
Directed Hypergraph Representation Learning for Link Prediction

Zitong Ma Wenbo Zhao Zhe Yang*
School of Computer Science

and Technology,
Soochow University

ztma99@stu.suda.edu.cn

School of Computer Science
and Technology,

Soochow University
wbzhao@stu.suda.edu.cn

School of Computer Science
and Technology,

Soochow University
yangzhe@suda.edu.cn

Abstract

Link prediction is a critical problem in net-
work structure processing. With the preva-
lence of deep learning, graph-based learn-
ing pattern in link prediction has been
well-proven to successfully apply. How-
ever, existing representation-based comput-
ing paradigms retain some lack in process-
ing complex networks: most methods only
consider low-order pairwise information or
eliminate the direction message, which tends
to obtain a sub-optimal representation. To
tackle the above challenges, we propose us-
ing directed hypergraph to model the real
world and design a directed hypergraph neu-
ral network framework for data representa-
tion learning. Specifically, our work can be
concluded into two sophisticated aspects: (1)
We define the approximate Laplacian of the
directed hypergraph, and further formulate
the convolution operation on the directed hy-
pergraph structure, solving the issue of the
directed hypergraph structure representation
learning. (2) By efficiently learning complex
information from directed hypergraphs to ob-
tain high-quality representations, we develop
a framework DHGNN for link prediction on
directed hypergraph structures. We empiri-
cally show that the merit of DHGNN lies in
its ability to model complex correlations and
encode information effectively of directed hy-
pergraphs. Extensive experiments conducted
on multi-field datasets demonstrate the supe-
riority of the proposed DHGNN over various
state-of-the-art approaches.

*Corresponding author. Proceedings of the 27th Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS) 2024, Valencia, Spain. PMLR: Volume 238.
Copyright 2024 by the author(s).

1 INSTRUCTION

Link prediction is proposed for foreseeing the evolu-
tion of a graph (network) by extracting potential in-
formation from existing structures and features(Liben-
Nowell and Kleinberg, 2003). The advantages of graph
learning and deep learning methods in processing Non-
Euclidean Structure Data and extracting relevant in-
formation have driven the development and deploy-
ment of link prediction in various fields(Zhang et al.,
2018). Among them, the development of the neural
network method represented by GCNs has served a
wider application.

The link prediction task based on GCNs can be decom-
posed into two parts, 1) embedding learning: which
models the realistic data and transforms it into vector-
ized representations, and 2) link prediction: to predict
the link existence in pairs of nodes. To improve the
quality of representation, a rising trend of leveraging
more general data modeling and learning methods has
been observed recently, such as hypergraphs, which are
more suitable for the real world.

With the advent of Hypergraph Learning(Zhou et al.,
2006) and its deepening research, numerous re-
searchers have attracted considerable attention by
modeling real-world data as hypergraph structures
to capture high-order interactions and utilizing deep
learning methods to obtain semantically sufficient rep-
resentations(Gao et al., 2022). However, within mod-
eling hypergraph is missing significant directionality
in many practical applications. We can generalize
directed graphs to directed hypergraphs analogously
that hypergraphs are a generalization of undirected
graphs(Ausiello and Laura, 2017).

Directed hypergraphs are different from directed
graphs and hypergraphs, which summarize the high-
order directed information of the network and per-
form higher-dimensional modeling of real data. It is
common for users to purchase a bundle of items to-
gether while shopping online. As shown in Figure 5

Directed Hypergraph Representation Learning for Link Prediction

(a)

CuO

Cu

H2O

H2

O2

CuO

Cu

H2O

O2

H2

(b)

Figure 1: Examples of directed interactions on (a) co-
purchase network and (b) chemical reaction.

(a), within directed graphs, edges can only point to
a single vertex, which restricts the ability to model
the notion that certain items are purchased together.
However, grouping items by a hyperarc not only indi-
cates that the bundled items are purchased simultane-
ously and contains the temporal ordering of purchased
items. In chemical reaction networks(Figure 5 (b)),
using directed graphs to represent reactions by point-
ing from reactants to products, omits the cooperative
interaction between multiple reactants and makes it
difficult to distinguish multiple distinct reaction pro-
cesses, leading to the erroneous representation of re-
action equations. This limitation can be overcome by
using directed hypergraphs, where a single hyperarc
can connect multiple reactants and multiple products
simultaneously, enabling a more accurate representa-
tion of chemical reaction equations.

Despite the potential of directed hypergraphs, only a
few works shift attention to directed hypergraph rep-
resentation learning(Tran and Tran, 2020; Xiao et al.,
2022). The Laplacian matrices are transformed to
asymmetric due to the direction of the structure, which
leads to the uncertainty of eigenvalue decomposition,
whereas the hypergraph spectrum convolution requires
a decomposable Laplacian. Thus numerical works sim-
plify the problem by relaxing the directed limit to a
directed to undirected transformation where both the
set of tail and the head nodes are integrated into an or-
dinary hyperedge. In this approach, the original struc-
ture is corrupted, leading to misleading message pass-

ing. To tackle the aforementioned issue, we focus on
developing efficient convolution approaches to learning
complex directed hypergraph structures.

In this paper, we aim to express high-level information
and obtain vertex embeddings through directed hy-
pergraphs and spectral-based methods. We propose a
representation learning framework on directed hyper-
graphs named Directed Hypergraph Neural Network
(DHGNN), in which the high-order and direction se-
mantics are preserved in the latent space. First, moti-
vated by the spectral method for directed graphs and
personalized PageRank algorithm(Tong et al., 2020;
Bahmani et al., 2010), we formulate the regularization
framework and derive Laplacian for directed hyper-
graphs by examining the underlying bonds between
Markov chain stationary distribution and certain ma-
trices associated with directed hypergraph and further
extend the spectral convolution on the hypergraph to
the directed hypergraph. Second, we design a multi-
ple embedding fusion that integrates multi-granularity
nodes and hyperarcs transitional signals into a com-
mon latent representation space and infers missing di-
rected links by joint encoding source and target nodes.

In summary, the contributions of our work are:

• We propose a novel framework DHGNN for di-
rected link prediction, which encodes and reveals
the underlying interaction patterns in directed hy-
pergraph structure.

• By introducing the personalized PageRank, we
develop algorithms for directed hypergraph em-
bedding and transductive inference based on the
directed hypergraph. Moreover, we completed the
generalization of hypergraph convolution to di-
rected hypergraphs.

• In addition, we inject multiple embedding fusion
for learning precise representation of the feature
space under various levels of granularity, to foresee
the link between a pair of nodes.

• We conduct extensive experiments on diverse do-
main datasets with explicit features and latent
features respectively, demonstrating the effective-
ness of the proposed DHGNN framework over
state-of-the-art methods.

2 RELATED WORKS

In this section we review prior works related to
DHGNN from three aspects: 1) Directed graph
Embedding Learning; 2) Hypergraph Representation
Learning; 3) Link Prediction.

Zitong Ma, Wenbo Zhao, Zhe Yang*

2.1 Directed Graph Embedding Learning

Existing solutions generally be divided into the fol-
lowing two categories: (1) Model directed graphs and
exploit GNN-derived methods. DIGCN(Tong et al.,
2020) gives a definition of the Laplacian of directed
graphs, extending spectrum-based undirected graph
convolutions to directed graphs. D-HYPR(Zhou et al.,
2022) introduces four canonical types of neighbor-
hoods in hyperbolic space and captures graph seman-
tics and structural information through a message-
passing-based GNN method. (2) Preserve the asym-
metry by generating embeddings for the nodes at both
ends of the directed edge respectively (Khosla et al.,
2020; Ou et al., 2016). For example, DiGAE(Kollias
et al., 2022) encodes the source and target nodes sep-
arately and decodes them to reconstruct the directed
edges between pairwise nodes.

2.2 Hypergraph Representation Learning

As a generalization of graphs, hypergraphs describe
real-world data with more appropriate and delicate
representations. Since the introduction of linear
Laplacian in the seminal work(Zhou et al., 2006),
many works have applied it to the processing of hy-
pergraph structure data(Ji et al., 2020; Zu et al., 2016;
Wang et al., 2015).Feng(Feng et al., 2019) proposed
the HGNN framework and defined the spectral convo-
lution on the hypergraph to obtain the representation
of the hypergraph structure. Dong(Dong et al., 2020)
focused on hyperedge representation and formulated a
framework that convolves and normalizes hypernodes
and hyperedges respectively. Gao(Gao et al., 2022)
extended the HGNN framework and proposed a spa-
tial hypergraph convolution pattern to achieve more
powerful expressions from different hypergraph struc-
tures. The methods mentioned above are all carried
out on undirected hypergraphs making it inevitable to
lose critical information in real-world modeling.

2.3 Link Prediction

Link prediction is an important task in network struc-
ture analysis, there are usually three link predic-
tion methods: 1) Similarity-based methods: scor-
ing by measuring pairs of nodes’ similarity(Liben-
Nowell and Kleinberg, 2003; Liu and Lü, 2010); 2)
Statistics-based methods: common methods include
maximum likelihood method and probability relation-
ship model(Clauset et al., 2008); 3) Graph representa-
tion learning methods: learning edge representations
and node representations are widely used method cur-
rently. The Node2vec(Grover and Leskovec, 2016)
takes the lead in applying feature learning algorithms
to link prediction and examining that node embed-

dings outperform previous heuristic scores. GCNs
and their faction methods thriving recently makes the
representation of the node more comprehensive and
achieves excellent results in link prediction(Zhang and
Chen, 2018).

3 PRELIMINARIES

A directed hypergraph(Gallo et al., 1993) G =
(V,E,W) consists of a finite set of vertices V , to-
gether with a set of hyperarcs E. For each hyperarc
e = (etail, ehead) in E, etail and ehead are the tail of
hyperarc e and the head of hyperarc e, respectively.
We note that etail can contain more than one ver-
tices, where etail = {v1, v2, ..., vi} for i ≥ 1, as well
as ehead = {v1, v2, ..., vj} for j ≥ 1. W ∈ R|E|×|E| de-
notes the diagonal matrix which contains the weights
of hyperarcs. Each hyperarc e can associate a positive
value w(e). A directed hypergraph is a generalization
of a directed graph, such that both ends of an arc can
contain an arbitrary nonzero number of vertices.

The directed hypergraph G can be represented by two

incidence matrices Htail ∈ {0, 1}|V |×|E|
and Hhead ∈

{0, 1}|V |×|E|
, with entries defined as:

htail(v, etail) =

{
1, if v ∈ etail

0, otherwise
(1)

hhead(v, ehead) =

{
1, if v ∈ ehead

0, otherwise
(2)

As previously defined, we can define the out-
degree dtail(v) and in-degree dhead(v) as:
dtail(v) =

∑
e∈E w(e)h

tail(v, etail), dhead(v) =∑
e∈E w(e)h

head(v, ehead). Similarly, for an hyperarc

e ∈ E, it has out-degree dtail(e) and in-degree dhead(e),
which is defined by dtail(e) =

∑
v∈V h

tail(v, etail)

and dhead(e) =
∑
v∈V h

head(v, ehead). The diagonal

matrix Dtail
v ∈ R|V |×|V | and Dhead

v ∈ R|V |×|V |,
Dtail
e ∈ R|E|×|E| and Dhead

e ∈ R|E|×|E| represents the
vertex degree and hyperarc degree respectively.

4 DIRECTED HYPERGRAPH
CONVOLUTION

In this section, we introduce the random walk to the
directed hypergraph and formulate the regularization
framework. For the purpose of reducing the com-
putational complexity of downstream tasks, we fur-
ther give the transductive inference of directed hyper-
graph Laplacian by analyzing the approximate digraph
Laplacian properties. Finally, we provide the defini-
tion of directed hypergraph convolution based on the
hypergraph convolution.

Directed Hypergraph Representation Learning for Link Prediction

4.1 Random Walk On Directed Hypergraph

We can consider the problem from the perspective of
a random walk on a directed hypergraph. Similar to
(Ducournau and Bretto, 2014), given the current loca-
tion u ∈ V , first select a hyperarc e = (etail, ehead) in-
cident with vertex u ∈ etail randomly, and then choose
a vertex v ∈ ehead. From this, the probability p(u, v)
can be formulated as

p(u, v) =
∑
e∈E

w(e)
htail(u, etail)

dtail(u)

hhead(v, ehead)

dhead(e)
(3)

Let P ∈ R|V |×|V | denote the transition prob-
ability matrix, which is represented as P =

Dtail
v

−1
HtailWDhead

e
−1
HheadT .

When a directed graph is strongly connected and ape-
riodic, the random walk converges to a unique station-
ary distribution(Zhou et al., 2005). Generalizing the
definition of strongly connected digraphs to directed
hypergraphs, for any pair of vertices i, j ∈ V , if there
has at least one directed path from vertex i to j, the di-
rected hypergraph is strongly connected(Allamigeon,
2011). Directed hypergraphs modeled from real-world
data are not necessarily strongly connected, in order to
satisfy this property, we consider adding an auxiliary
vertex ψ(Tong et al., 2020), as the personalized PageR-
ank teleport set, which incident with two hyperarcs, in-
hyperarc eψ1

and out-hyperarc eψ2
, respectively. For

the hyperarc eψ1
= (etailψ1

, eheadψ1
), its head contains one

vertex ψ and the tail contains all vertices in V . And
for eψ2 = (etailψ2

, eheadψ2
), its tail contains one vertex ψ

and the head contains all vertices in V . In addition,
we add self-loops to the original directed hypergraph
to ensure aperiodic. Similar to directed graphs(Zhou
et al., 2005) and hypergraphs(Zhou et al., 2006), the
transition probability p of a strongly connected and
aperiodic directed hypergraph G = (V,E,W) has a
unique stationary distribution:

π(v) =
∑
u→v

π(u)p(u, v) (4)

Let S denote a vertex subset of V and Sc denote the
complement of S. Define the volume of S by volS =∑
v∈S π(v), obviously, volS is the probability that ran-

dom walk occupies vertices in S, and volS + volSc =
volV = 1. Further, define the out-hyperarc boundary
∂S =

{
e ∈ E|etail ⊂ S, ehead ⊂ Sc

}
of S, the volume

of ∂S is define as vol∂S =
∑
e∈∂S,[u,v]∈e π(u)p(u, v),

and the in-hyperarc boundary of S is represented by
∂Sc =

{
e ∈ E|etail ⊂ Sc, ehead ⊂ S

}
. Clearly, the vol-

ume of ∂S is the probability with which a step from S
to ∂S, similar to vol∂Sc.

A hyperarc can be transformed into a set of directed
edges by star expansion, where each vertex in the etail

is connected with all vertices in the ehead through di-
rected edges. This transformation yields an equivalent
directed graph for the random walk on the directed
hypergraph, and consequently, vol∂S = vol∂Sc holds
in the directed hypergraph, as proved in the directed
graph(Zhou et al., 2005). With that, we can formalize
the cut as

argmin
x∈S

c(S) = vol∂S(
1

volS
+

1

volSc
) (5)

where the fraction vol∂S
volS is the probability of a ran-

dom walk leaving S along a hyperarc in ∂S, similar
to the ratio vol∂Sc

volSc . Note that equation(5) is a gen-
eralization of the normalized cut criterion for directed
graphs(Zhou et al., 2005). The Optimization objective
aims to obtain a partition that maximizes the proba-
bility of staying in the same cluster and minimizes the
probability of crossing different clusters as possible.

We can relax equation (5) into a real-valued optimiza-
tion problem as follows:

argmin
f

Ω(f) =
∑
e∈E

∑
[u,v]∈e

π(u)p(u, v)(f(u)√
π(u)

− f(v)√
π(v)

)2

2

subject to
∑
v∈V

f2(v) = 1,
∑
v∈V

f(v)
√
π(v) = 0

(6)
we can formulate the regularization framework which
is in keeping with Tran et al.(Tran and Tran, 2020):

argmin
f

Ω(f) +Rsrm(θ) (7)

where the Ω(f) denotes the regularization term with
a classification function f , and Rsrm is defined as the
empirical loss and parameter regularization. Let Θ =
Π1/2PΠ−1/2+Π−1/2PTΠ1/2

2 ,∆ = I − Θ, where I denotes
the identity matrix, the numerator of the optimization
problem (6) can be verified to Ω(f) = 2fT∆f .

Therefore, the solution to the optimization problem
can be solved as a general eigendecomposition. Similar
to Zhou(Zhou et al., 2006), We can define the Lapla-
cian for a directed hypergraph as follows

∆ = I − Π1/2PΠ−1/2 +Π−1/2PTΠ1/2

2
(8)

where Π ∈ R|V |×|V | is a diagonal matrix with diagonal
elements π.

4.2 Directed Hypergraph Convolution

From section 4.1, we need to ensure that the directed
hypergraph is strongly connected and aperiodic. As
previously mentioned, we can add an auxiliary vertex

Zitong Ma, Wenbo Zhao, Zhe Yang*

message flow

？

？

？ in
it
ia

liz
a
ti
o
n 𝑣1

𝑣3

𝑣2

𝑣𝑛

…

a. Directed hypergraph construction

b. Node representation updating

×

p
re

d
ic

ti
o
n

c. Link Prediction

𝑟1

𝑟1

𝑟2

𝑟3

𝑟2

𝑟3

𝑁×

𝐺𝑛 𝐺𝑛+1

…

vertex

hyperarc

convolution
vertex embedding

Figure 2: The architecture of the proposed DHGNN framework. (a) Directed hypergraph construction from data
correlations, and latent features generation by an initialization function. The goal is to foresee the links between
the given nodes. (b) Node representation learning. The node representations are updated by message flow and
aggregation and are further fused through the fusion function. (c) Predict if there is a link between pairwise
nodes from their representations.

ψ with two hyperarcs eψ1 and eψ2 , and add self-loops
for all vertices to satisfy the above two properties. Let
α denote the probability that steps to the auxiliary
vertex(Tong et al., 2020). Then the transition matrix
is defined as

P̂ =

[
(1− α)P̃ α

1
|V | 0

]
(9)

where P̂ ∈ R(|V |+1)×(|V |+1), and P̃ is the transition
matrix of the original directed hypergraph with added
self-loops. We divide the random walk into two events:
walking on the original directed hypergraph with a
probability of 1−α, and stepping to the auxiliary node
with a probability of α. 1

|V | indicates that the prob-

ability of teleporting to each vertex on the directed
hypergraph is equal. The matrix P̂ is aperiodic and
irreducible, which has a unique stationary distribution
π̂. Thus, we have π̂ = (πP̃ , πψ). Where πP̃ represent
the stationary distribution of the original n vertices,
and the second part πψ is the stationary distribution
of the auxiliary vertex ψ. With this, we can adjust the
value of the transition probability to control the effect
of the auxiliary vertex. By adjusting the probability
α → 0, the first part πP̃ approximates the stationary
distribution of the original directed hypergraph.

In conclusion, the directed hypergraph Laplacian can

be developed as

L ≈ I − 1

2
(Π

1/2

P̃
Dtail
v

−1
HtailWDhead

e

−1
HheadTΠ

−1/2

P̃

+Π
−1/2

P̃
(Dtail

v

−1
HtailWDhead

e

−1
HheadT)TΠ

1/2

P̃
)

(10)
where ΠP̃ ∈ R|V |×|V | is a diagonal matrix. With
the spectral convolution analysis on hypergraph(Feng
et al., 2019), we can follow the derivation to derive the
convolution of directed hypergraph:

Y = σ(LEΘ) (11)

where E ∈ R|V |×C1 denotes the vertex embedding and
Θ ∈ RC1×C2 is the learnable weight matrix. Y is the
representation generated from the convolution opera-
tion. σ(·) is the alternative non-linear activation func-
tion.

The above convolution can be explained in a more in-
tuitive way (as shown in Figure 2(b)). Specifically,
the information of vertices in the tail set is aggregated
according to the connection method of hyperarcs and
then propagated to the vertices pointed to in the head
set.

5 FRAMEWORK FOR LINK
PREDICTION

In this section, we scheme the architecture for directed
hypergraph structure representation learning. In ac-
cordance with what we have already mentioned, we

Directed Hypergraph Representation Learning for Link Prediction

develop a novel model DHGNN which consists of three
key modules: 1) Embedding learning on directed hy-
pergraph; 2) Multi-scale embedding fusion; 3) Nega-
tive sampling and prediction. The framework is illus-
trated in Figure 2.

5.1 Embedding Learning

Initialization. Given a directed hypergraph G =
(V,E,W) with N vertices and M hyperarcs modeled
from observed data. Unless otherwise specified, the
weights of hyperarcs below are set to w = 1. Formally,
we use Z ∈ RN×d to represent the initial node embed-
ding, containing the explicit features and latent fea-
tures. Following the mainstream latent features gen-
erate methods, we draw the embedding table from a
prescribed distribution g(·), which could jointly opti-
mize with other parameters. Then the initial node
embedding can be obtained by:

z
(0)
i ∼ g(z

(0)
i) (12)

where z
(0)
i ∈ Rd denotes the initialized node embed-

ding, which depicts nodes in a low-dimension latent
representation space. Based on this, we model the
complex dependencies among each node and work out
a strategy to aggregate information through convo-
lution on the directed hypergraph structure, which
obtains informative and accurate representations for
nodes.

High-order message flow. To capture the message
passing direction, we inject the directed hypergraph
convolution into directed high-order relation encoding,
which is defined by

Z(l) = LZ(l−1)Θ(l−1) (13)

where Θ(l−1) is trainable weight parameter, Z(l) is
node embeddings, L is the approximate Laplacian de-
fined in section 4. It is worth noticing that we remove
the nonlinear activation, since the nonlinearity in the
convolution layer is non-essential and even causes a
negative effect(Wu et al., 2019; He et al., 2020).

5.2 Multi-scale Embedding Fusion

The embedding may exhibit diverse transitional pat-
terns over different message-passing layers, and repre-
sentation transformation between different layers may
lead to information loss. To tackle the aforementioned
issue, we integrate the diverse transitional patterns
into a common latent space and aggregate the multi-
granularity representation, so as to endow the model
with the capability of encoding multi-dimensional se-
mantics expression. The multi-scale embedding fusion
presents as follows:

Z∗ = h(Z(0), Z(1), ..., Z(l)) (14)

where h(·) is the fusion function such as
concatenate,point-wise addition, etc. It is evi-
dent that deep embeddings have finer granularity
than shallow embeddings. Aggregating multiple layers
of embeddings enables multi-grained representations.

5.3 Prediction and Optimization

Prediction. Given the obtained embedding z∗i and
z∗j , the predicted score is computed by the inner prod-
uct between the representation of the source and target
entities:

ri→j = z∗i
T z∗j (15)

Optimization. Typically, under the condition that
negative interactions in link prediction tasks are in-
visible, representations are generated based on exist-
ing revealed relations. In the absence of labeled nega-
tive samples, the embedding neglects the commonality
of negative samples, leading to prediction deviations.
For example, in social networks, users may distrust or
dislike others, and in chemical reactions, certain sub-
stances cannot react. Thus, a heuristic negative sam-
pling strategy is adopted in this paper. We sample
negatives as latent feedback to assist model learning
and introduce BPR(Rendle et al., 2012) loss as an op-
timization criterion:

L = −
∑

(i,j+,j−)∈T

−lnσ(ri→j+ − ri→j−)+λ||Θ||22 (16)

where T indicates the pairwise training data, which is
assumed that node i to j+ is positive feedback, and i
to j− is negative feedback.

6 EXPERIMENTS

In our evaluation, we examine the performance of our
proposed DHGNN in multi-tasks and datasets1.

6.1 Experimental Settings

6.1.1 Datasets

To demonstrate the effectiveness of our proposed
framework, we conduct experiments on several open-
access digraph datasets of varied fields. We construct
forward hyperarcs(Gallo et al., 1993) based on original
directed edges and related semantic information. The
dataset information is shown in Table 1.

6.1.2 Baselines

We compare our model with state-of-the-art models
in three different categories, including: Undirected

1https://github.com/mazitong/DHGNN

Zitong Ma, Wenbo Zhao, Zhe Yang*

Table 1: Datasets statistics.

Dataset Category Nodes Edges

Air Preferred Routes 1226 2615
Survey Social network 2539 12969
Cora Citation network 2708 5429
Citeseer Citation network 3312 4715
AM-computer Co-purchase 13752 287209

graph network method, GCN(Kipf and Welling, 2016),
GAT(Veličković et al., 2017), GraphSAGE(Hamilton
et al., 2017), PNA(Corso et al., 2020); Undirected
hypergraph learning method, HGNN(Feng et al.,
2019), HNHN(Dong et al., 2020), HGNN+(Gao
et al., 2022); Digraph network method including
DiGCN(Tong et al., 2020), DiGAE(Kollias et al.,
2022), D-HYPR(Zhou et al., 2022).

6.1.3 Task and Evaluation Metrics.

We conduct our model with the following tasks: Link
Prediction with explicit features and latent features.

We construct a directed hypergraph to learn node fea-
ture representations and examine the performance of
our proposed model by predicting whether there is a
relationship between pairwise nodes. We randomly
mask 20% of the links from the original dataset as the
test set and retain 80% of the links for training which
is a basis of directed hyperarc construction. Further-
more, we use a uniform distribution to generate initial
features for latent feature learning.

Evaluation metrics are the Area under the Curve of
ROC (AUC) and Average Precision(AP) for link pre-
diction.

6.1.4 Parameter Settings

To ensure the fairness and validity of the compara-
tive experiments, we tuned the hyperparameters of all
models to achieve the best baseline results. The hyper-
parameters are tuned by grid search. Since the dataset
with different distributions will affect the performance
of the model, we randomly divide the dataset into di-
verse splits and obtain the average of the multiple ex-
perimental results. In all cases, models are performed
by full-batch gradient descent, optimized with Adam.

6.2 Performance Comparison

In this subsection, we discuss the evaluation results for
compared approaches.

Link prediction with explicit features. The ex-
perimental results of link prediction with node explicit

Table 2: Performance comparison on Link Prediction
task with explicit features, in terms of AUC and AP
averaged over 100 runs. The best results are in bold
and the second are in underline. The data in the table
are presented as percentages(e.g., 91.92%).

Cora Citeseer
Model AUC AP AUC AP

GCN 91.92 90.23 88.29 89.18
GAT 91.29 91.10 82.23 84.37
GraphSAGE 93.03 93.01 87.42 88.77
PNA 93.43 93.15 88.26 89.63
HGNN 92.89 92.28 90.93 89.54
HNHN 92.22 92.32 88.44 89.45
HGNN+ 93.62 93.11 92.04 92.49
DiGCN 93.28 93.22 92.12 92.46
DiGAE 93.68 93.27 90.79 89.88
Ours 94.27 93.40 93.87 93.51
Improve 0.63% 0.14% 1.90% 1.10%

features are summarized in Table 2, we conduct ex-
periments on two citation networks, and the DHGNN
consistently outperforms the baselines. It can be found
that the results of hypergraph learning methods and
directed graph methods are improved compared to
undirected graph methods, due to the rich and ac-
curate semantics in complicated structures. Based on
experimental results, it can be demonstrated that the
utilization of directed hypergraph methodology amal-
gamates the strengths of both hypergraphs and di-
rected graphs, leading to a significant performance en-
hancement.

Link prediction with latent features. In this ex-
periment, we take 64-dimensional embeddings as in-
put, and as shown in Table 3, our model outper-
forms all baselines in both AUC and AP metrics on
five datasets, with the highest improvement reaching
5.6854%, demonstrating its impressive effectiveness.
Without relying on explicit features, our method ef-
fectively learns latent node features with rich struc-
tural information and achieves strong predictive per-
formance.

It can be observed that the undirected graph meth-
ods lack effectiveness on directed datasets because of
aiming at undirected graphs. Although hypergraph
approaches are designed to extract hypergraph high-
order features, it has inherent drawbacks to directional
information learning. Moreover, the directed graph
methods preserve the direction signals, however, these
models have limited ability to capture higher-order
structural information. Directed graph and hyper-
graph methods outperform undirected graph methods

Directed Hypergraph Representation Learning for Link Prediction

Table 3: Performance comparison on Link Prediction task with 64-dimensional latent features, in terms of AUC
and AP averaged over 100 runs. The best results are in bold and the second are in underline. The data in the
table are presented as percentages(e.g., 74.62%).

Cora Citeseer Air Survey AM-Computers
Model AUC AP AUC AP AUC AP AUC AP AUC AP

GCN 74.62 76.27 67.94 70.30 71.43 73.11 86.17 87.23 90.38 89.56
GAT 82.58 84.60 74.01 77.51 80.24 81.46 91.05 91.65 91.14 90.41
GraphSAGE 85.72 83.97 75.65 76.62 82.03 79.19 87.35 85.38 93.17 93.27
PNA 86.24 86.73 75.48 75.92 84.38 83.85 89.97 88.91 93.19 93.02
HGNN 87.29 86.25 77.42 79.08 85.14 84.58 87.60 86.41 92.39 91.47
HNHN 85.81 84.70 77.83 78.56 83.57 80.50 87.47 85.92 93.18 93.39
HGNN+ 90.12 90.70 79.54 81.91 87.14 85.87 88.94 88.03 90.97 89.38
DiGCN 87.67 87.57 77.07 80.22 87.30 88.32 90.18 89.86 93.20 92.18
D-HYPR 88.10 90.70 76.85 82.65 86.46 87.43 91.95 92.96 93.10 92.73
DiGAE 82.67 83.28 72.53 75.15 80.21 79.97 86.17 83.96 91.85 84.96
Ours 91.95 93.38 84.06 86.37 89.13 89.15 93.20 93.65 95.81 95.18
Improve 2.09% 0.95% 2.04% 2.94% 1.37% 0.73% 2.81% 1.92% 5.68% 4.51%

in most evaluation cases. These observations indicate
that learning by incorporating both orientation and
higher-order information is compelling. Our method
is more effective than other methods for efficient mod-
eling and embedding learning on real-world data.

Fusion method. We conducted experiments on the
fusion function of the fusion module to compare the ef-
fectiveness of different fusion methods. Following the
approach in GIN(Xu et al., 2018), we employed mean
pooling, max pooling, sum pooling, and concatena-
tion to integrate embeddings from different convolu-
tion layers. The experimental results are reported in
Table 4, where it can be observed that the concatena-
tion method yielded the best performance. Concatena-
tion preserves the original embedding information to a
greater extent compared to the other fusion methods,
making it the most informative. Mean pooling may
lose some specific, non-average features as it treats all
features equally important. Max pooling only retains
the maximum values, which could be effective in cer-
tain scenarios, particularly when only the strongest or
most significant features are of interest, however, it
inevitably entails information loss. Sum pooling ag-
gregates all embedding values to obtain a new embed-
ding vector. While this method preserves information
from all features, it overlooks variations in importance
across different features. Hence, the concatenation
function serves as the embedding fusion method in the
experiments conducted within this paper.

6.3 Embedding Size Sensitivity

Figure 3 shows the link prediction results of DHGNN
in 4 to 64-dimensional initial node embeddings. We

Table 4: Performance comparison of different fusion
functions in the link prediction task of implicit fea-
tures(Concat represents the concatenate fusion func-
tion). The best results are in bold and the second are
in underlined. The data in the table are presented as
percentages(e.g., 89.44%).

Cora Citeseer
Model AUC AP AUC AP

Mean 89.44 91.65 82.20 84.38
Max 89.32 89.57 82.93 83.52
Sum 90.21 91.34 83.47 85.11
Concat 91.95 93.38 84.06 86.37

can draw a conclusion that the overall performance
is positively correlated to the size of the embedding
dimension. As the embedding dimension and the
amount of information contained increase, the predic-
tion performance improves. However, At high dimen-
sional embedding sizes such as 32 and 64, the perfor-
mance improvement rate is reduced and even shows
negative growth on some datasets due to the model
overfitting from a large amount of information. In gen-
eral, our method keeps stable when in most dimension
embeddings.

6.4 Ablation Study

We analyze the effectiveness of the embedding fusion
component by conducting experiments on link predic-
tion with latent features. As shown in Figure 4(a), the
model with fusion operation outperforms the model

Zitong Ma, Wenbo Zhao, Zhe Yang*

4 8 16 32 64
embedding size

65

70

75

80

85

90

95

100

A
U

C

Cora
Citeseer
Air
Survey
AM-C

(a)

4 8 16 32 64
embedding size

65

70

75

80

85

90

95

100

A
P

Cora
Citeseer
Air
Survey
AM-C

(b)

Figure 3: Results of different embedding dimensions.

Cora Citeseer Air Survey AM-C
Datasets

50

60

70

80

90

100

A
U

C
 &

 A
P

S-Embedding AUC
F-Embedding AUC
S-Embedding AP
F-Embedding AP

(a)

0.2 0.4 0.6 0.8 1.0
alpha

70

75

80

85

90

95

100

A
U

C
 &

 A
P

Cora-AUC
Cora-AP
Citeseer-AUC
Citeseer-AP

(b)

Figure 4: (a) The result of examining the fusion mod-
ule. F-embedding is to keep the fusion module, and
S-Embedding is to remove the fusion module. (b) Im-
pact of α to AUC and AP.

only with deep layer embedding over all datasets, espe-
cially the improvement on Citeseer is high to 12.96%.
We attribute the improvement to the multi-scale in-
formation aggregation during convolution, which the
single deep embedding does not consider. Such fu-
sion can prevent the current information from being
diluted during the message-passing process, leveraging
different granular information thus achieving effective
learning.

6.5 Parameter Analysis

We investigate the sensitivity of the transition proba-
bility α. As Figure 4(b) shows, the experimental per-
formance on the citation datasets is most prominent
and relatively stable when α ranges from [0.1, 0.5]. Re-
ferring to the previously mentioned in section 4, the
probability of a node transferring to the auxiliary node
will grow with the increase of α, and the approxima-
tion to the original directed hypergraph will be re-
duced. Therefore, we recommend keeping lower α in
the range of [0.1, 0.2] to retain structural information
and ensure performance.

7 CONCLUSION

In this study, we develop a framework DHGNN for link
prediction on directed hypergraph structure, which
provides a solution for directed hypergraph represen-
tation learning. DHGNN is capable to handle more
abundant and complex correlations compared with
normal graphs and hypergraphs. We demonstrate
the effectiveness of the proposed DHGNN in multiple
experiments, which is significantly competitive with
state-of-the-art models.

In the future, we will explore spatial convolution pat-
terns for directed hypergraphs. Furthermore, we will
investigate combining our model with existing models
to apply it in more complex scenarios.

Acknowledgements

This research was partially supported by the NSFC
(62376180, 62176175), Industry-University Coopera-
tion Collaborative Education Project of the Ministry
of Education of China (220606363154256), the Major
Project of Natural Science Research in Universities
of Jiangsu Province (21KJA520004), Suzhou Science
and Technology Development Program(SYG202328),
Project Funded by the Priority Academic Program De-
velopment of Jiangsu Higher Education Institutions.

References

Allamigeon, X. (2011). Strongly connected
components of directed hypergraphs. CoRR,
abs/1112.1444.

Ausiello, G. and Laura, L. (2017). Directed hyper-
graphs: Introduction and fundamental algorithms—a
survey. Theoretical Computer Science, 658:293–306.

Bahmani, B., Chowdhury, A., and Goel, A. (2010).
Fast incremental and personalized pagerank. arXiv
preprint arXiv:1006.2880.

Clauset, A., Moore, C., and Newman, M. E. (2008).
Hierarchical structure and the prediction of missing
links in networks. Nature, 453(7191):98–101.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and
Velickovic, P. (2020). Principal neighbourhood ag-
gregation for graph nets. In Proceedings of the 34th
International Conference on Neural Information Pro-
cessing Systems, pages 13260–13271.

Dong, Y., Sawin, W., and Bengio, Y. (2020). Hnhn:
hypergraph networks with hyperedge neurons. arXiv
preprint arXiv:2006.12278.

Directed Hypergraph Representation Learning for Link Prediction

Ducournau, A. and Bretto, A. (2014). Random walks
in directed hypergraphs and application to semi-
supervised image segmentation. Computer Vision
and Image Understanding, 120:91–102.

Feng, Y., You, H., Zhang, Z., Ji, R., and Gao, Y.
(2019). Hypergraph neural networks. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 33, pages 3558–3565.

Gallo, G., Longo, G., Pallottino, S., and Nguyen, S.
(1993). Directed hypergraphs and applications. Dis-
crete applied mathematics, 42(2-3):177–201.

Gao, Y., Feng, Y., Ji, S., and Ji, R. (2022). Hgnn +:
General hypergraph neural networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence.

Grover, A. and Leskovec, J. (2016). node2vec: Scal-
able feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 855–
864.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). In-
ductive representation learning on large graphs. Ad-
vances in neural information processing systems, 30.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and
Wang, M. (2020). Lightgcn: Simplifying and power-
ing graph convolution network for recommendation.
In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Informa-
tion Retrieval, pages 639–648.

Ji, S., Feng, Y., Ji, R., Zhao, X., Tang, W., and Gao,
Y. (2020). Dual channel hypergraph collaborative
filtering. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 2020–2029.

Khosla, M., Leonhardt, J., Nejdl, W., and Anand,
A. (2020). Node representation learning for directed
graphs. In Joint european conference on machine
learning and knowledge discovery in databases, pages
395–411. Springer.

Kipf, T. N. and Welling, M. (2016). Semi-supervised
classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907.

Kollias, G., Kalantzis, V., Idé, T., Lozano, A., and
Abe, N. (2022). Directed graph auto-encoders. In
AAAI Conference on Artificial Intelligence.

Kunegis, J. (2013). Konect: the koblenz network col-
lection. In Proceedings of the 22nd international con-
ference on world wide web, pages 1343–1350.

Liben-Nowell, D. and Kleinberg, J. (2003). The link
prediction problem for social networks. In Proceed-
ings of the twelfth international conference on Infor-
mation and knowledge management, pages 556–559.

Liu, W. and Lü, L. (2010). Link prediction based
on local random walk. EPL (europhysics Letters),
89(5):58007.

Moody, J. (2001). Peer influence groups: identify-
ing dense clusters in large networks. Social networks,
23(4):261–283.

Ou, M., Cui, P., Pei, J., Zhang, Z., and Zhu, W.
(2016). Asymmetric transitivity preserving graph em-
bedding. In Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1105–1114.

Rendle, S., Freudenthaler, C., Gantner, Z., and
Schmidt-Thieme, L. (2012). Bpr: Bayesian personal-
ized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618.

Rossi, R. and Ahmed, N. (2015). The network data
repository with interactive graph analytics and visu-
alization. In Twenty-ninth AAAI conference on arti-
ficial intelligence.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gal-
ligher, B., and Eliassi-Rad, T. (2008). Collective clas-
sification in network data. AI magazine, 29(3):93–93.

Shchur, O., Mumme, M., Bojchevski, A., and
Günnemann, S. (2018). Pitfalls of graph neural net-
work evaluation. arXiv preprint arXiv:1811.05868.

Tong, Z., Liang, Y., Sun, C., Li, X., Rosenblum, D.,
and Lim, A. (2020). Digraph inception convolutional
networks. Advances in neural information processing
systems, 33:17907–17918.

Tran, L. H. and Tran, L. H. (2020). Di-
rected hypergraph neural network. arXiv preprint
arXiv:2008.03626.

Veličković, P., Cucurull, G., Casanova, A., Romero,
A., Lio, P., and Bengio, Y. (2017). Graph attention
networks. arXiv preprint arXiv:1710.10903.

Wang, M., Liu, X., and Wu, X. (2015). Visual
classification by ℓ1-hypergraph modeling. IEEE
Transactions on Knowledge and Data Engineering,
27(9):2564–2574.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and
Weinberger, K. (2019). Simplifying graph convolu-
tional networks. In International conference on ma-
chine learning, pages 6861–6871. PMLR.

Zitong Ma, Wenbo Zhao, Zhe Yang*

Xiao, G., Liao, J., Tan, Z., Yu, Y., and Ge, B. (2022).
Hyperbolic directed hypergraph-based reasoning for
multi-hop kbqa. Mathematics, 10(20):3905.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018).
How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826.

Zhang, D., Yin, J., Zhu, X., and Zhang, C. (2018).
Network representation learning: A survey. IEEE
transactions on Big Data, 6(1):3–28.

Zhang, M. and Chen, Y. (2018). Link prediction
based on graph neural networks. Advances in neu-
ral information processing systems, 31.

Zhou, D., Huang, J., and Schölkopf, B. (2005). Learn-
ing from labeled and unlabeled data on a directed
graph. In Proceedings of the 22nd international con-
ference on Machine learning, pages 1036–1043.

Zhou, D., Huang, J., and Schölkopf, B. (2006). Learn-
ing with hypergraphs: Clustering, classification, and
embedding. Advances in neural information process-
ing systems, 19.

Zhou, H., Chegu, A., Sohn, S. S., Fu, Z., De Melo,
G., and Kapadia, M. (2022). D-hypr: Harnessing
neighborhood modeling and asymmetry preservation
for digraph representation learning. In Proceedings of
the 31st ACM International Conference on Informa-
tion & Knowledge Management, pages 2732–2742.

Zu, C., Gao, Y., Munsell, B., Kim, M., Peng, Z., Zhu,
Y., Gao, W., Zhang, D., Shen, D., and Wu, G. (2016).
Identifying high order brain connectome biomarkers
via learning on hypergraph. In International Work-
shop on Machine Learning in Medical Imaging, pages
1–9. Springer.

Checklist

The checklist follows the references. For each ques-
tion, choose your answer from the three possible op-
tions: Yes, No, Not Applicable. You are encouraged
to include a justification to your answer, either by ref-
erencing the appropriate section of your paper or pro-
viding a brief inline description (1-2 sentences). Please
do not modify the questions. Note that the Checklist
section does not count towards the page limit. Not
including the checklist in the first submission won’t
result in desk rejection, although in such case we will
ask you to upload it during the author response period
and include it in camera ready (if accepted).

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable] Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable] Yes

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]
Yes

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes/No/Not Applica-
ble] Yes

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable] Yes

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable] Yes

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes/No/Not Applicable] Yes

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable] Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes/No/Not Applicable]
Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [Yes/No/Not Applicable]
Yes

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes/No/Not Applicable] Yes

(b) The license information of the assets, if ap-
plicable. [Yes/No/Not Applicable] Yes

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable] Yes

(d) Information about consent from data
providers/curators. [Yes/No/Not Applica-
ble] Yes

Directed Hypergraph Representation Learning for Link Prediction

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partic-
ipants and screenshots. [Yes/No/Not Appli-
cable] Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Yes/No/Not
Applicable] Not Applicable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Yes/No/Not Applica-
ble] Not Applicable

Zitong Ma, Wenbo Zhao, Zhe Yang*

Directed Hypergraph Representation Learning for Link Prediction

A SUPPLEMENTARY EXPERIMENTS

Semi-supervised Node Classification. Table 5 shows the node classification results on Citation networks.
We report the average ACC(accuracy) of 100 runs on each dataset. Our method is determined to surpass
other methods on two datasets. As we can see, the hypergraph and digraph methods perform better compared
to undirected graphs since the datasets contain direction information and high-order information. DHGNN is
prone to transmit this information, which shows satisfactory suitability for complex datasets.

Table 5: Performance comparison on Node Classification in terms of ACC averaged over 10 random dataset
splits. The best results are highlighted with bold and the second are in underline.

Model Cora Citeseer

GCN 79.34% 70.38%
GAT 80.12% 70.76%
GraphSAGE 78.88% 68.26%
HGNN 81.20% 71.20%
HNHN 79.40% 68.86%
HGNN+ 80.62% 70.30%
DiGCN 80.58% 70.78%
Ours 83.08% 75.56%
Improve 2.32% 6.12%

Training Time. We compare the training speed of each model under the same training conditions and report
the time cost of training. Table 6 summarizes the training time per epoch. Our method performs well compared
to most methods, our model training time is insignificantly different from most methods on small datasets,
but shows advantages on large datasets. Notice that the DiGAE is much faster than other methods because
the encoder and decoder are designed efficiently, there are fewer elements in the matrix multiplication, and
the operation time is considerably shortened. Despite low training time cost, DiGAE is barely satisfactory in
prediction with the latent feature.

Table 6: Average training time cost per epoch in second(s).

Model Cora Citesser Air Survey AM-Computers

GCN 0.42 0.43 0.17 0.78 16.33
GAT 0.53 0.57 0.22 0.91 18.98
GraphSAGE 0.41 0.44 0.17 0.76 16.75
HGNN 0.44 0.46 0.17 0.76 16.25
HNHN 0.43 0.45 0.18 0.77 16.45
HGNN+ 0.42 0.46 0.18 0.80 17.09
DiGCN 0.53 0.55 0.25 0.91 20.65
D-HYPR 1.79 2.02 0.54 1.70 34.50
DiGAE 0.04 0.06 0.02 0.08 1.70
Ours 0.37 0.44 0.13 0.51 10.34

Directed Hypergraph Representation Learning for Link Prediction

Convergence. Figure 5 shows the convergence curve of DHGNN on all datasets. From the results, we can
observe that the loss function of DHGNN achieves stability requires about 60 epochs.

0 50 100 150 200 250 300
epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

Cora
Citeseer
Air
Survey
AM-C

Figure 5: Convergence speed curves of loss function on each dataset.

B HYPERPARAMETERS SETTINGS

The hyperparameters is tuned by grid search: learning rates lr ∈ {0.1, 0.01, 0.001}, weight decays ω ∈
{0.0001, 0.0003, 0.0005}, dropout rates dp ∈ {0.1, 0.3, 0.5, 0.9}. Moreover, model-specific critical hyperparam-
eters are taken into account as well. For GAT, the number of attention heads is from h ∈ {4, 8}; for D-HYPR,
the k-order proximity is tuned from {1, 2, 3} and λ is from {0.5, 1, 1.5}; for DiGCN, the teleport probability
in {0.05, 0.1, 0.15} and the kth-order proximity is in {1, 2, 3}; for DiGAE, the degrees in message passing from
{0.0, 0.2, 0.4}.

C DIRECTED HYPERGRAPH CONSTRUCTION

We provide the reference of the dataset and the construction approach of the directed hypergraph. Air(Kunegis,
2013) is aviation routes. We define the airport as a node, the flight route as a hyperarc, etail contains a departure
airport, and the ehead contains multiple arrival airports. Survey(Moody, 2001) is a social network. We take the
user as the node, the trust relationship as the hyperarc, etail as a user, and etail as all other users set trusted by
the user. Cora(Sen et al., 2008) and Citeseer(Rossi and Ahmed, 2015) are citation network datasets. We portray
articles as nodes, citation relationships as hyperarcs, etail as one article, and ehead as all the articles cited by
it. AM-computer(Shchur et al., 2018) is the purchase network. The items are defined as nodes, the purchase
orders are defined as hyperarcs, etail contains a currently purchased product, and ehead contains the products
purchased immediately after it.

D DERIVATION

In this section, we present the detailed proof of Section 4.1.

In Section 4.1, we provide the equation vol∂S = vol∂Sc, the following is the proof process:

We know that vol∂S =
∑
e∈∂S,[u,v]∈e π(u)p(u, v) and vol∂S

c =
∑
e∈∂Sc,[u,v]∈e π(u)p(u, v), thus the problem is to

verify that the two formulas are equal. First, assume a vertex v ∈ S, the probability of one step random walk to
Sc is ∑

v→u

π(v)p(v, u) = π(v)
∑
v→u

p(v, u) = π(v),

Zitong Ma, Wenbo Zhao, Zhe Yang*

and the probability that from Sc to vertex v is∑
u→v

π(u)p(u, v) = π(v).

It is easy to see that
∑
v→u π(v)p(v, u) =

∑
u→v π(u)p(u, v) = π(v), Then for all vertices in S we have that∑

v∈S
(
∑
v→u

π(v)p(v, u)) =
∑

[u,v]∈∂S

π(u)p(u, v),

∑
v∈S

(
∑
u→v

π(u)p(u, v)) =
∑

[u,v]∈∂Sc

π(u)p(u, v),

∑
v∈S

(
∑
v→u

π(v)p(v, u)−
∑
u→v

π(u)p(u, v)) =
∑

[u,v]∈∂S

π(u)p(u, v)−
∑

[u,v]∈∂Sc

π(u)p(u, v) = 0.

As previously mentioned, from (Zhou et al., 2005), we can formalize the cut as

argmin
x∈S

c(S) = vol∂S(
1

volS
+

1

volSc
). (5)

which is a generalization of the normalized cut criterion for directed graphs. The Optimization objective aims to
obtain a partition that maximizes the probability of staying in the same cluster and minimizes the probability
of crossing different clusters as possible.

Define an indicator function h with that h(v) = 1 if v ∈ S and −1 otherwise. Let t denote the volume of S, we
can written (5) as

c(S) =
∑
e∈E

∑
[u,v]∈e

π(u)p(u, v)
(h(u)− h(v))2

4
(
1

t
+

1

1− t
)

=

∑
e∈E

∑
[u,v]∈e π(u)p(u, v)(h(u)− h(v))2

4t(1− t)
.

Then define another function g by g(v) = 2(1− t) if v ∈ S and −2t otherwise. We can find that h(u)− h(v) =
g(u)− g(v), and it is not hard to know that∑

v∈V
π(v)g(v) =

∑
v∈S

π(v)g(v) +
∑
v∈Sc

π(v)g(v)

= t · 2(1− t) + (1− t) · (−2t)

= 0,

∑
v∈V

π(v)g2(v) =
∑
v∈S

π(v)g2(v) +
∑
v∈Sc

π(v)g2(v)

= t · 4(1− t)2 + (1− t) · 4t2

= 4t(1− t).

Moreover, the c(S) may be written

c(S) =

∑
e∈E

∑
[u,v]∈e π(u)p(u, v)(g(u)− g(v))2∑

v∈V π(v)g
2(v)

.

Then we define function f =
√
πg, thus the above can be concluded that

argmin
f

Ω(f) =

∑
e∈E

∑
[u,v]∈e π(u)p(u, v)(

f(u)√
π(u)

− f(v)√
π(v)

)2

2f(u)f(v)

subject to
∑
v∈V

f2(v) = 1,
∑
v∈V

f(v)
√
π(v) = 0.

(6)

Directed Hypergraph Representation Learning for Link Prediction

Let Θ = Π1/2PΠ−1/2+Π−1/2PΠ1/2

2 ,∆ = I −Θ, where I denotes the identity matrix, the numerator of optimization
problem (6) can be verified to Ω(f) = 2fT∆f .

Divide the Formula into two parts, each part describes different directions of hyperarc.

1

2

∑
e∈E

∑
[u,v]∈e

π(u)p(u, v)(
f(u)√
π(u)

− f(v)√
π(v)

)2

=
1

2

∑
v∈V

∑
e∈E

[
∑
u→v

π(u)p(u, v)(
f(u)√
π(u)

− f(v)√
π(v)

)2

+
∑
v→u

π(v)p(v, u)(
f(v)√
π(v)

− f(u)√
π(u)

)2]

=
1

2

∑
v∈V

∑
e∈E

{[
∑
u→v

p(u, v)f2(u) +
∑
u→v

π(u)p(u, v)

π(v)
f2(v)− 2

∑
u→v

π(u)p(u, v)√
π(u)π(v)

f(u)f(v)]

+ [
∑
v→u

p(v, u)f2(v) +
∑
v→u

π(v)p(v, u)

π(u)
f2(u)− 2

∑
v→u

π(v)p(v, u)√
π(v)π(u)

f(u)f(v)]}.

Moreover, for the first term we can see that∑
u∈V

∑
u→v

p(u, v)f2(u) =
∑
u∈V

(
∑
u→v

p(u, v))f2(u)

=
∑
u∈V

f2(u) =
∑
v∈V

f2(v),

∑
v∈V

∑
u→v

π(u)p(u, v)

π(v)
f2(v) =

∑
u→v

π(v)

π(v)
f2(v) =

∑
v∈V

f2(v).

Similarly, for the second term, we have that∑
v∈V

∑
v→u

p(v, u)f2(v) =
∑
v∈V

f (v),

∑
v∈V

∑
v→u

π(v)p(v, u)

π(u)
f2(u) =

∑
v∈V

f2(v).

Thus, we rewrite the optimization function as

Ω(f) =
1

2
(4f2(v)− 2

∑
v→u

π(v)p(v, u)√
π(v)π(u)

f(u)f(v)− 2
∑
u→v

π(u)p(u, v)√
π(u)π(v)

f(u)f(v))

= 2
∑
v∈V

{
f2(v)− f(u)π(u)1/2p(u, v)π(v)−1/2f(v) + f2(v)− f(u)π(u)−1/2p(v, u)π(v)1/2f(v)

2

}
.

By denoting that with matrix notation, the problem reduces to

Ω(f) = 2fT∆f,

as desired.

