
Holographic Global Convolutional Networks for Long-Range
Prediction Tasks in Malware Detection

Mohammad Mahmudul Alam1 Edward Raff1,2 Stella Biderman2

Tim Oates1 James Holt3
1 University of Maryland, Baltimore County 2 Booz Allen Hamilton 3 Laboratory for Physical Sciences

Abstract

Malware detection is an interesting and valu-
able domain to work in because it has signif-
icant real-world impact and unique machine-
learning challenges. We investigate existing
long-range techniques and benchmarks and
find that they’re not very suitable in this
problem area. In this paper, we introduce
Holographic Global Convolutional Networks
(HGConv) that utilize the properties of Holo-
graphic Reduced Representations (HRR) to
encode and decode features from sequence
elements. Unlike other global convolutional
methods, our method does not require any
intricate kernel computation or crafted kernel
design. HGConv kernels are defined as sim-
ple parameters learned through backpropaga-
tion. The proposed method has achieved new
SOTA results on Microsoft Malware Classifi-
cation Challenge, Drebin, and EMBER mal-
ware benchmarks. With log-linear complex-
ity in sequence length, the empirical results
demonstrate substantially faster run-time by
HGConv compared to other methods achiev-
ing far more efficient scaling even with se-
quence length ≥ 100, 000.

1 Introduction

Ever since the transformer (Vaswani et al., 2017)
revolutionized natural language processing research
(Brown et al., 2020; Devlin et al., 2018; Raffel et al.,
2020), significant attention has been paid to the
quadratic cost of increasing sequence length. While

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

traditional academic benchmarks tend to not require
sequence lengths beyond 4096, many real-world ap-
plications such as multi-round chat (Team, 2023; Yao
et al., 2023), biological sequence modeling (Ahdritz
et al., 2022; Avsec et al., 2021; Dalla-Torre et al., 2023;
Jumper et al., 2020; Lin et al., 2022), and analyzing
computer programs (Alam et al., 2023a; Muennighoff
et al., 2023; Rozière et al., 2023) do. The unique
challenges, data, and sequence dynamics that occur
within each application can have a significant effect
on what techniques work well, which is not well eluci-
dated within the current Transformer literature.

In this paper we are concerned with malware classifi-
cation using byte-level representations of executables
(Raff and Nicholas, 2017b), a task that can require
sequence lengths of up to 200 million in common real-
world scenarios. Though we are not able to process
this extreme length in its entirety, we focus on it as an
important research direction to test and develop algo-
rithms for long-sequence task modeling. In particular,
we find that some popular benchmarks from natural
language processing are not well correlated with im-
provement in malware detection tasks. Thus, we find
it necessary to develop new architectures, which we
do by incorporating aspects of classical neuro-symbolic
methods like the Holographic Reduced Representation
(HRR) (Plate, 1995).

1.1 Malware Detection

Two predominant types of malware detection tasks
exist: distinguishing malicious programs from benign
and distinguishing a known malicious file into unique
families of malware. Both of these tasks are relevant
to real-world cyber security and are complicated by
the long-range interactions, spatial and non-spatial lo-
cality, exhibited within binary sequences (Raff and
Nicholas, 2020). Because ML algorithms can not usu-
ally handle more than a few thousand tokens of se-
quence length, the field has relied heavily on man-

Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection

ually designed hash functions (Botacin et al., 2021;
Breitinger et al., 2013; Lillis et al., 2017; Oliver et al.,
2013; Raff and Nicholas, 2018b; Roussev, 2009; Winter
et al., 2013). In this work we will push deep learning-
based sequence modeling to over 100,000 tokens, and
longer sequences will be truncated down. Though this
does not yet reach the full possible sequence length, it
serves as a real-world task to determine the efficacy of
our methods.

1.2 Efficient Transformer-Based Models

The quadratic cost of attention has motivated sub-
stantial research into more efficient architectures that
maintain the performance of transformers. For
smaller-scale models, there are a wide variety of such
architectures (Choromanski et al., 2020; Katharopou-
los et al., 2020; Ma et al., 2021; Wang et al., 2020;
Zaheer et al., 2020), however they are limited by their
inability to be scaled and match the performance of
traditional transformers.

Another approach to the quadratic run-time of atten-
tion that’s gained popularity lately has been to sim-
ply pay it. Newer kernels for attention are reasonably
fast in practice (Dao, 2023; Dao et al., 2022) and new
techniques for extending context length during post-
training (Chen et al., 2023; Peng et al., 2023b; Rozière
et al., 2023). However the expense of such models is
impractical for many applications, as while they sub-
stantially decrease the costs associated with training
long-context models they do not substantially decrease
the memory overhead at inference time. This is essen-
tial because for most applications the primary bottle-
neck is GPU VRAM and not raw computing power.

1.3 Non-Transformer Models for Sequences

Recent research has also raised the prospect of alter-
natives to the transformer architecture for sequence-
based tasks. Foremost among these are state-space
models, S4 (Gu et al., 2021) and its variants (Gu et al.,
2020; Li et al., 2022; Poli et al., 2023) which have
achieved impressive performance on language and vi-
sion tasks. Previous work in malware detection has
independently developed larger-width convolutions on
the order of 128-256 wide kernels, followed by temporal
pooling (Raff et al., 2021; Raff and Nicholas, 2017b)

Simultaneously with this work, non-transformer ar-
chitectures with more efficient inference-time context
length scaling have begun to match the performance of
transformers on natural language tasks(Gu and Dao,
2023; Peng et al., 2023a) and pose an interesting area
of exploration for future work in malware detection
and other long-sequence problems.

1.4 Our Contributions

Our primary contributions are as follows:

1. We introduce HGConv, a novel fusion of previous
architectures (Li et al., 2022; Plate, 1995) that
achieves state-of-the-art performance on three
standard malware classification benchmarks, and
furthermore achieves its excellent performance
with lower inter-run variance.

2. We introduce novel algorithmic optimizations
that enable HGConv to run substantially faster
and with lower memory overhead than other
global convolutional models.

3. We show that the widely used Long Range Arena
(LRA) (Tay et al., 2020) benchmark is a poor
proxy for performance at malware classification,
despite the fact that it is a task that requires rea-
soning about long contexts. This underlines the
need for using domain-specific benchmarks whose
construct validity has been validated in the real
world instead of “general performance” bench-
marks.

2 Methodology

In convolution, inputs are convolved with kernels or
filters. Recent works have demonstrated the potential
of global convolution in sequence modeling yet intri-
cate kernel computation requires custom CUDA exten-
sions to run (Gu et al., 2021) or crafted kernel design
trying to make an approximation of the S4 kernel for
each task (Li et al., 2022). In this paper, we focus on
building a neuro-symbolic mechanism where kernels
are defined as parameters and learned through auto-
differentiation eliminating the necessity of intricate
and detailed computations and task-specific kernel de-
sign. Before going over the details of the proposed HG-
Conv, first we will give a brief overview of the HRR,
and its properties, then the proposed method will be
elaborated and finally, the algorithmic complexity will
be delineated. Our implementation can be found at
https://github.com/FutureComputing4AI/HGConv.

2.1 Holographic Reduced Representations

Holographic Reduced Representations (HRR) is a type
of vector symbolic architecture (VSA) that represents
compositional structure using circular convolution in
distributed representations (Plate, 1995). In HRR,
vector representations of properties and values can be
combined together using circular convolution, and has
been successfully used in recent literature (Alam et al.,
2023b, 2022; Menet et al., 2023).

https://github.com/FutureComputing4AI/HGConv

Alam, Raff, Biderman, Oates, Holt

For instance, the color and shape of a red circle can
be stored in a compressed representation using bind-
ing operation () and additive properties of HRR by
simply b = color red+shape circle. Here the ab-
stract concepts “color”, “red”, “shape”, and “circle”
are arbitrarily assigned to a d dimensional vector. The
method of retrieving knowledge from this compressed
representation is known as unbinding which is similar
to binding operation with the inverse of a vector rep-
resentation. Given vectors xi, yi of dimension d, the
binding operation is defined in Equation 1.

B = xi yi = F−1(F(xi) ⊙F(yi)) (1)

Here, F(·) and F−1(·) refer to Fast Fourier Transform
(FFT) and its inverse, respectively. To retrieve xi com-
ponent from bound representation B, the same binding
operation is performed with the inverse of the yi vector
component defined in Equation 2.

y†i = F−1(
1

F(yi)
) (2)

To extract the shape of the object in our example
from b, the unbinding operation is performed as b
shape† ≈ circle. Similarly, the same concept can be
utilized to encode features by binding and decode by
unbinding.

2.2 Holographic Global Convolutional
Networks

We will learn both sequence-wise and depth-wise by
integrating binding, global circular convolution, and
unbinding operations subsequently. The filters for all
the operations will be defined as parameters. First, the
binding will be applied along the features which will
encode kernel features with input features. Next, a
global convolution will be applied along the elements
of the sequence which will inter-mix the features of
each sequence element. Finally, unbinding will decode
the necessary useful features for learning. Since the
binding step encodes the filter features to the input
features, it will be denoted as the Encoder (E). For
conciseness, circular convolution will be referred to as
Conv or Convolution (C) unless otherwise specified,
and likewise, the unbinding step will be deemed the
Decoder (D).

Given an input sequence of i-th layer Xi ∈ RT×H

has T tokens each having H dimensional features,
we will define three filter weights WE

i ∈ RH ,WC
i ∈

RK×H ,WD
i ∈ RH for encoder, convolution, and de-

coder, respectively where K is the kernel dimension
and K ≤ T . WC

i will be padded by zero up to maxi-
mum sequence length T to perform global convolution.

The input features are encoded with encoder filter WE
i

using binding given in Equation 3 and Equation 4 1.
Here, each m-th element of feature vector yn of Yi is a
linear combination of features where ∀ n,m ∈ N : 0 ≤
n ≤ T − 1, 0 ≤ m ≤ H − 1. The encoder step does not
mix or alter the sequence elements. The sole attention
is put on feature learning.

Yi = Xi WE
i ∈ RT×H (3)

yn[m] =

H−1∑
j=0

xn[j] we
n[((m− j))H] (4)

After learning the features, the encoded features of
each element are mixed with weighted input features,
i.e., kernel WC

i using convolution given in Equation 5.
Each feature vector h[n] of the convolution layer is
a linear weighted combination of encoded features of
the tokens expressed in Equation 6 and Equation 7.
To include a bias term, a weight WB

i ∈ RH is defined
which is elementwise multiplied with Yi is added, and
consecutively a gelu (Hendrycks and Gimpel, 2016) is
applied.

Hi = Yi ⊛WC
i + Yi ⊗WB

i ∈ RT×H (5)

Yi ⊛WC
i : h[n] =

T−1∑
j=0

y[j] wc[((n− j))T] (6)

h[n] = y0w
c
n + y1w

c
n−1 + · · · + ynw

c
0+

yn+1w
c
T−1 + yn+2w

c
T−2 + · · · + yT−1w

c
n+1

(7)

Since unbinding can extract information from the
added feature vectors, it will be utilized to decode use-
ful features from the convolutional step. Given that
features are mixed regardless of their significance, by
learning appropriate kernels, the most important fea-
tures can be extracted using unbinding. Specifically,
the unbinding step is expected to learn to get rid of
overmixed or unnecessarily mixed element features.

Zi = Hi WD
i

† ∈ RT×H (8)

zn[m] =

H−1∑
j=0

hn[j] wd
n[((m− j))H] (9)

The extracted features are processed by a gated lin-
ear unit (GLU) (Dauphin et al., 2017) given in Equa-
tion 10 and subsequently a dropout layer is used. Wα

i

and Wβ
i are the weights are GLU unit and σ is the

sigmoid activation.

Gi = Wα
i Zi ⊙ σ(Wβ

i Zi) (10)

1 Notations:
→ binding ops

⊛ → circular convolution
⊙ → elementwise multiplication

Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection

𝑥1𝑥0 𝑥2 𝑥𝑇−1

Dropout

Norm

Embedding

UnbindBind Conv Dropout Norm

GLU
𝑾𝑖

𝐸 𝑾𝑖
𝐶 𝑾𝑖

𝐷

skip

GAPLinearSoftmaxCross Entropy Loss

Dropout

Figure 1: The block diagram of the proposed method. The dotted region shows a single layer of the proposed
network which is repeated N times. In the figure, prenorm is applied. In the case of postnorm, normalization is
applied after the GLU layer before the skip connection.

Finally, a skip connection is used by adding the unper-
turbed input Xi to the processed feature from GLU
unit Gi. The output of the i-th layer Xi+1 can be fed
to the next layer the process can be repeated N times
to extract the deeper features by the combinations of
bind → conv → unbind → glu units in each layer to
improve the performance of the network.

Xi+1 = Gi + Xi (11)

A generic block diagram of the proposed method is
presented in Figure 1. In the embedding layer, both
word and position embeddings are used and added to-
gether. For normalized floating point inputs, a linear
layer is used in place of word embedding. In the norm
layer, either layer normalization (Ba et al., 2016) or
batch normalization (Ioffe and Szegedy, 2015) can be
employed. The global average pooling (GAP) is ap-
plied to the output of the N -th layer which is subse-
quently fed to a linear layer with a feature size the
same as the number of classes. The loss is calculated
using the softmax cross-entropy loss function which
is optimized using the Adam optimizer where a co-
sine decay learning rate scheduler with warmup is em-
ployed.

2.3 Algorithmic Complexity

The time complexity of the main three layers,
i.e., binding, convolution, and unbinding are O(T ·
H logH), O(T log T · H), and O(T · H logH), re-
spectively. Therefore, the overall time complexity
is O(T log T) log-linear with respect to the sequence
length T . Since in all the layers, the shape of the ten-
sors is T × H, the space complexity is O(T) linear.
Feature dimension H is assumed to be constant. A
step-by-step breakdown of the time and space com-

plexity is given in Equation 12 and Equation 13.

Time Complexity

= O(T ·H logH + T log T ·H + T ·H logH)

= O(2 × T ·H logH + T log T ·H)

= O(T + T log T) [H is constant]

= O(T · {1 + log T})

= O(T log T) log-linear

(12)

Space Complexity

= O(T ·H)

= O(T) linear [H is constant]

(13)

3 Experiments and Results

In this paper, we are proposing a neuro-symbolic
method of sequence processing that encode feature,
convolve along all the sequence elements, and finally
decode necessary features compensating for overmix-
ing. To validate the proposed method, experiments
are performed focusing on practical applications where
long sequences are a common phenomenon such as
malware classification where sequence length can reach
up to ≈ 200M. In our experiments, we will adopt well-
known malware classification benchmarks such as the
Microsoft Windows Malware benchmark that comes
from the 2015 Kaggle competition (Panconesi et al.,
2015), Android application packages (APK) Malware
benchmark from Drebin dataset (Arp et al., 2014), and
EMBER malware classification benchmark (Anderson
and Roth, 2018). As will be seen in the results, in
most cases existing hash-based algorithms that have no
learning phase outperform existing Transformer and
similar long-sequence learning algorithms.

Kaggle Microsoft Malware Classification Challenge
(BIG 2015) hosted on Kaggle (Panconesi et al., 2015)
is a benchmark of 9 Windows malware families. The
dataset contains 10, 868 samples total uncompressed
size of 184 GB which is split into train and test set by

Alam, Raff, Biderman, Oates, Holt

80−20 ratio per class by random sampling. Each of the
data samples comes in two different forms, in one form
it is the raw binary of the original executables referred
to as Kaggle Raw of size 47 GB, and in another
form, it is the human-readable assembly referred to as
Kaggle Asm of size 137 GB. Asm files are generated
by IDA Pro which contains additional features that
seem to make it easier to learn. However, it is also
≈ 3× larger with longer sequence lengths than Raw
files, thus, balancing the difficulty of the dataset.

Drebin Android APK namely Drebin (Arp et al.,
2014) is a benchmark of 178 malware families contain-
ing 5, 560 samples total uncompressed size of 16 GB.
Nevertheless, 70% of the families contains less than 10
samples and 88.8% of the families contains less than 40
samples. Therefore, to be able to learn from enough
data, in our experiments we have utilized top 20 mal-
ware families containing 4, 664 samples of size 14 GB
which is split into train and test set by 80 − 20 ra-
tio per class. The original data of the dataset is in
APK format which is referred to as Drebin Apk of
size 6 GB. Like Kaggle, another version of the dataset
is built by converting the APK files to uncompressed
TAR files which have a size of 8 GB and are referred
to as Drebin Tar. Since the difference between the
samples is the amount of compression, it will be use-
ful to understand how compression is handled by each
algorithm.

EMBER EMBER is binary malware classification
benchmark (Anderson and Roth, 2018) containing
800K samples of Windows executable files of total 1.02
TB of size. Among them, the training split contains
300K benign and 300K malicious files of a total size
of 826 GB. On the other hand, the test split contains
100K benign and 100K malicious files of a total size
of 220 GB. Although the sequence length of the files
in the EMBER dataset can be over 100M long which
is not practical to process by any sequence model, we
start our experiments with a relatively shorter length
of 256 (28) which is exponentially incremented until
131, 072 (217). Since most of the important features
are encoded at the beginning of the sequence, we could
not see any benefit of using a much longer sequence
length than 217.

3.1 Training

The sequences of inputs are padded or truncated up to
the maximum sequence length to train the proposed
HGConv network. To suppress the embedding for the
padded tokens binary mask is produced and multiplied
by the embedding matrix. In the convolutional step,
the kernel dimension K can be smaller than the ac-
tual sequence length which is also padded with zeros

up to the maximum sequence length T to perform FFT
convolution. Since all the tasks are essentially classifi-
cation, to train the network, the softmax cross-entropy
loss function is employed which is optimized using the
Adam optimizer with cosine scheduler learning rate.
Moreover, label smoothing is applied with a smooth-
ing factor α = 0.1. The hyperparameter used in each
of the tasks is fine-tuned and optimized. The list of
the hyperparameters used in each task is presented in
Appendix A. The training is performed on a single
node 16 NVIDIA TESLA PH402 32GB GPU machine
where the mean of the gradient from each machine is
used to update the parameters.

3.2 Evaluations

To evaluate the performance, the proposed HGConv
is compared with other state-of-the-art (SOTA) se-
quence models. For Kaggle and Drebin datasets,
the proposed method is compared with non-attention-
based processors such as Lempel-Ziv Jaccard Distance
(LZJD) (Edward Raff et al., 2019; Raff and Nicholas,
2018a, 2017a), Stochastic Hashed Weighted Lempel-
Ziv (SHWeL) (Raff and Nicholas, 2017b), attention-
based processors such as Transformer (Vaswani
et al., 2017), Performer (Choromanski et al., 2020),
Hrrformer (Alam et al., 2023a), and state space model
based processors S4 (Gu et al., 2021) and SGConv (Li
et al., 2022). Other compression-based methods like
Burrows-Wheeler Markov Distance (BWMD) (Raff
et al., 2020) and Lempel-Ziv Networks (Saul et al.,
2023) were not considered due to lower accuracy com-
pared to the selected baselines, and their other ben-
efits are not a focus of this work. Table 1 shows
the mean accuracy with standard deviation for 10-fold
cross-validation for each of the methods. Among all
the methods, the proposed HGConv achieved the best
results for all the datasets with the smallest standard
deviation. It is also the only method to out-perform
the existing hash-based approaches, showing how ex-
isting methods did not adequately learn from long se-
quence problems. In terms of fluctuation among the
models, the variation in the results of Drebin Apk
is the most noticeable. Figure 3 shows the UMAP
3D representation (McInnes et al., 2018; Nolet et al.,
2021) of the output of the penultimate layer of all the
models which reveals the clustering patterns. HGConv
has visibly better clusters which makes the final layer
classifier predict correctly. Moreover, qualitative in-
spection shows that models that perform better gen-
erally show clearer and better separated clusters, with
HGConv in particular showing the best clustering be-
havior.

EMBER is a benchmark with very long sequences. In
our experiments, we started with a moderate sequence

Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection

29 210 211 212 213 214 215 216 217

Maximum Sequence Length

77

79

81

83

85

87

89

91

93

A
cc

ur
ac

y
(%

)

OOM

OOT

OOT

OOT

Transformer

H-Trans 1D

S4

SGConv

F-Net

Hrrformer

HGConv

Transformer

H-Trans 1D

S4

SGConv

F-Net

Hrrformer

HGConv

29 210 211 212 213 214 215 216 217

Maximum Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
ti

on
T

im
e

(s
)

×104

OOM

OOT

OOTOOT

O(T 2)

O(T)

O(T log T)

O(T log T)

O(T)

O(T)

O(T log T)

O(T 2)

O(T)

O(T log T)

O(T log T)

O(T)

O(T)

O(T log T)

Figure 2: Ember long sequence malware classification results. In the figure, OOT and OOM stand for out-of-
time and memory shown for models that face such issues after a particular sequence length. The figure shows
a shorter comparison. A broader comparison with additional models Linformer (Wang et al., 2020), Performer
(Choromanski et al., 2020), and F-Net (Lee-Thorp et al., 2021) and numeric results are presented in Appendix C.

Figure 3: Drebin Apk dataset in the benchmark has the most variation in the results across the models. The
figure shows the UMAP 3D representation of the output from the penultimate layer of all the models for Drebin
Apk. The better the clusters the higher the accuracy.

Alam, Raff, Biderman, Oates, Holt

Table 1: Results of 10-fold cross-validation on Kaggle Microsoft Malware Classification Challenge and Drebin
Android Malware classification. Values inside the parenthesis are standard deviations. Also, for both of the
datasets, the training time per epoch is provided in seconds.

Model
Kaggle
Raw

Kaggle
Asm

Kaggle
Time

Drebin
Apk

Drebin
Tar

Drebin
Time

LZJD (Raff and Nicholas, 2017a) 97.6 (1.50) 97.1 (6.10) – 80.8 (2.60) 81.0 (6.50) –

1NN-SHWeL (Raff and Nicholas, 2017b) 97.6 (1.38) 97.3 (1.93) – 83.6 (1.94) 87.9 (1.84) –

LR-SHWeL (Raff and Nicholas, 2017b) 96.7 (2.07) 96.9 (2.08) – 78.4 (2.26) 89.1 (2.29) –

Transformer (Vaswani et al., 2017) 72.68 (3.77) 95.60 (1.52) 31.55 40.13 (6.11) 69.50 (2.67) 15.90

F-Net (Lee-Thorp et al., 2021) 93.17 (1.08) 95.74 (1.03) 6.54 69.41 (1.81) 80.98 (1.22) 4.73

Luna-256 (Ma et al., 2021) 89.50 (0.89) 93.47 (0.96) 26.19 24.30 (2.36) 56.42 (7.90) 16.49

H-Transformer (Zhu and Soricut, 2021) 92.78 (0.49) 98.07 (0.29) 117.53 71.85 (0.84) 87.40 (0.70) 99.64

Performer (Choromanski et al., 2020) 94.63 (0.79) 97.66 (0.48) 37.08 70.44 (3.65) 82.38 (1.12) 18.31

Hrrformer (Alam et al., 2023a) 94.41 (0.57) 98.52 (0.23) 7.35 57.28 (3.80) 84.07 (1.03) 5.42

S4 (Gu et al., 2021) 96.44 (0.41) 98.66 (0.32) 17.51 88.38 (1.69) 87.94 (1.05) 14.97

SGConv (Li et al., 2022) 95.13 (0.91) 98.12 (0.56) 24.37 76.23 (3.14) 80.04 (4.33) 24.37

HGConv 98.86 (0.12) 99.63 (0.14) 5.86 90.15 (0.47) 91.86 (0.35) 3.63

length of 256 (28) and incremented up to 131, 072 (217)
and computed the accuracy and execution time for
each sequence length which is presented in Figure 2.
For practical reasons, we have set a maximum limit of
10, 000 seconds per epoch. If a method takes more
than that is marked as out-of-time (OOT). If the
model and data can not be put onto the memory for
a particular sequence length that is marked as out-
of-memory (OOM) in the figure. HGConv not only
achieves the best accuracy but also takes the least
amount of time among all the compared methods. The
full comparison and all the numerical results are pre-
sented in Appendix C. We also find that HGConv runs
substantially faster than all other methods, achieving
far more efficient scaling despite the increased theoret-
ical complexity compared to Hrrformer and F-Net.

4 Long Range Arena Does Not
Predict EMBER Reliably

Recent work on benchmarking large language mod-
els (Gao et al., 2021; Raji et al., 2021) has ques-
tioned the construct validity of the widespread prac-
tice of assuming that “diverse” acontextual bench-
marks are indicative of performance on tasks of inter-
est. For long-context models, this is exemplified by the
widespread use of the Long Range Arena (Tay et al.,
2020), which contains tasks that evaluate parsing long
expressions, classifying movie reviews, assessing text
similarity, classifying flattened CIFAR-10 images, and
identifying if two points are connected by a long path.
Despite the lack of relevance of these tasks to their
application domains, LRA scores have been used to
motivate architectural design choices in work in ge-
nomics (Nguyen et al., 2023; Romero and Zeghidour,

2023), analyzing ECGs (Zama and Schwenker, 2023),
speech enhancement (Du et al., 2023), and reinforce-
ment learning (Lu et al., 2023).

Long Range Arena (LRA) is a benchmark of 6 tasks
covering diverse problem areas with different modali-
ties. The ListOps task deals with the hierarchically
structured data of mathematical operations with de-
limiters with 96K training and 2K test data. In Text
task, IMDB movie review (Maas et al., 2011) text
dataset is employed. Classification is performed char-
acter level to include additional complexity. The task
has a balanced train-test split of size 25K. The Re-
trieval task models the textual similarity of two doc-
uments for which the ACL Anthology Network (AAN)
(Radev et al., 2013) dataset is utilized with 147K
training and 17K test samples. Image task comprises
of grayscale sequential CIFAR-10 image classification
that puts the hurdle of 2D spatial relations into a
1D sequence of pixels. Finally, the Pathfinder and
Path-X are the binary classification tasks containing
grayscale images of dotted lines and circles connected
or disconnected introduced in (Linsley et al., 2018).
The difference between them is the sequence length
from 1K to 16K both containing 160K training and
20K test samples.

We investigate the Long Range Arena and find that
average performance is uncorrelated with performance
on any of our malware tasks. While performance be-
tween LRA tasks is highly correlated with one another,
they all correlate far worse with performance on mal-
ware task benchmarks shown in Figure 4.

In terms of performance, in text classification, HG-
Conv achieved the second-best score of 88.15% and
overall third-based average accuracy of 81.13% in the

Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection

Table 2: LRA benchmark scores. HGConv is from this work, while Hrrformer, S4, and SGConv scores are from
their respective papers. All other scores are from (Tay et al., 2020). (Tay et al., 2020) and (Alam et al., 2023a)
report that models “do not learn anything” on Path-X, shown here with a ✗. We observe this happening with
HGConv as well.

Model ListOps Text Retrieval Image Pathfinder Path-X Average

Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67

Transformer (Vaswani et al., 2017) 36.37 64.27 57.46 42.44 71.40 ✗ 54.39

Linformer (Wang et al., 2020) 35.70 53.94 52.27 38.56 76.34 ✗ 51.36

Performer (Choromanski et al., 2020) 18.01 65.40 53.82 42.77 77.05 ✗ 51.41

F-Net (Lee-Thorp et al., 2021) 35.33 65.11 59.61 38.67 77.80 ✗ 55.30

Luna-256 (Ma et al., 2021) 37.25 64.57 79.29 47.38 77.72 ✗ 61.24

H-Transformer (Zhu and Soricut, 2021) 49.53 78.69 63.99 46.05 68.78 ✗ 61.41

Hrrformer (Alam et al., 2023a) 39.98 65.38 76.15 50.45 72.17 ✗ 60.83

S4 (Gu et al., 2021) 59.60 86.82 90.90 88.65 94.20 96.35 86.09

SGConv (Li et al., 2022) 61.45 89.20 91.11 87.97 95.46 97.83 87.17

HGConv 49.75 88.15 90.62 85.08 92.04 ✗ 81.13

Table 3: Rank order performance of models on each benchmark. For Ember we use sequences of length up to
214 as that’s the maximum size found in the LRA Benchmark.

Model K. Raw K. Asm D. Apk D. Tar Ember (214) LRA

Transformer (Vaswani et al., 2017) 9 8 8 8 9 8

Performer (Choromanski et al., 2020) 3 7 4 5 7 9

F-Net (Lee-Thorp et al., 2021) 3 6 6 7 5 7

Luna-256 (Ma et al., 2021) 8 9 9 9 8 5

H-Transformer (Zhu and Soricut, 2021) 7 4 4 2 3 4

Hrrformer (Alam et al., 2023a) 6 2 7 4 2 6

S4 (Gu et al., 2021) 2 2 2 2 4 2

SGConv (Li et al., 2022) 3 4 3 6 5 1

HGConv (ours) 1 1 1 1 1 3

LRA benchmark presented in Table 2. When compar-
ing the rank order of model performance on LRA to
our malware tasks, we see that LRA scores are not very
predictive of performance on the malware benchmarks
as shown in Table 3. LRA rates S4 and SGConv well
ahead of the other models, while their performance
is far less outstanding on malware benchmarks. SG-
Conv in particular has a median ranking of fourth on
our malware benchmarks, despite being the clear best
model on LRA. The actual best malware model, HG-
Conv, only beats S4 or SGConv on one of the six LRA
tasks.

5 Conclusion

In this paper, we have introduced a long-range global
convolutional network named HGConv by utilizing the
properties of vector symbolic architecture called HRR.
The proposed network facilitates learning by encoding

and decoding features. Our network does not require
a custom CUDA extension to run or have any intri-
cate kernel design, unlike other existing global convo-
lutional networks. Rather kernel is defined as param-
eters and learnt through auto-differentiation. In this
work, we particularly focused on a real-world applica-
tion of long-range models in malware detection. On
Kaggle and Drebin benchmarks, the proposed method
scored a new SOTA of 99.3% and 91.0%, respectively.

Results on EMBER demonstrate both superior accu-
racy and execution time where experiments are per-
formed for various sequence lengths. HGConv has not
only achieved a new highest accuracy of 93.56% for se-
quence length 16, 384 but also consistently consumed
the least amount of time to execute. We have also in-
vestigated the performance and rank order of LRA and
found that they all correlate far worse with malware
performance and do not predict EMBER reliably. In

Alam, Raff, Biderman, Oates, Holt

Kaggle Drebin EMBER ListOps Text Retrieval Image Path-
finder

K
ag

gl
e

D
re

bi
n

E
M

B
E

R
L

is
tO

ps
T

ex
t

R
et

ri
ev

al
Im

ag
e

P
at

h-
fin

de
r

1 0.77 0.39 0.35 0.62 0.55 0.59 0.53

0.77 1 0.79 0.44 0.75 0.35 0.64 0.52

0.39 0.79 1 0.13 0.36 -0.052 0.22 0.056

0.35 0.44 0.13 1 0.84 0.79 0.8 0.63

0.62 0.75 0.36 0.84 1 0.74 0.91 0.81

0.55 0.35 -0.052 0.79 0.74 1 0.88 0.82

0.59 0.64 0.22 0.8 0.91 0.88 1 0.95

0.53 0.52 0.056 0.63 0.81 0.82 0.95 1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: The correlation between Malware and other
LRA tasks accuracies. While performance between
LRA tasks is highly correlated with one another, they
all correlate far worse with the malware benchmarks.

conclusion, the experimental results, and comparison
demonstrate the fidelity of the proposed method in a
practical application like malware detection.

Acknowledgement

We thank Maya Fuchs for her feedback and copy-
editing on this paper.

References

Ahdritz, G., Bouatta, N., Kadyan, S., Xia, Q.,
Gerecke, W., O’Donnell, T. J., Berenberg, D., Fisk,
I., Zanichelli, N., Zhang, B., et al. (2022). Open-
fold: Retraining alphafold2 yields new insights into
its learning mechanisms and capacity for generaliza-
tion. bioRxiv, pages 2022–11.

Alam, M. M., Raff, E., Biderman, S., Oates, T.,
and Holt, J. (2023a). Recasting self-attention with
holographic reduced representations. arXiv preprint
arXiv:2305.19534.

Alam, M. M., Raff, E., and Oates, T. (2023b). Towards
generalization in subitizing with neuro-symbolic loss
using holographic reduced representations.

Alam, M. M., Raff, E., Oates, T., and Holt, J. (2022).
Deploying convolutional networks on untrusted plat-
forms using 2D holographic reduced representations.
In Chaudhuri, K., Jegelka, S., Song, L., Szepes-
vari, C., Niu, G., and Sabato, S., editors, Proceed-
ings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pages 367–393. PMLR.

Anderson, H. S. and Roth, P. (2018). Ember: an
open dataset for training static pe malware machine
learning models. arXiv preprint arXiv:1804.04637.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H.,
Rieck, K., and Siemens, C. (2014). Drebin: Effec-
tive and explainable detection of android malware
in your pocket. In Ndss, volume 14, pages 23–26.

Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J. R.,
Grabska-Barwinska, A., Taylor, K. R., Assael, Y.,
Jumper, J., Kohli, P., and Kelley, D. R. (2021). Ef-
fective gene expression prediction from sequence by
integrating long-range interactions. Nature methods,
18(10):1196–1203.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer
normalization. arXiv preprint arXiv:1607.06450.

Botacin, M., Galhardo Moia, V. H., Ceschin, F., Ama-
ral Henriques, M. A., and Grégio, A. (2021). Un-
derstanding uses and misuses of similarity hashing
functions for malware detection and family cluster-
ing in actual scenarios. Forensic Science Interna-
tional: Digital Investigation, 38:301220.

Breitinger, F., Astebol, K. P., Baier, H., and Busch,
C. (2013). mvhash-b - a new approach for similarity
preserving hashing. In Proceedings of the 2013 Sev-
enth International Conference on IT Security Inci-
dent Management and IT Forensics, IMF ’13, page
33–44, Washington, DC, USA. IEEE Computer So-
ciety.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Ka-
plan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. (2020). Language
models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901.

Chen, S., Wong, S., Chen, L., and Tian, Y. (2023).
Extending context window of large language mod-
els via positional interpolation. arXiv preprint
arXiv:2306.15595.

Choromanski, K., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlos, T., Hawkins, P., Davis, J.,
Mohiuddin, A., Kaiser, L., et al. (2020). Re-
thinking attention with performers. arXiv preprint
arXiv:2009.14794.

Dalla-Torre, H., Gonzalez, L., Mendoza-Revilla, J.,
Carranza, N. L., Grzywaczewski, A. H., Oteri, F.,
Dallago, C., Trop, E., de Almeida, B. P., Sirelkha-
tim, H., et al. (2023). The nucleotide transformer:
Building and evaluating robust foundation models
for human genomics. bioRxiv, pages 2023–01.

Dao, T. (2023). Flashattention-2: Faster attention
with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C.
(2022). Flashattention: Fast and memory-efficient
exact attention with io-awareness. Advances in
Neural Information Processing Systems, 35:16344–
16359.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier,
D. (2017). Language modeling with gated convo-
lutional networks. In International conference on
machine learning, pages 933–941. PMLR.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:1810.04805.

Du, Y., Liu, X., and Chua, Y. (2023). Spiking struc-
tured state space model for monaural speech en-
hancement. arXiv preprint arXiv:2309.03641.

Edward Raff, Joe Aurelio, and Charles Nicholas
(2019). PyLZJD: An Easy to Use Tool for Machine
Learning. In Chris Calloway, David Lippa, Dillon
Niederhut, and David Shupe, editors, Proceedings of
the 18th Python in Science Conference, pages 101 –
106.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black,
S., DiPofi, A., Foster, C., Golding, L., Hsu, J.,
Le Noac’h, A., Li, H., McDonell, K., Muen-
nighoff, N., Ociepa, Chris Phang, J., Reynolds, L.,
Schoelkopf, H., Skowron, A., Sutawika, L., Tang,
E., Thite, A., Wang, B., Wang, K., and Zou, A.
(2021). A framework for few-shot language model
evaluation.

Gu, A. and Dao, T. (2023). Mamba: Linear-time se-
quence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C.
(2020). Hippo: Recurrent memory with optimal
polynomial projections. Advances in neural infor-
mation processing systems, 33:1474–1487.

Gu, A., Goel, K., and Ré, C. (2021). Efficiently mod-
eling long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396.

Hendrycks, D. and Gimpel, K. (2016). Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Ioffe, S. and Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by reducing in-
ternal covariate shift. In International conference on
machine learning, pages 448–456. pmlr.

Jumper, J., Evans, R., Pritzel, A., Green, T., Fig-
urnov, M., Tunyasuvunakool, K., Ronneberger, O.,
Bates, R., Ž́ıdek, A., Bridgland, A., et al. (2020). Al-
phafold 2. Fourteenth Critical Assessment of Tech-
niques for Protein Structure Prediction; DeepMind:
London, UK.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret,
F. (2020). Transformers are rnns: Fast autoregres-
sive transformers with linear attention. In Inter-
national Conference on Machine Learning, pages
5156–5165. PMLR.

Lee-Thorp, J., Ainslie, J., Eckstein, I., and Ontanon,
S. (2021). Fnet: Mixing tokens with fourier trans-
forms. arXiv preprint arXiv:2105.03824.

Li, Y., Cai, T., Zhang, Y., Chen, D., and Dey,
D. (2022). What makes convolutional models
great on long sequence modeling? arXiv preprint
arXiv:2210.09298.

Lillis, D., Breitinger, F., and Scanlon, M. (2017). Ex-
pediting mrsh-v2 approximate matching with hier-
archical bloom filter trees. In 9th EAI International
Conference on Digital Forensics and Cyber Crime
(ICDF2C 2017), Prague, Czechia. Springer.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W.,
dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T.,
Candido, S., et al. (2022). Language models of pro-
tein sequences at the scale of evolution enable accu-
rate structure prediction. BioRxiv, 2022:500902.

Linsley, D., Kim, J., Veerabadran, V., Windolf, C.,
and Serre, T. (2018). Learning long-range spatial
dependencies with horizontal gated recurrent units.
Advances in neural information processing systems,
31.

Lu, C., Schroecker, Y., Gu, A., Parisotto, E., Foer-
ster, J., Singh, S., and Behbahani, F. (2023). Struc-
tured state space models for in-context reinforce-
ment learning. arXiv preprint arXiv:2303.03982.

Ma, X., Kong, X., Wang, S., Zhou, C., May, J., Ma,
H., and Zettlemoyer, L. (2021). Luna: Linear unified
nested attention. Advances in Neural Information
Processing Systems, 34:2441–2453.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng,
A. Y., and Potts, C. (2011). Learning word vec-
tors for sentiment analysis. In Proceedings of the
49th annual meeting of the association for compu-
tational linguistics: Human language technologies,
pages 142–150.

McInnes, L., Healy, J., and Melville, J. (2018).
Umap: Uniform manifold approximation and pro-
jection for dimension reduction. arXiv preprint
arXiv:1802.03426.

Menet, N., Hersche, M., Karunaratne, G., Benini, L.,
Sebastian, A., and Rahimi, A. (2023). Mimonets:
Multiple-input-multiple-output neural networks ex-
ploiting computation in superposition. Advances in
Neural Information Processing Systems (NeurIPS),
36.

Alam, Raff, Biderman, Oates, Holt

Muennighoff, N., Wang, T., Sutawika, L., Roberts, A.,
Biderman, S., Le Scao, T., Bari, M. S., Shen, S.,
Yong, Z. X., Schoelkopf, H., Tang, X., Radev, D.,
Aji, A. F., Almubarak, K., Albanie, S., Alyafeai,
Z., Webson, A., Raff, E., and Raffel, C. (2023).
Crosslingual generalization through multitask fine-
tuning. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers).

Nguyen, E., Poli, M., Faizi, M., Thomas, A., Birch-
Sykes, C., Wornow, M., Patel, A., Rabideau, C.,
Massaroli, S., Bengio, Y., et al. (2023). Hye-
nadna: Long-range genomic sequence modeling
at single nucleotide resolution. arXiv preprint
arXiv:2306.15794.

Nolet, C. J., Lafargue, V., Raff, E., Nanditale, T.,
Oates, T., Zedlewski, J., and Patterson, J. (2021).
Bringing umap closer to the speed of light with gpu
acceleration. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(1):418–426.

Oliver, J., Cheng, C., and Chen, Y. (2013). Tlsh – a
locality sensitive hash. In 2013 Fourth Cybercrime
and Trustworthy Computing Workshop, page 7–13.
IEEE.

Panconesi, A., Marian, Cukierski, W., and Committee,
W. B. C. (2015). Microsoft malware classification
challenge (big 2015).

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Ar-
cadinho, S., Cao, H., Cheng, X., Chung, M., Grella,
M., GV, K. K., et al. (2023a). Rwkv: Reinvent-
ing rnns for the transformer era. arXiv preprint
arXiv:2305.13048.

Peng, B., Quesnelle, J., Fan, H., and Shippole, E.
(2023b). Yarn: Efficient context window exten-
sion of large language models. arXiv preprint
arXiv:2309.00071.

Plate, T. A. (1995). Holographic reduced represen-
tations. IEEE Transactions on Neural networks,
6(3):623–641.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y.,
Dao, T., Baccus, S., Bengio, Y., Ermon, S., and
Ré, C. (2023). Hyena hierarchy: Towards larger
convolutional language models. arXiv preprint
arXiv:2302.10866.

Radev, D. R., Muthukrishnan, P., Qazvinian, V.,
and Abu-Jbara, A. (2013). The acl anthology net-
work corpus. Language Resources and Evaluation,
47(4):919–944.

Raff, E., Fleshman, W., Zak, R., Anderson, H. S.,
Filar, B., and McLean, M. (2021). Classifying
sequences of extreme length with constant mem-
ory applied to malware detection. Proceedings

of the AAAI Conference on Artificial Intelligence,
35(11):9386–9394.

Raff, E. and Nicholas, C. (2017a). An alternative to
ncd for large sequences, lempel-ziv jaccard distance.
In Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, KDD ’17, page 1007–1015, New York, NY,
USA. Association for Computing Machinery.

Raff, E. and Nicholas, C. (2017b). Malware classifica-
tion and class imbalance via stochastic hashed lzjd.
In Proceedings of the 10th ACM Workshop on Arti-
ficial Intelligence and Security, pages 111–120.

Raff, E. and Nicholas, C. (2018a). Lempel-ziv jaccard
distance, an effective alternative to ssdeep and sd-
hash. Digital Investigation, 24:34–49.

Raff, E. and Nicholas, C. (2020). A survey of ma-
chine learning methods and challenges for windows
malware classification. In NeurIPS 2020 Workshop:
ML Retrospectives, Surveys & Meta-Analyses (ML-
RSA).

Raff, E., Nicholas, C., and McLean, M. (2020). A New
Burrows Wheeler Transform Markov Distance. In
The Thirty-Fourth AAAI Conference on Artificial
Intelligence.

Raff, E. and Nicholas, C. K. (2018b). Lempel-ziv jac-
card distance, an effective alternative to ssdeep and
sdhash. Digital Investigation.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
(2020). Exploring the limits of transfer learning with
a unified text-to-text transformer. The Journal of
Machine Learning Research, 21(1):5485–5551.

Raji, I. D., Denton, E., Bender, E. M., Hanna, A., and
Paullada, A. (2021). Ai and the everything in the
whole wide world benchmark. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Romero, D. W. and Zeghidour, N. (2023). Dnarch:
Learning convolutional neural architectures by back-
propagation. arXiv preprint arXiv:2302.05400.

Roussev, V. (2009). Building a better similarity trap
with statistically improbable features. In Proceed-
ings of the 42Nd Hawaii International Conference
on System Sciences, HICSS ’09, page 1–10, Wash-
ington, DC, USA. IEEE Computer Society.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat,
I., Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J.,
et al. (2023). Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950.

Saul, R., Alam, M. M., Hurwitz, J., Raff, E., Oates,
T., and Holt, J. (2023). Lempel-ziv networks. In
Antorán, J., Blaas, A., Feng, F., Ghalebikesabi, S.,

Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection

Mason, I., Pradier, M. F., Rohde, D., Ruiz, F. J. R.,
and Schein, A., editors, Proceedings on ”I Can’t Be-
lieve It’s Not Better! - Understanding Deep Learn-
ing Through Empirical Falsification” at NeurIPS
2022 Workshops, volume 187 of Proceedings of Ma-
chine Learning Research, pages 1–11. PMLR.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri,
D., Pham, P., Rao, J., Yang, L., Ruder, S., and
Metzler, D. (2020). Long range arena: A bench-
mark for efficient transformers. arXiv preprint
arXiv:2011.04006.

Team, M. N. (2023). Introducing mpt-30b: Raising the
bar for open-source foundation models. Accessed:
2023-06-22.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. (2017). Attention is all you need. Advances in
neural information processing systems, 30.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
(2020). Linformer: Self-attention with linear com-
plexity. arXiv preprint arXiv:2006.04768.

Winter, C., Schneider, M., and Yannikos, Y. (2013).
F2s2: Fast forensic similarity search through index-
ing piecewise hash signatures. Digital Investigation,
10(4):361–371.

Yao, Z., Wu, X., Li, C., Zhang, M., Qi, H., Ruwase,
O., Awan, A. A., Rajbhandari, S., and He, Y.
(2023). Deepspeed-visualchat: Multi-round multi-
image interleave chat via multi-modal causal atten-
tion. arXiv preprint arXiv:2309.14327.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie,
J., Alberti, C., Ontanon, S., Pham, P., Ravula, A.,
Wang, Q., Yang, L., et al. (2020). Big bird: Trans-
formers for longer sequences. Advances in Neural
Information Processing Systems, 33:17283–17297.

Zama, M. H. and Schwenker, F. (2023). Ecg synthe-
sis via diffusion-based state space augmented trans-
former. Sensors, 23(19):8328.

Zhu, Z. and Soricut, R. (2021). H-transformer-1d:
Fast one-dimensional hierarchical attention for se-
quences. arXiv preprint arXiv:2107.11906.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Yes]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Yes]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Alam, Raff, Biderman, Oates, Holt

A Hyperparameters

The hyperparameters used in the experiments are presented in Table 4. For Kaggle, Drebin, and EMBER no
weight decay is used. For all the LRA tasks, weight decay of 0.05 is used except for Pathfinder where weight
decay rate is 0.03.

Table 4: The hyperparameters used in each of the experiments. LN and BN refer to Layer Norm and Batch
Norm. When the pre-norm is True, no post-normalization is used, and vice versa. For EMBER, experiments are
performed on a variable sequence length T and the batch size is chosen according to the given expression to fit
the data on memory.

Norm
Pre
Norm

Batch
Size

Vocab
Size

Sequence
Length

Kernel
Dim Features Dropout Layers

Learning
Rate Epochs

Kaggle LN True 64 257 4096 32 256 0.1 1 0.01 10

Drebin LN True 32 257 4096 32 256 0.1 1 0.01 10

EMBER LN True max(216−log2 T , 1) 257 T 32 256 0.1 1 0.01 10

ListOps BN False 100 17 2000 64 128 0.0 6 0.01 40

Text BN True 50 257 4096 7 512 0.0 2 0.01 32

Retrieval LN True 128 128 4000 4 128 0.0 6 0.01 30

Image LN True 50 256 1024 128 512 0.2 6 0.01 200

Pathfinder BN False 64 256 1024 128 512 0.0 4 0.004 200

B UMAP 3D Representations

The UMAP 3D representations of the output from the penultimate layer of different models for Kaggle Raw,
Kaggle Asm, Drebin Apk, and Drebin Tar are presented in Figure 5, Figure 6, Figure 7, and Figure 8,
respectively. For Kaggle Raw and Asm, S4, SGConv, Hrrformer, HGConv has quite close accuracy, on the
other hand for Drebin Apk and Tar, high variance in accuracy can be noted. Thus, noticeable changes can be
observed for Drebin Apk and Tar in Figure 7 and Figure 8 where HGConv has visibly better clusters which
makes the final layer classifier predict correctly.

Figure 5: Kaggle Raw

Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection

Figure 6: Kaggle Asm

Figure 7: Drebin Apk

Alam, Raff, Biderman, Oates, Holt

Figure 8: Drebin Tar

Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection

C EMBER Comprehensive Results

A broader comparison on EMBER classification results is shown in Figure 9 with additional models Linformer
(Wang et al., 2020), Performer (Choromanski et al., 2020), and F-Net (Lee-Thorp et al., 2021). The numeric
results of each method for different sequence lengths are presented in Table 5 where columns are kept empty if
it faces OOM or OOT issue.

29 210 211 212 213 214 215 216 217

Maximum Sequence Length

74

76

78

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

OOM

OOT

OOT

OOM

OOT

OOM

OOT

Transformer

H-Trans 1D

Luna-256

Performer

S4

Linformer

SGConv

F-Net

Hrrformer

HGConv

Transformer

H-Trans 1D

Luna-256

Performer

S4

Linformer

SGConv

F-Net

Hrrformer

HGConv

29 210 211 212 213 214 215 216 217

Maximum Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
ti

on
T

im
e

(s
)

×104

OOM

OOT

OOT

OOM

OOT

OOM

OOT

O(T 2)

O(T)

O(T)

O(T)

O(T log T)

O(T)

O(T log T)

O(T)

O(T)

O(T log T)

O(T 2)

O(T)

O(T)

O(T)

O(T log T)

O(T)

O(T log T)

O(T)

O(T)

O(T log T)

Figure 9: Ember long sequence malware classification. In the figure, OOT and OOM stand for out-of-time
(OOT) and memory (OOM) shown for models that face such issues after a particular sequence length.

Table 5: Ember malware classification benchmark. The maximum sequence length ranges from 28 to 217. The
best results are boldfaced and the second-best results are underlined.

Model Metrics
Maximum Sequence Length

256 512 1, 024 2, 048 4, 096 8, 192 16, 384 32, 768 65, 536 131, 072

Transformer (Vaswani et al., 2017)
Acc 74.87 84.27 86.74 87.76 88.43 OOM

Time 101.59 146.96 286.98 708.7 2305.28 OOM

Performer (Choromanski et al., 2020)
Acc 78.0 87.74 88.91 89.77 89.06 89.88 85.68 OOM

Time 115.77 159.59 247.02 418.1 770.75 1444.38 2334.94 OOM

F-Net (Lee-Thorp et al., 2021)
Acc 76.42 80.25 80.87 84.34 83.55 86.36 86.00 86.29 86.45 86.40

Time 84.84 95.58 113.2 165.77 267.21 492.44 861.48 2182.30 5191.26 9800.97

Luna-256 (Ma et al., 2021)
Acc 70.21 74.8 77.01 80.06 79.18 83.76 83.55 OOT

Time 243.04 287.5 395.87 643.81 1172.35 2326.15 5132.95 OOT

H-Transformer (Zhu and Soricut, 2021)
Acc 59.59 78.17 85.45 87.8 90.14 88.9 90.48 OOT

Time 116.6 175.04 362.41 509.63 1082.67 2371.96 6336.37 OOT

Hrrformer (Alam et al., 2023a)
Acc 78.06 83.95 88.07 89.22 90.59 90.89 91.03 90.65 90.13 89.46

Time 91.35 117.96 165.18 247.32 423.55 748.48 1138.75 2315.62 5076.65 9237.78

S4 (Gu et al., 2021)
Acc 75.21 84.01 89.98 89.54 88.03 91.39 91.05 90.32 OOT

Time 25.19 34.48 70.4 133.58 276.98 615.95 1484.02 4486.83 OOT

SGConv (Li et al., 2022)
Acc 74.45 82.21 86.95 84.43 87.57 87.97 87.54 88.57 OOT

Time 28.92 54.73 113.67 235.87 493.43 1039.98 2203.36 4648.69 OOT

HGConv
Acc 80.66 89.27 91.19 92.42 92.68 93.43 93.56 93.04 93.08 92.31

Time 16.01 24.90 45.16 86.62 173.42 360.81 746.44 1564.69 3536.16 6689.41

	Introduction
	Malware Detection
	Efficient Transformer-Based Models
	Non-Transformer Models for Sequences
	Our Contributions

	Methodology
	Holographic Reduced Representations
	Holographic Global Convolutional Networks
	Algorithmic Complexity

	Experiments and Results
	Training
	Evaluations

	Long Range Arena Does Not Predict EMBER Reliably
	Conclusion
	Hyperparameters
	UMAP 3D Representations
	EMBER Comprehensive Results

