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Abstract

Matrix sensing problems exhibit pervasive
non-convexity, plaguing optimization with a
proliferation of suboptimal spurious solutions.
Avoiding convergence to these critical points
poses a major challenge. This work provides
new theoretical insights that help demystify
the intricacies of the non-convex landscape.
In this work, we prove that under certain con-
ditions, critical points sufficiently distant from
the ground truth matrix exhibit favorable ge-
ometry by being strict saddle points rather
than troublesome local minima. Moreover,
we introduce the notion of higher-order losses
for the matrix sensing problem and show that
the incorporation of such losses into the objec-
tive function amplifies the negative curvature
around those distant critical points. This im-
plies that increasing the complexity of the
objective function via high-order losses accel-
erates the escape from such critical points and
acts as a desirable alternative to increasing
the complexity of the optimization problem
via over-parametrization. By elucidating key
characteristics of the non-convex optimization
landscape, this work makes progress towards a
comprehensive framework for tackling broader
machine learning objectives plagued by non-
convexity.

1 INTRODUCTION

The optimization landscape of non-convex problems is
notoriously complex to analyze in general due to the
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existence of an arbitrary number of spurious solutions
(a spurious solution is a second-order critical point that
is not a global minimum). As a result, if a numerical
algorithm is not initialized close enough to a desirable
solution, it may converge to one of those problematic
spurious solutions. It may be acceptable (depending on
the application) if the algorithm finds a critical point
different from but close to the true solution, while
converging to a point faraway implies the failure of
the algorithm. In this paper, we study this issue by
focusing on a class of benchmark non-convex problems,
named matrix sensing, and analyze the landscape of
the optimization problem in areas far away from the
ground truth.

To be more concrete, we focus on the Burer-Monteiro
(BM) form of the problem:

min
X∈Rn×r

f(X) :=
1

2
‖A(XXT )− b‖2 (1)

where b = A(M∗) ∈ Rm is the vector of observed mea-
surements andM∗ ∈ Rn×n is the ground truth solution
to be found. We focus on the case whereM∗ is positive
semidefinite and symmetric since the asymmetric case
(with M∗ being sign indefinite or rectangular) can be
equivalently converted to the symmetric case (Bi et al.,
2022). The linear operator A(·) in (1) is defined as
A(M) = [〈A1,M〉, . . . , 〈Am,M〉]T , where {Ai}mi=1 are
m sensing matrices, which can be assumed to be sym-
metric without loss of generality (Zhang et al., 2021).
We use r∗ to denote the true rank of M∗. In (1), X
can have a search rank of r, which has to satisfy r ≥ r∗.
Since r is often significantly smaller than n in practice,
the above factorization form optimizing over the ma-
trix X with nr entries rather than a matrix M with
n2 entries has major computational advantages.

The matrix sensing problem is a canonical problem
bearing many important applications, such as the
matrix completion problem/netflix problem (Candès
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and Recht, 2009; Candès and Tao, 2010), the com-
pressed sensing problem (Donoho, 2006), the training
of quadratic neural networks (Li et al., 2018), and
an array of localization/estimation problems (Zhang
et al., 2017; Jin et al., 2019; Singer, 2011; Boumal, 2016;
Shechtman et al., 2015; Fattahi and Sojoudi, 2020). As
a result, a better understanding of (1) not only helps
with the above applications, but also paves the way for
the analysis of a broader range of non-convex problems.
This is due in part to the fact that any polynomial
optimization can be converted into a series of matrix
sensing problems under benign assumptions (Molybog
et al., 2020).

The major drawback of (1) is that it may have an
arbitrary number of spurious solutions, which cause
ubiquitous local search algorithms to potentially end up
with unwanted solution. Therefore, there has been an
extensive investigation of the non-convex optimization
landscape of (1), and the centerpiece notion is the
restricted isometry property (RIP), defined below.

Definition 1 (RIP). (Candès and Recht, 2009) Given
a natural number p, the linear map A : Rn×n 7→ Rm is
said to satisfy δp-RIP if there is a constant δp ∈ [0, 1)
such that

(1− δp)‖M‖2F ≤ ‖A(M)‖2 ≤ (1 + δp)‖M‖2F

holds for matrices M ∈ Rn×n satisfying rank(M) ≤ p.

Intuitively speaking, a smaller RIP constant means
that the problem is easier to solve. For instance, if
δ2r∗ = 0, then A(·) becomes the identity operator with
b = vec(M∗), which makes the problem trivial to solve
for M∗.

In this section, we provide a review of how RIP plays a
central role in determining the optimization landscape
of the non-convex problem (1), and explain why this
problem still needs a further investigation even with
the abundance of literature dedicated to this topic.
To further streamline our presentation, we divide our
discussion into two parts: RIP being smaller than 1/2
and RIP being greater than 1/2.

1.1 When RIP constant is smaller than 1/2

The attention to the RIP constant was first popularized
by the study of using a convex semidefinite program-
ming (SDP) relaxation to solve the matrix sensing
problem (Recht et al., 2010; Candès and Tao, 2010).
It was proven that as along as δ5r∗ ≤ 1/10, the SDP
relaxation was tight andM∗ could be recovered exactly.
Subsequently, Bhojanapalli et al. (2016) analyzed the
factorized problem (1) and concluded that as long as
δ2r ≤ 1/5, all second-order critical points (SOPs) of
(1) are ground truth solutions. Zhu et al. (2018); Li

et al. (2019) also proved that δ4r ≤ 1/5 is sufficient for
the global recovery of M∗ under an arbitrary objec-
tive function (instead of the least-squares one in (1)).
Later, by using a "certification of in-existence" tech-
nique, Zhang et al. (2019) established that δ2r = 1/2
was a sharp bound when r = r∗, meaning that as long
as δ2r < 1/2, all problem instances of (1) are free of
spurious solutions, and once δ2r ≥ 1/2, it is possible to
establish counter-examples with SOPs not correspond-
ing to ground truth solutions. This aforementioned
approach is important because it quantifies how re-
strictive RIP needs to be in order to ensure a benign
landscape.

Following the above line of work, Ma et al. (2022)
proved that the same RIP bound of 1/2 is also ap-
plicable in noisy cases, and Bi et al. (2022) showed
that even for general low-rank optimization problems
beyond matrix sensing, δ2r < 1/2 is still a sharp bound
for the global recoverability of M∗, highlighting the
importance of the 1/2 bound.

Furthermore, when the RIP constant is small enough,
various desirable properties hold, including fast conver-
gence (Li et al., 2018; Wang et al., 2017) and spectral
contraction (Stöger and Soltanolkotabi, 2021; Jin et al.,
2023).

1.2 When RIP constant is larger than 1/2

As proven in Zhang et al. (2021), when the RIP con-
stant of the problem is larger or equal to 1/2, coun-
terexamples can be found for which some SOPs are not
global solutions. This means that in the regime where
δ ≥ 1/2, the optimization landscape of (1) becomes
complex. Several works have attempted to provide
limited mathematical guarantees in that regime.

Benign landscape near M∗. Zhang et al. (2019)
proved that when δ2r ≥ 1/2 for r = 1, we can ensure
the absence of spurious solutions in a local region that
is close to M∗, depending on the RIP constant and
also the size ofM∗. Zhang and Zhang (2020) expanded
that analysis to the regime of general r. Subsequently,
Ma and Sojoudi (2023) extended the result to noisy
and general objectives, proving the ubiquity of this
phenomenon.

Over-parametrization with r ≥ r∗. This line of
work is concerned with the case where the search rank
r is greater than the true rank, which means that
the complexity of the algorithm is increased. Zhang
(2022) proved that if r > r∗[(1 + δn)/(1− δn)− 1]2/4,
with r∗ ≤ r < n, then every SOP X̂ satisfies that
X̂X̂> = M∗. Ma and Fattahi (2022) derived a similar
result for l1 loss under an RIP-type condition.

The SDP approach. This approach uses the con-



Ma, Chen, Lavaei, Sojoudi

ventional technique of convex relaxations to solve the
matrix sensing problem (Recht et al., 2010; Candes
and Plan, 2011). It was recently proven in Yalcin et al.
(2023) that as long as the RIP constant δ2r∗ is lower
than the maximum of 1/2 and 2r∗/(n+(n−2r∗)(2l−5)),
the global solution of the SDP relaxation corresponds
to M∗. Since this bound approaches 1 as r∗ increases,
it is more appealing than using the factorized version
(1) when the RIP constant is not small.

Lifting into tensor space. Recently, Ma et al.
(2023b) proposed to lift the matrix decision variables of
(1) into tensors and then optimize over tensors. This
approach is inspired by the Sum-of-Squares hierarchies
and the authors proved that spurious solutions will be
converted into saddle points through lifting, further al-
leviating the highly non-convex landscape of (1) when
δ2r is close to 1. However, the shortcomings of this
approach is that the complexity of the problem will
increase exponentially if a high-order lifting is required.

Overall, although various studies have been conducted
to address the optimization landscape of (1) when the
RIP constant is larger than 1/2, they either require to
increase the complexity of the algorithm by a large mar-
gin (via over-parametrization r � r∗, SDP relaxation,
or tensor optimization) or require to initialize the algo-
rithm close to M∗. Therefore, the following question
arises: Does there exist meaningful global guarantees
for (1) in the case of δ ≥ 1/2 without increasing the
computational complexity of the problem drastically? .
In this paper, we offer a partial affirmative answer to
this question via our notion of high-order losses.

1.3 Main Contributions

1. We prove that all critical points of (1) are strict
saddles when reasonably away from M∗, with the
intensity of the smallest eigenvalue of the Hessian
at each saddle point being proportional to its dis-
tance to M∗. This result implies that there are no
spurious solutions far away from M∗, and that it
is possible to reach a vicinity of M∗ with saddle-
escaping algorithms even with poor initializations.

2. As a by-product of the above result, we derive
sufficient conditions on M∗ to ensure that there
are no spurious solutions in the entire space even
in the regime of high RIP constants.

3. We introduce the notion of high-order losses where
a penalization term with a controllable degree is
added to the objective function of (1) with the
property that the penalty is zero at the ground
truth. We show that critical points far away from
M∗ will still remain strict saddles, while the spuri-
ous solutions will be easier to escape as the degree

of the loss increases. In other words, the land-
scape of the optimization problem is reshaped
favorably by the inclusion of such penalties. Our
result implies that increasing the complexity of the
objective function serves as a viable alternative
to increasing the complexity of the problem via
over-parametrization.

1.4 Notations

The notation M � 0 means that M is a symmetric and
positive semidefinite (PSD) matrix. σi(M) denotes the
i-th largest singular value of a matrix M , and λi(M)
denotes the i-th largest eigenvalue of M . λmin(M)
and λmax(M) respectively denotes the minimum and
maximum eigenvalues ofM . ‖v‖ denotes the Euclidean
norm of a vector v, while ‖M‖F and ‖M‖p denote the
Frobenius norm and induced lp norm of a matrix M ,
respectively for p ≥ 2. 〈A,B〉 is defined to be tr(ATB)
for two matrices A and B of the same size. For a
matrix M , vec(M) is the usual vectorization operation
by stacking the columns of the matrix M into a vector.
[n] denotes the integer set {1, . . . , n}.

The Hessian of the function f(X) in (1), denoted as
∇2f(X) : Rn×r × Rn×r 7→ R, can be regarded as
a quadratic form whose action on any two matrices
U, V ∈ Rn×r is given by

∇2f(X)[U, V ] =

n,r,n,r∑
i,j,k,l=1

∂2

∂Xij∂Xkl
f(X)UijVkl.

2 DISAPPEARANCE OF SPURIOUS
SOLUTIONS FAR FROM
GROUND TRUTH

As discussed in Section 1, the optimization landscape
of (1) is benign (in the sense of having no spurious
solutions) if δ2r < 1/2 and benign in a region close
to M∗ if δ2r ≥ 1/2. In this section, we study the
landscape far away from M∗ in the problematic case
δ2r ≥ 1/2. To do so, we focus on the first-order critical
points, and study the eigenvalues of the Hessian at these
points because if they exhibit negative eigenvalues, it
means that these first-order critical points are strict
saddles, possessing escape directions. Before diving
into more details, we present the first- and second-
order optimality conditions for (1):

Lemma 1. A point X is a first-order critical point of
(1) if

∇f(X) =

(
m∑
i=1

〈Ai, XX> −M∗〉Ai

)
X = 0 (2)

and it is a second-order critical point if it satisfies the
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above condition together with

∇2f(X)[U,U ] =

m∑
i=1

〈Ai, UX> +XU>〉2+

〈Ai, XX> −M∗〉〈Ai, 2UU>〉 ≥ 0 ∀U ∈ Rn×r
(3)

The proof of this lemma is plain calculus thus omitted
for simplicity. Focusing on (3), it is apparent that for a
first-order critical point X̂ satisfying ∇f(X̂) = 0, the
Hessian ∇2f(X̂)[U,U ] can be broken down into the
summation of two terms:

T1 :=

m∑
i=1

〈Ai, UX̂> + X̂U>〉2 = ‖A(UX̂> + X̂U>)‖22,

T2 :=

m∑
i=1

〈Ai, X̂X̂> −M∗〉〈Ai, 2UU>〉

= 2〈∇h(X̂X̂>), UU>〉

Assuming that the problem (1) satisfies the RIP con-
dition with some constant δp for p ≥ 2r∗, one can
write

T1 ≤ (1 + δp)‖UX̂> + X̂U>‖2F ,

which means that T1 can be upper-bounded naturally
since U can be assumed to have a unit scale without
loss of generality. Therefore, if we can somehow show
that there exists U ∈ Rn×r to make T2 negative with a
sufficiently large magnitude, then X̂ becomes a saddle
point. Combining the RIP condition and mean value
theorem, we know that

h(M∗) ≥h(X̂X̂>) + 〈∇h(X̂X̂>),M∗ − X̂X̂>〉

+
1− δp

2
‖X̂X̂> −M∗‖2F

where h(·) is defined as

h(M) =
1

2
‖A(M −M∗)‖2 (4)

Given ∇f(X̂) = 0 and the expression in (2), we obtain
that

〈∇h(X̂X̂>),M∗〉 ≤ −1− δp
2
‖X̂X̂> −M∗‖2F

since h(X̂X̂>) ≥ h(M∗) by definition. This implies
that there exist directions that make T2 have large neg-
ative values when X̂X̂> is far away from M∗. Expand-
ing on this simple observation, we formally establish
Theorem 1, serving as the cornerstone of all results
in this paper. A detailed proof can be found in the
Appendix.

Theorem 1. Assume that (1) satisfies the RIPr+r∗
property with constant δ ∈ [0, 1). Given a first-order

critical point X̂ ∈ Rn×r of (1), if it satisfies the in-
equality

‖X̂X̂> −M∗‖2F > 2
1 + δ

1− δ
tr(M∗)σr(X̂)2, (5)

then X̂ is not a second-order critical point and is a strict
saddle point with ∇2f(X̂) having a strictly negative
eigenvalue not larger than

2(1 + δ)σr(X̂)2 − ‖X̂X̂
> −M∗‖2F (1− δ)

tr(M∗)
(6)

Theorem 1 states that if a first-order critical point is far
from the ground truth, it cannot be a spurious solution,
and always exhibits an escape direction with its mag-
nitude proportional to the squared distance between
X̂X̂> and M∗. This further elucidates the fact that
even if (1) is poorly initialized, it is possible to converge
to a vicinity of M∗ with saddle-escaping algorithms,
which we will numerically illustrate in Section 4.

In contrary to Theorem 1, the existing results in the
literature state that there are no spurious solutions in
a small neighborhood of M∗ (Zhang and Zhang, 2020;
Bi and Lavaei, 2020; Ma et al., 2023a). As an example,
we recall:

Theorem 2 (Zhang and Zhang (2020)). Assume that
(1) satisfies the RIP property with constant δ ∈ [0, 1).
Given an arbitrary constant τ ∈ (0, 1− δ2), if a second-
order critical point X̂ ∈ Rn×r of (1) satisfies

‖X̂X̂> −M∗‖F ≤ τλr∗(M∗) (7)

then X̂ corresponds to the ground truth solution.

Theorem 2 serves as a classic result in which a good
enough initialization (the best possible scenario is ini-
tializing at the ground truth) can lead to the global
solution easily, which could be observed in a wide range
of problems. We believe our result serves as a nice com-
plement to this classical observation, offering a more
complete picture of global optimization landscape of
matrix sensing problems. The existence of both The-
orem 1 and Theorem 2 begs the question of whether
there is a sufficient condition to ensure that the two
regions (5) and (7) overlap. An affirmative answer ex-
ists, even if δ > 1/2, since it turns out that σ2

r(X̂) can
be bounded above globally. In what follows, we will
prove this sufficient condition:.

Theorem 3. Consider the problem (1) under the
RIPr+r∗ property with a constant δ ∈ [0, 1). Assume
that its ground truth solution M∗ satisfies the following
inequality

‖M∗‖F
tr(M∗)

λ2
r∗(M∗)

≤
√
r

2
√

2
(1 + δ)1/2(1− δ)7/2, (8)
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Then, every second-order critical point X̂ of (1) satis-
fies

X̂X̂> = M∗

The proof can be found in the Appendix.

3 HIGHER-ORDER LOSS
FUNCTIONS

Although Theorem 1 proves that critical points far
away from the ground truth are strict saddle points,
the time needed to escape such points depends on the
local curvature of the function (Ge et al., 2017; Jin et al.,
2021). Therefore, it is essential to understand whether
the curvatures at saddle points could be enhanced to
reshape the landscape favorably. In this section, we
provide an affirmative answer to this question by using
a modified loss function.

Our main goal in matrix sensing is to recover the ground
truth matrixM∗ viammeasurements, and we minimize
a mismatch error in (1) to achieve this goal. An l2
loss function is used in (1) due to its smooth and
nonnegative properties, which is the most common
objective function in the machine learning literature.
However, in this work, we introduce a high-order loss
function as penalization, namely an lp loss function with
p > 2, and show that this will reshape the landscape of
the optimization problem. To be concrete, we propose
to optimize over this modified problem:

min
X∈Rn×r

f lλ(X) := f(X) + λf l(X) (9)

where

f l(X) :=
1

l
‖A(XX>)− b‖ll (10a)

hl(M) :=
1

l
‖A(M)− b‖ll (10b)

where l ≥ 2 is an even natural number to ensure the
non-negativity of the loss function and λ > 0 is a
penalty coefficient. The intuition behind using a high-
order objective can be easily demonstrated via the
scalar example:

min
x∈R

g(x) :=
1

l
(x2 − a)l (11)

for some constant a ∈ R and an even number l ≥
2. This problem is a scalar analogy of f l(X) with
A(·) being the identity operator. In this example, the
derivatives are

g′(x) = 2x(x2 − a)l−1,

g′′(x) = 2(x2 − a)l−2
[
(l − 1)2x2 + (x2 − a)

]

It can be observed that as l increases, the first- and
second-order derivatives will be amplified, provided
that (x2 − a) is larger than one (i.e., our point is rea-
sonably distant from the ground truth a). However,
there is an issue with optimizing g(x) directly, and
we need to use f lλ(X) instead of f l(X). If we directly
minimize f l(X) with l > 2, the Hessian at any point
X with the property XXT = M∗ becomes zero, which
makes the convergence extremely slow as approaching
the ground truth (with a sub-linear rate). This is be-
cause the local convergence rate of descent numerical
algorithms depends on the condition number of the
Hessians around the solution (Wright and Recht, 2022).
Conversely, when using the original objective (1), we
see from (3) that even if XX> is close to M∗, the
Hessian is positive semidefinite, and therefore adding
f l(X) to the objective of (1) will not change the sign
of the Hessian around the solution.

Secondly, if l is large and ‖XX> −M∗‖F is less than
one, the term 〈Ai, XX> −M∗〉l−1 appearing in the
gradient of f l(X) (see Lemma 2 in Appendix) is very
small due to its exponentiation nature. This means that
minimizing f l(X) alone will suffer from the vanishing
issue and slow growth rate in a local region around
M∗.

Due to the above reasons, we mix f l(X) with the
original objective in (1) and use the parameter λ to
control the effect of the penalty term, in an effort to
balance local rate of convergence to M∗ and prominent
eigenvalues of the Hessian at points far away from
M∗. By using (9), we can arrive at a similar result to
Theorem 1
Theorem 4. Assume that the operator A(·) satisfies
the RIPr+r∗ property with constant δ ∈ [0, 1). Consider
the high-order optimization problem (9) such that l ≥ 2
is even. Given a first-order critical point X̂ ∈ Rn×r of
(9), if

D2 ≥ tr(M∗)σ2
r(X̂)

(1 + δ) + λ(l − 1)(1 + δ)l/2Dl−2

(1− δ)/2 + λC(l)(1− δ)l/2Dl−2
,

(12)
then X̂ is a strict saddle point with ∇2f(X̂) having a
strictly negative eigenvalue not larger than[

2(1 + δ)σr(X̂)2 − D2(1− δ)
tr(M∗)

]
+

λDl−2

[
2(1 + δ)l/2(l − 1)σr(X̂)2 − 2

(1− δ)l/2C(l)D2

tr(M∗)

]
(13)

where
D := ‖X̂X̂> −M∗‖F ,

C(l) := m(2−l)/2
(

2l − 1

l
− 1

) (14)

Theorem 4 serves as a direct generalization of Theo-
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n λ λmin(∇2f l(X̂)) λmax(∇2f l(X̂)) λmin(∇2f l(X∗)) λmax(∇2f l(X∗))

3 0 1.821 3.642 2.18 4.36
3 0.5 1.779 3.855 2.18 4.36
3 5 1.594 7.422 2.18 4.36
3 50 1.470 55.028 2.18 4.36
5 0 0.429 3.898 0.54 4.72
5 0.5 0.421 4.106 0.54 4.72
5 5 0.385 9.117 0.54 4.72
5 50 0.354 69.816 0.54 4.72
7 0 0.516 3.642 0.72 5.08
7 0.5 0.502 4.122 0.72 5.08
7 5 0.456 10.006 0.72 5.08
7 50 0.433 75.786 0.72 5.08
9 0 0.609 3.930 0.90 5.44
9 0.5 0.601 4.315 0.90 5.44
9 5 0.557 10.915 0.90 5.44
9 50 0.528 84.002 0.90 5.44

Table 1: The smallest eigenvalue of the Hessian at a spurious local minimum X̂ and ground truth X∗, with
ε = 0.3 and additional high-order loss function l = 4 (note that X̂ is not too far from X∗ since Theorem 1 shows
that there are no such spurious solutions). The problem satisfies the RIP2r-property with δ = 1−ε

1+ε = 0.538 > 1/2,
and hence has spurious local minima.

rem 1, as it recovers the statements of Theorem 1 when l
is set to 2 or λ is set to 0. By comparing (13) to (6), the
bound on the smallest eigenvalue of the Hessian has an
additional term that is amplified by ‖X̂X̂> −M∗‖l−2

F .
As a result, X̂ has a more pronounced escape direction
in (9) compared to (1) when ‖X̂X̂> −M∗‖F is large.
Concerning the tightness of the bounds in Theorem 1
and Theorem 4, they depend on three factors: the RIP
constant, the Frobenius norm of M∗, and the smallest
non-zero singular value of X̂. While the RIP constant
indicates problem difficulty and is immutable, knowing
that ‖M∗‖F is small (as in the extreme case shown in
(8)), or that X̂ has a minimal singular value (which
is computable), suggests that the bounds can be very
tight. This implies that if X̂ is a second-order point,
it will be very close to M∗. Recent studies (Stöger
and Soltanolkotabi, 2021; Jin et al., 2023) have shown
that a small random initialization can lead to small rth
eigenvalues during the optimization process, resulting
in tight bounds for our new Theorems.

Theorem 4 contrasts well with an existing approach
that utilizes a lifting technique to eliminate spurious
solutions. Ma et al. (2023b) states that by lifting
the search space to the regime of tensors, a higher
degree of parametrization can amplify the negative
curvature of Hessian. In contrast, Theorem 4 offers
similar benefits by using a more complex objective
function. This means that without resorting to massive
over-parametrization, similar results can be achieved
via using a more complex loss function. Having said

that, the technique presented in (Ma et al., 2023b) can
amplify the negative curvature of those points X that
satisfy

‖XX> −M∗‖2F ≥
1 + δ

1− δ
tr(M∗)σ2

r(X̂)

where in comparison to (12) the multiplicative factor
to tr(M∗)σ2

r(X̂) becomes

(1 + δ) + λ(l − 1)(1 + δ)l/2Dl−2

(1− δ)/2 + λC(l)(1− δ)l/2Dl−2
,

which is on the order of magnitude of

O

(
l

(√
m

2

)l(
1 + δ

1− δ

)l/2)
,

making the region for which this amplification can
be observed smaller if l is large. This means that by
utilizing a high-order loss, we can recover some of the
desirable properties of an over-parametrized technique,
but a gap still exists due to the smaller parametrization.
Combining a high-order loss function and a modest level
of parametrization is left as future work.

4 SIMULATION EXPERIMENTS

This section serves to provide numerical validation for
the theoretical findings presented in this paper. We
will begin by investigating the behavior of the Hessian
matrix when utilizing high-order loss function. Subse-
quently, we will showcase the remarkable acceleration
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(a) λ = 0 converges to ground truth (b) λ = 0 converges to a spurious solution around the
ground truth

Figure 1: The evolution of the objective function and the error between the obtained solution X̂X̂T and the
ground truth M∗ during the iterations of the perturbed gradient descent method, with a constant step-size. In
both cases, high-order loss functions accelerate the convergence.

in escaping saddle points achieved by employing Per-
turbed Gradient Descent in conjunction with high-order
loss functions compared to the standard optimization
problem (1). Lastly, we will provide a comparative
illustration of the landscape both with and without the
incorporation of high-order loss functions.*.

We first focus on a benchmark matrix sensing problem
with the operator A defined as

Aε(M)ij :=

{
Mij , if (i, j) ∈ Ω
εMij , otherwise , (15)

where Ω = {(i, i), (i, 2k), (2k, i) | ∀i ∈ [n], k ∈ [bn/2c]},
0 < ε < 1. Yalcin et al. (2023) has proved that while
satisfying RIP property with δ2r = (1 − ε)/(1 + ε),
this problem has O

(
2dn/2e − 2

)
spurious local minima.

In order to analyze the influence of high-order loss
functions on the optimization landscape, we conduct an
analysis of the spurious local minima and of the ground
truth matrix for both the vanilla problem (1) and the
altered problem (9) with l = 4. We consider a spurious
local minimum X̂ (note that such points cannot be too
far away from M∗ due to Theorem 1). The findings
of this study are presented in Table 1, while the ratio
between the largest and smallest eigenvalues at the
spurious local minimum X̂ is plotted in Figure 2.

Table 1 shows that as the intensity of high-order loss
*The code to this section can be found at

https://github.com/anonpapersbm/high_order_obj

Figure 2: The ratio between the largest and smallest
eigenvalue of Hessian at the spurious local minimum
λmax/λmin(∇2f l(X̂)) with respect to λ under different
size n.

function increases via λ, the behavior of the Hessian
eigenvalues exhibits distinct characteristics across differ-
ent points in the optimization landscape. Specifically,
the smallest and the largest eigenvalues of the Hes-
sian at the ground truth matrix remain constant. In
contrast, the smallest eigenvalue of the Hessian at the
spurious local minimum, which is initially positive, de-
creases as λ increases. This decreasing trend facilitates
the differentiation of spurious local minima from the
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Figure 3: The value of the minimum eigenvalue of the Hessian around saddle points: The first row is for randomly
generated Gaussian matrix with m = 20, n = 20, and the second row is for problem (15) with n = 21, ε = 0.1.
λ = 0 (left column), λ = 0.5 (middle column), λ = 5 (right column), with x-axis and y-axis as two orthogonal
directions from the critical point to the ground truth.

global minimum, as they become less favorable. Simul-
taneously, the largest eigenvalue of the Hessian matrix
at the spurious local minimum increases at a signifi-
cantly faster rate. This suggests that the incorporation
of high-order loss functions amplifies the magnitude of
the eigenvalues in the Hessian matrix at spurious local
minima, increasing the ratio between the largest and
smallest eigenvalues, while having no impact on those
at the ground truth.

Following that, we will present the acceleration in ef-
fectively navigating away from saddle points. For ran-
domly generated zero-mean Gaussian sensing matrices
with i.i.d. entries, we apply small initialization and
perturbed gradient descent which adds small Gaussian
noise when the gradient is close to zero. In Figure
1, we compare the evolution of the distance from the
ground truth matrix ‖X̂X̂T − M∗‖F and the value
of the objective function f l(X̂). Although Figure 1
demonstrates the behavior for a single problem, we ob-
served the same phenomenon for many different trials.
By incorporating a high-order loss function (specifically,
with l = 4), the optimization process exhibits enhanced
convergence compared to the standard vanilla problem.
This accelerated convergence can be attributed to the

presence of a substantial negative eigenvalue of the
Hessian matrix, which effectively facilitates the algo-
rithm’s escape from regions proximate to spurious local
minimum.

Finally, we explore the optimization landscape in terms
of the distance from the ground truth matrix and
the intensity of high-order loss functions. We ex-
plore both random Gaussian sensing matrices with
size m = 20, n = 20, and the problem (15) with the
parameters n = 21 and l = 4. The result is plotted in
Figure 3, where the x-axis and y-axis are two orthog-
onal directions from the critical point to the ground
truth. By looking horizontally across the figure, we
can observe that increasing the parameter λ leads to
the amplification of the least negative eigenvalue of
the Hessian matrix at saddle points. As λ increases,
the least eigenvalue of the Hessian at this saddle point,
which is initially negative, decreases further. This re-
duction in the magnitude of the negative eigenvalue
makes it easier to escape from this saddle point during
optimization.

This example could also directly corroborate Theorem 4
(Thereby Theorem 1). For instance, when λ = 0.5, the
minimum eigenvalue of Hessian matrix at the first-order
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critical point X̂ is λmin(∇2f l(X̂)) = −3.201, which is
smaller than the eigenvalue-bound −2.274; the distance
from the ground truth matrix isD := ‖X̂X̂>−M∗‖F =
11.0, larger than the distance bound in (12), validating
Theorem 4.

5 CONCLUSION

This work theoretically establishes favorable geomet-
ric properties in those parts of the space far from the
globally optimal solution for the non-convex matrix
sensing problem. We introduce the notion of high-
order loss functions and show that such losses reshape
the optimization landscape and accelerate escaping
saddle points. Our experiments demonstrate that high-
order penalties decrease minimum Hessian eigenvalues
at spurious points while intensifying ratios. Secondly,
perturbed gradient descent exhibits accelerated sad-
dle escape with the incorporation of high-order losses.
Collectively, our theoretical and empirical results show
that using a modified loss function could make non-
convex functions easier to deal with and achieve some of
the desirable properties of a lifted formulation without
enlarging the search space of the problem exponentially.
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(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
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the necessary code to reproduce the results.
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A Appendix

A.1 Optimality Conditions

Lemma 2. Given the problem (9), its gradient and Hessian are given as

〈∇f l(X), U〉 =

m∑
i=1

〈Ai, XX> −M∗〉l−1〈Ai, UX> +XU>〉 ∀U ∈ Rn×r, (16a)

∇2f l(X)[U,U ] =

m∑
i=1

〈Ai, XX> −M∗〉l−2
[
(l − 1)〈Ai, UX> +XU>〉2 + 〈Ai, XX> −M∗〉〈Ai, 2UU>〉

]
∀U ∈ Rn×r

(16b)

Lemma 3. Given the problem (10b), its gradient, Hessian and high-order derivatives are equal to

∇hl(M) =

m∑
i=1

〈Ai,M −M∗〉l−1Ai, (17a)

∇2hl(M)[N,N ] = (l − 1)

m∑
i=1

〈Ai,M −M∗〉l−2〈Ai, N〉2 ∀N ∈ Rn×n, (17b)

∇phl(M)[N, . . . , N︸ ︷︷ ︸
p times

] =
(l − 1)!

(l − p)!

m∑
i=1

〈Ai,M −M∗〉l−p〈Ai, N〉p ∀N ∈ Rn×n (17c)

Proof to both lemmas are simply multivariate calculus, thus obviated here for simplicity.

A.2 Proofs in Section 2

Proof of Theorem 1. Via the definition of RIP, we have that

h(M∗) ≥ h(X̂X̂>) + 〈∇h(X̂X̂>),M∗ − X̂X̂>〉+
1− δ

2
‖X̂X̂> −M∗‖2F

Given that X̂ is a first-order critical point, it means that it must satisfy first-order optimality conditions, which
means

h(X̂X̂>)X̂ = 0,

leading to

〈∇h(X̂X̂>),M∗〉 ≤ −1− δ
2
‖X̂X̂> −M∗‖2F

since h(X̂X̂>) − h(M∗) ≥ 0 via the construction of the objective function. Furthermore, as it is without loss
of generality to assume the gradient of h(M) to be symmetric (Zhang et al., 2021), and the fact that M∗ is
positive-semidefinite, we have that

〈∇h(X̂X̂>),M∗〉 ≥ λmin(∇h(X̂X̂>)) tr(M∗)

This leads to the fact that

λmin(∇h(X̂X̂>)) ≤ − (1− δ)‖X̂X̂> −M∗‖2F
2 tr(M∗)

≤ 0 (18)

Given the optimality conditions, we know that for X̂ to be a strict saddle, we must prove that there exists a
direction ∆ ∈ Rn×r such that

2〈∇h(X̂X̂>),∆∆>〉+
[
∇2h(X̂X̂>)

]
(X̂∆> + ∆X̂>, X̂∆> + ∆X̂>)︸ ︷︷ ︸

P (∆)

< 0 (19)

If we choose

∆ = uq>, ‖u‖2, ‖q‖2 = 1, ‖X̂q‖2 = σr(X̂), u>∇h(X̂X̂>)u = λmin(∇h(X̂X̂>)),
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then it follows from the RIP condition that

P (∆) ≤ (1 + δ)‖X̂∆> + ∆X̂>‖2F
= (1 + δ)‖u(X̂q)> + (X̂q)u>‖2F

= 2(1 + δ)‖X̂q‖2F + 2(1 + δ)
(
q>(X̂>u)

)2

= 2(1 + δ)σr(X̂)2

because of X̂>u = 0 due to the first-order optimality condition. Therefore,

2〈∇h(X̂X̂>),∆∆>〉+ P (∆) ≤ 2〈h(X̂X̂>),∆∆>〉+ 2(1 + δ)σr(X̂)2

= 2〈∇h(X̂X̂>), uu>〉+ 2(1 + δ)σr(X̂)2

= 2u>∇h(X̂X̂>)u+ 2(1 + δ)σr(X̂)2

= 2
(
λmin(∇h(X̂X̂>)) + (1 + δ)σr(X̂)2

)
≤ 2(1 + δ)σr(X̂)2 − (1− δ)‖X̂X̂> −M∗‖2F

tr(M∗)

Therefore, in order to make (19) hold, we simply need

‖X̂X̂> −M∗‖2F > 2
1 + δ

1− δ
tr(M∗)σr(X̂)2

which concludes the proof.

Proof for Theorem 3. An easy extension of Lemma B.2 from Ma et al. (2023b) gives us that

σ2
r(X̂) <

√
2(1 + δ)

r(1− δ)
‖M∗‖F (20)

and we omit the proof for brevity. Then the only remaining step is to show that the square of right-hand side of
(7) is larger than that of (5). This means the following equation

(1− δ2)2λ2
r∗(M∗) ≥ 2

1 + δ

1− δ
tr(M∗)

√
2(1 + δ)

r(1− δ)
‖M∗‖F

is sufficient to
(1− δ2)2λ2

r∗(M∗) ≥ 2
1 + δ

1− δ
tr(M∗)σ2

r(X̂)

which yields (8) after rearrangements.

A.3 Proofs in Section 3

Before proceeding to the main proof, we first present a technical lemma:
Lemma 4. Given a vector x ∈ Rn, we have that

‖x‖p ≤ n1/p−1/q‖x‖q ∀ q ≥ p (21)

Proof of Lemma 4. By applying Holder’s inequality, we obtain that

n∑
i=1

|xi|p =

n∑
i=1

|xi|p · 1 ≤

(
n∑
i=1

(|xi|p)
q
p

) p
q
(

n∑
i=1

1
q

q−p

)1− p
q

=

(
n∑
i=1

|xi|q
) p

q

n1− p
q

Then

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

≤

( n∑
i=1

|xi|q
) p

q

n1− p
q

1/p

=

(
n∑
i=1

|xi|q
) 1

q

n
1
p−

1
q = n1/p−1/q‖x‖q
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Proof to Theorem 4. First, we define
hlλ(M) = h(M) + λhl(M)

Then, focusing on hl(·), using Taylor’s theorem with remainder, we get

hl(M∗) =hl(X̂X̂>) + 〈∇hl(X̂X̂>),∆〉+
1

2!
∇2hl(X̂X̂>) [∆,∆] +

1

3!
∇3hl(X̂X̂>) [∆,∆,∆] + · · ·+ 1

l!
∇lhl(M̃) [∆, . . . ,∆]

(22)

where M̃ is a convex combination of M∗ and X̂X̂> and

∆ = M∗ − X̂X̂>.

Using Lemma 3, we know that

1

p!
∇phl(X̂X̂>) [∆, . . . ,∆] =

(l − 1)!

(l − p)!p!

m∑
i=1

〈Ai,∆〉l ∀p ∈ [2, l − 1],

1

l!
∇lhl(M) [∆, . . . ,∆] =

(l − 1)!

(l − l)!l!

m∑
i=1

〈Ai,∆〉l =
1

l

m∑
i=1

〈Ai,∆〉l ∀M ∈ Rn×n

Hence, it is possible to rewrite

hl(M∗) = hl(X̂X̂>) + 〈∇hl(X̂X̂>),∆〉+

l∑
p=2

(l − 1)!

(l − p)!p!

m∑
i=1

〈Ai,∆〉l

= hl(X̂X̂>) + 〈∇hl(X̂X̂>),∆〉+

m∑
i=1

〈Ai,∆〉l
l∑

p=2

(l − 1)!

(l − p)!p!

= hl(X̂X̂>) + 〈∇hl(X̂X̂>),M∗ − X̂X̂>〉+ (
2l − 1

l
− 1)‖A(X̂X̂> −M∗)‖ll

(23)

By Lemma 4, if l > 2, it holds that

‖A(X̂X̂> −M∗)‖ll ≥ ‖A(X̂X̂> −M∗)‖l2m(2−l)/2

Furthermore, combining this with the RIP property gives rise to

‖A(X̂X̂> −M∗)‖ll ≥ (1− δ)l/2‖X̂X̂> −M∗‖lFm(2−l)/2 (24)

Therefore we know that

hl(M∗) ≥ hl(X̂X̂>) + 〈∇hl(X̂X̂>),M∗ − X̂X̂>〉+ (1− δ)l/2C(l)‖X̂X̂> −M∗‖lF (25)

if we summarize constant relevant to l as C(l). Thus, using the above inequality twice, once with l = 1 and
another with general l, we get

hlλ(M∗) = h(M∗) + λhl(M∗) ≥ hlλ(X̂X̂>) + 〈∇hlλ(X̂X̂>),M∗ − X̂X̂>〉+ L (26)

in which
L :=

1− δ
2
‖M∗ − X̂X̂>‖2F + λ(1− δ)l/2C(l)‖M∗ − X̂X̂>‖lF

If X̂ is a first-order critical point, a repeated application of (16a) yields that

∇hlλ(X̂X̂>)X̂ = 0 =⇒ 〈∇hlλ(X̂X̂>), X̂X̂>〉 = 0

which after rearrangement leads to

〈∇hlλ(X̂X̂>),M∗〉 ≤
[
hlλ(M∗)− hlλ(X̂X̂>)

]
− L

≤ −L
(27)



Ma, Chen, Lavaei, Sojoudi

where the second inequality follows from the fact that M∗ is the global minimizer of (9). Since the sensing
matrices can be assumed to be symmetric without loss of generality (Zhang et al., 2021), ∇hl(X̂X̂>) can be
assumed to be symmetric according to (17a). This means that

〈∇hlλ(X̂X̂>),M∗〉 ≥ tr(M∗)λmin(∇hlλ(X̂X̂>))

which further leads to
λmin(∇hlλ(X̂X̂>)) ≤ − L

tr(M∗)
(28)

Now, we turn to the Hessian of f lλ(·), which given (16b) is

∇2f lλ(X̂)[U,U ] =

m∑
i=1

[
λ(l − 1)〈Ai, X̂X̂> −M∗〉l−2 + 1

]
〈Ai, UX̂> + X̂U>〉2︸ ︷︷ ︸

B

+

m∑
i=1

[
λ〈Ai, X̂X̂> −M∗〉l−1 + 〈Ai, X̂X̂> −M∗〉

]
〈Ai, 2UU>〉︸ ︷︷ ︸

A

∀U ∈ Rn×r
(29)

Since

〈Ai, UX̂> + X̂U>〉2 ≤
m∑
i=1

〈Ai, UX̂> + X̂U>〉2 ≤ (1 + δ)‖UX̂> + X̂U>‖2F ∀i

then if we choose U such that

U = uq>, ‖u‖2, ‖q‖2 = 1, ‖X̂q‖2 = σr(X̂), u>∇hl(X̂X̂>)u = λmin(∇hlλ(X̂X̂>)),

it can be shown that

(1 + δ)‖UX̂> + X̂U>‖2F = (1 + δ)‖u(X̂q)> + (X̂q)u>‖2F

= 2(1 + δ)‖X̂q‖2F + 2(1 + δ)
(
q>(X̂>u)

)2

= 2(1 + δ)σr(X̂)2

since (X̂q)u> = 0 as u is an eigenvector of ∇hlλ(X̂X̂>), which is orthogonal to X̂ as required by (16a). This
further implies that

B ≤
m∑
i=1

[
λ(l − 1)〈Ai, X̂X̂> −M∗〉l−2〈Ai, UX̂> + X̂U>〉2

]
+ 2(1 + δ)σr(X̂)2

≤ 2(1 + δ)σr(X̂)2

[
λ(l − 1)

m∑
i=1

〈Ai, X̂X̂> −M∗〉l−2 + 1

]
= 2(1 + δ)σr(X̂)2

[
λ(l − 1)‖A(X̂X̂> −M∗)‖l−2

l−2 + 1
]

≤ 2(1 + δ)σr(X̂)2
[
λ(l − 1)(‖A(X̂X̂> −M∗)‖2)l−2 + 1

]
≤ 2(1 + δ)σr(X̂)2

[
λ(l − 1)(

√
1 + δ‖X̂X̂> −M∗‖F )l−2 + 1

]
= 2(1 + δ)σr(X̂)2

[
λ(l − 1)(1 + δ)(l−2)/2‖X̂X̂> −M∗‖l−2

F + 1
]

(30)

Also, given (17a) and our choice of U , it is apparent that

A = 2u>∇hlλ(X̂X̂>)u = 2λmin(∇hlλ(X̂X̂>)) (31)

Therefore, given (30), (31) and (28), by substituting them back into (29), we arrive at

∇2f l(X̂)[U,U ] ≤ 2σr(X̂)2
(
λ(l − 1)(1 + δ)l/2‖X̂X̂> −M∗‖l−2

F + (1 + δ)
)
− 2L/ tr(M∗) (32)

so the right-hand side of the above equation is strictly negative if (12) is satisfied.
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