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Abstract

Morden deep ensembles technique achieves
strong uncertainty estimation performance by
going through multiple forward passes with
different models. This is at the price of a high
storage space and a slow speed in the infer-
ence (test) time. To address this issue, we
propose Density-Regression, a method that
leverages the density function in uncertainty
estimation and achieves fast inference by a
single forward pass. We prove it is distance
aware on the feature space, which is a nec-
essary condition for a neural network to pro-
duce high-quality uncertainty estimation un-
der distribution shifts. Empirically, we con-
duct experiments on regression tasks with the
cubic toy dataset, benchmark UCI, weather
forecast with time series, and depth estima-
tion under real-world shifted applications. We
show that Density-Regression has competitive
uncertainty estimation performance under dis-
tribution shifts with modern deep regressors
while using a lower model size and a faster
inference speed.

1 Introduction

Improving the uncertainty quality of Deep Neural Net-
work (DNN) is crucial in high-stakes Artificial Intelli-
gence (AI) applications in real-world applications (Tran
et al., 2022; Nado et al., 2021). For example, in re-
gression tasks like predicting temperature in weather
forecasts, depth estimation in medical diagnosis, and
autonomous driving, accurate uncertainty hinges on
the calibration property (Guo et al., 2017), i.e., the
frequency of realizations below specific quantiles must
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Method Uncertainty
quality

Test-time
efficiency

Without prior
requirement

Deterministic ✗ ✓ ✓
Bayesian ✓ ✓ ✗

Ensembles ✓ ✗ ✓
Ours ✓ ✓ ✓

Table 1: A comparison between methods in terms of
uncertainty quality (calibration & sharpness), test-time
efficiency (lightweight & fast), and whether pre-defined
prior hyper-parameters are required.

match the respective quantile levels (Kuleshov et al.,
2018). Furthermore, the forecast must exhibit an ap-
propriate level of sharpness, i.e., concentrated around
the realizations and leveraging the information in the
inputs effectively (Kuleshov and Deshpande, 2022).

However, modern Deterministic DNN is often over-
confident, especially under distribution shifts in real-
world applications (Tran et al., 2022; Minderer et al.,
2021; Bui et al., 2021). For instance, a Determinis-
tic DNN trained with in-door images but deployed in
outdoor scenes will result in sharp but un-calibrated
predictions. Sampling-based approaches such as Gaus-
sian Process (GP), Bayesian Neural Network (BNN),
Monte-Carlo (MC) Dropout, and Deep Ensembles can
reduce over-confidence (Koh et al., 2021; Lakshmi-
narayanan et al., 2017; Chen et al., 2016). However,
such approaches usually have high computational de-
mands by using multiple forward passes (or merging
predictions from multiple models with Ensembles) at
inference (test) time.

To mitigate the inefficiency issue, sampling-free ap-
proaches, including Quantile Regression (Romano et al.,
2019), Spectral-normalized Neural Gaussian Process
(SNGP) (Liu et al., 2020), Deterministic Uncertainty
Estimation (DUE) (van Amersfoort et al., 2022), and
closed-form posteriors in Bayesian inference (e.g., Ev-
idential Deep Learning (EDL) (Sensoy et al., 2018),
Natural Posterior Network (NatPN) (Charpentier et al.,
2022)), have been proposed. The Bayesian approach,
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Figure 1: Predictive distributions for the toy dataset y = x3 + ϵ, ϵ ∼ N (0, 32). The gray dots in the area between two
vertical dashed lines represent observations in training, the red dashed line represents the true data-generating function,
and the blue line represents the mean predictions in which blue areas correspond to ±3 standard deviation around the
mean. Our Density-Regression achieves distance awareness and, therefore, can improve distribution calibration by confident
& sharp predictions on IID training data and decreased certainty and sharpness when the OOD data is far from the
training set. A quick demo is available at this Google Colab link.

however, requires pre-defined prior hyper-parameters,
which are often sensitive and unknown in the real
world. In addition, these aforementioned approaches
still under-perform relative to sampling-based tech-
niques and require a higher computational demand
than the Deterministic DNN (e.g., Tab. 1).

Towards a model enhancing uncertainty quality, test-
time efficiency, and not requiring any pre-defined prior
hyper-parameter, we propose Density-Regression. Our
framework includes three main components: a feature
extractor, a density function on feature space, and a re-
gressor. The key component is the density function. By
combining its likelihood value as an in-out-distribution
detector on the feature space, the regressor achieves im-
proved predictive uncertainty under distribution shifts.
At the same time, it preserves the level of test-time
efficiency of Deterministic DNN.

Our contributions can be summarized as:

1. We introduce Density-Regression, a novel determin-
istic framework that improves DNN uncertainty by
a combination of density function with the regressor.
Density-Regression is fast and lightweight. It is able
to produce reliable predictions under distribution
shifts, and can be implemented efficiently and easily
across DNN architectures.

2. We develop a rigorous theoretical connection for our
framework, and formally prove that it is distance-
aware on the feature space, i.e., its associated un-
certainty metrics are monotonic functions of feature
distance metrics. This is an important property to
help DNN improve calibration, however, it is often
not guaranteed for typical DNN models (Liu et al.,
2020) (e.g., Fig. 1).

3. We empirically show our framework achieves com-
petitive uncertainty estimation quality with State-
of-the-art (SOTA) across different tasks, including
the cubic dataset, time-series weather forecast, UCI
benchmark dataset, and monocular depth estima-
tion. Importantly, it requires only a single for-
ward pass and a lightweight feature density function.
Therefore, it has fewer parameters and is much faster
than other baselines at test time.

2 Background

2.1 Preliminaries

Notation and Problem setting. Let X and Y
be the sample and label space. Denote the set of
joint probability distributions on X × Y by PX×Y . A
dataset is defined by a joint distribution P(x, y) ∈
PX×Y , and let P be a measure on PX×Y , i.e., whose

https://colab.research.google.com/drive/1p5gK-rOI4XYgg2zTVtbh-5Ky06PGlA09?usp=sharing
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realizations are distributions on X × Y. Denote the
training set by Ds = {(xi

s, y
i
s)}

ns
i=1, where ns is the

number of data points in Ds, s.t., (xs, ys) ∼ Ps(x, y)
and Ps(x, y) ∼ P. In the standard learning setting,
a learning model that is only trained on Ds, arrives
at a good generalization performance on the test set
Dt = {(xi

t, y
i
t)}

nt
i=1, where nt is the number of data

points in Dt, s.t., (xt, yt) ∼ Pt(x, y) and Pt(x, y) ∼ P.
In the Independent-identically-distributed (IID) setting,
Pt(x, y) is similar to Ps(x, y), and let us use Piid(x, y) to
represent the IID test distribution. In contrast, Pt(x, y)
is different with Ps(x, y) if Dt is Out-of-Distribution
(OOD) data, and let us use Pood(x, y) to represent the
OOD test distribution.

Deterministic Regression. In the regression setting
of representation learning, we predict a target y ∈
Y, where Y = R is continuous by using a forecast
h = g ◦ f which composites a features extractor f :
X → Z, where Z is feature space, a regressor g :
Z → Y which outputs a predicted output over Y. In
Deterministic DNN, we often aim to learn a function
h by minimizing the Mean Squared Error

min
θg,f

{
E(x,y)∼Ds

[
1

2
||y − g(f(x))||2

]}
, (1)

where θg,f is the parameter of encoder f and regressor
g. The model h is optimized such that it can learn the
average correct answer for a given input. Yet, there is
no uncertainty estimation in this model when making
the prediction (Chua et al., 2018; Tran et al., 2020).

Deterministic Gaussian DNN. To tackle this issue,
one probabilistic approach is based on the assumption
that the true label y is distributed according to a nor-
mal distribution with a true mean µ(x) and some noise
with the variance σ2(x) (Chua et al., 2018). Under this
assumption, we can simplify the model to a probabilis-
tic function h to infer (µ, σ2) by making g : Y → R2,
then optimize function h by Maximum Likelihood Es-
timation (MLE)

min
θg,f

{E(x,y)∼Ds
[− log p (y|g(f(x))) (2)

:=
1

2
log(2πσ2) +

(y − µ)2

2σ2
]}.

This approach, however, only helps the model h provide
data uncertainty when making predictions since it esti-
mates the underlying noise in the data (i.e., aleatoric
uncertainty), and the model uncertainty (i.e., epistemic
uncertainty) is ignored (Tran et al., 2020).

Sampling-based Regression. The sampling-based
approaches, i.e., make an inference by multiple forward
passes (or merging predictions from multiple models),
such as BNN, MC Dropout, and Deep Ensembles can

model the model uncertainty by predicting

µ(x) =
1

M

M∑
i=1

µθi(x), (3)

σ2(x) =
1

M

M∑
i=1

[(
µ(x)− µθi(x))

2 + σ2
θi(x

)]
, (4)

where θi represents i-th model’s parameters. However,
this approach struggles with computational cost by
requiring multiple (i.e., M) model inferences.

2.2 Evaluating Uncertainty

Calibrated Regression. First, we present the defini-
tion of distribution calibration for the forecast h under
the regression setting by:

Definition 2.1. (Gneiting et al., 2007) A forecast h
is said to be distributional calibrated if and only if

P(Y ≤ F−1
x (p)) = p,∀p ∈ [0, 1], (5)

where we use Fx : Y → [0, 1] to denote the CDF of
forecast h(x) at x, hence F−1

i : [0, 1] → Y means the
quantile function F−1

i (p) = inf{y : p ≤ Fi(y)}.

Intuitively, this means that a p confidence interval
contains the target y p of the time. This definition also
implies that

(∑n
i=1 I{F

−1
i (p1) ≤ yi ≤ F−1

i (p2)}
)
/n →

p2 − p1, for all p1, p2 ∈ [0, 1] as n → ∞. Under this
confidence intervals intuition, Kuleshov et al. (2018)
propose to measure the calibration error as a numerical
score describing the quality of forecast calibration

cal({Fi, yi}ni=1)

:=

m∑
j=1

(
pj −

|{yi|Fi(yi) ≤ pj , i = 1, · · · , n}|
n

)2

, (6)

for each threshold pj from the chosen of m confidence
level 0 ≤ p1 < p2 < · · · < pm ≤ 1.

Sharpness. Calibration, however, is only a neces-
sary condition for good uncertainty estimation. For
example, a well-calibrated model could still have large
confidence intervals, which is inherently less useful than
a well-calibrated one with small confidence intervals.
Therefore, another condition is that the forecast h
must also be sharp. Intuitively, this means that the
confidence intervals should be as tight as possible, i.e.,
var(Fi) of the random variable whose CDF is Fi to be
small. Formally, the sharpness score (Tran et al., 2020)
follows

sha(F1, · · · , Fn) :=

√√√√ 1

n

n∑
i=1

var(Fi). (7)
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Distance Awareness. One of the approaches to help
the Deterministic Gaussian DNN provide model uncer-
tainty is making it achieve distance awareness. This is
an important property to improve model uncertainty
under distributional shifts (Liu et al., 2020; van Amers-
foort et al., 2022; Bui and Liu, 2024). It was introduced
by Liu et al. (2020), and on the feature space Z, we
can define distance awareness as follows:

Definition 2.2. The forecast h(xt) on the new test fea-
ture zt = f(xt), is said to be feature distance-aware
if there exists u(zt), a summary statistics of h(xt), that
quantifies model uncertainty (e.g., entropy, predictive
variance, etc.) and reflects the distance between zt and
the features random variable on the training data Zs

w.r.t. a metric ∥·∥Z , i.e., u(zt) := v(d(zt, Zs)), where v
is a monotonic function and d(zt, Zs) := E ∥zt − Zs∥Z
is the distance between zt and Zs.

Following Def. 2.2, if a model achieves the distance-
aware property, model uncertainty quality would be
improved and the over-confidence issues of current DNN
on OOD would be reduced. While, at the same time,
it will still preserve certainty predictions for the IID
test example, suggesting calibration and sharpness im-
provement.

2.3 Test-time Efficiency

Latency. To deploy in real-world applications, a neces-
sary condition is that the model must infer fast at the
test-time. This is especially important in high-stakes
applications such as autonomous driving when the car
needs to react in sudden circumstances.

Parameters. Additionally, to make the model scalable,
the model also needs to be as lightweight as possible
to be installed with low-resource hardware. That said,
current SOTA sampling-based approaches that can
improve uncertainty quantification are still struggling
with these two criteria (Tran et al., 2022; Nado et al.,
2021; Bui and Liu, 2024).

3 Density-Regression

3.1 Exponential Family Distribution

To improve the uncertainty quality and test-time effi-
ciency of DNN in regression under distribution shifts,
we propose the Density-Regression framework in Fig. 2.
First, recall that when Y is the label space and Φ(x, y)
is the sufficient statistic of the joint distribution P(x, y)
associated with (x, y) ∈ X × Y, from Lemma A.1 in
our Appendix A, we have the predictive distribution

Figure 2: The overall architecture of Density-Regression,
including encoder f , regressor g, and density function
p(Z;α). Solid rectangle boxes represent these functions.
Dashed rectangle boxes represent function weights. Three
training steps and inference process follow Alg. 1

.

p(y|x; θ) follows

p(y|x; θ) = exp(η(θg)
⊤Φ(f(x), y))∫

y′∈Y exp (η(θg)⊤Φ(f(x), y′)) dy′
, (8)

where η is the natural function for the parameter θ,
θ = (θg, θf ) is obtained by maximizing the MLE w.r.t.
the conditional log-likelihood

θ = argmax
θ

Ex,y∼p(x,y)[log p(y|x; θ)]. (9)

Motivated by the idea of using the density function to
improve uncertainty estimation of DNN under distribu-
tion shifts (Bui and Liu, 2024; Charpentier et al., 2020;
Kuleshov and Deshpande, 2022), in this paper, we inte-
grate the density function into our Density-Regression’s
framework by

p(y|x; θ) =
exp

(
−p(z;α)θ⊤g Φ(z, y)

)∫
y′∈Y exp

(
−p(z;α)θ⊤g Φ(z, y

′)
)
dy′

, (10)

where z = f(x) and the density function p(z;α) ∈
(0,∞]. The density p(z;α) modulates the distribu-
tion’s certainty. When the density goes to zero, the
estimator p(y|x; θ) becomes uncertain. As the density
goes toward infinity, the estimator converges to a de-
terministic point estimate. When Density-Regression
follows a Gaussian distribution, we obtain the mean
and variance by the following theorem:

Theorem 3.1. If the predictive distribution follows
Eq. 10 and the sufficient statistic has the form Φ(z, y) =[
zy2 y2 2zy 2y z 1

]
, then Density-Regression

has the conditional Gaussian distribution as follows
p(y|x; θ) ∼ N (µ(x, θ), σ2(x, θ)), where

µ(x, θ) = −
(
θσg

[
z
1

])−1(
θµg

[
z
1

])
,

σ2(x, θ) =

(
2 · p(z;α)θσg

[
z
1

])−1

,



Ha Manh Bui, Anqi Liu

where z = f(x) and θµg and θσg are the parameters
(model weights) of the regressor g, i.e., (θµg , θσg ) = θg .
The proof is in Apd. A.2.

The mean and variance in Theorem 3.1 are hard to
optimize with MLE since they are undefined for non-
positive θσg

[
z, 1
]⊤. To avoid this issue, we can rewrite

the mean and the variance by the Corollary below:

Corollary 3.2. Given the mean and variance in The-
orem 3.1, we can rewrite as follows

µ(x, θ) = σ2(z, θ)

(
−2 · p(z;α)θµg

[
z
1

])
,

σ2(x, θ) = exp

(
−1

2

[
log(2) + log(p(z;α)) + θσg

[
z
1

]])2

, where z = f(x). The proof is in Apd. A.3.

Corollary 3.2 gives a defined mean and variance formu-
lation for every θσg

[
z, 1
]⊤ ∈ R such that they can be

easily optimized with MLE.

3.2 Training and Inference Process

Given these aforementioned results, we next present
the training and inference of our framework:

Training. In the first training step, we optimize
the model by using Empirical Risk Minimization
(ERM) (Vapnik, 1998) with training data Ds, i.e., we
do MLE

min
θg,f

{
E(x,y)∼Ds

[
1

2
log(2πσ2

o(x, θ)) +
(y − µo(x, θ))

2

2σ2
o(x, θ)

]}
(11)

, where µo(x, θ), σ
2
o(x, θ) follows Corollary 3.2 without

the density function p(z;α), i.e.,

µo(x, θ) = σ2
o(z, θ)

(
−2 · θµg

[
z
1

])
, (12)

σ2
o(x, θ) = exp

(
−1

2

[
log(2) + θσg

[
z
1

]])2

, (13)

where z = f(x).

After that, we freeze the parameter θf of f to estimate
the density on the feature space Z by positing a statis-
tical model for p(Z;α) with Normalizing-Flows (Dinh
et al., 2017) since it is provable (in terms of Lemma 3.4),
simple, and provides exact log-likelihood (Charpentier
et al., 2022). Specifically, we optimize by using MLE
w.r.t. the logarithm as follows

max
α

{Ez=f(x)∼DB
[log(p(z;α))

:= log(p(t;α)) + log

∣∣∣∣det( ∂t

∂z

)∣∣∣∣]}, (14)

Algorithm 1 Training and Inference (code is in
Apd. B.3)

Training Input: Dataset Ds, encoder f , density
p(f(X);α), regressor g with θg = (θσg , θ

µ
g ), learning

rate η, batch-size B
for e = 1 → epochs do

Sample (x, y) ∈ DB with a mini-batch B for Ds

Set µo(x, θ) and σ2
o(x, θ) following Eq. 12 and

Eq. 13
Update θg,f as:
θg,f−η∇θg,fE(x,y)

[
1
2 log(2πσ2

o(x, θ)) +
(y−µo(x,θ))

2

2σ2
o(x,θ)

]
end for
for e = 1 → train-density epochs do

Sample x ∈ DB with a mini-batch B for Ds

Update α as:
α− η∇αEz=f(x)

[
− log(p(t;α))− log

∣∣det ( ∂t∂z )∣∣]
end for
for e = 1 → epochs do

Sample (x, y) ∈ DB with a mini-batch B for Ds

Set σ2(x, θ) and µ(x, θ) following Corollary 3.2
Update θg as:
θg − η∇θgE(x,y)

[
1
2 log(2πσ

2(x, θ)) + (y−µ(x,θ))2

2σ2(x,θ)

]
end for
Inference Input: Test sample xt

Set σ2(xt, θ) and µ(xt, θ) following Corollary 3.2
Predict ŷt ∼ N (µ(xt,M);σ2(xt,M))

where random variable t = sα(f(x)) and s is a bijective
differentiable function. It is worth noticing that p(Z;α)
can be any other density function (e.g., Kernel density
estimation, Gaussian mixture models, etc.).

Finally, we combine our model with the likelihood
value of the density function p(Z;α) by re-updating
the weight of classifier g, i.e., θg via optimizing

min
θg

{
E(x,y)∼Ds

[
1

2
log(2πσ2(x, θ)) +

(y − µ(x, θ))2

2σ2(x, θ)

]}
(15)

, where µ(x, θ) and σ2(x, θ) follows Corollary 3.2.

Inference. After completing the training process, for
a new input xt at the test-time, we perform prediction
by combining the density function on feature space
p(zt;α) following Corollary 3.2. The pseudo-code for
the training and inference processes of our proposed
framework is presented in Algorithm 1 and the demo
notebook code is in Apd. B.3.
Remark 3.3. (Computational efficiency at test-
time) Corollary 3.2 shows that the complexity of
Density-Regression at test-time is only O(1) by re-
quiring only a single forward pass. Meanwhile, the
sampling-based approach is O(M), where M is the
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number of sampling times. Compared with Determin-
istic Gaussian DNN, ours computation only needs to
additionally compute p(zt;α), therefore, only higher
than Deterministic Gaussian DNN by the additional
parameter α and the latency of p(zt;α). This number is
often very small in practice by Fig. 5 (a) and Fig. 5 (b).

3.3 Theoretical Analysis

Intuitively, the predictive distribution of Density-
Regression in Corollary 3.2 leads to reasonable un-
certainty estimation for the two limit cases of strong
IID and OOD data. In particular, for very unlikely
OOD data, i.e., d(zt, Zs) → ∞, the prediction become
uncertain. Conversely, for very likely IID data, i.e.,
d(zt, Zs) → 0, the prediction converges to a determin-
istic point estimate. We formally show this property
below:

Let us recall a Lemma when p(Z;α) is a Normalizing-
Flows model (Papamakarios et al., 2021):

Lemma 3.4. (Lemma 5 (Charpentier et al., 2022))
If p(Z;α) is parametrized with a Gaussian Mixture
Model (GMM) or a radial Normalizing-Flows, then
limd(zt,Zs)→∞ p(zt;α) → 0.

Based on Lemma 3.4, we obtain the following results:

Theorem 3.5. Density-Regression converges to a de-
terministic point estimate, i.e., σ2(xiid; θ) → 0 when
d(ziid, Zs) → 0 by p(ziid;α) → ∞, and become uncer-
tain, i.e., σ2(xood; θ) → ∞ when d(zood, Zs) → ∞ by
p(zood;α) → 0. The proof is in Apd. A.4.

Theorem 3.6. The predictive distribution of Density-
Regression p(y|x; θ) ∝ exp(−p(f(x);α)θ⊤g Φ(f(x), y))
is distance-aware on feature space Z by satisfying the
condition in Def. 2.2, i.e., there exists a summary
statistic u(zt) of p(ŷt|xt; θ) on the new test feature
zt = f(xt) s.t. u(zt) = v(d(zt, Zs)), where v is a
monotonic function and d(zt, Zs) = E ∥zt − Zs∥Z is the
distance between zt and the training features random
variable Zs. The proof is in Apd. A.5.

Remark 3.7. Theorem 3.6 shows our Density-
Regression is distance-aware on the feature represen-
tation Z, i.e., its predictive probability reflects mono-
tonically the distance between the test feature and the
training set. This is a necessary condition for a DNN to
achieve high-quality uncertainty estimation (Liu et al.,
2020; Bui and Liu, 2024). Combining with Theorem 3.5,
this proves when the likelihood of p(Z;α) is high, our
model is certain on IID data, and when the likelihood
of p(Z;α) decreases on OOD data, the certainty will
decrease correspondingly.

4 Experiments

4.1 Toy Dataset

We first qualitatively compare the performance of our
approach against a set of baselines on a one-dimensional
cubic regression dataset. The detailed baselines, im-
plementation, and source code are in Apd. B.1 and
Apd. B.2. Following Hernandez-Lobato and Adams
(2015), we train models on x within ±4 and test within
±7. We compare uncertainty estimation for baseline
methods. From Fig. 1, we observe that, as expected,
all methods accurately capture uncertainty within the
IID training distribution. Regarding OOD test set, our
proposed Density-Regression estimates uncertainty ap-
propriately and the confidence interval grows on OOD
data, without dependence on sampling.

4.2 Time Series Weather Forecasting

Ensembles

Ours Time [h]

Time [h]

Figure 3: Comparison between Deep Ensembles and our
model regarding temperature in Celsius (normalized) for
every hour on the same day. More details are in Apd. C.2.

In this setting, we evaluate models in the real world
with a weather time series dataset recorded by the Max
Planck Institute for Biogeochemistry (Abadi et al.,
2015). Specifically, the model will learn to predict the
temperature for every hour from 14 different features
(collected every 10 minutes), e.g., air temperature, at-
mospheric pressure, humidity, etc.

Tab. 2 quantitatively shows our method outperforms
others in terms of calibration and sharpness in both IID
and OOD settings. Notably, its predictive uncertainty
is more calibrated and sharper than the well-known
SOTA Ensembles. To take a closer look at this differ-
ence, we visualize the temperature prediction on OOD
data in Fig. 3. We observe that Deep Ensembles is con-
servative, even when making incorrect predictions. In
contrast, our model enables signaling when it is likely
wrong. Importantly, it is more calibrated by always
covering the true label in our confidence intervals, while
at the same time, preserving the sharpness with correct
predictions.
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Table 2: Time series temperature weather forecasting, models are trained on data from 2009 to 2016 in the Beutenberg
weather station, tested on this IID data, and OOD data from Saaleaue station in 2022. Negative log-likelihood (NLL), Root
Mean Square Error (RMSE), Calibration (Cal), and Sharp (Sharpness) mean evaluation on IID test-set. oNLL, oRMSE,
oCal, and oSharp correspond these metrics with evaluation on OOD test-set. Lower is better. Results are reported over 10
different random seeds. Best scores that have the p-value ≤ 0.05 in the significant T-test are marked in bold.

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓) oNLL (↓) oRMSE (↓) oCal (↓) oSharp (↓)
Deterministic -3.90 ± 0.10 0.09 ± 0.01 0.47 ± 0.29 0.10 ± 0.01 -1.76 ± 0.46 0.15 ± 0.01 0.58 ± 0.35 0.09 ± 0.01
Quantile -3.67 ± 0.10 0.10 ± 0.01 0.88 ± 0.58 0.08 ± 0.01 -0.11 ± 0.85 0.15 ± 0.00 1.36 ± 0.77 0.08 ± 0.01
MC Dropout -3.48 ± 0.11 0.10 ± 0.00 0.81 ± 0.26 0.16 ± 0.01 -2.52 ± 0.06 0.16 ± 0.00 0.32 ± 0.24 0.16 ± 0.01
MFVI-BNN -3.77 ± 0.35 0.10 ± 0.02 0.73 ± 0.51 0.12 ± 0.03 -2.25 ± 0.26 0.15 ± 0.01 0.54 ± 0.56 0.12 ± 0.03
EDL -3.96 ± 0.09 0.09 ± 0.00 0.55 ± 0.31 0.10 ± 0.01 -2.19 ± 0.22 0.14 ± 0.00 0.68 ± 0.37 0.09 ± 0.01
SNGP -3.35 ± 0.19 0.13 ± 0.01 0.52 ± 0.47 0.15 ± 0.01 -2.20 ± 0.09 0.27 ± 0.02 0.29 ± 0.25 0.23 ± 0.05
DUE -3.37 ± 0.22 0.13 ± 0.02 0.64 ± 0.67 0.14 ± 0.01 -2.38 ± 0.13 0.27 ± 0.03 0.27 ± 0.20 0.20 ± 0.03
Ensembles -4.04 ± 0.06 0.08 ± 0.00 0.62 ± 0.20 0.11 ± 0.01 -2.44 ± 0.15 0.14 ± 0.00 0.25 ± 0.13 0.10 ± 0.01
Ours -3.99 ± 0.08 0.08 ± 0.01 0.38 ± 0.14 0.09 ± 0.00 -2.16 ± 0.16 0.14 ± 0.00 0.23 ± 0.10 0.09 ± 0.00

Table 3: UCI: Wine Quality, models are trained on red wine sample, tested on this IID data, and OOD white vinho verde
wine samples, from the north of Portugal.

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓) oNLL (↓) oRMSE (↓) oCal (↓) oSharp (↓)
Deterministic 1.10 ± 0.01 0.62 ± 0.01 0.69 ± 0.05 1.14 ± 0.02 1.23 ± 0.04 0.82 ± 0.03 0.49 ± 0.38 1.04 ± 0.03
Quantile 1.31 ± 0.01 0.66 ± 0.03 1.30 ± 0.08 1.64 ± 0.03 1.53 ± 0.05 0.88 ± 0.08 1.59 ± 0.62 1.99 ± 0.13
MC Dropout 1.14 ± 0.03 0.63 ± 0.01 0.73 ± 0.08 1.20 ± 0.05 1.27 ± 0.04 0.85 ± 0.04 0.55 ± 0.39 1.12 ± 0.03
MFVI-BNN 1.36 ± 0.02 0.79 ± 0.01 1.25 ± 0.08 1.58 ± 0.05 1.40 ± 0.02 0.91 ± 0.01 1.37 ± 0.10 1.53 ± 0.05
EDL 0.98 ± 0.03 0.61 ± 0.01 0.97 ± 0.17 1.37 ± 0.16 1.55 ± 0.18 0.86 ± 0.06 1.75 ± 1.30 2.87 ± 4.25
SNGP 1.18 ± 0.03 0.65 ± 0.01 0.81 ± 0.07 1.36 ± 0.05 1.42 ± 0.03 0.87 ± 0.02 1.09 ± 0.16 1.66 ± 0.08
DUE 1.14 ± 0.03 0.64 ± 0.01 0.77 ± 0.09 1.26 ± 0.05 1.27 ± 0.03 0.82 ± 0.03 0.75 ± 0.42 1.27 ± 0.05
Ensembles 1.06 ± 0.01 0.60 ± 0.00 0.68 ± 0.04 1.15 ± 0.01 1.21 ± 0.02 0.80 ± 0.02 0.44 ± 0.22 1.09 ± 0.02
Ours 1.06 ± 0.01 0.60 ± 0.01 0.68 ± 0.02 1.16 ± 0.00 1.21 ± 0.02 0.81 ± 0.03 0.43 ± 0.20 1.07 ± 0.01

Table 4: Monocular depth estimation, models are trained on NYU Depth v2 dataset, tested on this IID data, and two
different OOD test-set. cNLL, cRMSE, cCal, and cSharp mean evaluation on the corrupted OOD data dataset. oNll,
oRMSE, oCal, and oSharp mean evaluation on ApolloScape OOD data.

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓) cNLL (↓) cRMSE (↓) cCal (↓) cSharp (↓) oNLL (↓) oRMSE (↓) oCal (↓) oSharp (↓)
Deterministic -2.4599 0.0381 0.0955 0.0348 -1.9875 0.0624 0.8831 0.0360 11.8430 0.3579 27.3004 0.0859
MC Dropout -2.1086 0.0484 0.2632 0.0530 -1.1290 0.0904 0.7900 0.0650 11.0895 0.3625 27.4328 0.1050
EDL -2.3165 0.0373 0.1903 0.0525 13.3139 0.1339 2.7539 0.1238 30.3392 0.5392 27.9011 0.1352
NatPN -2.1854 0.0384 0.0953 0.0397 -1.1154 0.1021 0.7801 0.0511 17.1042 0.4012 26.5438 0.1356
Ensembles -2.6581 0.0304 0.0892 0.0417 -2.3884 0.0593 0.5996 0.0425 4.5459 0.3440 22.6413 0.1323
Ours -2.1203 0.0362 0.0810 0.0377 -2.2337 0.0601 0.5431 0.0445 4.4738 0.3596 20.7369 0.1359

4.3 Benchmark UCI

We next conduct another benchmarking experiment on
the UCI datasets (Amini et al., 2020). For testing on
IID data, we leave tables in Apd. C.3, where our main
observation is our Density-Regresiion still performs well
in these IID-only dataset by having a low calibration
and sharpness value. We mainly discuss the main result
under distribution shifts on UCI: Wine Quality, which
includes two datasets, related to red and white vinho
verde wine samples, from the north of Portugal. The
goal is to model wine quality based on physicochemical
tests (Cortez et al., 2009). In our setting, we train
models on red wine samples, and test on both the IID
samples and the white vinho verde wine OOD samples.
Tab. 3 shows our Density-Regression outperforms other
baselines and has a competitive result with the SOTA
Deep Enselbmes in all criteria. Notably, the competi-
tive result is not only in uncertainty quality but also in

NLL and RMSE, showing our method is robust under
distribution shifts.

4.4 Monocular Depth Estimation

Finally, we present an application of our model in
the monocular depth estimation task (Amini et al.,
2020). We train models with U-Net (Ronneberger
et al., 2015) on 27k RGB-to-depth image pairs of in-
door scenes (e.g., bedrooms, kitchens, etc.) from the
NYU Depth v2 (Silberman et al., 2012). Then, we
test on this IID test-set and two OOD datasets, includ-
ing its corrupted data by adding noise with the Fast
Gradient Sign Method (Goodfellow et al., 2015) and
a diverse outdoor driving ApolloScape (Huang et al.,
2018). Tab. 4 once again confirms Density-Regression
consistently provides a good quality uncertainty esti-
mate by always achieving the lowest calibration error
across three test sets, especially on the real-world OOD
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Figure 4: Comparison in pixel-wise depth predictions and predictive uncertainty on (a) IID and (b) 0.04 noise level
on corrupted OOD dataset. Detailed figures for the robustness under corrupted noise are in Apd. C.1; (c) Our model
performance on the real-world OOD ApolloScape.

outdoor scenes dataset. Regarding the sharpness, it
is worth noticing that, unlike calibration, sharpness is
neither a sufficient nor necessary condition for a good
uncertainty estimate. It will depend on the model’s
accuracy: if a model has a high RMSE (e.g., on OOD
outdoor scenes), the sharpness score should be high.
Therefore, we marked the bold by comparing the cali-
bration error first, then the sharpness later, i.e., if two
models have the same calibration error, we compare
their sharpness to select the better one.

To take a closer look at the performance, we visualize
Fig. 4 (a) and Fig. 4 (b) to compare the predicted
depth map, its error comparing to the ground truth,
and the corresponding predicted uncertainty for every
pixel. Firstly, we observe that Density-Regression is
more robust (i.e., the robustness performance on the
OOD data) than NatPN (Charpentier et al., 2022) by
lower pixel values in the absolute error image. Secondly,
it provides more certain predictions for correct pixels
and less certain for incorrect ones than other methods.
Finally, it can provide certain predictions on IID data,
and when the corrupted OOD images are far from the
training set, its certainty decreases correspondingly.
This confirms a hypothesis that our model is distance-
aware, helping to improve the quality of uncertainty
quantification under distribution shifts.

Regarding the real-world OOD ApolloScape, we also
observe from Fig. 4 (c) that our model can provide con-
fident prediction on IID images. And when the OOD
dataset is far from IID, its predictive uncertainty also
increases correspondingly. Additionally, Fig. 5 (c) also
shows that when compared to other methods under dis-
tribution shifts, our model is also more well-calibrated
by less over-confidence and under-confidence, resulting

in the closest to the ideal calibration line.

4.5 Test-time Efficiency Evaluation

So far, we have empirically shown our model can pro-
vide a high-quality uncertainty estimation and have
a competitive result with the SOTA Deep Ensembles
across several tasks. We next show that our method
outperforms Deep Ensembles regarding test-time ef-
ficiency. Indeed, Fig. 5 (a) and Fig. 5 (b) show our
model has less than four times the model size and five
times faster computation than Ensembles across differ-
ent GPU architectures. Notably, when compared to the
best efficient model, i.e., Deterministic Gaussian DNN,
our model is only slightly higher due to p(Z;α) den-
sity function (the minus of ours to Deterministic can
measure this gap). As a result, our method not only
has a better uncertainty quality, but also has a higher
test-time efficiency than many sampling-free methods,
e.g., Quantile, EDL, NatPN, SNGP, and DUE.

5 Related work

Uncertainty and Robustness. More discussion of
Uncertainty and Robustness can be found in the liter-
ature of Tran et al. (2022); Bui and Maifeld-Carucci
(2022); Ovadia et al. (2019); Koh et al. (2021); Min-
derer et al. (2021); Hendrycks and Dietterich (2019).
For the regression setting, Gustafsson et al. (2023);
Tran et al. (2020); Dheur and Ben Taieb (2023) have
recently empirically covered SOTA techniques. To
summarize, there are three main approaches: sampling-
based, sampling-free, and replacing loss function. Re-
garding sampling-based models, the typical ap-
proaches includes GP (Gardner et al., 2018; Lee et al.,
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Figure 5: (a) Visualization of calibration error with reliability diagram on the real-world OOD ApolloScape; (b)
Comparison in model storage requirement at test-time; (c) Inference cost comparison at test-time across three modern
GPU architectures (detailed in Apd. B.2).

2018), BNN (Blundell et al., 2015; Wen et al., 2018),
Dropout (Gal and Ghahramani, 2016a,b; Gal et al.,
2017), and the SOTA Ensembles (Hansen and Sala-
mon, 1990). These sampling-based models, however,
are struggling with scalability in terms of the num-
ber of weights and inference speed (Nado et al., 2021).
To tackle this challenge, there are some lightweight
sampling-based models have been proposed recently,
including BatchEnsemble (Wen et al., 2020), Rank-
1 BNN (Dusenberry et al., 2020), and Heteroscedas-
tic (Collier et al., 2021). However, these works often
only focus on the classification setting.

Therefore, novel sampling-free approaches to im-
prove uncertainty estimation have recently been
proposed. Starting with Deterministic Gaus-
sian DNN (Chua et al., 2018), then with Quantile
Regression (Koenker and Bassett, 1978; Romano et al.,
2019), deterministic GP (Liu et al., 2020; van Amers-
foort et al., 2022), and Bayesian inference closed-form
based (Amini et al., 2020; Charpentier et al., 2020,
2022). However, the uncertainty quality of these
methods is often still degraded when compared to
sampling-based models. For instance, if the prior hyper-
parameters are poorly defined, the Bayesian-based
model EDL (Amini et al., 2020) and Posterior Net-
work (Charpentier et al., 2020) will result in a bad per-
formance in practice. Conversely, Density-Regression
does not require any prior hyper-parameters in training
and test time. Regarding replacing the loss function,
there exists the post-hoc calibration (Kuleshov et al.,
2018; Song et al., 2019; Romano et al., 2019; Vovk
et al., 2005; Tibshirani et al., 2019; Prinster et al.,
2022, 2023) and regularization approaches (Chung et al.,
2021; Mukhoti et al., 2020; Dheur and Ben Taieb, 2023).
In contrast, our baselines only do MLE using the ob-
jective function in Eq. 2 without depending on any
regularization or re-calibration set.

Improving uncertainty quality via density es-
timation. The idea of improving DNN uncertainty

via Density Estimation has been significantly stud-
ied (Kuleshov and Deshpande, 2022; Charpentier
et al., 2022, 2020; Mukhoti et al., 2023; Kotelevskii
et al., 2022). However, these work either entail post-
hoc re-calibration, OOD samples in training, or pre-
defined prior parameters in test time. For instance,
NatPN (Charpentier et al., 2022, 2020) customizes the
last layer of DNN with sensitive priors, not normal-
ized by a natural exponent function, resulting in a bad
accuracy performance in practice (Nado et al., 2021).

To summarize, compared to prior work, our method
does not use any post-hoc re-calibration, OOD sam-
ples in training, or pre-defined prior parameters in test
time. Closest to our work is Density-Softmax (Bui
and Liu, 2024), which is also based on density func-
tion and distance awareness property to enhance the
quality of uncertainty estimation and robustness under
distribution shifts. However, it only works for the clas-
sification task, and extending to the regression task is
non-trivial.

6 Conclusion

Improving uncertainty quantification is a critical prob-
lem in trustworthy AI. There has been growing inter-
ested in using sampling-based methods to ensure AI sys-
tems are reliable. Challenges often arise when deploy-
ing such models in real-world domains. In this regard,
our Density-Regression significantly improves test-time
efficiency while preserving reliability. We provide the-
oretical guarantees for our framework and prove it is
distance-aware on the feature space. With this property,
we empirically show our method is fast, lightweight, and
provides high-quality uncertainty estimates in plenty of
high-stake real-world applications like weather forecast-
ing and depth estimation. Given this, we hope Density-
Regression will inspire researchers and developers to
make further progress in improving the efficiency and
trustworthiness of DNN.
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Density-Regression: Efficient and Distance-Aware Deep Regressor for
Uncertainty Estimation under Distribution Shifts

(Supplementary Material)

Broader impacts. High-quality uncertainty estimate is an important property in trustworthy AI, and Density-
Regression can significantly improve uncertainty quality and test-time efficiency. This could be particularly
beneficial in high-stake applications (e.g., healthcare, finance, policy decision-making, etc.), where the trained
model needs to be deployed and inference on low-resource hardware or real-time response software.

Limitations:

1. Density model performance in practice. The uncertainty quality of Density-Regression depends on
the density function. Our results show if the likelihood on test OOD feature is lower than IID set, then
Density-Regression can reduce the over-confidence of Deterministic Gaussian DNN. That said, it can be a risk
that our model might not fully capture the real-world complexity by estimating density function is not always
trivial in practice (Nalisnick et al., 2019; Bui and Liu, 2024; Charpentier et al., 2022).

2. Training cost. Despite showing success in test-time efficiency, we raise awareness about the challenge of
training Density-Regression. Specifically, Density-Regression requires a longer training time than Determinis-
tic Gaussian DNN due to three separate training steps in Alg. 1 (e.g., Fig. 14).

Remediation. Given the aforementioned limitations, we encourage people who extend our work to: (1)
proactively confront the model design and parameters to desired behaviors in real-world use cases; (2) be aware
of the training challenge and prepare enough time to pre-train our framework in practice.

Future work. We plan to tackle Density-Regression’s limitations, including improving estimation techniques to
enhance the quality of the density function and continuing to reduce the number of parameters to deploy this
framework in real-world systems.

Reproducibility. The source code to reproduce our results is in the attached zip file of this supplementary
material. We provide all proofs in Apd. A, experimental settings in Apd. B, and detailed results in Apd. C.

A Proofs

In this appendix, we provide the proofs for all the results in the main paper.

A.1 Lemma A.1 and the proof

Lemma A.1. When Y is the label space and Φ(x, y) is the sufficient statistic of the joint distribution P(x, y)
associated with (x, y) ∈ X × Y, we have the predictive distribution follows

p(y|x; θ) = exp

(
η(θg)

⊤Φ(f(x), y)− log

(∫
y′∈Y

exp
(
η(θg)

⊤Φ(f(x), y′)
)
dy′
))

, (16)

where θ = (θg, θf ) is the parameter vector of the forecast h = g ◦ f and η is the natural function for the parameter
θ.

Proof. We have a random variable x that belongs to the exponential family with the Probability density function

p(x; θ) = h(x) exp(η(θ)⊤Φ(x)−A(θ)), (17)

where h(x) is the underlying measure, θ is the parameter vector, η is the natural function for parameter θ, Φ(x)
is the sufficient statistic, and the log-normalizer

A(θ) = log

∫
X
h(x) exp

(
η(θ)⊤Φ(x)

)
dx. (18)
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For Y is the label space and Φ(x, y) is the sufficient statistic of the joint distribution P(x, y) associated with
(x, y) ∈ X × Y, we have the join Probability density function

p(x, y; θ) = h(x) exp
(
η(θ)⊤Φ(x, y)−A(θ)

)
. (19)

By Bayes’s rule, we obtain

p(y|x; θ) = p(x|y; θ)∫
y′∈Y p(x|y′; θ)p(y′|θ)dy′

=
p(x, y; θ)∫

y′∈Y p(x, y′; θ)dy′
=

h(x) exp
(
η(θ)⊤Φ(x, y)−A(θ)

)∫
y′∈Y h(x) exp (η(θ)⊤Φ(x, y′)−A(θ)) dy′

. (20)

Assumed the h(x) base reference measure to be a function only of x so that we can cancel it from the numerator
and denominator in the last step above. Therefore, we get

p(y|x; θ) =
exp

(
η(θ)⊤Φ(x, y)

)∫
y′∈Y exp (η(θ)⊤Φ(x, y′)) dy′

= exp

(
η(θ)⊤Φ(x, y)− log

(∫
y′∈Y

exp
(
η(θ)⊤Φ(x, y′)

)
dy′
))

. (21)

As a result, when y = g(f(x)), we obtain

p(y|x; θ) = exp

(
η(θg)

⊤Φ(f(x), y)− log

(∫
y′∈Y

exp
(
η(θg)

⊤Φ(f(x), y′)
)
dy′
))

(22)

=
exp

(
η(θg)

⊤Φ(f(x), y)
)∫

y′∈Y exp (η(θg)⊤Φ(f(x), y′)) dy′
(23)

of Lemma A.1

A.2 Proof of Theorem 3.1

Proof. Since the sufficient statistic has the form Φ(z, y) =
[
zy2 y2 2zy 2y z 1

]
, where z = f(x), replace it

to the dot product of the natural parameter η(θ) with sufficient statistic Φ(z, y), we get

η(θg)
⊤Φ(z, y) =

[
θ1 θ2 θ3 θ4 θ5 θ6

] [
zy2 y2 2zy 2y z 1

]⊤ (24)

=
[
θ1 θ2

] [z
1

]
y2 + 2

[
θ3 θ4

] [z
1

]
y +

[
θ5 θ6

] [z
1

]
(25)

=
[
θ1 θ2

] [z
1

]
y2 + 2

[
θ3 θ4

] [z
1

]
y +

(
−
[
θ3 θ4

] [z
1

])2

[
θ1 θ2

] [z
1

] (26)

= θσg

[
z
1

]
y2 + 2θ(y,x1)

[
z
1

]
y +

(
−θµg

[
z
1

])2

θσg

[
z
1

] . (27)

Hence, we get

−p(z;α)η(θg)
⊤Φ(z, y) = −p(z;α)θσg

[
z
1

]
y2 − 2p(z;α)θµg

[
z
1

]
y − p(z;α)

(
−θµg

[
z
1

])2

θσg

[
z
1

] , (28)
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and the corresponding log-normalizer

log

∫
Y
exp

(
−p(z;α)η(θg)

⊤Φ(z, y)
)
dy (29)

= log

∫
Y
exp

−p(z;α)θσg

[
z
1

]
y2 − 2p(z;α)θµg

[
z
1

]
y − p(z;α)

(
−θµg

[
z
1

])2

θσg

[
z
1

]
 dy (30)

= log


√√√√ π

p(z;α)θσg

[
z
1

] exp

(
2p(z;α)θµg

[
z
1

])2

4p(z;α)θσg

[
z
1

] − p(z;α)

(
−θµg

[
z
1

])2

θσg

[
z
1

]
︸ ︷︷ ︸

0




(31)

= log

√√√√ π

p(z;α)θσg

[
z
1

]
 =

1

2
log

 π

p(z;α)θσg

[
z
1

]
 . (32)

So, replace the result of Equation 28 and Equation 29 to the Exponential form of Density-Regressor, we obtain

p(y|x; θ) = exp

(
−p(z;α)η(θg)

⊤Φ(z, y)− log

∫
Y
exp

(
−p(z;α)η(θg)

⊤Φ(z, y)
)
dy

)
, where z = f(x) (33)

= exp

−p(z;α)θσg

[
z
1

]
y2 − 2p(z;α)θµg

[
z
1

]
y − p(z;α)

(
−θµg

[
z
1

])2

θσg

[
z
1

] − 1

2
log

 π

p(z;α)θσg

[
z
1

]

 (34)

= exp{−1

2
2 · p(z;α)θσg

[
z
1

]
y2 + 2 · p(z;α)θσg

[
z
1

] −θµg

[
z
1

]
θσg

[
z
1

] y (35)

−

−θµg

[
z
1

]
θσg

[
z
1

]


2(
1

2
2 · p(z;α)θσg

[
z
1

])
− 1

2
log

2π
1

2 · p(z;α)θσg
[
z
1

]
}. (36)

On the other hand, we have the Probability density function of the Gaussian distribution N (µ, σ2) has the form

p(y|x; θ) = exp

(
−1

2σ2
y2 +

µ

σ2
y − 1

2σ2
µ2 − 1

2
log(2πσ2)

)
(37)

= exp

(
−1

2σ2
y2 +

µ

σ2
y −

(
1

2σ2
µ2 +

1

2
log(2πσ2)

))
. (38)

Applying the result from Lemma A.1, when the Exponential family has the form

p(y|x; θ) = exp

(
η(θg)

⊤Φ(z = f(x), y)− log

∫
Y
exp

(
η(θg)

⊤Φ(z = f(x), y)
)
dy

)
, (39)

we obtain

log

∫
Y
exp

(
−1

2σ2
y2 +

µ

σ2
y

)
dy = log

(√
π2σ2 exp

(
µ2

σ4

2σ2

4

))
=

1

2σ2
µ2 +

1

2
log(2πσ2). (40)
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Combining the result from Equation 33, Equation 37, and Equation 40, we get

p(y|x; θ) = exp{−1

2
2 · p(z;α)θσg

[
z
1

]
︸ ︷︷ ︸

σ2(x,θ)−1

y2 + 2 · p(z;α)θσg
[
z
1

]
︸ ︷︷ ︸

σ2(x,θ)−1

−θµg

[
z
1

]
θσg

[
z
1

]
︸ ︷︷ ︸

µ(x,θ)

y (41)

−


−θµg

[
z
1

]
θσg

[
z
1

]


2

︸ ︷︷ ︸
µ(x,θ)2

(
1

2
2 · p(z;α)θσg

[
z
1

])
︸ ︷︷ ︸

(2σ2(x.θ))−1

+
1

2
log


2π

1

2 · p(z;α)θσg
[
z
1

]
︸ ︷︷ ︸

σ2(x,θ)




}. (42)

As a result, we obtain p(y|x; θ) ∼ N (µ(x, θ), σ2(x, θ)), where

µ(x, θ) = −
(
θσg

[
z
1

])−1(
θµg

[
z
1

])
and σ2(x, θ) =

(
2 · p(z;α)θσg

[
z
1

])−1

(43)

of Theorem 3.1.

A.3 Proof of Corollary 3.2

Proof. From the result of Theorem 3.1, we have

µ(x, θ) = −
(
θσg

[
z
1

])−1(
θµg

[
z
1

])
and σ2(x, θ) =

(
2 · p(z;α)θσg

[
z
1

])−1

. (44)

Hence, firstly, we can rewrite the mean by

µ(x, θ) =

(
2 · p(z;α)θσg

[
z
1

])−1

︸ ︷︷ ︸
σ2(z,θ)

−2 · p(z;α)θµg
[
z
1

]
. (45)

On the other hand, we have the log of standard deviation as follows

log(σ(x, θ)) = log

 1√
2 · p(z;α)θσg

[
z
1

]
 = − log

(
2 · p(z;α)θσg

[
z
1

]) 1
2

(46)

= −1

2
log

(
2 · p(z;α)θσg

[
z
1

])
= −1

2

[
log(2) + log(p(z;α)) + log(θσg

[
z
1

]
)

]
(47)

= −1

2

[
log(2) + log(p(z;α)) + θσg

[
z
1

]]
(parameterised directly the log by θσg

[
z
1

]
). (48)

Therefore, we obtain the variance

σ2(x; θ) = exp (log(σ(x, θ)))
2
= exp

(
−1

2

[
log(2) + log(p(z;α)) + θσg

[
z
1

]])2

(49)

of Corollary 3.2.
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A.4 Proof of Theorem 3.5

Proof. Using Lemma 3.4, we have limd(zt,Zs)→∞ p(zt;α) → 0, i.e., if d(zood, Zs) → ∞ then p(zood;α) → 0.
Therefore, we obtain

lim
p(zood;α)→0

σ2(xood; θ) = lim
p(zood;α)→0

(
2 · p(zood;α)θσg

[
z
1

])−1

= ∞. (50)

Conversely, we have limd(zt,Zs)→0 p(zt;α) → ∞, i.e., if d(ziid, Zs) → 0 then p(ziid;α) → ∞. Therefore, we obtain

lim
p(ziid;α)→∞

σ2(xiid; θ) = lim
p(ziid;α)→∞

(
2 · p(ziid;α)θσg

[
z
1

])−1

= 0 (51)

of Theorem 3.5.

A.5 Proof of Theorem 3.6

Proof. The proofs contain three parts. The first part shows density function p(zt;α) is monotonically decreasing
w.r.t. distance function E ∥zt − Zs∥Z . The second part shows the metric u(xt) is maximized when p(zt;α) → 0.
The third part shows u(xt) monotonically decreasing w.r.t. p(zt;α) on the interval (0,∞].

Part (1). The monotonic decrease of density function p(zt;α) w.r.t. distance function E ∥zt − Zs∥Z : Consider
the probability density function p(zt;α) follows Normalizing-Flows which output the Gaussian distribution
with mean (median) µ and standard deviation σ, then we have

p(zt;α) =
1

σ
√
2π

exp

(
−1

2

(
zt − µ

σ

)2
)
. (52)

Take derivative, we obtain

d

dzt
p(zt;α) =

[
−1

2

(
zt − µ

σ

)2
]′

p(zt;α) =
µ− zt
σ2

p(zt;α) ⇒



d
dzt

p(zt;α) > 0 if zt < µ,

d
dzt

p(zt;α) = 0 if zt = µ,

d
dzt

p(zt;α) < 0 if zt > µ.

(53)

Consider the distance function E ∥zt − Zs∥Z follows the absolute norm, then we have

E ∥zt − Zs∥Z = E (|zt − Zs|) =
∫ zt

−∞
P(Zs ≤ t)dt+

∫ +∞

zt

P(Zs ≥ t)dt. (54)

Take derivative, we obtain

d

dzt
E ∥zt − Zs∥Z = P(Zs ≤ zt)− P(Zs ≥ zt) ⇒



d
dzt

E ∥zt − Zs∥Z < 0 if zt < µ,

d
dzt

E ∥zt − Zs∥Z = 0 if zt = µ,

d
dzt

E ∥zt − Zs∥Z > 0 if zt > µ.

(55)

Combining the result in Equation 53 and Equation 55, we have p(zt;α) is maximized when E ∥zt − Zs∥Z is
minimized at the median µ, p(zt;α) increase when E ∥zt − Zs∥Z decrease and vice versa. As a consequence, we
obtain p(zt;α) is monotonically decreasing w.r.t. distance function E ∥zt − Zs∥Z .

Part (2). The maximum of metric u(xt): Consider u(xt) = v(d(xt, Xs)) in Def. 2.2, let u(xt) is the entropy of
predictive distribution of Density-Regression p(y|x; θ), i.e., u(xt) = H(Y |X = xt), where H(Y |X = xt) be the
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entropy of Y conditioned on X taking a certain value xt via p(y|x; θ). When the predictive distribution of
Density-Regression follows the Normal distribution, i.e., p(y|x; θ) ∼ N (µ(x, θ), σ2(x, θ)), we have

u(xt) = H(Y |X = xt) = −
∫
Y
p(y|xt) log(p(y|xt))dy (56)

= −
∫
Y

1√
2πσ2(xt, θ)

exp

(
−
(
y − µ(xt, θ)

2
)

2σ2(xt, θ)

)
log

[
1√

2πσ2(xt, θ)
exp

(
−
(
y − µ(xt, θ)

2
)

2σ2(xt, θ)

)]
dy (57)

= −
∫
Y

1√
2πσ2(xt, θ)

exp

(
−
(
y − µ(xt, θ)

2
)

2σ2(xt, θ)

)[
log

(
1√

2πσ2(xt, θ)

)
−

((
y − µ(xt, θ)

2
)

2σ2(xt, θ)

)]
dy (58)

= − log

(
1√

2πσ2(xt, θ)

)∫
Y

exp

(
− (y−µ(xt,θ)

2)
2σ2(xt,θ)

)
√
2πσ2(xt, θ)︸ ︷︷ ︸
p(y|xt)

dy

︸ ︷︷ ︸
1

+

∫
Y

((
y − µ(xt, θ)

2
)

2σ2(xt, θ)

) exp

(
− (y−µ(xt,θ)

2)
2σ2(xt,θ)

)
√

2πσ2(xt, θ)︸ ︷︷ ︸
p(y|xt)

dy

(59)

=
1

2
log
(
2πσ2(xt, θ)

)
+

1

2σ2(xt, θ)

∫
Y
(y − µ(xt, θ))

2
dy. (60)

Combine with the fact that
∫
Y (y − µ(xt, θ))

2
dy = σ2(xt, θ), we obtain

u(xt) =
1

2
log
(
2πσ2(xt, θ)

)
+

1

2
. (61)

Since u(xt) is now just a continuous function of its variance σ2(xt, θ), it is monotone increasing w.r.t. σ2(xt, θ)
on the interval (0,∞]. Therefore, we get u(xt) is maximized when σ2(xt; θ) is maximized. As a result, when

σ2(xt, θ) =

(
2 · p(zt;α)θσg

[
zt
1

])−1

, where zt = f(xt), we obtain u(xt) is maximized when p(zt;α) → 0, which

will happen if zt is OOD data (by the result in Thm. 3.5 and Proof A.4).

Part (3). The monotonically decrease of metric u(xt) on the interval (0,∞]: Consider the function

F(p(zt;α)) =
1

2
log

(
2π

(
2 · p(zt;α)θσg

[
zt
1

])−1
)

+
1

2
. (62)

Let a = p(zt;α), b = θσg

[
zt
1

]
, then

F(a) =
1

2
log

(
2π

2ab

)
+

1

2
=

1

2
[log(π)− log(ab)] +

1

2
, (63)

and we need to find d
daF . Take derivative, we obtain

d

da
F =

−1

2a
< 0 (due to a ∈ (0,∞]), (64)

combining with u(xt) is maximized if a → 0, we obtain u(xt) decrease monotonically on the interval (0,∞].

Combining the result in Part (2). u(xt) is maximized if p(zt;α) → 0 which will happen if zt is OOD data,
and the result in Part (3). u(xt) is decrease monotonically w.r.t. p(zt;α) on the interval (0,∞], which will
happen if xt is closer to IID data since the likelihood value p(zt;α) increases, we obtain the distance awareness of
−p(z;α)θ⊤g Φ(z, y).

Combining the result in Part (1). p(zt;α) is monotonically decreasing w.r.t. distance function
E ∥zt − Zs∥Z and the result distance awareness of −p(z;α)θ⊤g Φ(z, y), we obtain the conclusion: p(y|x; θ) ∝
exp(−p(f(x);α)θ⊤g Φ(f(x), y)) is distance aware on feature space Z of Theorem 3.6.
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B Experimental settings

In this appendix, we summarize the baselines that we compared in our experiments and provide more detail
about our implementation as well as the demo code snippet.

B.1 Baseline details

We provide an exhaustive literature review of 10 SOTA related methods which are used to make comparisons
with our model:

• Deterministic DNN (Vapnik, 1998) corresponds to Deterministic Regression in Section 2.

• Deterministic Gaussian DNN (Chua et al., 2018) is discussed in Section 2.

• Quantile Regression (Romano et al., 2019) makes the forecast h : X → R2 to output the prediction
intervals with the lower quantile qα/2(x) = inf{y ∈ R : FY |X(y|x) > α/2} and upper quantile q1−α/2(x) =
inf{y ∈ R : FY |X(y|x) > (1−α/2)}, where FY |X is the conditional CDF. Then, this forecast h will be trained
by using the pinball loss (Steinwart and Christmann, 2011).

• MC Dropout (Gal and Ghahramani, 2016a) includes dropout regularization method in the model. In
test-time, it uses MC sampling by dropout to make different predictions, then obtain the final mean and
variance by Equation. 3.

• MFVI BNN (Wen et al., 2018) uses the BNN by putting distribution over the weight by mean and
variance per each weight. In test-time, it performs prediction by using Equation. 3. Because each weight
consists of mean and variance, the total model weights will double as the Deterministic DNN.

• EDL (Amini et al., 2020) is based on Evidential Deep Learning (Sensoy et al., 2018) by making use
of conjugate prior property in Bayesian Inference to compute posterior distribution in closed-form. This
approach is sensitive to hyper-parameters by requiring to selection of Prior’s parameters.

• NatPN (Charpentier et al., 2022) is the closest to our work by also estimating the density function on
the marginal feature space. However, it is based on EDL so their loss function and the regressor function
are different by the Bayesian approach. Due to belonging to the Bayesian perspective like EDL, it needs to
select a "good" Prior distribution, which is often difficult in practice.

• SNGP (Liu et al., 2020) is a combination of the last GP layer with Spectral Normalization to the hidden
layers. This algorithm is primarily designed for the classification, however, we can extend it to the regression
task by making the GP layer output the mean and variance like Deterministic Gaussian DNN.

• DUE (van Amersfoort et al., 2022) is an extension version of SNGP by constrain Deep Kernel Learning’s
feature extractor to approximately preserve distances through a bi-Lipschitz constraint.

• Deep Ensembles (Lakshminarayanan et al., 2017) includes multiple Deterministic DNN trained with
different seeds. In test-time, the final prediction is calculated from the mean of the list prediction of the
ensemble by Equation. 3. Due to aggregates from multiple deterministic models, the latency and total of
model weights needed to store will increase linearly w.r.t. the number of models.

B.2 Implementation

Dataset, source code, and hyper-parameter setting. Our source code is available at
https://github.com/Angie-Lab-JHU/density_regression, including our notebook demo on the toy dataset, scripts
to download the benchmark dataset, setup for environment configuration, and our provided code (detail in
README.md). All baselines follow the same hyper-parameters setting, data-split, and evaluation technique
in training. Specifically, for the Toy-dataset, Benchmark UCI, and monocular depth estimation, we follow
EDL (Amini et al., 2020). For Time series weather forecasting, we follow the Time series forecasting Ten-
sorflow tutorial (Abadi et al., 2015). Regarding the density function, we use the “KernelDensity(kernel =
’exponential’, metric = "l1")” for the Toy-dataset, and we reuse the Normalizing Flows architecture following
Density-Softmax (Bui and Liu, 2024) for the remained dataset.

https://github.com/Angie-Lab-JHU/density_regression
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Computing system. We test our model on three different settings, including (1) a single GPU: NVIDIA
Tesla K80 accelerator-12GB GDDR5 VRAM with 8-CPUs: Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz with
8GB RAM per each; (2) a single GPU: NVIDIA RTX A5000-24564MiB with 8-CPUs: AMD Ryzen Threadripper
3960X 24-Core with 8GB RAM per each; and (3) a single GPU: NVIDIA A100-PCIE-40GB with 8 CPUs: Intel(R)
Xeon(R) Gold 6248R CPU @ 3.00GHz with 8GB RAM per each.

B.3 Demo notebook code for Algorithm 1

1 import tensorflow as tf
2

3 #Define a features extractor f.
4 model = tf.keras.Sequential([
5 tf.keras.layers.Dense(100, activation = "relu"),
6 tf.keras.layers.Dense(100, activation = "relu"),
7 ])
8 #Define a regressor g.
9 regressor = tf.keras.layers.Dense(2)

10

11 #Define a tf step function to pre-train model w.r.t. Eq. 11.
12 @tf.function
13 def pre_train_step(x, y):
14 with tf.GradientTape() as tape:
15 y_pred = regressor(model(x, training = True), training = True)
16 M_ys, M_ymu = tf.split(y_pred, 2, axis = -1)
17 log_std = -1/2 * (tf.math.log(2.) + M_ys)
18 var = tf.exp(log_std) ** 2
19 mean = var * (-2 * M_ymu)
20 loss_value = tf.reduce_mean(2 * log_std + ((y - mean) / tf.exp(log_std)) ** 2)
21

22 list_weights = model.trainable_weights + regressor.trainable_weights
23 grads = tape.gradient(loss_value, list_weights)
24 optimizer.apply_gradients(zip(grads, list_weights))
25 return loss_value
26

27 #Define a tf step function to re-update the regressor by feature density model w.r.t. Eq. 15.
28 @tf.function
29 def train_step(z, y, loglikelihood):
30 with tf.GradientTape() as tape:
31 y_pred = regressor(z, training = True)
32 M_ys, M_ymu = tf.split(y_pred, 2, axis = -1)
33 log_std = -1/2 * (tf.math.log(2.) + loglikelihood + M_ys)
34 var = tf.exp(log_std) ** 2
35 mean = var * (-2 * tf.exp(loglikelihood) * M_ymu)
36 loss_value = tf.reduce_mean(2 * log_std + ((y - mean) / tf.exp(log_std)) ** 2)
37

38 list_weights = regressor.trainable_weights
39 grads = tape.gradient(loss_value, list_weights)
40 optimizer.apply_gradients(zip(grads, list_weights))
41 return loss_value
42

43 #Define a tf step function to make inference w.r.t. Cor. 3.2.
44 @tf.function
45 def test_step(z, loglikelihood):
46 y_pred = regressor(z, training = False)
47 M_ys, M_ymu = tf.split(y_pred, 2, axis = -1)
48 log_std = -1/2 * (tf.math.log(2.) + loglikelihood + M_ys)
49 var = tf.exp(log_std) ** 2
50 mean = var * (-2 * tf.exp(loglikelihood) * M_ymu)
51 y_pred = tf.concat([mean, var], 1)
52 return y_pred



Efficient and Distance-Aware Deep Regressor for Uncertainty Estimation under Distribution Shifts

C Additional results

In this appendix, we collect additional results that we deferred from the main paper.

C.1 Monocular depth estimation

Adversarial 
Input

Depth 
Label

Predicted 
Depth

Absolute 
Error

Predictive 
Uncertainty

Increasing Adversarial Perturbation

Ɛ = 0 Ɛ = 0.05 Ɛ = 0.1 Ɛ = 0.15 Ɛ = 0.2 Ɛ = 0.25 Ɛ = 0.3 Ɛ = 0.35 Ɛ = 0.4

Figure 6: Visualization of an example with different shift intensities and Density-Regression’s performance, including
predicted depth, absolute prediction error, and predictive uncertainty per pixel. Density-Regression confidence on IID
(ϵ = 0), and the confidence decreases w.r.t. the increasing of the shift intensities on OOD.

C.2 Time-series
Deterministic Non-gaussian Quantile MC Dropout MFVI-BNN

EDL

Deterministic Gaussian

DUE SNGP Ensembles Ours

Figure 7: Comparison between methods in terms of temperature in Celsius (normalized) for every hour on three days on
IID data. Our Density-Regression is still certain on IID.

Deterministic Non-gaussian Quantile MC Dropout MFVI-BNN

EDL

Deterministic Gaussian

DUE SNGP Ensembles Ours

Figure 8: Comparison between methods in terms of temperature in Celsius (normalized) for every hour on three days on
OOD data. Our Density-Regression is more uncertain on OOD.
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Figure 9: Detailed visualization of regression error, parity plot, calibration curve, and distribution plots with sharpness
on the IID Time series weather forecasting.
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Figure 10: Detailed visualization of regression error, parity plot, calibration curve, and distribution plots with sharpness
on the OOD Time series weather forecasting.
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C.3 Benchmark UCI

Table 5: UCI: Boston housing

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓)
Deterministic 2.64 ± 0.26 3.05 ± 0.21 0.39 ± 0.25 0.45 ± 0.08
Quantile 2.73 ± 0.75 3.03 ± 0.19 0.95 ± 0.49 0.30 ± 0.02
MC Dropout 2.42 ± 0.09 3.03 ± 0.26 0.54 ± 0.14 0.49 ± 0.06
MFVI-BNN 6.06 ± 0.51 10.9 ± 1.82 6.51 ± 0.71 17.2 ± 5.58
EDL 2.35 ± 0.06 3.02 ± 0.21 0.41 ± 0.19 0.76 ± 0.23
SNGP 2.37 ± 0.06 4.62 ± 0.33 0.42 ± 0.42 0.49 ± 0.03
DUE 2.35 ± 0.09 3.21 ± 0.28 0.41 ± 0.28 0.44 ± 0.05
Ensembles 2.30 ± 0.07 2.91 ± 0.11 0.25 ± 0.16 0.40 ± 0.03
Ours 2.46 ± 0.04 2.93 ± 0.11 0.22 ± 0.12 0.37 ± 0.01

Table 6: UCI: Concrete

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓)
Deterministic 3.02 ± 0.09 5.58 ± 0.92 0.71 ± 0.78 0.39 ± 0.06
Quantile 3.24 ± 0.14 5.94 ± 0.54 1.04 ± 1.22 0.30 ± 0.03
MC Dropout 3.23 ± 0.05 6.33 ± 0.39 0.48 ± 0.38 0.50 ± 0.07
MFVI-BNN 6.93 ± 0.18 17.2 ± 4.51 8.64 ± 1.15 20.5 ± 6.13
EDL 3.03 ± 0.14 5.18 ± 0.5 2.24 ± 0.34 3.23 ± 2.26
SNGP 3.45 ± 0.07 7.59 ± 0.57 0.63 ± 0.61 0.56 ± 0.04
DUE 3.47 ± 0.07 7.82 ± 0.58 0.48 ± 0.45 0.56 ± 0.06
Ensembles 2.93 ± 0.04 4.82 ± 0.18 0.44 ± 0.24 0.37 ± 0.03
Ours 2.97 ± 0.08 4.94 ± 0.48 0.23 ± 0.33 0.30 ± 0.01

Table 7: UCI: Energy

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓)
Deterministic 1.95 ± 0.27 2.18 ± 0.11 1.10 ± 1.40 0.21 ± 0.01
Quantile 1.91 ± 0.51 2.21 ± 0.16 1.15 ± 1.01 0.18 ± 0.02
MC Dropout 2.11 ± 0.08 2.94 ± 0.09 0.59 ± 0.64 0.36 ± 0.05
MFVI-BNN 3.14 ± 0.57 3.00 ± 0.15 1.77 ± 1.40 6.99 ± 2.31
EDL 1.64 ± 0.12 2.23 ± 0.13 3.05 ± 2.33 12.1 ± 4.12
SNGP 1.77 ± 0.11 2.18 ± 0.18 0.82 ± 0.82 0.27 ± 0.02
DUE 1.90 ± 0.09 2.61 ± 0.24 0.57 ± 0.64 0.29 ± 0.04
Ensembles 1.53 ± 0.07 2.14 ± 0.07 0.67 ± 0.54 0.24 ± 0.02
Ours 1.56 ± 0.13 2.15 ± 0.09 0.77 ± 0.84 0.22 ± 0.02

Table 8: UCI: Kin8nm

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓)
Deterministic -1.17 ± 0.03 0.08 ± 0.00 0.13 ± 0.15 0.30 ± 0.02
Quantile -1.08 ± 0.05 0.08 ± 0.00 0.54 ± 0.42 0.26 ± 0.02
MC Dropout -0.91 ± 0.02 0.11 ± 0.01 0.31 ± 0.17 0.53 ± 0.02
MFVI-BNN -0.03 ± 0.11 0.18 ± 0.03 1.58 ± 1.57 5.12 ± 2.00
EDL -1.07 ± 0.05 0.08 ± 0.00 0.83 ± 0.00 9.99 ± 0.30
SNGP -1.05 ± 0.02 0.09 ± 0.00 0.18 ± 0.09 0.39 ± 0.01
DUE -1.02 ± 0.02 0.09 ± 0.00 0.16 ± 0.08 0.40 ± 0.01
Ensembles -1.25 ± 0.02 0.08 ± 0.00 0.40 ± 0.33 0.33 ± 0.02
Ours -1.22 ± 0.02 0.08 ± 0.00 0.11 ± 0.19 0.30 ± 0.01

Table 9: UCI: Naval propulsion plant

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓)
Deterministic -4.93 ± 0.62 0.00 ± 0.00 2.58 ± 1.39 0.30 ± 0.05
Quantile -4.79 ± 0.21 0.00 ± 0.00 3.04 ± 1.12 0.39 ± 0.02
MC Dropout -4.69 ± 0.07 0.00 ± 0.00 0.66 ± 0.34 0.52 ± 0.05
MFVI-BNN -4.07 ± 0.11 0.03 ± 0.01 4.10 ± 0.42 1.61 ± 0.11
EDL -5.37 ± 0.27 0.00 ± 0.00 8.25 ± 0.00 100 ± 0.00
SNGP -4.05 ± 0.08 0.00 ± 0.00 0.54 ± 0.49 0.74 ± 0.02
DUE -3.89 ± 0.10 0.01 ± 0.00 0.71 ± 0.44 0.77 ± 0.03
Ensembles -5.68 ± 0.17 0.00 ± 0.00 2.52 ± 1.04 0.30 ± 0.03
Ours -5.42 ± 0.09 0.00 ± 0.00 2.29 ± 0.96 0.38 ± 0.01

Table 10: UCI: Power plant

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓)
Deterministic 2.85 ± 0.03 4.03 ± 0.08 0.19 ± 0.18 0.24 ± 0.02
Quantile 3.03 ± 0.03 4.38 ± 0.05 0.34 ± 0.11 0.19 ± 0.01
MC Dropout 2.85 ± 0.02 4.22 ± 0.08 0.22 ± 0.24 0.27 ± 0.01
MFVI-BNN 4.02 ± 0.10 4.55 ± 0.31 10.7 ± 7.58 9.11 ± 3.04
EDL 2.82 ± 0.02 4.07 ± 0.08 8.21 ± 0.07 9.61 ± 6.72
SNGP 2.81 ± 0.01 4.10 ± 0.06 0.12 ± 0.09 0.25 ± 0.01
DUE 2.84 ± 0.02 4.19 ± 0.08 0.18 ± 0.26 0.26 ± 0.01
Ensembles 2.78 ± 0.01 3.99 ± 0.05 0.18 ± 0.18 0.23 ± 0.01
Ours 2.80 ± 0.02 4.02 ± 0.06 0.11 ± 0.12 0.22 ± 0.02

Table 11: UCI: Protein

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓)
Deterministic 2.90 ± 0.02 4.63 ± 0.07 0.17 ± 0.09 0.76 ± 0.02
Quantile 3.19 ± 0.15 5.19 ± 0.04 3.26 ± 0.21 0.60 ± 0.01
MC Dropout 2.94 ± 0.07 4.85 ± 0.02 0.23 ± 0.08 3.76 ± 1.01
MFVI-BNN 3.68 ± 0.53 5.97 ± 0.55 3.54 ± 1.87 4.19 ± 1.44
EDL 3.20 ± 0.22 5.01 ± 0.45 3.50 ± 0.10 9.16 ± 3.22
SNGP 2.82 ± 0.01 4.57 ± 0.02 0.14 ± 0.04 0.78 ± 0.01
DUE 2.86 ± 0.02 4.69 ± 0.04 0.16 ± 0.07 0.79 ± 0.02
Ensembles 2.83 ± 0.01 4.58 ± 0.01 0.12 ± 0.04 0.79 ± 0.02
Ours 2.84 ± 0.01 4.61 ± 0.02 0.10 ± 0.04 0.73 ± 0.01

Table 12: UCI: Yacht

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓)
Deterministic 1.29 ± 0.28 2.29 ± 0.56 0.93 ± 0.66 0.15 ± 0.03
Quantile 2.58 ± 0.93 3.90 ± 0.26 2.13 ± 1.72 0.17 ± 0.04
MC Dropout 1.82 ± 0.13 2.76 ± 0.38 2.19 ± 0.65 0.28 ± 0.03
MFVI-BNN 9.40 ± 1.14 22.6 ± 6.26 7.68 ± 0.39 28.9 ± 4.01
EDL 1.12 ± 0.16 2.48 ± 0.53 1.42 ± 1.25 0.30 ± 0.07
SNGP 1.16 ± 0.17 6.53 ± 0.49 1.29 ± 0.87 0.49 ± 0.05
DUE 1.22 ± 0.26 4.56 ± 1.23 1.38 ± 1.02 0.40 ± 0.08
Ensembles 1.18 ± 0.10 2.22 ± 0.21 2.02 ± 0.32 0.17 ± 0.02
Ours 1.24 ± 0.19 2.20 ± 0.42 0.87 ± 0.56 0.15 ± 0.03

Table 13: UCI: Year Prediction MSD

Method NLL (↓) RMSE (↓) Cal (↓) Sharp (↓)
Deterministic 3.49 ± 0.01 9.65 ± 0.07 0.06 ± 0.04 0.46 ± 0.02
Quantile 3.45 ± 0.01 9.46 ± 0.04 0.12 ± 0.02 0.37 ± 0.01
MC Dropout 3.50 ± 0.01 10.3 ± 0.08 0.07 ± 0.01 57.5 ± 4.49
MFVI-BNN 4.21 ± 0.10 11.5 ± 0.97 0.25 ± 0.04 26.1 ± 5.12
EDL 4.09 ± 0.22 11.2 ± 0.90 0.22 ± 0.08 21.1 ± 8.05
SNGP 3.52 ± 0.01 11.2 ± 0.17 0.12 ± 0.08 0.58 ± 0.01
DUE 3.53 ± 0.06 11.3 ± 0.81 0.10 ± 0.03 0.59 ± 0.04
Ensembles 3.35 ± 0.01 9.31 ± 0.03 0.06 ± 0.03 0.48 ± 0.02
Ours 3.39 ± 0.00 9.57 ± 0.02 0.04 ± 0.02 0.40 ± 0.01

Model 1 2 3

Step 1 2 3

Table 14: Training time comparison between Deterministic,
Ensembles, and Ours on the depth estimation setting.
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