Ai .

In summary, equation (36) corresponds to the regret incurred by the general AdaNormalHedge algorithm with
respect to expert π∗

i (z) ∈ Ai after Tz repetitions and can therefore be upper-bounded by Theorem 2 as follows:∑
t:zt=z

1π∗
i (z),t

(f t(π∗
i (z))− f t(ati)) ≤

√
3Tz(log(K) + log(B) + log(1 + log(K))), (38)

where B =≤ 5
2 + 3

2 log(1 + Tz).

Now summing over all the contexts z ∈ C and using the Cauchy-Schwarz inequality, we can further upper-bound
equation (34) with probability at least 1− δ/2:

R−RT ≤
∑
z∈C

∑
t:zt=z

min{1,UCBt
0(π

∗
i (z), a

t
−i, z

t)} −
∑

ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}

+
√

T/2 log(2/δ) + C1β
T
0

√
TγT

0

≤
∑
z∈C

√
3Tz(log(K) + log(B) + log(1 + log(K))) +

√
T/2 log(2/δ) + C1β

T
0

√
TγT

0

≤
√
|C|

∑
z∈C

3Tz(log(K) + log(B) + log(1 + log(K))) +
√
T/2 log(2/δ) + C1β

T
0

√
TγT

0

=
√
|C|3T (log(K) + log(B) + log(1 + log(K))) +

√
T/2 log(2/δ) + C1β

T
0

√
TγT

0

≤ ϵ−d/2
√
3T (log(K) + log(B) + log(1 + log(K))) +

√
T/2 log(2/δ) + C1β

T
0

√
TγT

0 . (39)

In the last inequality we used that C ≤ (1/ϵ)d, because the contexts space Z ⊆ [0, 1]d can be covered by at most
(1/ϵ)d balls of radius ϵ such that the distance between their centers is at least ϵ Clarkson (2005).

Combining the bounds of L − RT in (32) and R − RT in (39), with probability at least 1 − δ/2 the regret is
bounded by:

RT = L−RT +R−RT

≤ LrLpTϵ+ ϵ−d/2
√
3T (log(K) + log(B) + log(1 + log(K)))

+
√
T/2 log(2/δ) + C1β

T
0

√
TγT

0

= (LrLp)
d

d+2T
d+1
d+2 (1 +

√
3(log(K) + log(B) + log(1 + log(K))))

+
√
T/2 log(2/δ) + C1β

T
0

√
TγT

0 ,

where in the last equality ϵ is set as (LrLp)
− 2

d+2T− 1
d+2 .
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A.2 Supplementary Material for Remark 1

In this section, we show that we can obtain high probability bounds on the regret and the cumulative constraint
violations for Algorithm 1 presented in Section 2, when other computation rules of pt(zt) (line 6 of Algorithm 1)
than the update rule of AdaNormalHedge Luo and Schapire (2015) are used. Recall that once pt(zt) is specified,
Algorithm 1 is well-defined.

A.2.1 Expert algorithm bounds for finite context space

In this subsection, we present general regret bounds that depend on the specified computation rule pt(zt) for the
case when the context space Z is finite. As in Section 2.1, the distribution pt(zt) is computed by maintaining
a distribution for each context z ∈ Z. For a fixed context z ∈ Z, however, any update rule that corresponds
to an update rule of a sleeping expert problem with regret bounds can be used to obtain a high probability
regret bound. This follows from the connection between playing a repeated game with unknown constraints and
playing a sleeping expert problem. In particular, since any regular expert algorithm such as Hedge Freund and
Schapire (1995) can be reformulated as a sleeping expert algorithm Freund et al. (1997) with the same regret
bound, for a fixed context z ∈ Z, any update rule that corresponds to the reformulated update rule of an expert
problem can be used to obtain a high probability regret bound. This bound then depends on the regret obtained
by the expert algorithm. Algorithm 4 provides a computation rule for pt(zt) which is based on the reformulation
of the update rule of any no-regret expert algorithm E to obtain a sleeping expert algorithm. The bounds on the
cumulative constraint violations obtained in Theorem 1 are independent of the update rule and therefore remain
valid.

Theorem 4. Fix δ ∈ (0, 1). Under the same assumptions as in Theorem 1, if a player plays according to
Algorithm 1 with pt(zt) computed according to Algorithm 4 then with probability at least 1− δ:

RT = O
(√

|Z|
∑
z∈Z

(RTz (E))2 +
√

T log(2/δ) + βT
0

√
TγT

0

)

VT
m = O

(
βT
m

√
TγT

m

)
, ∀m ∈ [M ],

where RTz (E) is the regret obtained by an expert algorithm E after Tz rounds and Tz =
∑T

t=1 1{zt=z}. We denote
Algorithm 1 with pt(zt) computed according to Algorithm 4 as c.z.EGP.

For example, when using the update rule of the well-known no-regret algorithm Hedge Freund and Schapire
(1995) to compute pt(zt) in Algorithm 4, we obtain the following bound on the regret.

Corollary 2. If the expert algorithm E corresponds to the Hedge algorithm with step size ηt =

2
√

logK/
∑t

τ=1 1{zτ=zt} and prediction rule:

pt+1
ai

(z) = ptai
(z) exp(ηtUCBt

0(ai, a
t
−i, z

t)1{zt=z}, ∀ai ∈ Ai, z ∈ Z,

then playing according to the so-called c.z.HedgeGP algorithm7 yields the following high-probability regret bound:

RT = O(
√

|Z|T logK +
√
T log(2/δ) + βT

0

√
TγT

0 ).

Proof. The proof follows from Theorem 4 and (Mourtada and Gäıffas, 2019, Proposition 1) which states that
with ηt defined as in Corollary 2, the regret of Hedge which receives full-information feedback rt ∈ [0, 1]K is

bounded as follows
∑T

t=1

(
rt(a∗i )−

∑
ai∈Ai

ptai
rt(ati)

)
≤

√
T logK.

Proof. (of Theorem 4) Lemma 2-4 in Appendix A.1.1 remain valid since the same assumptions as in Theorem 1
are made. Thus, to prove Theorem 4 it is left to show that conditioned on equation (14) in Lemma 2 holding

7Here, we consider the case where pt(zt) is computed according to Algorithm 4.
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Algorithm 4 Update rule for finite context space Z
Input: Full-information no-regret algorithm E . Let p1(z) be the uniform distribution ∀z ∈ Z.

1: for t = 2, . . . , T do
2: Compute reward estimate r̂t with

r̂t(ai) =

{
min{1, UCBt0(ai, at−i, z

t)}, if LCBtm(ai, z
t) ≤ 0, ∀m ∈ [M ],

⟨pt(zt), r̂t⟩, otherwise.
(40)

3: Pass r̂t ∈ RK and pt(zt) ∈ RK to algorithm E.
4: Let pt+1(zt) be the prediction of algorithm E.
5: end for

true, the regret RT is upper-bounded with probability at least 1− δ
2 by:

RT ≤
√
|Z|

∑
z∈Z

(RTz (E))2 +
√
T/2 log(2/δ) + C1β

T
0

√
TγT

0 . (41)

The theorem then follows from the same standard probability arguments as in the proof of Theorem 1.

The main difference between Lemma 5 used to prove Theorem 1 and the statement in equation (41) is that
the update rule pt(zt) is computed according to Algorithm 2 for the former and according to Algorithm 4 for
the latter. Thus, to show the statement in equation (41), any steps and arguments from Lemma 5 that are
independent of the computation rule of pt(zt) can be repeated.

Since c.z.EGP (Algorithm 1 with pt(zt) computed according to Algorithm 4) maintains a separate distribution
pt(z) for each context z ∈ Z the regret notion can be rewritten as:

RT =
∑
z∈Z

∑
t:zt=z

r(π∗
i (z

t), at−i, z
t)− r(ati, a

t
−i, z

t).

The regret RT can be further upper-bounded by the same arguments and steps as in equations (24), (25) and
(26). Then, with probability at least 1− δ

2
the following upper bound holds:

RT ≤
∑
z∈Z

∑
t:zt=z

r(π∗
i (z

t), at−i, z
t)− r(ati, a

t
−i, z

t)

≤
∑
z∈Z

∑
t:zt=z

(min{1,UCBt
0(π

∗
i (z

t), at−i, z
t)} −min{1,UCBt

0(a
t
i, a

t
−i, z

t)}) + C1β
T
0

√
TγT

0

≤
∑
z∈Z

∑
t:zt=z

(
min{1,UCBt

0(π
∗
i (z

t), at−i, z
t)} −

∑
ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}
)

(42)

+
√
T/2 log(2/δ) + C1β

T
0

√
TγT

0 .

where C1 = 8
log(1+σ−2) .

Recall the function r̂t (line 2 of Algorithm 4) defined as:

r̂t(ai) =

{
min{1,UCBt

0(ai, a
t
−i, z

t)}, if LCBt
m(ai, z

t) ≤ 0, ∀m ∈ [M ],

⟨pt(zt), r̂t⟩, otherwise.
(43)
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For a fixed z ∈ Z, the first term in equation (42) can be rewritten as:∑
t:zt=z

min{1,UCBt
0(π

∗
i (z

t), at−i, z
t)} −

∑
ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)} (44)

=
∑

t:zt=z

r̂t(π∗
i (z

t))−
∑

ai∈Ai

ptai
(zt)r̂t(ai) (45)

=
∑

t:zt=z

1π∗
i (z

t),t

(
r̂t(π∗

i (z
t))−

∑
ai∈Ai

ptai
(zt)r̂t(ai)

)
, (46)

=
∑

t:zt=z

(
r̂t(π∗

i (z
t))−

∑
ai∈Ai

ptai
(zt)r̂t(ai)

)
, (47)

where for all ai ∈ Ai the indicator function 1ai,t is defined as in equation (30)

Equation (45) follows by definition of r̂ (line 2 Algorithm 4). Concretely, since we conditioned on equation (14) in
Lemma 2 holding true, LCBt

m(π∗
i (z

t), zt) ≤ 0 for all m ∈ [M ] and thus r̂t(π∗
i (z

t)) = min{1,UCBt
0(π

∗
i (z

t), at
−i, z

t)}.
Furthermore, note that ptai

(zt) = 0 if there exists an m ∈ [M ] such that LCBt
m(ai, z

t) > 0 and in this case
ptai

(zt)min{1,UCBt
0(ai, a

t
−i, z

t)} = ptai
(zt)r̂t(ai) = 0. Since we conditioned on equation (14) in Lemma 2 holding

true, 1π∗
i (z

t),t equals 1 for all t ≥ 1 and therefore equation (45) and equation (46) are equivalent. Equation (47)
follows from the fact that any expert problem can be reformulated as a sleeping expert problem and vice versa
Freund et al. (1997). Specifically, if we are given a no-regret expert algorithm E with prediction pt(zt) on round
t then the prediction of the corresponding sleeping expert algorithm is given by ptai

(zt) ∝ 1ai,tp
t
ai
(zt) on round

t. Furthermore, the reward vector r̂t which is given to E as full-information feedback is designed such that:∑
ai:1ai,t

=1

ptai
(zt)r̂t(ai) +

∑
ai:1ai,t

=0

ptai
(zt)r̂t(ai) =

∑
ai:1ai,t

=1

ptai
(zt)r̂t(ai).

thus, by design the equivalence between equation (46) and equation (47) follows. Note furthermore, that since
we conditioned on equation (14) in Lemma 2 holding true, UCBt

0(·) ≥ 0 since r(·) ≥ 0 and thus r̂t ∈ [0, 1]K . Now
observe that equation (47) is precisely the regret which a player with reward function r̂t(·) ∈ [0, 1] incurs in an

expert problem after Tz =
∑T

t=1 1{zt=z} repetitions of the game. Here Tz denotes the number of times context
zt is revealed. The prediction pt(zt) for each context z ∈ Z (Line 4 in Algorithm 4) is given by the no-regret
algorithm E which receives full-information feedback r̂t = [r̂t(ai)]ai∈Ai . Thus, equation (47) corresponds to the
regret incurred by the algorithm E after Tz repetitions, i.e.,∑

t:zt=z

(
r̂t(π∗

i (z
t))−

∑
ai∈Ai

ptai
(zt)r̂t(ati)

)
≤ RTz (E). (48)

Now summing over all contexts z ∈ Z and using the Cauchy-Schwarz inequality, we can further upper-bound
equation (42) with probability at least 1− δ/2:

RT ≤
∑
z∈Z

∑
t:zt=z

min{1,UCBt
0(π

∗
i (z

t), at−i, z
t)} −

∑
ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}

+
√

T/2 log(2/δ) + C1β
T
0

√
TγT

0

≤
∑
z∈Z

RTz (E) +
√
T/2 log(2/δ) + C1β

T
0

√
TγT

0

≤
√
|Z|

∑
z∈Z

(RTz (E))2 +
√
T/2 log(2/δ) + C1β

T
0

√
TγT

0

A.2.2 Expert algorithm bounds for infinite context space

In this subsection, we present general regret bounds that depend on the specified computation rule pt(zt) for
the case when the context space Z is infinite. As in Appendix A.1.2, the distribution pt(zt) is computed by
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Algorithm 5 Update rule for infinite (large) context space Z
Input: Full-information no-regret algorithm E .
Set: ϵ > 0 and C = {z1} and let p1(z1) be the uniform distribution.

1: for t = 2, . . . , T do
2: Set zt = argminz∈C ∥zt − z∥1.
3: if ∥zt − zt∥1 > ϵ then
4: Add zt to C, set zt = zt and let pt(zt) be

5: the uniform distribution.

6: else
7: Compute reward estimate r̂t with

r̂t(ai) =

{
min{1, UCBt0(ai, at−i, z

t)}, if LCBtm(ai) ≤ 0, ∀m ∈ [M ],

⟨pt(zt), r̂t⟩, otherwise.
(49)

8: Pass r̂t ∈ RK and pt(zt) ∈ RK to algorithm E.
9: Let pt+1(zt) be the prediction of E and set pt+1(zt) = pt+1(zt).

10: end if
11: end for

maintaining |C| separate distributions for all ϵ-close contexts z ∈ Z, where |C| is the total number of L1-balls
created up to round T . For each L1-ball (fixed z ∈ C), any update rule that corresponds to the reformulated
update rule of an expert problem can be used to obtain a high probability regret bound which then depends on
the regret obtained by the expert algorithm.

Theorem 5. Fix δ ∈ (0, 1). Under the same assumptions as in Theorem 3, if a player plays according to
Algorithm 1 with pt(zt) computed according to Algorithm 5, then with probability at least 1− δ

RT = O
(
(LrLp)

d
d+2T

d
d+2

(∑
z∈C

(RTz (E))2
) 1

d+2

+
√

T log(2/δ) + βT
0

√
TγT

0

)
VT
m = O

(
βT
m

√
TγT

m

)
, ∀m ∈ [M ],

where RTz (E) is the regret obtained by algorithm E after Tz rounds and Tz =
∑T

t=1 1{zt=z} is the number of times
the revealed context zt belonged to a ball centered at z ∈ Z.

For example, when using the update rule of the well-known no-regret algorithm Hedge Freund and Schapire
(1995) to compute pt(zt) in Algorithm 5, we obtain the following bound on the regret.

Corollary 3. If algorithm E corresponds to the Hedge algorithm with step size ηt = 2
√

logK/
∑t

τ=1 1{zt=zτ} and

prediction rule:

pt+1
ai

(z) = ptai
(z) exp(ηtUCBt

0(ai, a
t
−i, z

t)1{zt=z}, ∀ai ∈ Ai, z ∈ Z,

then playing according to the so-called c.z.HedgeGP algorithm8 yields the following high-probability regret bound:

RT = O((LrLp)
d

d+2T
d+1
d+2 log(K)

1
d+2 +

√
T log(2/δ) + βT

0

√
TγT

0 ).

Proof. The proof follows from Theorem 5 and (Mourtada and Gäıffas, 2019, Proposition 1).

Proof. (of Theorem 5) Lemma 2-4 in Appendix A.1.1 remain valid for infinite context space Z and context-
independent constraints gm : Ai → R, where Assumption 1 implies gm(π∗

i (z
t)) ≤ 0 for all m ∈ [M ]. Thus, to

8Here, we consider the case where pt(zt) is computed according to Algorithm 5.
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prove Theorem 5 it is left to show that conditioned on equation (14) in Lemma 2 holding true, the regret is
upper-bounded with probability at least 1− δ

2 by:

RT ≤ (LrLp)
d

d+2T
d

d+2

(∑
z∈C

(RTz (E))2
) 1

d+2

+
√

T/2 log(2/δ) + C1β
T
0

√
TγT

0 . (50)

The theorem then follows from the same standard probability arguments as in the proof of Theorem 1.

The main difference between Lemma 6 and the statement in equation (50) is that the update rule pt(zt) is
computed according to Algorithm 2 for the former and according to Algorithm 4 for the latter. Thus, to show
the statement in equation (50), any steps and arguments from Lemma 6 that are independent of the computation
rule of pt(zt) can be repeated.

Analogously to c.z.AdaNormalGP (Algorithm 1 with pt(zt) computed by Algorithm 3), c.z.EGP (Algorithm 1
with pt(zt) computed by Algorithm 5) builds an ϵ-net of the context space by creating new L1-balls in a greedy
fashion. Here, the variable zt indicates the ball that context zt belongs to. Then, the regret can be rewritten as:

RT =
∑
z∈C

∑
t:zt=z

r(π∗
i (z

t), at−i, z
t)− r(ati, a

t
−i, z

t)

=
∑
z∈C

∑
t:zt=z

r(π∗
i (z

t), at−i, z
t)− r(π∗

i (z), a
t
−i, z

t)︸ ︷︷ ︸
L−RT

+
∑
z∈C

∑
t:zt=z

r(π∗
i (z), a

t
−i, z

t)− r(ati, a
t
−i, z

t)︸ ︷︷ ︸
R−RT

,

where in the last equality we add and subtract the term r(π∗
i (z), a

t
−i, z

t).

The first term L−RT can be bounded by making use of Assumption 4 and then applying the same arguments
as in the proof of Lemma 6:

L−RT ≤ LrLpTϵ. (51)

Next, we proceed with bounding R−RT . It can be further upper-bounded by the same arguments and steps as
in equations (24), (25) and (26). Then, with probability at least 1− δ

2
the following upper bound holds:

R−RT ≤
∑
z∈C

∑
t:zt=z

r(π∗
i (z), a

t
−i, z

t)− r(ati, a
t
−i, z

t)

≤
∑
z∈C

∑
t:zt=z

(min{1,UCBt
0(π

∗
i (z), a

t
−i, z

t)} −min{1,UCBt
0(a

t
i, a

t
−i, z

t)})

+ C1β
T
0

√
TγT

0∑
z∈C

∑
t:zt=z

(
min{1,UCBt

0(π
∗
i (z), a

t
−i, z

t)} −
∑

ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}
)

(52)

+
√

T/2 log(2/δ) + C1β
T
0

√
TγT

0 .

where C1 = 8
log(1+σ−2) .

Recall the function r̂t (line 7 of Algorithm 5) defined as:

r̂t(ai) =

{
min{1,UCBt

0(ai, a
t
−i, z

t)}, if LCBt
m(ai) ≤ 0, ∀m ∈ [M ],

⟨pt(zt), r̂t⟩, otherwise.
(53)
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For a fixed z ∈ C, the first term in equation (52) can be rewritten as:∑
t:zt=z

min{1,UCBt
0(π

∗
i (z), a

t
−i, z

t)} −
∑

ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}

=
∑

t:zt=z

r̂t(π∗
i (z

t))−
∑

ai∈Ai

ptai
(z)r̂t(ati) (54)

=
∑

t:zt=z

1π∗
i (z),t

(
r̂t(π∗

i (z))−
∑

ai∈Ai

ptai
(zt)r̂t(ati)

)
, (55)

=
∑

t:zt=z

(
r̂t(π∗

i (z))−
∑

ai∈Ai

ptai
(zt)r̂t(ati)

)
, (56)

Equation (54) follows by definition of r̂ (line 2 Algorithm 4). Since we conditioned on equation (14) in Lemma
2 holding true, 1π∗

i (z),t
equals 1 for all t ≥ 1 and therefore equation (54) and equation (55) are equivalent.

Equivalence between equation (55) and equation (56) follows from the same arguments which are used in the
proof of Theorem 4 to show equivalence between equation (46) and equation (47). Note furthermore, that since
we condition on equation (14) in Lemma 2 holding true, UCBt

0(·) ≥ 0 since r(·) ≥ 0 and thus r̂t(·) ∈ [0, 1]. Now
observe that equation (56) is precisely the regret with respect to expert π∗

i (z) which a player with reward function

r̂t(·) ∈ [0, 1] incurs in an expert problem after Tz =
∑T

t=1 1{zt=z} repetitions of the game. Here Tz denotes the
number of times the revealed context zt belonged to the ball centered at z ∈ C. Recall that for each context z ∈ C
a distribution pt(z) is maintained which is updated whenever context zt belongs to the ball with center z. The
prediction pt(zt) (Line 9 in Algorithm 5) is given by the no-regret algorithm E which receives full-information
feedback r̂t = [r̂t(ai)]ai∈Ai . Thus, equation (56) corresponds to the regret incurred by the algorithm E after Tz

repetitions and is upper-bounded by the regret bound of E :∑
t:zt=z

(
r̂t(π∗

i (z))−
∑

ai∈Ai

ptai
(zt)r̂t(ati)

)
≤ RTz (E). (57)

Summing over all the contexts z ∈ C, we can further upper-bound equation (52) with probability at least 1−δ/2:

R−RT ≤
∑
z∈C

∑
t:zt=z

min{1,UCBt
0(π

∗
i (z), a

t
−i, z

t)} −
∑

ai∈Ai

ptai
(zt)min{1,UCBt

0(ai, a
t
−i, z

t)}

+
√

T/2 log(2/δ) + C1β
T
0

√
TγT

0

≤
∑
z∈C

RTz (E) +
√

T/2 log(2/δ) + C1β
T
0

√
TγT

0

≤
√
|C|

∑
z∈C

(RTz (E))2 +
√
T/2 log(2/δ) + C1β

T
0

√
TγT

0

≤ ϵ−d/2

√∑
z∈C

(RTz (E))2 +
√

T/2 log(2/δ) + C1β
T
0

√
TγT

0 . (58)

In the last equality we used C ≤ (1/ϵ)d, because the contexts space Z ⊆ [0, 1]d can be covered by at most (1/ϵ)d

balls of radius ϵ such that the distance between their centers is at least ϵ Clarkson (2005).

Then, with probability at least 1− δ
2
the regret is bounded by:

RT = L−RT +R−RT

≤ LrLpTϵ+ ϵ−d/2

√∑
z∈C

(RTz (E))2 +
√
T/2 log(2/δ) + C1β

T
0

√
TγT

0

= (LrLp)
d

d+2T
d

d+2

(∑
z∈C

(RTz (E))2
) 1

d+2

+
√

T/2 log(2/δ) + C1β
T
0

√
TγT

0 ,

where in the last equality ϵ is set as (LrLp)
− 2

d+2T− 2
d+2

(∑
c∈C(R

Tz (E))2
) 1

d+2

.
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A.2.3 Proof of Proposition 1

In this section, we provide a proof for Proposition 1.

For any player i following a no-regret, no-violation algorithm the constrained contextual regret after T rounds
of gameplay is upper bounded by:

RT ≥ max
πi∈Πi

T∑
t=1

r(πi(z
t), at−i, z

t)−
T∑

t=1

r(ati, a
t
−i, z

t) (59)

for all πi ∈ Πi such that gi,m(πi(z
t)) ≤ 0 for all m ∈ [M ] and t ∈ [T ].

By definition of the empirical joint policy ρT at round T (see equation (12)) the following holds:

1

T

T∑
t=1

Ea∼ρT
zt

[
ri(ai, a−i, z

t)
]
=

1

T

T∑
t=1

∑
a∈A

ρTzt(a)ri(ai, a−i, z
t)

1

T

T∑
t=1

∑
z∈ZT

∑
t:zt=z

ri(a
t
i, a

t
−i, z

t)

=
1

T

T∑
t=1

ri(a
t
i, a

t
−i, z

t).

(60)

Following the same argumentation it further holds that:

1

T

T∑
t=1

Ea∼ρT
zt

[
ri(πi(z

t), a−i, z
t)
]
=

1

T

T∑
t=1

ri(πi(z
t), at−i, z

t). (61)

By combining equation (59)-(61) and by definition of ϵ in Proposition 1 we obtain the following inequality:

1

T

T∑
t=1

Ea∼ρT
zt

[
ri(ai, a−i, z

t)
]
≥ 1

T

T∑
t=1

Ea∼ρT
zt

[
ri(πi(z

t), a−i, z
t)
]
− RT

T

≥ 1

T

T∑
t=1

Ea∼ρT
zt

[
ri(πi(z

t), a−i, z
t)
]
− ϵ,

for all πi ∈ Πi such that gi,m(πi(z
t)) ≤ 0 for all m ∈ [M ] and t ∈ [T ].

To prove that ρT is an ϵ-c.z.CCE it is left to show that the time-averaged expected constraint violations are
bounded by ϵ. For any player i following a no-regret, no-violation algorithm the cumulative constraint violations
after T rounds of game play are upper bounded by:

Vi,m ≥
T∑

t=1

[gi,m(ati, z
t)]+ (62)

for all m ∈ [M ]. Furthermore, it holds that:

1

T

T∑
t=1

Ea∼ρT
zt

[
[gi,m(ai, z

t)]+
]
=

1

T

T∑
t=1

ρTzt(a)[gi,m(ai, z
t)]+

=
1

T

T∑
t=1

∑
z∈ZT

∑
t:zt=z

[gi,m(ati, z
t)]+

=
1

T

T∑
t=1

[gi,m(ati, z
t)]+

(63)



Anna M. Maddux, Maryam Kamgarpour

Figure 3: Regret and cumuluative constraint violations for players “random”, “GPMW”, “c.GPMW”,
“c.AdaNormalGP”, and “c.z.AdaNormalGP”. Shaded areas represent ± one standard deviation.

By combining equation (62) and (63) and by definition of ϵ in Proposition 1 we obtain the following inequality:

1

T

T∑
t=1

Ea∼ρzt

[
[gi,m(ai, z

t)]+
]
≤

VT
i,m

T
≤ ϵ, ∀m ∈ [M ]

which completes the proof.

A.3 Supplementary Material for Section 3

In the following, we demonstrate c.z.AdaNormalGP on a random N -player game with unknown constraints. We
furthermore, provide a complete description of our experimental setup for the application of controller design of
robots presented in Section 3.1.

A.3.1 Random N-player games

We consider a repeated game between three players with action sets A1 = A2 = A3 = {0, 1, . . . ,K − 1} and
contextual information of the form Z = {1, . . . , Z}. For each player, we simulate 10 different reward functions
ri : A × Z → [0, 1] as the posterior mean computed from 10 samples of a GP, i.e., ri ∼ GP(0, kr(·, ·)). Kernel
kr = ka ∗kz is a composite kernel that can encode different dependences of ri on a ∈ A and z ∈ Z. Furthermore,
the actions of each player are subject to a constraint gi(ai) ≤ 0 for all ai ∈ Ai. We simulate 10 different constraint
functions gi : Ai → R as the posterior mean computed from 10 samples of a GP, i.e., gi ∼ GP(0, kg(·, ·)).
Concretely, we set K = 7, Z = 5, and T = 1000, the kernels are set as ka = kSE with lengthscale l = 2 and
kz = kg = kSE with lengthscale l = 0.5 and the noise is given by ϵti ∼ N (0, 1).

For every game, we consider player 1 to either play 1) random, i.e., selects actions uniformly at random or
according to 2) GPMW Sessa et al. (2019), a no-regret algorithm, 3) z.GPMW Sessa et al. (2020), a contextual no-
regret algorithm, 4) c.AdaNormalGP, a version of c.z.AdaNormalGP which ignores contextual information, and
5) c.z.AdaNormalGP. Player 2 and player 3 are random players. The regret obtained by “GPMW”, “z.GPMW”,
“c.AdaNormalGP” and “c.z.AdaNormalGP” decreases over T , shown in Figure 3 (left). In particular, the
two contextual no-regret algorithms “z.GPMW” and “c.z.AdaNormalGP” obtain smaller regret compared to
their non-contextual counterparts since they exploit contextual information in their update rule. In addition,
“c.AdaNormalGP” and “c.z.AdaNormalGP” learn the constraints on the action set and thus their cumulative
constraint violations do not increase after a few rounds of gameplay, whereas “GPMW” and “z.GPMW” keep
violating the constraints on the action set, shown in Figure 3 (right).
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