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Abstract

Causal discovery methods commonly assume
that all data is independently and identically
distributed (i.i.d.) and that there are no
unmeasured confounding variables. In prac-
tice, neither is likely to hold, and detect-
ing confounding in non-i.i.d. settings poses
a significant challenge. Motivated by this,
we explore how to discover confounders from
data in multiple environments with causal
mechanism shifts. We show that the mecha-
nism changes of observed variables can reveal
which variable sets are confounded. Based on
this idea, we propose an empirically testable
criterion based on mutual information, show
under which conditions it can identify con-
founding, and introduce CoCo to discover
confounders from data in multiple contexts.
Our experiments confirm that CoCo works
well on synthetic and real-world data.

1 INTRODUCTION

In most scientific fields, we aim to understand a system
of interest not just in terms of statistical regularities,
but in terms of its underlying causal mechanisms. A
causal understanding is necessary to predict how a sys-
tem will behave upon intervention, and hence relevant
to guide study design, medical treatment formulation,
and effective intervention targeting (Pearl, 2009a).

Yet, determining causality is notoriously challenging.
While it can be established through controlled experi-
ments, direct control is often impractical or infeasible.
Consider genomics: while modern tools can activate
or silence specific genes directly, these changes often
introduce unforeseen consequences downstream of the
targeted gene, known as off-target effects (Dominguez
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et al., 2016). Through observational studies, on the
other hand, we only capture statistical correlations
that could be spurious and thus misleading.

Most prominently, spurious correlations result from
unmeasured confounding factors. A standard practice
is to assume that we measure all relevant variables
such that the system is causally sufficient, which as-
sumes this problem away. In practice, however, suffi-
ciency is neither realistic nor verifiable. In addition,
spurious correlations can also appear due to distribu-
tion shifts. The common assumption that we obtain
independently and identically distributed (i.i.d) sam-
ples does not apply in many practical applications
where data originates from different contexts.

Several approaches to causal discovery relax suffi-
ciency, but some offer ambiguous results (variables
might be confounded) (Spirtes, 2001; Bhattacharya
et al., 2021), others require strong parametric assump-
tions (Kaltenpoth and Vreeken, 2023a,b). Conversely,
a growing literature in causal discovery accommodates
non-i.i.d. data (Huang et al., 2020; Mooij et al., 2020;
Perry et al., 2022) but existing work only allows for
limited confounding effects (Huang et al., 2020). Mo-
tivated by this, we take a closer look at the interplay of
the sufficiency and i.i.d. assumptions, with the aim of
discovering latent variables from multi-context data.

We show that, surprisingly, confounding is identifiable
without further assumptions on the type of data or
the functional form of causal mechanisms, by consid-
ering distribution shifts of the observed variables. We
explain this by example of three variables in five con-
texts in Fig. 1. As the graphical model G shows, X
is a cause of Y and the pair is either unconfounded
(left column) or confounded (right column) through a
latent variable Z. In each context, interventions affect
specific variables (hammers) and change their under-
lying generating process P ⋆ (colored boxes).

Our main observation is that changes in an unmea-
sured common cause will translate into measurable
changes in the observed variables. For example, con-
sider the intervention on Z in context c1 (purple). As
this does not directly affect the causal mechanisms of
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Figure 1: Confounding introduces dependent mecha-
nism shifts. We consider two systems, one causal (left)
and one confounded (right) in five different contexts.
The true causal mechanisms P ⋆ (top) change indepen-
dently of each other, here due to targeted interventions
in certain contexts (colored). If there is an unobserved
confounder Z, however, we observe dependencies in
the mechanism shifts of X and Y (bottom right).

the other variables, the conditionals P ⋆
X|Z and P ⋆

Y |X,Z

remain the same; they change independently in other
contexts (yellow, blue). However, the situation is dif-

ferent for the observed distributions P̂ (bottom). Un-
der confounding, we observe changes for both variables
in c1 as Z is unaccounted for. Guided by this, we pro-
pose detecting confounders from correlations in causal
mechanism shifts. We interpret such changes as dis-
crete clusterings over contexts, as illustrated by the
colored boxes in Fig. 1, and measure their dependency
using mutual information. We show that allows to dis-
cover not only confounders, but also the variable sets
that are affected by the same latent variable, with or
without knowing the true causal directions.

Contributions To summarize, we show how con-
founding can be identified from violations of the in-
dependent mechanism shift principle (Janzing and
Schölkopf, 2010), a special form of the independent
causal mechanisms assumption (Peters et al., 2017).
We propose an empirical estimator based on mutual
information and give an analysis of both bivariate and
multivariate settings, and show that they remain ro-
bust when the true causal directions among observed
variables are unknown. To apply our theoretical re-
sults, we propose the CoCo algorithm for discover-
ing confounding in different contexts. Empirically,
we show that our approach effectively discovers latent
variables and gives insights into cell signalling.

2 PROBLEM AND ASSUMPTIONS

In this section, we present our problem setting and
state our assumptions.

2.1 Problem Setting

We consider a system of observed variables X and un-
observed variables Z, collectively called V = X ∪ Z.
The values of X,Z may be continuous, categorical, or
mixed. We assume that the system is observed in mul-
tiple contexts, represented by a categorical variable C
taking values c ∈ C, and denote their number nc = |C|.
We allow the distribution P c(V ) = P (V | C = c) to
depend on c, as we describe in the following section.

For any fixed c ∈ C, we assume the causal relation-
ships between variables V to be described by a Di-
rected Acyclic Graph (DAG) G∗ = (V,E) with edges
(i, j) ∈ E when Vi is a cause of Vj . We write pa∗i
for the set of direct causes of Vi in G∗. W.l.o.g. the in-
dices ofXi and Vi are assumed to be ordered such that,
whenever clear from the context, we can write pa∗i to
denote the parents of Xi. We assume the latent Z
to be jointly independent and exogenous to X—there
exist no edges Xi → Zj—so that for all Zj , pa

∗
Zj

= ∅.

We assume causal sufficiency over X ∪ Z ∪ C, i.e., all
common parents of two or more observed variables are
themselves included among X,Z,C. We can now state
our problem informally as follows.

Problem Statement. Given data over the observed
variablesX in contexts C, we want to determine which
observed variables in X are jointly confounded.

2.2 Causal Mechanism Shifts

We now describe the data-generating process across
multiple contexts. While we assume that the same
causal structure applies in all contexts, in many appli-
cations such as gene editing experiments (Dominguez
et al., 2016), a system is subject to interventions or
other causal mechanism changes. That is, the gen-
erating process P c(Vi | pa∗i ) of each variable Vi may
be different across contexts. Nevertheless, as interven-
tions typically affect only a small number of causal
mechanisms at a time, the causal mechanism govern-
ing a specific Vi will generally be the same for most
c ∈ C and differ only in few. To represent this,
for every variable Vi, we partition the contexts so
that within each set, the causal mechanism remains
constant. That is, for each Vi we have a partition

Π∗
i =

{
π1
i , . . . , π

ki
i

}
of C = π1

i ∪ . . . ∪ πki
i into disjoint

πj
i such that P c(Vi | pa∗i ) = P c′(Vi | pa∗i ) for c, c′ in

the same π ∈ Π∗
i . We refer to this part π as Π∗

i (c) and
call the corresponding mechanism Pπ(Vi | pa∗i ).
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We allow all partitions Π∗
i to be distinct. More pre-

cisely, we regard partition Π∗
i of the contexts C as a

random variable, and assume some joint distribution
P (Π∗) over all partitions Π∗

i of Vi. We hence assume
the distribution of the observed V to be as follows.

Assumption 1 (Markov Property under Mech-
anism Changes) The distribution P (V ) is given by

P (V ) =

∫
PC(V )dP (C)

=

∫ ∏
i

PΠ∗
i (C)(Vi | pa∗i )dP (C)

=

∫ ∏
i

PΠ∗
i (Vi | pa∗i )dP (Π∗) .

In other words, variables V are assumed to be condi-
tionally exchangeable, so that the same graph G∗ ap-
plies in every context c ∈ C (Guo et al., 2022). Im-
portantly, the distribution P (V ) does not depend on
P (C), but only on the mechanism generating the Π∗

i .

For an overview of our problem setting, we refer to
Fig. 1 showing a fixed causal DAG in all contexts (G),
as well as interventions which we represent as changes
in the functional cause-effect dependencies (arrows).
Each variable is associated with a partition Π∗

i show-
ing such changes (colored boxes). We next move to
properties of causal mechanism shifts that will be rel-
evant for confounder identification.

2.3 Independent Mechanism Shifts

A common principle in causal discovery is the indepen-
dence of causal mechanisms (Janzing and Schölkopf,
2010). It states that the distribution P c(Vi | pa∗i ) is

uninformative of P c′(Vj | paj) when either i ̸= j or
c ̸= c′. A change in the mechanism of Vi therefore
provides no information about changes in the mecha-
nism of Vj , and partitions Π∗

i and Π∗
j are independent.

Assumption 2 (Independent Mechanism
Shifts) We assume that mechanisms P c(Vi | pa∗i )
change independently but identically distributed
across environments. That is, we assume that

P (Π∗) =
∏
Vi

P (Π∗
i ) .

Mere independence of mechanism shifts is not a signif-
icant constraint. The mechanisms of Vi and Vj both
differing across all (or no) environments would triv-
ially satisfy this condition, but reveal no information
about the core causal mechanisms. We therefore ad-
ditionally assume that mechanism shifts are sparse, so

that mechanisms remain the same across most envi-
ronments (Guo et al., 2022; Schölkopf et al., 2021).

Assumption 3 (Sparse Mechanism Shifts) Let C
and C ′ be two i.i.d. samples from the same distribution
P (C). We assume that the probability of mechanism
changes between two contexts is

p = P (Π∗(C) ̸= Π∗(C ′)) < 0.5 .

With this we assume that mechanism shifts occur
infrequently, implying that causal functions persist
across the majority of environments. This assump-
tion is valid in many study settings where specific tar-
gets are interventions in a small number of contexts,
and has been adopted in the causal discovery litera-
ture (Perry et al., 2022; Mameche et al., 2023).

Conversely, we assume that two contexts c, c′ are as-
signed to different sets of the partition Π∗, then the
corresponding causal mechanisms indeed change.

Assumption 4 (Π-faithfulness) Let Π∗
i be the par-

tition of Vi. Then for any two environments c, c′,

Π∗(c) ̸= Π∗(c′) −→ P c(Vi | pa∗i ) ̸= P c′(Vi | pa∗i ) .

This faithfulness condition ensures that our parti-
tions precisely capture the changes in causal functions.
Next, we show how these assumptions, which we as-
sume to hold when variables in V are measured, are
violated when some latent factors Z are not observed.

3 IDENTIFYING CONFOUNDING
FROM MECHANISM SHIFTS

We begin with an analysis of the effect of latent con-
founding on the partitions of the causal mechanisms,
then propose a score for determining whether a given
pair of variables is confounded, and conclude by giv-
ing consistency guarantees for our score. We include
proofs of all results in the supplementary material.

3.1 Confounding Introduces Dependent
Mechanism Shifts

All assumptions we made in the previous section ad-
dress the true partitions Π∗

i of the true causal mecha-
nisms over the true causal parents pa∗i . When not all
variables are observed, the situation changes. To see
this, let us consider the following linear example,

Z ∼ N(0, σ2
z(c))

X = αZ + ϵx

Y = βX + γZ + ϵy ,

where the only source of mechanism shifts is the non-
constant variance σ2

z(c) of the unobserved Z.
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Then, regressing the variable Y on X, we obtain

X ∼ N(0, σ2
x + α2σ2

z(c))

β̂Y |X =
cov(X,Y )

var(X)
=

βσ2
x + αγσ2

z(c)

(σ2
x + α2σ2

z(c))
, (1)

so that in general clearly both the distributions P c(X)
and P c(Y | X) change as σ2

z(c) changes.

Note however that in exceptional circumstances the
above does not apply. If the parameters are chosen as
β = 1 and α = γ in Eq. (1), then β̂Y |X will not change
despite a change in σ2

z . This kind of fine-tuning of the
parameters likely happens only in adversarial cases.
When we assume that parameters are sampled from a
continuous probability distribution, the probability of
obtaining a set of parameters where a change in the
mechanism of the confounder Z does not translate into
a change in the mechanisms affecting X and Y is zero.
We therefore make the following general assumption.

Assumption 5 (Shift Faithfulness) Let Z be an
unobserved common parent of all variables in the sub-
set XS ⊂ X. Then each mechanism change in Z be-
tween two contexts c, c′ entails a mechanism change
for each Xi ∈ XS between the same contexts c, c′.

Note that we do not strictly need all mechanism shifts
of Z to be reflected in X,Y , but only that some (non-
zero) fraction is captured. However, for ease of expo-
sition we make the above assumption. Hence, changes
in the causal mechanism of Z lead to correlations be-
tween the observed partitions Πi of variables affected
by Z. We therefore now turn to the question of how
to measure these correlations.

3.2 Measuring Dependence of Mechanism
Shifts via Mutual Information

To measure whether the mechanism changes of vari-
ables are dependent, we consider the Mutual Informa-
tion (MI) between partitions.

For two partitions Π1,Π2 of the set of contexts C into
I, J sets, we consider the contingency table M,

M =


n11 n12 . . . n1J

n21 n22 . . . n2J

...
...

. . .
...

nI1 nI2 . . . nIJ


where nij measures the number of contexts in πi

1 ∩πj
2,

and with row margins ui = |πi
1| and column margins

vj = |πj
2| counting the size of partition elements.

If the partitions describe causal mechanism shifts of
two different variablesXi, Xj , then a latent confounder
affecting both Xi, Xj leads to correlations between

these partitions. To measure these, we consider the
mutual information between Π1 and Π2. The marginal
entropy of Π1 and joint entropy of Π1,Π2 are

H(Π1) = −
∑
i

ui

N
log

ui

N
,

H(Π1,Π2) = −
∑
ij

nij

N2
log

nij

N2
,

with H(Π2) similar, and their mutual information is

I(Π1,Π2) = H(Π1) +H(Π2)−H(Π1,Π2)

=
∑
ij

nij

N
log

nijN

uivj
.

In general, given data from only a finite number of
contexts, this plug-in estimate of the MI between par-
titions will be positively biased (Vinh et al., 2009). We
can correct for this by standardizing our score using
the expectation for two independent partitions.

Expected MI under Independent Shifts We
first consider two independent partitions Π′

1,Π
′
2 with

contingency table M with column sums u and row
sums v. To define their mutual information, the hy-
pergeometric model of randomness has been adopted
in the literature (Vinh et al., 2009, 2010). That
is, given the marginal counts u, v, the joint counts
are assumed to follow a hypergeometric distribution
Nij ∼ H(u, v,N), with probability mass function

P(nij | u, v,N) =

(
nij

vj

)(
N−vj
ui−nij

)(
N
ui

) .

The expected mutual information between the inde-
pendent partitions is then computed as

E [I(Π′
1,Π

′
2)] =

∑
M

I(M)P(M)

=
∑
ij

∑
nij

I(nij)P(nij | u, v,N) (2)

where I(nij) =
nij

N log
nijN
uivj

and the inner sum runs

over nij ∈ [max{0, ui + vj −N},min{ui, vj}]. By re-
placing the term I(nij) by I(nij)

2, one can similarly
compute the second moment, and thus the variance

Var(I(Π′
1,Π

′
2)) = E

[
I(Π′

1,Π
′
2)

2
]
− E [I(Π′

1,Π
′
2)]

2
.

With this, we can compute the standardized score of
our observed mutual information I(Π1,Π2)

t =
I(Π1,Π2)− E [I(Π′

1,Π
′
2)]√

Var(I(Π′
1,Π

′
2))

,

whose properties we study in the next section.
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3.3 Identifying Confounded Variable Pairs

In the following, we make sure that the MI-based score
is sensible in our setting.

We begin by considering the bivariate case and show
that when the causal direction between a pair X,Y
is known, we indeed obtain the correct results in the
limit of large numbers of contexts.

Lemma 3.1 (Significance and Power) Let X,Y
be unconfounded and X → Y . Let ΠX ,ΠY be the
corresponding partitions.

lim
nc→∞

P(t > q1−α) → α ,

where q1−α is the 1 − α-quantile of standard normal
distribution. Conversely, if X,Y are confounded by Z,
then for any α > 0 we obtain a power of 1 in the limit,

lim
nc→∞

P(t > q1−α) → 1 .

This result tells us that with data from enough envi-
ronments, we are guaranteed to discover which pairs
of variables are confounded. Next, we move on to the
problem of recovering sets of jointly confounded nodes.

3.4 Beyond Confounded Pairs

To determine whether a set of variables shares a joint
confounder, we extend our score beyond pairs of vari-
ables. A natural extension of mutual information for a
set of partitions is total correlation (Watanabe, 1960),

T (Π1, . . . ,Πs) =
∑
i

H(Πi)−H(Π1, . . . ,Πs)

=
∑
i

I(Πi,Π>i | Π<i)

where Π<i = {Π1, . . . ,Πi−1} and similarly for Π>i. It
is straightforward to correct this score analog as done
above for pair-wise MI terms. As both corrected and
uncorrected scores are asymptotically equivalent, we
will consider T as is in our theoretical analysis.

First we discuss how to use this score for detecting
joint confounding. To this end, consider three vari-
ables X1, X2, X3. By Assumption 5 and Lemma 3.1,
we know these can only be jointly confounded iff all
Xi, Xj are pair-wise confounded. It could of course be
that rather than jointly confounded, there are three
disjoint confounders Z12, Z13, Z23 affecting each of the
individual pairs. We can distinguish these two cases?
Only if all three variables share the same latent con-
founder Z, knowing about the partition of one vari-
able explains away some of the correlation between
the other two partitions, so that we have I(Πi,Πj |
Πk) < I(Πi,Πj) for any permutation of the variables.

Note that in general, for a set of size s to permit such
an equivalent explanation in the first place, we would
need to add a total of

(
s
2

)
confounders with s(s − 1)

outgoing edges to obtain the same structure of pairwise
confounding. While this may plausibly occur for small
sets of variables that appear to be pair-wise correlated,
we assume the true graph G∗ to be causally minimal
in the following sense.

Assumption 6 (Confounder Minimality) For ev-
ery subset XS of at least |S| ≥ 4 variables, there are
at most 2 |S| edges incoming into XS from latent con-
founders Zj with at least three children in XS .

This minimality assumption ensures that variables
that appear to be jointly confounded are indeed con-
founded; put differently, when a small number of latent
variables suffice to explain the observed correlations,
there should indeed exist only few confounders. With
this, we can guarantee that the identification of joint
confounding is possible from the total correlation T .

Theorem 3.1 Let XS be a set of variables such
that all Xi, Xj ∈ XS are pair-wise confounded. Then
XS is jointly confounded if and only if for each triple
Xi, Xj , Xk ∈ S we have

lim
nc→∞

P(T (Πi,Πj ,Πk) < I(Πi,Πj) + I(Πj .,Πk))

=

{
1, X1, Xj , Xk jointly confounded
0, otherwise .

With this, we can recover how many latent con-
founders Zj there are, and sets of jointly confounded
nodes by each Zj are uniquely identifiable by our score.
Due to both the large number of tests that the above
objective involves, as well as issues due to false nega-
tives for the pair-wise test, we propose a more efficient
and robust method in Section 4.

As we assumed causal directions among all variables
to be known up to this point, the remaining question
is what happens if this is not the case.

3.5 (Spurious) Spurious Correlations

We now address the case where the true causal struc-
ture is unknown and we estimate partitions in the pres-
ence of misdirected edges. We want to ensure we can
use the MI-based score consistently.

First, let us return to the case of two variables X,Y
such that in the true graph G∗, the causal direction
X → Y applies. What would happen if we instead
considered the partitions obtained by considering the
graph G differing from G∗ by inverting this edge to
Y → X? To compare the resulting partitions, we write
ΠX ,ΠY for the partitions of causal mechanisms in G,
and similarly Π∗ for G∗ and Π′ for a graph G′.
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It turns out that, with high probability, the misdi-
rected edge will introduce additional correlations be-
tween the inferred partitions ΠX ,ΠY . Intuitively, this
is because distribution shifts in P c(Y ) now need to
come with matching mechanism shifts of P c(X | Y )
to ensure that P c(X) does not change (Huang et al.,
2020). This leads to the following result.

Proposition 3.1 (Consistency for Pairs of Vari-
ables) If a variable pair X,Y is confounded by a
variable Z, then there exists some ρ > 0 such that

P(I(Π∗
X ,Π∗

Y ) < I(ΠX ,ΠY )) = 1−O(e−ρnc) .

When X,Y are part of a larger graph, the situation
becomes more involved. Based purely on dependen-
cies between the observed variables X, we can at best
recover the Markov equivalence class (MEC, Pearl
(2009a)). However, due to the effects of latent con-
founders, the MEC over X will contain large numbers
of spurious edges (Elidan et al., 2000; Kaltenpoth and
Vreeken, 2023a). We therefore show that so long as
the number of latent confounders affecting and spuri-
ous siblings of a given target Xi are not too large, then
we can still recover the correct parents of the target.

Proposition 3.2 (Recovering Parents) Let Xi be
a target variable and let G and G′ be two graphs in
the MEC of the marginal distribution P c(X). Assume
that only one of the two graphs correctly recovers the
parents of Xi, pai = pa∗i and pa′i ̸= pa∗i , and further
assume that the number of latent confounders affecting

Xi plus spurious siblings is bounded by log(0.5)
log(1−p) . Then

P(I(Πi, {Πj : j ∈ pai}) < I(Π′
i,
{
Π′

j : j ∈ pa′i
}
))

= 1−O(e−ρnc)

Summing up over all variables gives us the following
consistency of the entire causal ordering over X.

Theorem 3.2 (Consistency) Let G∗ be the true
graph over V and let G∗

x be the induced graph on
X, and assume that for all Xi the number of la-
tent confounders plus spurious siblings is bounded by
log(0.5)
log(1−p) . Then with high probability, G∗

x and its par-

titions Π∗
1, . . . ,Π

∗
k are the unique minimum of total

correlation,

P(argmin
G

T (Π1, . . . ,Πm) = {G∗
x}) = 1−O(e−ρnc) .

With these theoretical guarantees in hand, we now
move on to provide an effective algorithm for discov-
ering which variables are indeed confounded.
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Figure 2: Components of CoCo. In a DAG G with
unobserved confounders Z1, Z2 (top left), we consider
each pair of nodes (top right) discover their partitions,
and test them for dependency using MI (bottom right).
We obtain an affinity matrix showing which nodes are
affected by the same confounder (bottom left).

4 DISCOVERING CONFOUNDERS
IN DIFFERENT CONTEXTS

Based on our theory, we develop the CoCo algorithm
for discovering Confounders in different Contexts.

Determining Causal Mechanism Shifts There
exist approaches to discovering causal mechanisms and
their changes in multiple contexts. Since it agrees well
with our shift testing approach, we build upon the
MSS estimator developed by Perry et al. (2022) which
starts from the correct MEC and directs edges in a
way that induces the fewest conditional shifts.

For each causal mechanism of a target variable Xi and
each pair of environments, we perform a conditional
independence test to detect mechanism changes, re-
sulting in the following p-values,

pc,c′ = p-val
(
P c(Xi | pai) ̸= P c′(Xi | pai)

)
.

We hereby use the Kernel Conditional Independence
test (KCI, Zhang et al. (2011)) for all practical pur-
poses, but other instantiations are possible (Park
et al., 2021). In case a variable has no parents in G,
the above reduces to testing the marginal distributions
P (Xi) for equality for which we use the Maximum
Mean Discrepancy (MMD, Gretton et al. (2012)).

As the pair-wise p-values between pairs of contexts are
correlated and hence do not allow a well-defined mea-
sure of dependency, we convert them to a partition
to use our MI-based measure. We obtain a clustering
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naively from the pair-wise tests by including ci, cj in
the same group iff the pair-wise testing does not indi-
cate that Π(ci) ̸= Π(cj). Hence, if there are disagree-
ments between the correlated tests, we resolve these
in favor of more mechanism changes, although other
options are possible depending on the sensitivity of
the test. In the bivariate example shown in Fig. 1,
for instance, we obtain partitions ΠX and ΠY |X corre-

sponding to the shown changes in P̂X and P̂Y |X , which
we test for independence as described in the following.

Discovering Confounding Variables Next, for
every pair of variables Xi and Xj , we determine
whether it is confounded by using a one-tailed Z-test,
resulting in the p-values

pij = Φ−1

(
I(Πi,Πj)− E

[
I(Π⋆

i ,Π
⋆
j )
]√

Var(I(Π⋆
1,Π

⋆
2))

)
,

where Φ is the cumulative density function of the stan-
dard normal distribution.

In the second stage, we aim to discover those subsets of
variables that are affected by the same latent variable.
While our theoretical analysis suggests considering the
total correlation over variable subsets, performing such
a test for every given subset XS ⊆ X is both infeasible
and faces us with a multiple testing problem involving
enormous numbers of tests. We therefore infer con-
founders directly from pairwise tests.

If our tests for discovering causal mechanism shifts
and confounding were perfect, variables subject to
the same confounder would form distinct clusters with
high pairwise MI, and these clusters could be used as
direct estimates of confounded variable sets. In prac-
tice, however, we will find some variable pairs to incor-
rectly be judged (un)confounded. To mitigate this is-
sue, we perform a clustering on the pairwise MI terms.

More precisely, we consider the affinity matrix M with
entries Mij = I(Πi,Πj), using MI as pairwise similar-
ity, and use spectral clustering (Donath and Hoffman,
1972) to discover strongly connected components in
this matrix. As a result, we obtain multiple subsets
XSj

that are likely subject to the same confounder.

CoCo To summarize, we present the pseudocode for
CoCo as Alg. 1, and an illustration in Fig. 2. In the
first phase, we test all pairs of contexts for mechanism
shifts (l. 1–4), and repeat this for each variable to
obtain its partition. In the second phase, we test all
pairs of variables for confounding (l. 5–6). Last, we
cluster the variables into subsets that are affected by
the same confounder (l. 7–8).

Regarding the complexity of our method, shift testing
is inO(|G|·|C|2), testing for confoundedness inO(|G|2),

Algorithm 1: CoCo(G)
input : Data over X,C; causal DAG G.
output: Subsets of X that are jointly

confounded by a latent variable Zj .
1 foreach variable Xi do
2 foreach pair of contexts c, c′ do
3 pc,c′ =

p-val
(
P c(Xi | pai) ̸= P c′(Xi | pai)

)
.

4 Convert {pc,c′} to a partition Πi

5 foreach pair of variables Xi, Xj do
6 pij = p-val(I(Πi,Πj) ̸= E

[
I(Π⋆

i ,Π
⋆
j )
]
) .

7 Construct an affinity matrix M
8 Discover subsets XS of X that are connected

components in M, using spectral clustering
9 return Subsets XS

plus spectral clustering in O(|G|3).

5 RELATED WORK

As arguably one of the most important problems in
statistical inference, causal inference has attracted a
lot of recent research attention (Rubin, 1974; Spirtes
et al., 2000; Pearl, 2009a). Unfortunately, the ex-
istence of confounders, selection bias and other sta-
tistical problems make it impossible to infer causal-
ity from observational data without further assump-
tions (Pearl, 2009b). Given purely observational
data, classical constraint-based (Spirtes et al., 2000,
1999; Zhang, 2008) and score-based (Chickering, 2002;
Scanagatta et al., 2015; Ramsey et al., 2017) recon-
struct causal graphs up to Markov equivalence, assum-
ing sufficiency as well as i.i.d. data.

When causal sufficiency does not hold, a number of al-
gorithms such as the FCI family (Spirtes et al., 2000;
Colombo et al., 2012; Ogarrio et al., 2016), and con-
vex optimization-based approaches (Chandrasekaran
et al., 2010) can find confounding to a limited extent.
Specifically, Nested Markov Models (NMMs) (Shpitser
et al., 2014, 2018; Richardson et al., 2017; Evans and
Richardson, 2019) allow identifiability of causal mod-
els with latent factors by using (pair-wise) Verna con-
straints. The recent approach DCD by Bhattacharya
et al. (2021) combines NMMs with the differentiable
constraint by Zheng et al. (2018) to discover a par-
tially directed causal network and likely confounded
nodes. In contrast, Kaltenpoth and Vreeken (2023a,b)
explicitly model the latent confounders Z by exploit-
ing patterns of the observed causal graph structure and
violations of causal mechanism independence. Reddy
et al. (2022) propose a related but different mutual
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Figure 3: Detecting Confounding with CoCo. We evaluate CoCo on discovering confounding in DAGs G over
multiple contexts. We compare (top) CoCo with MSS and the KCI test (green) to oracle versions that start from
the true partitions Π⋆ (purple) resp. the fully directed DAG G⋆ (blue). We compare (middle, bottom) against
JCI-FCI (yellow), FCI (C) on pooled data, and FCI (c⋆) per context (blue). We report F1 scores computed over
each pair of nodes, evaluating whether it is confounded (top, middle), resp. causal (bottom).

information estimator, which applies directly to the
distributions of observed variables as opposed to par-
titions induced by causal mechanism shifts, as well as
assumes that no direct causal edges are present. Karls-
son and Krijthe (2023) also address violations in ex-
changeability under latent confounding, but focus on
causal effect estimation under a fixed graph structure.

There also exists a growing literature on relaxing the
i.i.d. assumption in causal discovery, showing one can
obtain stronger identifiability results of the underlying
causal graph under distribution shifts (Huang et al.,
2020; Mooij et al., 2020). Recent approaches leverage
the independent changes (Mameche et al., 2023) and
sparse shift principles to discover fully directed causal
DAGs from multiple environments, such as the Mech-
anism Shift Score (MSS, Perry et al. (2022)).

The aforementioned approaches consider an exogenous
context variable which can be viewed as a special form
of confounding (Huang et al., 2020). However, in prac-
tice, not all confounding can be fully explained by the
effects of the environment. For example, when con-
founding effects are genetic, then while differences in
the values of the confounder can be partially explained
by membership of a subpopulation, the variance within
any subpopulation is still large, that is, there may still
be a confounder within each context. Most related to
our method is the Joint Causal Inference (JCI) frame-
work (Mooij et al., 2020) when instantiated with a
discovery algorithm that does not require sufficiency,
such as FCI (Spirtes et al., 2000).

6 EXPERIMENTS

To conclude, we evaluate CoCo empirically on both
synthetic and real-world data.

CoCo and Oracles To separate the effects of dis-
covering latent variables, mechanism changes, and
causal directions, we include different oracle versions
of CoCo. To study our confounding test in isolation,
we consider an oracle for the true partitions, named
CoCo-Π⋆. We combine it with mechanism shift test-
ing in CoCo-G∗, which takes as background knowl-
edge the causal structure G∗. Finally, we combine our
approach with MSS (Perry et al., 2022) using the ker-
nelized conditional independence test (Zhang et al.,
2011) to discover a fully directed DAG G. As MSS
starts from a Markov Equivalence class, we provide all
methods with the correct MEC as a starting point.

Baselines Our main competitor is JCI (Mooij et al.,
2020) instantiated with the FCI algorithm (Spirtes
et al., 2000), referred to as JCI-FCI. It applies FCI
to an augmented causal model including the context
variable and appropriate edge constraints (Mooij et al.,
2020), and returns for each variable pair whether it is
causal, confounded, potentially confounded, or none of
the above. We also apply FCI to the pooled data from
all contexts, FCI(C), and to the data of each context
individually, reporting the best such result, FCI(c⋆).



Sarah Mameche, Jilles Vreeken, David Kaltenpoth

Synthetic Data Following Huang et al. (2020), we
generate data from an Erdös-Rényi model as follows,

X
(c)
i =

∑
i∈pa∗i

ω
(c)
ij fij(X

(c)
i ) + σ

(c)
j N

(c)
j , (3)

with weights ω
(c)
ij ∼ U(0.5, 2.5), either uniform or

Gaussian noise with equal probability, and functions f
sampled uniformly at random from {x2, x3, tanh, sinc}.
For each mechanism change, we re-sample from Eq. 3.
Finally, each confounder Zj is a source node that has
edges to a random subset of at least two variables.

6.1 Detecting Confounding with CoCo

In our main experiment, we evaluate whether the
methods discover confounding in a multi-context DAG
G. As the FCI variants can only determine potential
confounding for node pairs, we evaluate confounding
decisions for each pair of nodes in G, using F1-scores.
We show the results depending on different parame-
ters, including the number of contexts (nc), number
of observed (nX) and latent (nZ) variables, and the
number of observed (sX) and latent (sZ) mechanism
shifts. We start from the parameters (nc = 10, nX =
10, nZ = 1, sX = 1, sZ = 2).

We show our results in Fig. 3. As we expect from
our theoretical analysis, the results for CoCo im-
prove with more contexts (Fig. 3b) and especially with
the number of invariant contexts, since these allow
us to detect joint shifts caused by Z. Conversely,
when mechanism shifts are dense (nc − sX = 1) or
(sZ = nc−1) or there are no shifts, we cannot discover
any dependencies as expected. Aside from these cases,
CoCo (green) clearly outperforms JCI-FCI (yellow)
by a large margin in discovering confounders, while
JCI-FCI in turn has a slight advantage over FCI on
best-scoring single-context resp. pooled data (blue).

The gap between the oracle versions and full CoCo
remains small in practice, suggesting that confound-
ing detection scales to unknown causal directions and
supporting our results in Section 3.5. To conclude, we
also show how many causal edges are correctly directed
in Fig. 3 (bottom). As expected for MSS, we do well
under sparse shifts and with more contexts while the
FCI variants generally only discover few causal edges.

6.2 Real-world Cell Signalling Data

We end with a case study on the flow cytometry
dataset by Sachs et al. (2005). It contains samples of
eleven protein and phospholipid components in human
immune cells that were studied under different molec-
ular interventions. To study confounding effects, we
start from the consensus causal network in Fig. 4. Fol-
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CoCo discovers

Figure 4: Confounding in Cell Signalling data. On the
Sachs et al. (2005) data CoCo recovers confounding
effects of PKC. Solid green edges are correctly discov-
ered as confounded, dashed edges are spurious.

lowing the design of Kaltenpoth and Vreeken (2023b),
we keep PKC hidden and use the data over the re-
maining variables in nine contexts. As we illustrate in
Fig. 4, CoCo correctly discovers a confounder Z and
all of its outgoing edges (green) as well as two spurious
ones (dashed). To ensure that CoCo does not return
spurious confounding, we repeat the experiment while
keeping each other node in turn hidden. Notably, we
always discover Raf and Mek to be confounded, sug-
gesting the possibility of unmeasured confounding in
this highly controlled study. Other than that, how-
ever, CoCo returns only one more false positive edge,
and correctly rejects confounding in all other cases.
Running JCI-FCI on the same data, we discover mul-
tiple false positive confounded edges. We show the
discovered network in the supplement.

7 DISCUSSION & CONCLUSION

Real-world data is often heterogeneous in nature and
may be subject to unmeasured confounding effects,
challenging the common assumptions of causal suffi-
ciency and i.i.d.-ness. We study the intersection of
both assumptions, and show how to relax them under
the principle of independent causal mechanisms. Our
main insight is that latent variables introduce depen-
dencies in observed causal mechanism changes. We
show how to measure such a dependence using mutual
information, give identifiability results for confounding
with known and unknown causal structure, and eval-
uate our approach in practice. While our approach
purely relies on detecting causal mechanism shifts and
hence is completely nonparametric, this comes with
the limitation that we need multiple context distribu-
tions with a measurable shift of the latent variable.
Hence, combining CoCo with existing approaches for
the i.i.d. case is a promising direction for future work.
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A Proofs

Lemma 3.1 (Significance and Power) Let X,Y be unconfounded and X → Y . Let ΠX ,ΠY be the corre-
sponding partitions.

lim
nc→∞

P(t > q1−α) → α ,

where q1−α is the 1−α-quantile of standard normal distribution. Conversely, if X,Y are confounded by Z, then
for any α > 0 we obtain a power of 1 in the limit,

lim
nc→∞

P(t > q1−α) → 1 .

Proof. Since t is asymptotically normal (Vinh et al., 2009), the first assertion follows directly.

For the converse statement, note that for two confounded variables X1, X2, their partitions satisfy

EI(Π1,Π2) ≥
nc

2
H(p) ≫ EI(Π′

1,Π
′
2)

where H(p) = −p log(p) − (1 − p) log(1 − p) is the binary entropy of the probability p of two different contexts
belonging to different sets of the partition as defined in Assumption 3. Note that the relation nc

2 H(p) ≫
EI(Π′

1,Π
′
2) follows from the fact that limnc→∞

1
nc
I(Π′

1,Π
′
2) = 0 P-almost surely so that EI(Π′

1,Π
′
2) cannot be

extensive in nc. Since I(Π1,Π2) also concentrates around its mean, the result follows. □

Theorem 3.1 Let XS be a set of variables such that all Xi, Xj ∈ XS are pair-wise confounded. Then XS is
jointly confounded if and only if for each triple Xi, Xj , Xk ∈ S we have

lim
nc→∞

P(T (Πi,Πj ,Πk) < I(Πi,Πj) + I(Πj .,Πk))

=

{
1, X1, Xj , Xk jointly confounded
0, otherwise .

Proof. As we have seen, the condition T (Πi,Πj ,Πk) < I(Πi,Πj) + I(Πj ,Πk) is equivalent to I(Πj ,Πk | Πi) <
I(Πj ,Πk), which is true if and only if the correlations between the partitions are shared, which can only happen
due to joint confounding of more than two variables at a time. Now, let us assume that some set S of s ≥ 4
pair-wise confounded nodes satisfying this inequality, does not share the same confounder between all nodes.
W.l.o.g. let us call these variables X1, . . . , Xs. Then the way for every triplet to have a shared confounder, and
that requires the least number of edges into, is for three distinct confounders to affect the sets {X1, . . . , Xs−1},
{X2, . . . , Xs}, and {X1, X2, Xs}. This requires 2(s−1)+3 = 2s+1 edges into the set X1, . . . , Xs in contradiction
with Assumption 6. □

Proposition 3.1 (Consistency for Pairs of Variables) If a variable pair X,Y is confounded by a variable
Z, then there exists some ρ > 0 such that

P(I(Π∗
X ,Π∗

Y ) < I(ΠX ,ΠY )) = 1−O(e−ρnc) .

Proof. Following Perry et al. (2022) we show more precisely that

P(I(Π∗
X ,Π∗

Y ) < I(ΠX ,ΠY )) = 1−O
(
(p+ (1− p)(1− p+ p2))⌊nc/2⌋

)
,

by splitting the contexts into pairs c2i, c2i+1 and note we will get a wrong result if and only if for all these
pairs of contexts we have that a change in the mechanism of Y does not introduce an additional change in the
mechanism of X | Y .

The probability of this not happening for any one pair is given by three parts: either the mechanism of Z already
changes between the environments (probability p), or it does not (probability 1−p) and either Y does not change
(probability 1− p) or both X and Y change (probability p2).

Since the changes between any two environments c2i, c2i+1 are independent of each other, the probability of this
happening in all environments is therefore (p+ (1− p)(1− p+ p2))⌊nc/2⌋ and since p+ (1− p)(1− p+ p2) ≤ 1
as convex combination of 1 and (1− p+ p2), the result follows. □
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Proposition 3.2 (Recovering Parents) Let Xi be a target variable and let G and G′ be two graphs in the
MEC of the marginal distribution P c(X). Assume that only one of the two graphs correctly recovers the parents
of Xi, pai = pa∗i and pa′i ̸= pa∗i , and further assume that the number of latent confounders affecting Xi plus

spurious siblings is bounded by log(0.5)
log(1−p) . Then

P(I(Πi, {Πj : j ∈ pai}) < I(Π′
i,
{
Π′

j : j ∈ pa′i
}
))

= 1−O(e−ρnc)

Proof. More precisely, we will show that

P(I(Πi, {Πj : j ∈ pai}) < I(Π′
i,
{
Π′

j : j ∈ pa′i
}
)) = 1−O

((
(1− (1− p)r) + (1− p)r(1− p+ p2)

)nc/2
)
,

where r is the number of latent parents of Xi plus the number of other variables with which it is pair-wise
confounded. In essence, these variables are precisely those which could make us not detect changes between two
environments, just as in the previous proof changes in the mechanism of Z between environments could prevent
us from detecting changes in the mechanisms of X or Y .

To this end, note that if pa′i ̸= pa∗i then there exists either a variable in pa∗i that is missing in pa′i or a child of
Xi in pa′i. In either case, additional joint shifts are introduced between Xi and these variables and therefore the

mutual information increased. This increase in mutual information is guaranteed by the fact that r ≤ log(0.5)
log(1−p) ,

so that the probability of mechanism between shifts in Xi is less than 0.5. □

Theorem 3.2 (Consistency) Let G∗ be the true graph over V and let G∗
x be the induced graph on X, and

assume that for all Xi the number of latent confounders plus spurious siblings is bounded by log(0.5)
log(1−p) . Then

with high probability, G∗
x and its partitions Π∗

1, . . . ,Π
∗
k are the unique minimum of total correlation,

P(argmin
G

T (Π1, . . . ,Πm) = {G∗
x}) = 1−O(e−ρnc) .

Proof. Let m be the number of observed variables and r be an upper bound on all the r = max {ri} from the
above Proposition. Then we specifically show that

P
(
argmin

G
T (Π1, . . . ,Πm) = {G∗

x}
)

= 1−O

(
m2(m− 1)

2

(
(1− (1− p)r) + (1− p)r(1− p+ p2)

)nc/2
)

.

To this end let us assume that the true causal ordering over X is given by X1 ≤ · · · ≤ Xm. Then note that by
construction T (Π1, . . . ,Πm) =

∑
i I(Πi, {Πj : j ∈ pai}) so that the inside of our statement here is simply the sum

of all terms in Proposition 3.2. As such, the total correlation is the unique minimum if the above proposition
holds for all i and when compared against any other graph G, resulting in the union bound above. □
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Figure 5: Identifiability depending on the number of mechanism shifts of the observed and latent variables. We
show the power of our confounding test (the true positive rate of decisions over node pairs, higher is better)
depending on the observed mechanism shifts sX (left) and latent shifts sZ (right) over nc = 20 contexts. We
can identify confounding when observed mechanism shifts are sparse (sX < 10, red plots on the right) unless the
confounder changes in almost every context (sZ > 15, blue plots on the left) or does not change at all (sZ = 0).

B Empirical Analysis

In this section, we revisit our theoretical results and assumptions and support them with empirical results.

B.1 Sparse Mechanism Shift (Assumption 3)

The key assumption in our analysis is the sparse mechanism shift hypothesis (Guo et al., 2022; Schölkopf et al.,
2012). It states that distribution changes are a result of only a small number of changes in causal mechanisms.
This is consistent with the view of causal mechanisms as independent modules that do not influence each other,
and is closely related to the invariance principle whereby causal mechanisms remain the same even in different
contexts (Peters et al., 2016; Huang et al., 2020). While sparsity has recently been proposed as a relaxation of
the i.i.d. assumption (Perry et al., 2022), it is not easily testable in practice. Hence, we want to investigate
empirically how sensitive our confounding test is to an increasing number of causal mechanism changes.

To this end, we we vary the number of changes for the observed (sX) and latent variables (sZ) in a fixed set of
contexts, here nc = 20. We generate data as in our main experiments and test with CoCo(Π∗) for confounding
between all node pairs in a causal DAG. To show the empirical power of our confounding test, we show the true
positive rate (TPR-confd) over these decisions in Fig. 5.

Observed Shifts In Fig. 5a, we show the effect of increasing sX . We run the experiment for each sZ , and color
plots red if latent shifts are sparse (sZ < 10) and blue otherwise. We observe a tipping point at sX = 9 where
the observed nodes have partitions with 10 different groups of the 20 contexts, that is, exactly when mechanism
shifts are no longer sparse, the power of our test decreases. For sX < 10, we have perfect power in most cases.
We note that in the special case where all variables are identically distributed in all contexts, sZ = 0, sX = 0,
the confounding effect is not measurable using our method.

Latent Shifts In Fig. 5a, we show the same result when we increase sZ instead. Sparse shifts sX < 10 are
now colored red, dense shifts blue. We can see a clear separation of the two cases, confirming our observations
above. In particular, under sparse shifts of sX , we can tolerate up to sZ = 15 shifts of the confounder.

We conclude that our approach works best in settings where the sparse shift assumption holds for the observed
variables, while we can handle more shifts for the latent variables. We obtained similar trends for nc = 5, 10.
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Figure 6: Empirical Power and Significance. We show the true positive rate (top, higher is better) and false
positive rate (bottom, lower is better) of our confounding test depending on the number of contexts, variables,
confounders, and mechanism shifts, starting from nc = 10, |X| = 10, |Z| = 1, sX = 1, sZ = 2.

B.2 Empirical Significance and Power (Lemma 1)

Next, we revisit Lemma 1, which guarantees a power of 1 of our test as we observe more contexts, nc → ∞. To
give a more practical result for fewer contexts, we investigate the power and significance of our confounding test
empirically.

We consider CoCo(Π∗) to study our confounding test in isolation, and show true positive rates (TPR-confd)
and false positive rates (FPR-confd) to show the power, respectively significance, of the test. As in our main
experiment, we test for confounding between all pairs of nodes in a causal DAG and consider nX = 10 nodes in
nc = 10 contexts, where one confounder influences a random set of between two and nX nodes, and where nodes
undergo sX = 1 mechanism change and the confounder sZ = 2 changes. We show the results in Fig. 6. We note
that we consider up to nX

2 = 5 confounders because each confounder always affects at least two variables, and
up to nc − 1 = 9 mechanism changes because this corresponds to a change in every context.

Power We find that our test already works well given few contexts, with perfect power starting from nc = 8
contexts (Fig. 6a). We point out the special case sZ = nc − 1, where the confounder changes in every context.
In this case, the mutual information of the observed (single-group) partitions does not differ from the expected
one and we cannot detect confounding, as we can see for nc = 3 (Fig. 6a) and nc = 10 (Fig. 6e). Otherwise,
the number of latent shifts does not affect the results significantly (Fig. 6e) and only the shifts of the observed
variables do (Fig. 6c), as we discussed in the previous section. The sensitivity of our test is not affected by the
number of variables (Fig. 6b) and decreases slightly when we add more confounders to the system (Fig. 6d).

Significance As the false positive rates show, our test rarely detects unconfounded variable pairs as con-
founded, with FPR-confd remaining around 0.1 and below in most experiments. We notice a change when there
is more than one confounder (Fig. 6d). To explain, in this case we also check whether variables are affected by
the same confounder, and our method may discover a variable pair Xi, Xj as confounded when they are each
affected by a different confounder, Zk → Xi, Zl → Xj . In particular, this happens if Zk, Zl have joint mechanism
shifts coincidentally, in which case the mechanism shifts of Xi, Xj also appear correlated. However, even in this
case, FPR-confd remains below 0.2 (Fig. 6d), suggesting that our method can mostly separate which variables
are affected by which latent variable.

content...
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Algorithm 2: CoCo(Π)

input : Partitions Π for each observed variable.
output: Subsets of X that are jointly confounded by a latent variable Zj .

1 foreach pair of variables Xi, Xj do
2 Test whether there is a common confounder, pij = p-val(I(Πi,Πj) ̸= E

[
I(Π⋆

i ,Π
⋆
j )
]
) .

3 Construct an affinity matrix M with entries Mij = I(Πi,Πj)
4 Discover subsets XS of X that are connected components in M, using spectral clustering
5 return Subsets XS

Algorithm 3: CoCo(G)
input : Data over X,C; causal DAG G.
output: Subsets of X that are jointly confounded by a latent variable Zj .

1 foreach variable Xi do
2 foreach pair of contexts c, c′ do
3 Test whether there is a causal mechanism change for Xi between the contexts,

4 pc,c′ = p-val
(
P c(Xi | pai) ̸= P c′(Xi | pai)

)
.

5 Convert {pc,c′} to a partition Πi, ensuring that pc,c′ ≥ α ⇒ Πi(c) ̸= Πi(c
′)

6 return CoCo (Π)

Algorithm 4: CoCo(M)

input : Data over X,C; causal MEC M.
output: Subsets of X that are jointly confounded by a latent variable Zj .

1 Discover the best DAG in M using MSS,
2 G = argminG∈M MSS(G)
3 return CoCo (G)

C Additional Details: Methodology

In our evaluation, we add oracles in different stages of our algorithm and combine CoCo with the Mechanism
Shift Score (MSS, Perry et al. (2022)). For completeness, we include the pseudo-code for all versions here.

Alg. 2 implements our main confounding test. It starts from a set of partitions Π that encode the mechanism
changes for each variable. For each pair of variables, we test whether the mutual information of their partitions
is higher than expected, obtaining p-values indicating whether the variables are likely confounded (line 2). Using
the pairwise mutual information as a measure of ”distance” between nodes, we apply spectral clustering, which
is commonly used to identify connected components in graphs (Donath and Hoffman, 1972). In this way, we
discover subsets XS that are likely affected by the same confounder (line 4). We obtain an oracle version of
Alg. 2 by providing it with the true partitions Π⋆ according to our data generation process. Throughout our
experiments, we color the oracle version CoCo(Π⋆) purple.

To discover the partitions from data, Alg. 3 a performs conditional distribution discrepancy test between each
pair of contexts (line 4). Unless otherwise stated, we use the Kernel Conditional Independence test (KCI, Zhang
et al. (2011)). We convert the pairwise tests to a clustering, where we ensure that contexts are assigned to
different groups whenever we detect a mechanism change between them (line 5). While we present Alg. 3 as our
main algorithm, it needs to start from the true structure G⋆, and we color the oracle CoCo(G⋆) light blue.

Finally, to discover G from data, we can in principle use any DAG discovery method. We give a proof-of-concept
implementation in Alg. 4. It uses the MSS estimand (line 2), which determines causal directions as the ones that
result in the fewest causal mechanism shifts (Perry et al., 2022). We color this version green in our experiments.
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Figure 7: Hidden confounding between Raf and Mek. In the cell signalling network (Sachs et al., 2005), CoCo
discovers confounding between the molecules Raf and Mek (a). Although the consensus network only contains
the edge Raf → Mek, many causal discovery methods also report a pathway Mek → Raf (Perry et al., 2022),
suggesting that there may be feedback. We illustrate this in (b), where we show the data in the observational
context (gray) and in an interventional context (blue) where the reagent U0126 was added (Mooij et al., 2020).
While U0126 is presumed to only directly influence Mek, we see a change in the abundance of Raf. With
CoCo, we discovered a joint mechanism change of both conditionals P (Raf | PKC) and P (Mek | Raf) in the
interventional context, and overall found that partitions for Raf and Mek are correlated.

D Additional Details: Experiments

We end with a more detailed discussion of our experiment on real-world data.

D.1 Confounded Edges in the Flow Cytometry Data (Fig. 3)

In our experiment on the flow cytometry data by Sachs et al. (2005), we mimic confounding by removing one
variable at a time from the dataset and testing whether CoCo discovers its causal children as confounded.

When we keep the most influential variable PKC hidden, we find that CoCo captures its confounding effect
on all of its four causal children (Fig. 8). As most other variables have at most one incoming edge, only PIP3
and Erk serve as potential other confounders, but CoCo does not detect their effects on JNK, P38, and AKT.
However, CoCo returns remarkably few confounding effects that disagree with the consensus, and we discuss
these cases here.

– PIP3: We discover PIP3 in the confounded set when we keep PKC hidden todo (Fig. 8) and when we
keep PIP2 hidden. As a likely explanation, we note that Sachs et al. (2005) include a bidirected pathway
between PIP2 and PIP3, and indeed also other causal discovery methods report edges between both signaling
molecules (Sinha et al., 2021; Perry et al., 2022).

– Raf ↔ Mek: We discover confounding between Raf and Mek regardless of which other variable we keep
hidden. Mooij et al. (2020) discuss the relationship between these signaling molecules in detail as an
example suggesting that the consensus network may be incomplete. As shown in Fig. 7, this network
includes the pathway Raf → Mek, and the only intervention targeting either of the molecules is the Mek
inhibitor U0126 (Sachs et al., 2005). Consider however the data shown in Fig. 7b. We show the observational
context (gray) and the interventional context where the reagent U0126 was added (blue), and can see that
there is a distribution shift of Raf under U0126. This suggests that either U0126 also targets Raf, or there
is a feedback loop from Mek to Raf; for example, a path from Erk to Raf was suggested (Mooij et al., 2020).

We found that CoCo detects this observation. In the partitions for Mek and Raf, reflecting changes in
the conditional distributions P (Mek | Raf) and P (Raf | PKC), we discover a joint mechanism shift of both
signaling molecules in the interventional context U0126, and higher than expected mutual information of
the partitions, hence deciding that Raf and Mek are confounded.

In conclusion, CoCo discovers a dependent mechanism shift of Raf and Mek under the intervention with U0126,
thus pointing to potential hidden confounding between the cells that is consistent with the data.
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Figure 8: Confounding effects of PKC. On the Sachs et al. (2005) data CoCo recovers confounding effects of
PKC. Solid green edges are correctly discovered as confounded, dashed green edges are additional edges discovered
as confounded, and orange edges are confounded but not discovered.

D.2 Competitors on the Flow Cytometry Data

Finally, we also include the result of JCI-FCI on this dataset. As we show in Fig. 8, JCI-FCI does not discover
the confounding edges (dashed orange), and reports two false positives (dashed green).
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