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Abstract

We consider the problem of control in the setting
of reinforcement learning (RL), where model in-
formation is not available. Policy gradient algo-
rithms are a popular solution approach for this
problem and are usually shown to converge to a
stationary point of the value function. In this pa-
per, we propose two policy Newton algorithms
that incorporate cubic regularization. Both al-
gorithms employ the likelihood ratio method
to form estimates of the gradient and Hessian
of the value function using sample trajectories.
The first algorithm requires an exact solution of
the cubic regularized problem in each iteration,
while the second algorithm employs an efficient
gradient descent-based approximation to the cu-
bic regularized problem. We establish conver-
gence of our proposed algorithms to a second-
order stationary point (SOSP) of the value func-
tion, which results in the avoidance of traps in the
form of saddle points. In particular, the sample
complexity of our algorithms to find an ϵ-SOSP
is O(ϵ−3.5), which is an improvement over the
state-of-the-art sample complexity of O(ϵ−4.5).

1 Introduction

Markov decision processes (MDPs) provide a framework
for analyzing sequential decision making problems under
uncertainty. The aim here is to find a policy that optimizes
a given performance objective, e.g., the discounted cumu-
lative reward or cost. A direct solution approach for MDPs
would require knowledge of the underlying transition dy-
namics. In practical settings, such information is seldom
available, and one usually resorts to reinforcement learn-
ing (RL) algorithms [22] that find optimal policies using
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sample trajectories.

Classical RL algorithms based on lookup table represen-
tations suffer from the curse of dimensionality associated
with large state spaces. A popular approach to overcoming
this problem is through considering a prescribed parametric
representation of policies and searching for the best policy
within this class using a stochastic gradient (SG) algorithm.
Policy gradient (PG) algorithms adopt this approach, and
update the policy parameters using an estimate of the gra-
dient of the expected sum of costs (or the value function)
with respect to those parameters. The simplest such class of
algorithms are trajectory-based methods that consider full
Monte-Carlo returns for estimating the performance gradi-
ent such as REINFORCE [30]. These algorithms work by
increasing the probabilities of actions that lead to higher
returns and thereby reduce the probabilities of actions that
lead to lower returns using data sampled through interac-
tions with the environment. The gradient of the value func-
tion for the given policy is estimated using the aforemen-
tioned Monte-Carlo returns.

Incremental update algorithms such as actor-critic have
been proposed as alternatives to trajectory-based methods
[23]. A common approach here to estimate the value func-
tion for any given policy is to introduce a critic recur-
sion that does this estimation for any given parameter up-
date and which in turn is updated using a ‘slower’ actor
recursion. Thus, actor-critic algorithms typically require
two timescale recursions even though they are incremental-
update procedures. Trajectory-based methods like REIN-
FORCE involve a single-timescale in their update rule but
typically suffer (like SGD) from high variance which leads
to a high sample complexity for the algorithm. Many works
in recent times that involve trajectory-based methods have
tried to address this high variance problem. For exam-
ple, Trust Region Policy Optimization (TRPO) [19] can
improve training stability by constraining the step length
to be within a certain ”trust region” and thereby obtain
better sampling efficiency than the vanilla policy gradi-
ent approach. TRPO optimizes the loss function via the
Kullback-Leibler (KL) divergence. In addition, Proximal
Policy Optimization (PPO) [20] is an improvement over
TRPO as it employs objective function clipping and/or a
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Table 1: Comparison of the sample complexities for finding
approximate first-order and second-order stationary points
(ϵ-FOSP and ϵ-SOSP, respectively). For precise definitions
of these points, see Definitions 1 and 2 in Section 4. A
✓, e.g., under ϵ-FOSP, indicates that an algorithm is shown
to converge to an ϵ-FOSP, while ✗, e.g., under ϵ-SOSP, in-
dicates that an algorithm is not provably convergent to an
ϵ-SOSP.

Algorithm Sample
ϵ-FOSP ϵ-SOSPcomplexity

REINFORCE O
(

1
ϵ4

)
✓ ✗

[21] O
(

1
ϵ3

)
✓ ✗

[31] O
(

1
ϵ4.5

)
✓ ✓

Our work O
(

1
ϵ3.5

)
✓ ✓

penalty on the KL divergence with the trust region update
that is compatible with SGD and simplifies the algorithm
by eliminating the KL divergence. Both TRPO and PPO
aim at solving constrained optimization problems involv-
ing inequality constraints.

Policy gradient algorithms and their analyses have received
a lot of research attention recently, cf. [1, 23, 17, 28,
32, 13]. Since the value function is usually non-convex,
the analysis of policy gradient algorithms in general estab-
lishes convergence to first order stationary points (FOSP)
in the long run or to approximate stationary points in the
non-asymptotic regime. These points also include unsta-
ble equilibria or traps such as local maxima and saddle
points. In the optimization literature, approaches to avoid
traps either add extraneous noise in the gradient step [11],
or show that the gradient estimates have omni-directional
noise [14], or use second-order information in a stochastic
Newton algorithm [16, 18].

In the context of RL, avoidance of traps has received very
little attention and most of the previous works analyzing
policy gradient algorithms show convergence to stationary
points only. A few exceptions are [12, 32]. In [12], the
authors explore addition of extraneous isotropic noise to
avoid traps in the context of a policy gradient algorithm.
However, their algorithm avoids traps under an additional
condition that is hard to verify in typical RL settings. The
latter condition requires the extraneous noise to dominate
the martingale difference noise inherent to a policy gradient
update. In [32], the authors explore a different approach to
avoid traps by using larger stepsize periodically.

We propose a policy Newton algorithm that incorporates
second-order information along with cubic regularization
in the spirit of [16]. Our algorithm has an improved sample
complexity from incorporating Hessian information and
this also leads us to avoid saddle points and converge to
an ϵ-SOSP.

We summarize our contributions below.

(a) Cubic-regularized policy Newton: For solving a fi-
nite horizon MDP, we propose a cubic regularized pol-
icy Newton (CR-PN) method that avoids saddle points and
converges to an approximate second-order stationary point
(SOSP), where the approximation is quantified by a param-
eter ϵ > 0. Such a point is referred to as ϵ-SOSP. In this
algorithm, we derive an estimate of the Hessian of the value
function from sample episodes using Stein’s identity.
(b) Approximate cubic-regularized policy Newton (ACR-
PN): We propose the ACR-PN algorithm that finds an ϵ-
SOSP with high probability, while employing a computa-
tionally efficient solver for the cubic model in CR-PN. The
latter approximate solver, borrowed from [25], avoids cal-
culating the Hessian and instead uses the Hessian-vector
product for computational simplicity. Though CR-PN pro-
vides an exact solution, but in a practical scenario, the com-
putation of Hessian is very expensive due to the presence
of a complex cost objective. In such cases, ACR-PN is very
efficient.
(c) Non-asymptotic convergence: We derive non-
asymptotic bounds that quantify the convergence rate to
ϵ-SOSP for both algorithms. First, we prove that under
assumptions common to the analysis of policy gradient al-
gorithms, CR-PN converges to an ϵ-SOSP within O(ϵ−1.5)
iterations and with a sample complexity O(ϵ−3.5). These
bounds hold both in expectation and with high probabil-
ity. Second, we establish that ACR-PN converges to an
ϵ-SOSP with high probability within a number of iterations
and with a sample complexity that is comparable to that of
CR-PN. These rates significantly improve upon the sample
complexity of existing algorithms in the literature. For in-
stance, a REINFORCE-type algorithm has O(ϵ−4) sample
complexity, and the Hessian-aided policy gradient method
[31] hasO(ϵ−4.5) complexity. Table 1 provides a summary.
(d) Bounds for gradient and Hessian estimation: To estab-
lish the non-asymptotic bounds to ϵ-SOSP for our proposed
algorithms, we require bounds on the gradient/Hessian es-
timation error of every-visit Monte Carlo sample averages.
We derive error bounds that hold in expectation as well
as with high-probability for the Monte Carlo gradient and
Hessian estimates. These bounds may be of independent
interest, for instance, in the analysis of other second-order
policy Newton algorithms that do not incorporate a cubic
regularizer.

Related work. Policy gradient algorithms and their anal-
yses have received a lot of research attention, cf. [1, 23,
6, 17, 28, 32]. In [9] the authors propose policy New-
ton algorithms for solving an MDP in a setting where the
model (or the transition dynamics) is known. In [21], the
authors propose a policy gradient algorithm that incorpo-
rates second-order information and establish convergence
to a first-order stationary point. In contrast, our proposed
algorithms, which also use second-order information, are
shown to converge to a second-order stationary point. In
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[7], an actor-critic algorithm for constrained MDPs is de-
veloped in the average cost setting for the full-state case. In
[4], a function approximation based actor-critic algorithm
for average cost constrained MDPs is developed that does
policy gradient on the Lagrangian along the actor update
and involves a temporal-difference TD(λ) critic. In [3], the
discounted cost version of the algorithm in [4] is developed
except that a data-driven gradient estimation procedure [5]
is adopted.

A preliminary version of this paper was part of the first au-
thor’s master’s thesis before a concurrent work, see [29].
In the aforementioned reference, the authors propose an
approximate cubic-regularized Newton algorithm and pro-
vide sample complexity bounds. In contrast, we analyze
both the exact and the approximate cubic-regularized New-
ton algorithm variants. For the former, we derive bounds
using a proof technique that is radically different from that
employed in [29]. Moreover, our analysis for the approx-
imate Newton variant is a lot simpler, as we invoke the
bounds in [25] after verifying the necessary assumptions,
whereas the analysis in [29] mimics the proof in [25].

The rest of the paper is organized as follows: Section 2
describes the problem formulation and the policy gradient
framework. Section 3 presents the cubic-regularized pol-
icy Newton algorithm, while Section 4 established non-
asymptotic bounds for convergence to an approximate
second-order stationary point of the objective. Section 5
describes the variant of the cubic-regularized policy New-
ton algorithm, which incorporates an approximate solution
scheme for the cubic-regularized problem. The detailed
proofs of convergence are provided in the supplementary
material. Finally, Section 7 provides the concluding re-
marks.

2 Policy gradient framework

A Markov decision process (MDP) is a tuple of the form
(S,A, P, c, γ, ρ) where S is the state space;A is the action
space; P (s′|s, a) represents the underlying transition prob-
ability function that governs the state evolution from s to s′

under a given action a ∈ A of the MDP agent; c(s, a) de-
notes the single-stage cost obtained by the agent in state s
on taking action a; γ is the discount factor; and ρ(s0) is the
distribution of the starting state s0. The actions are chosen
according to a probability distribution π(ah|sh), ah ∈ A,
which is conditioned over the current state. We shall call π
as the policy used by the agent to select actions. For sim-
plicity, we assume all actions are feasible in every state.
We consider a finite horizon discounted setting. Here we
denote the trajectory of states and actions until termina-
tion at instant H as τ := (s0, a0, . . . , aH−1, sH), where
s0 ∼ ρ(s0) and H is the trajectory horizon or episode
length. The probability of trajectory τ following a policy π

is given by

p(τ ;π) :=

(
H−1∏
h=0

P (sh+1|sh, ah)π(ah|sh)

)
ρ(s0). (1)

We denote the discounted cumulative cost for a trajectory
τ as G(τ) :=

∑H−1
h=0 γ

h−1c(sh, ah), where γ ≤ 1 is the
discount factor. Our objective is to minimize over π the
expected discounted cumulative cost given by

J(π) := Eτ∼p(τ ;π) [G(τ)] = Eτ∼p(τ ;π)

[
H−1∑
h=0

γh−1c(sh, ah)

]
.

(2)

We assume that the policy is parameterized by a vector
θ ∈ Rd and use the notation πθ as a shorthand for the dis-
tribution π(ah|sh; θ). Also, by an abuse of notation, we
denote p(τ ; θ) = p(τ ;πθ) and J(θ) = J(π) as they are
both conditioned on the same information. For simplicity,
we assume here that the terminal cost is 0.

Our aim is to find a parameter

θ∗ ∈ argmin
θ∈Rd

J(θ). (3)

The gradient∇J(θ) of the expected cost J(θ) can be writ-
ten as

∇J(θ) =
H−1∑
h=0

∑
τh

γh−1c(sh, ah)∇p(τh; θ) .

In this work, our focus is on solving (3) by employing a
Newton-like second-order algorithm. For this purpose, we
require an expression for the gradient as well as Hessian of
the objective. Such an expression has been derived earlier
in [9, 21].

For deriving the policy gradient and Hessian expressions,
we require assumptions on the regularity of the MDP and
the smoothness of our parameterized policy πθ. These as-
sumptions are specified below, with ∥·∥ denoting the l2
norm for vectors and the operator norm for matrices.

(A1) (Bounded costs). The absolute value of the cost func-
tion of the MDP is bounded, i.e., ∃K ∈ (0,∞) such that

|c(s, a)| ≤ K, ∀(s, a) ∈ S ×A.

(A2) (Parameterization regularity). For any choice of the
parameter θ, any state-action pair (s, a), there exist con-
stants 0 < G,L1 <∞ such that

∥∇ log π(a|s; θ)∥ ≤ G and
∥∥∇2 log π(a|s; θ)

∥∥ ≤ L1.

(A3) (Lipschitz Hessian). For any pair of parameters
(θ1, θ2), and any state-action pair (s, a), there exists a con-
stant L2 > 0 such that∥∥∇2 log π(a|s; θ1)−∇2 log π(a|s; θ2)

∥∥ ≤ L2 ∥θ1 − θ2∥ .
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Note that (A1) and (A2) are standard in the literature on
policy gradient and actor-critic algorithms as shown in [21],
while (A3) is common to the analysis of second-order pol-
icy search algorithms, cf. [32]. For a parameterized Boltz-
mann policy with a linear policy class, the assumptions
(A2) and (A3) can be easily shown to hold. Further, if
the policy parameter is restricted to a compact set, then by
continuity of the gradient and the Hessian of log π, one can
infer (A2).

We now present the policy gradient and Hessian theorem.

Theorem 1 (Policy gradient and Hessian theorem). Let

Ψi(τ) :=

H−1∑
h=i

γh−1c(sh, ah) and

Φ(θ; τ) :=

H−1∑
i=0

Ψi(τ) log π(ai|si; θ).

Then, under assumptions (A1)-(A3), the gradient ∇J(θ)
and the Hessian∇2J(θ) of the objective (2) are given by

∇J(θ) = Eτ∼p(τ ;θ) [∇Φ(θ; τ)] ,
∇2J(θ) = Eτ∼p(τ ;θ)

[
∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ)

]
.

Proof. See [21]. For the sake of completeness, we provide
the proof in Appendix B.

The result below establishes that the expected cost objec-
tive is smooth, and its gradient, as well as Hessian, are well
defined and Lipschitz continuous.

Proposition 1. Under (A1)–(A3), for any θ1, θ2 ∈ Rd, we
have

|J(θ1)− J(θ2)| ≤MH ∥θ1 − θ2∥ ,
∥∇J(θ1)−∇J(θ2)∥ ≤ GH ∥θ1 − θ2∥ , and∥∥∇2J(θ1)−∇2J(θ2)

∥∥ ≤ LH ∥θ1 − θ2∥ , (4)

where MH := KGH3, GH := H3G2K + L1KH
2 and

LH := H4G3K + 3H3GL1K + L2KH
2.

Proof. See Lemmas 4–5 and their proofs in Appendix A.

3 Cubic-regularized policy Newton
(CR-PN) algorithm

A stochastic gradient algorithm to find a local optimum of
the objective function in the problem (3) would perform an
incremental update of the policy parameter as follows:

θk+1 = θk − ηM(θk)∇J(θk),

where η ∈ R+ is the step-size and M(θ) is a precondi-
tioning matrix that could depend on the policy parameter
θ.

If J is smooth andM(θ) is positive-definite, then the policy
parameter update ensures a decrease in the objective, viz.,
the total expected cost for sufficiently small η. Note that
if M(θ) is the identity matrix, then the update rule above
corresponds to a gradient step, while M(θ) = ∇2J(θ)−1

would result in a Newton step.

In a typical RL setting, it is not feasible to find the ex-
act gradient or Hessian of the objective function since the
underlying transition dynamics of the environment is un-
known. Instead, one has to form sample-based estimates
of these quantities. Now, if we use an estimate of the Hes-
sian in place of the preconditioning matrix, we cannot as-
sure a stable descent as the Hessian estimate may not be
positive-definite at each iterate as required. This makes
the classical Newton update a bad candidate for our policy
search algorithm. [15] motivates an algorithm called the
cubic-regularized Newton method in a deterministic set-
ting which tackles these issues and more. They show that
the standard Newton step (η = 1) can alternatively be pre-
sented as follows:

θk+1 =

argmin
θ∈Rd

{
⟨∇J(θk), θ−θk⟩+

1

2

〈
∇2J(θk)(θ−θk), θ−θk

〉}
.

The cubic regularized Newton step adds a cubic term to the
auxiliary function in the following manner:

θk+1 = argmin
θ∈Rd

{
⟨∇J(θk), θ − θk⟩

+
1

2

〈
∇2J(θk)(θ − θk), θ − θk

〉
+
α

6
∥θ − θk∥3

}
,

where α ∈ R+ is the regularization parameter. In a general
stochastic optimization setting, using the cubic-regularized
Newton step, the authors in [2] establish convergence to
local minima. We adopt a similar approach in a RL set-
ting to propose/analyze a cubic-regularized policy Newton
method with gradient/Hessian estimates derived using the
result in Theorem 1. Algorithm 1 presents the pseudo-code
for the cubic-regularized policy Newton algorithm with a
gradient and Hessian estimation scheme that is described
below.

From Theorem 1, the policy gradient and Hessian can be
seen as expectations of g andH defined below.

g(θ; τ) := ∇Φ(θ; τ),
H(θ; τ) := ∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ).

(5)

The above estimates are calculated by the information ob-
tained from a given trajectory τ and policy parameter θ. We
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simulate multiple trajectories and calculate these estimates
for each of them and then take their averages to obtain the
final such estimates.

Algorithm 1: Cubic-regularized policy Newton (CR-
PN)

Input : Initial parameter θ0 ∈ Rd, a non-negative
sequence {αk}, positive integer sequences
{mk} and {bk}, and an iteration limit N ≥ 1.

for k = 1, . . . , N do
/* Monte Carlo simulation */
Simulate max{mk, bk} number of trajectories
according to θk−1, randomly pick mk trajectories
for set Tm and bk trajectories for set Tb;
/* Gradient estimation */

ḡk =
1

mk

∑
τ∈Tm

H−1∑
h=0

Ψh(τ)∇ log π(ah|sh; θk−1)

where the state-action pairs (sh, ah) belong to the
respective trajectories τ ;
/* Hessian estimation */

H̄k =
1

bk

∑
τ∈Tb

(H−1∑
h=0

Ψh(τ)∇ log π(ah|sh; θk−1)

×
H−1∑
h′=0

∇⊤ log π(ah′ |sh′ ; θk−1)
)

+
1

bk

∑
τ∈Tb

H−1∑
h=0

Ψh(τ)∇2 log π(ah|sh; θk−1);

/* Policy update (cubic
regularized Newton step) */

Compute

θk = argmin
θ∈Rd

{
J̃k(θ) ≡ J̃(θ, θk−1, H̄k, ḡk, αk)

}
,

where J̃(x, y,H, g, α) =
(6)

⟨g, x− y⟩+ 1

2
⟨H(x− y), x− y⟩+ α

6
∥x− y∥3 .

end for
Output: Policy θN

The result that we state below provides error bounds on
the single trajectory-based gradient and Hessian estimates
defined in (5). These bounds will be used subsequently to
establish convergence to a local minimum of the objective
J .

Lemma 1. Let g(θ; τ),H(θ; τ) be the gradient and Hes-
sian estimates formed using (5). Then, under (A1) (A2) and
(A3) for any parameter θ and trajectory τ , we have almost
surely

∥g(θ; τ)−∇J(θ)∥ ≤M1 and∥∥H(θ; τ)−∇2J(θ)
∥∥ ≤M2,

where M1 := GKH2(H + 1), and M2 := 2GH. The
constants K,G are given in Assumptions (A1) and (A3),
respectively, H is the horizon, and GH is defined in Propo-
sition 1.

Proof. See Appendix D.

4 Main results

In this section, we first define a first and second-order sta-
tionary point of the expected cost objective. Subsequently,
we prove that Algorithm 1 converges to a second-order sta-
tionary point.

At a first-order stationary point (FOSP), say θ̄, the gradient
vanishes, i.e., ∇J(θ̄) = 0. An ϵ-approximation to FOSP is
a point θ̄ that satisfies

∥∥∇J(θ̄)∥∥ ≤ ϵ. The definition below
extends the notion of ϵ-FOSP to a stochastic optimization
setting, and is standard in optimization literature, cf. [10].
Definition 1 (ϵ-first-order stationary point). Fix ϵ > 0.
Let θR be the output of a stochastic iterative algorithm for
solving (3). Then, θR is said to be an ϵ-first-order station-
ary point (ϵ-FOSP) of J if

E [∥∇J(θR)∥] ≤ ϵ,

where the expectation is over the randomness in the algo-
rithm considered.

A FOSP could potentially be a saddle point. In order to
avoid such points and find local optima of J , we need infor-
mation with regard to the curvature of the underlying objec-
tive. The notion of second-order stationary point (SOSP)
formalizes this notion and aids in escaping saddle points.

At a second-order stationary point (SOSP), say θ̄, we have
∇J(θ̄) = 0 and λmin

(
∇2J(θ̄)

)
≥ 0, where λmin(A) de-

notes the minimum eigenvalue of a matrix A. If the ob-
jective J satisfies a strict saddle condition, i.e., there are
no points where the aforementioned minimum eigenvalue
is zero, then SOSPs coincide with local minima [16]. For
non-asymptotic analysis, an ϵ-version of SOSP is defined
below.
Definition 2 (ϵ-second-order stationary point). Fix ϵ >
0. Let θR be the output of a stochastic iterative algorithm
for solving (3). Then, for some ρ > 0, θR is said to be an
ϵ-SOSP in expectation if

max

{√
E [∥∇J(θR)∥],

−1
√
ρ
E
[
λmin

(
∇2J(θR)

)]}
≤
√
ϵ.

Furthermore, θR is said to be an ϵ-SOSP with high prob-
ability if the following bound holds with probability 1 − δ
for any δ ∈ (0, 1):

max

{√
∥∇J(θR)∥,

−1
√
ρ
λmin

(
∇2J(θR)

)}
≤
√
ϵ,
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Such definitions are standard in second-order optimization
literature, and an algorithm that outputs an ϵ-SOSP approx-
imates the local minimum better than one that outputs ϵ-
FOSP, cf. [2, 25].

Before stating the main result that establishes convergence
of Algorithm 1 to an ϵ-SOSP, we state a useful lemma that
bounds the error in the gradient estimate ḡk and the Hessian
estimate H̄k as a function of number of trajectoriesmk and
bk, respectively.

Lemma 2. Let ḡk and H̄k be computed as in Algorithm 1,
and assume bk ≥ 4(1 + 2 log 2d). Then, we have

E
[
∥ḡk −∇J(θk−1)∥2

]
≤
G2

g

mk
, and

E
[∥∥H̄k −∇2J(θk−1)

∥∥3] ≤ 4
√
15(1 + 2 log 2d)dG3

H

b
3
2

k

.

Proof. The first claim is easy to prove, using the definition
of ḡk in conjunction with algebraic manipulations. For the
second claim concerning H̄k, we follow the technique from
[2]. In particular, we use a bound on the expected norm of
an independent sum of random matrices from [27, Theorem
1] in conjunction with Rosenthal’s inequality (see Lemma
16 in Appendix G). The reader is referred to Appendix C
for the detailed proof.

The main result that establishes convergence in expectation
to an ϵ-SOSP is given below.

Theorem 2 (Bound in expectation). Let {θ1, . . . , θN} be
computed by Algorithm 1 with the following parameters:

αk = 3LH, N =
12
√
LH(J(θ0)− J∗)

ϵ
3
2

, (7)

mk =
25G2

g

4ϵ2
, bk =

36 3
√
30(1 + 2 log 2d)d

2
3G2

H
LHϵ

.

Let θR be picked uniformly at random from {θ1, . . . , θN}.
Then, under (A1) (A2) and (A3), we have

5
√
ϵ ≥

max

{√
E [∥∇J(θR)∥],

−5
6
√
LH

E
[
λmin

(
∇2J(θR)

)]}
.

(8)

where GH and LH are defined as in (4).

Proof. See Appendix C.

A few remarks are in order.

Remark 1. Since (J(θ0)−J∗) is unknown in a typical RL
setting, to aid practical implementations, one could choose
N = 24KH

√
LH

ϵ
3
2

, and the bound in (8) would continue to

hold, since (J(θ0)− J∗) ≤ 2KH .

Remark 2. As a consequence of Theorem 2, to obtain
an ϵ-SOSP of the problem, the total number of trajecto-
ries required to compute the gradient and the Hessian are

bounded by O
(

1

ϵ
7
2

)
and O

(
d

2
3

ϵ
5
2

)
, respectively. This is

of a higher order in contrast to the HAPG algorithm pro-
posed by [21], which requires O

(
1
ϵ3

)
number of trajecto-

ries. However, the total number of time steps that it re-
quires for our algorithm to converge is O

(
1

ϵ1.5

)
versus the

O
(

1
ϵ2

)
required for HAPG. Furthermore, our algorithm

ensures convergence to an ϵ-SOSP thereby avoiding saddle
points, while HAPG is shown to converge to an ϵ-FOSP,
which could potentially be a trap (e.g. saddle point).

Before establishing convergence of Algorithm 1 to an ϵ-
SOSP with high probability, we state a high-probability
counterpart of Lemma 2.

Lemma 3. Let mk = max

(
M1

t ,
M2

1

t2

)
8
3 log

2d
δ′ , bk =

max

(
M2√
t1
,
M2

2

t1

)
8
3 log

2d
δ′ any positive constants and δ′ ∈

(0, 1). Then, with probability 1− δ′ we have

∥ḡk −∇J(θk)∥2 ≤ t2, and
∥∥H̄k −∇2J(θ)

∥∥3 ≤ t 3
2
1 .

Proof. The main claim follows by an application of the
matrix variant of Bernstein’s concentration inequality, af-
ter verifying the necessary assumptions. See Appendix E
for the detailed proof.

The main result that shows Algorithm 1 converges to an
ϵ-SOSP with high probability is given below.
Theorem 3 (High-probability bound). Suppose (A1) (A2)
and (A3) hold. Let {θ1, . . . , θN} be computed by Algorithm
1 with αk and N as in Theorem 2 and batch sizes mk, bk
set as follows:

mk = max

(
5M1

2ϵ
,
25M2

1

4ϵ2

)
8

3
log

2d

δ′
,

bk = max

(
12M2√

ϵ
,
144M2

2

ϵ

)
8

3LH
log

2d

δ′
,

(9)

where δ′ ∈ (0, 1). Let θR be picked uniformly at random
from {θ1, . . . , θN}. Then, with probability 1−2δ′, we have

5
√
ϵ ≥ max

{√
∥∇J(θR)∥,

−5
6
√
LH

λmin

(
∇2J(θR)

)}
,

(10)

where GH and LH are defined as in (4).

Proof. Follows in a similar manner as the proof of Theo-
rem 2, while using the high-probability bounds for gradient
and Hessian estimation in Lemma 3 in place of the corre-
sponding bounds in expectation (see Lemma 2 above). The
reader is referred to Appendix E for a detailed proof.
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From the bound above, it is apparent that Algorithm 1 will
output an ϵ-SOSP with probability at least 1 − 2δ′ within
O
(

1
ϵ1.5

)
number of iterations. Further, as in the case of

the expectation bound in Theorem 2, the total number of
trajectories required to estimate the gradient and Hessian
are bounded by

N∑
k=1

mk = O

(
1

ϵ
7
2

)
, and

N∑
k=1

bk = O

(
1

ϵ
5
2

)
,

respectively, when ϵ is small.

5 Approximate cubic-regularized policy
Newton (ACR-PN) algorithm

The cubic regularized policy Newton algorithm, which is
described in Algorithm 1, requires an exact solution to the
following optimization problem in each iteration:

θk+1 = argmin
θ

{
⟨ḡk, θ − θk⟩

+
1

2

〈
H̄k(θ − θk), θ − θk

〉
+
α

6
∥θ − θk∥3

}
.

(11)

In practice, it may not always be possible to obtain an ex-
act solution to the problem above, while one can perform a
few gradient descent steps to arrive at an approximate so-
lution that may be ‘good enough’. Such an approach has
been explored in a general stochastic optimization context
in [25].

We use the algorithm in [25] as a black-box to arrive at a
bound for a variant of Algorithm 1 that solves the cubic-
regularized problem approximately. In other words, this
algorithm is an instantiation of the template from [25] with
gradient and Hessian estimates along the lines of those em-
ployed in Algorithm 1. We present the pseudo-code of this
approximate variant in Algorithm 2 in the supplementary
material.

The ACR-PN algorithm uses the gradient and Hessian es-
timates to solve the cubic-regularized problem (11) using a
gradient descent-type algorithm. In particular, the “Cubic-
Subsolver” routine returns the parameter change ∆, which
is used to update the policy parameter θk. If the corre-
sponding change in J̄k(θ), i.e., δJ := J̄k(θk+∆)− J̄k(θk)
satisfies a certain stopping criterion, then ACR-PN calls the
”Cubic-Finalsolver” subroutine to perform several gradient
descent steps so that the cubic-regularized problem (11)
is solved accurately. As an aside, we note that the ACR-
PN uses the Hessian estimate only through Hessian-vector
products. The reader is referred to [25] for the details of
the two subroutines mentioned above.

We now turn to establishing convergence of the ACR-PN
algorithm to an ϵ-SOSP with high probability. The main
claim of Theorem 4 would follow from Theorem 1 of

[25], provided we verify Assumptions 1 and 2 from the
aforementioned reference. For the sake of completeness,
we state these assumptions as B1 and B2 below. Note
that these assumptions are equivalent to Proposition 1 and
Lemma 1, respectively.
(B1): The function J satisfies the following properties:

• GH-Lipschitz gradients: for all θ1 and θ2,
∥∇J(θ1)−∇J(θ2)∥ ≤ GH ∥θ1 − θ2∥, for some
GH > 0.

• LH-Lipschitz Hessians: for all θ1 and θ2,∥∥∇2J(θ1)−∇2J(θ2)
∥∥ ≤ α ∥θ1 − θ2∥, for some

α > LH > 0.

(B2): The estimates g(θ; τ) andH(θ; τ) satisfy

∥g(θ; τ)−∇J(θ)∥ ≤M1 and
∥∥H(θ; τ)−∇2J(θ)

∥∥ ≤M2,

The bounds in Proposition 1 imply (B1), while Lemma 1
implies (B2). Invoking Theorem 1 of [25] leads to the fol-
lowing result that establishes convergence of the ACR-PN
algorithm to an ϵ-SOSP.

Theorem 4. Assume (A1)–(A3). Fix δ ∈ (0, 1] and let
χ ≥ J(θ0) − J∗. Then, there exists a universal constant

c such that setting mk = max(M1

cϵ ,
M2

1

c2ϵ2 ) log
(

d
√
αχ

ϵ1.5δ′c

)
and

bk = max( M2

c
√
αϵ
,

M2
2

c2αϵ ) log
(

d
√
αχ

ϵ1.5δ′c

)
, the ACR-PN algo-

rithm will output an ϵ-SOSP of J with probability at least

1−δ′ withinO
(

1√
ϵ

)
number of iterations, while requiring

O

(√
αχ

ϵ1.5

(
max

(
M1

ϵ
,
M2

1

ϵ2

)
+max

(
M2√
αϵ
,
M2

2

αϵ

)
1√
ϵ

))
number of episodes to compute gradient and Hessian-
vector products.

We can conclude from the result above that the ACR-PN
algorithm finds an ϵ-SOSP after N̄ = O(ϵ−1.5) itera-
tions. The total number of trajectories required for gra-
dient averaging and Hessian product averaging is O(

M2
1

ϵ7/2
)

andO(
M2

2

αϵ5/2
), respectively when ϵ is small. These numbers

are comparable to those of Algorithm 1, where the cubic-
regularized problem was solved exactly.

6 Simulation experiments

We conduct experiments on three popular benchmarks,
namely cart-pole, reacher and humanoid. We implement
Algorithm 1 (CRPN), and its approximate variant ACR-PN
that is described in Section 5. For the sake of comparison,
we implement the vanilla policy gradient (REINFORCE)
algorithm.
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Figure 1: Performance evaluation of CR-PN, ACRP-PN and REINFORCE on gym environments. The results are averages
over 10 independent replications and are smoothed by taking a moving average with an 80% confidence interval.

6.1 Cart-pole with linear function approximation

In this problem provided by OpenAI’s Gym library, the ob-
servation space S is of the form {x, ẋ, ω, ω̇}, where x is the
cart position, ẋ is the cart velocity, ω is the pole angle, and
ω̇ is the pole angular velocity. These values are bounded
according to OpenAI’s Gym library documentation 1. The
reward for each time step is +1 until termination. The
episode is terminated when |ω| > 12◦ or |x| > 2.4. One
can observe that these conditions satisfy assumption (A1),
which was made for the theoretical results in Section 4.
All observations are initialized with a uniformly random
value in the interval (−0.05, 0.05) at the beginning of each
episode. The action space A = {0, 1}, with the first action
pushing the cart to the left and the second one to the right,
respectively.

For the simulation experiments, we use a linear function
approximation architecture in conjunction with a Gibbs
policy parametrization. The latter parametrization provides
a distribution to sample the action as follows:

π(a|s; θ) = exp (ψ(s, a)T θ)∑
b∈A exp (ψ(s, b)T θ)

,

where ψ(s, a) is a one-hot encoded feature w.r.t. the dis-
crete action a and θ is the trainable parameter vector of
length dimS × |A| which is 4× 2 = 8 in this case.

In this setting, we can hard-code the gradient and Hessian
to perform the updates of CRPN algorithm using the fol-
lowing expressions:

log π(a|s; θ) = ψ(s, a)T θ − log
∑
b∈A

exp (ψ(s, b)T θ),

∇ log π(a|s; θ) = ψ(s, a)− Eπθ
[ψ(s, ·)] , and

∇2 log π(a|s; θ) = −Eπθ

[
ψ(s, ·)ψ(s, ·)T

]
1OpenAI Gym library’s Cart-Pole environment documenta-

tion is available at https://gymnasium.farama.org/
environments/classic_control/cart_pole/.

+ Eπθ
[ψ(s, ·)]Eπθ

[ψ(s, ·)]T .

Using the quantities in the expressions above, we estimate
the gradient and Hessian of the batch of trajectories as spec-
ified in Algorithm 1. For the theoretical results in Section
4, we assumed certain bounds for the parameterized poli-
cies in (A2) and (A3). Here, these follow from straightfor-
ward calculations using the expressions above in conjunc-
tion with the fact that the observation space S is bounded.

In order to keep the cubic sub-problem 6 well-defined, we
set the regularizer α to a sufficiently large value, as sug-
gested in [8]. We vary the corresponding learning rate in
the benchmark REINFORCE algorithm as α−2/3 for a fair
comparison to CR-PN. We get this relation when compar-
ing the bounds between the two algorithms when their re-
spective hyper-parameters are set in order to achieve the
same ϵ-FOSP. The reader is referred to Theorems 5 and 6
in the supplementary material for a justification of the rela-
tion between regularizer α and REINFORCE learning rate.

In our implementation of CR-PN, the cubic sub-problem 6
is optimized numerically using the Newton-CG algorithm
provided by the SciPy toolkit with a small enough toler-
ance to ensure accurate results2. The update iterations for
both CRPN and REINFORCE algorithms are performed by
estimating the gradient and Hessian over a batch size of 50
independent episodes.

Figure 1 shows the average episodic rewards for REIN-
FORCE, CR-PN and ACR-PN algorithms. It is apparent
that both CR-PN and ACR-PN outperform REINFORCE,
implying convergence in a lower number of iterations as
compared to REINFORCE. Notice that CR-PN and ACR-
PN show improved performance initially as compared to
REINFORCE and such a performance gain was observed
for a variety of α-values. Further, we observe that CR-
PN outperforms ACR-PN slightly owing to its higher pre-
cision while finding the optima of the sub-problem using

2Newton-CG algorithm documentation by SciPy is avail-
able at https://docs.scipy.org/doc/scipy/
reference/optimize.minimize-newtoncg.html

https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-newtoncg.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-newtoncg.html
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Newton-based solvers. However, our implementation of
ACR-PN, which requires Hessian-vector products, is ex-
tensible to cover neural networks as seen in the MuJoCo
experiments, which we describe next.

The reader is referred to Appendix H for the details of the
hyper-parameters in our implementation as well as addi-
tional simulation experiments and results.

6.2 MuJoCo environments with deep neural networks

For deep neural network policies, as computing the full
Hessian is intractable, we implement the ACR-PN algo-
rithm, which solves the cubic sub-problem in Algorithm 1
approximately using a gradient descent approach, as sug-
gested in [8]. We perform experiments on the popularly
used MuJoCo (Multi-Joint dynamics with Contact) envi-
ronments. We consider two environments, namely Reacher
(2 joints) and Humanoid (17 joints).

The Reacher environment consists of a two-jointed robotic
arm that rotates in a horizontal 2-D arena. The goal in this
problem is to take the end-effector (tip) of the arm to some
target co-ordinate (random position) within the arena. The
net reward is proportional to the negative of the distance of
the tool tip and target position, while also having an addi-
tional penalty for large activation forces at the joints.

The Humanoid environment based on [24] is of a 3-D
bipedal robot that has a torso and a pair of legs and arms.
The legs have 3 body parts, i.e., the “knees” and “feet”
while the arms have two joints by the “elbow”. The net re-
ward depends on how fast the humanoid is able to walk for-
ward while staying upright and having some control costs
to penalise large force inputs.

We use a standard Multi-Layer Perceptron (MLP) neural
network architecture with softmax hidden activation, and a
Gaussian policy where the parameters mean and standard-
deviation are learnable, i.e., π(a|s; θ) = N (µθ, σ

2
θ), where

µθ is in (−1, 1) using a tanh function, and σθ is clipped.

As second-order methods have not been explored as much
as their first-order counterparts in the implementation on
popular RL benchmarks such as MuJoCo, we provide
an efficient scheme for computing the Hessian-vector es-
timates from a Monte-Carlo simulation in libraries like
PyTorch and TensorFlow that have auto-grad functional-
ity. We now briefly describe this scheme for Hessian-
vector estimation which can be found in Section I. Let
L1

(i) := Φ(θ; τi) and L2
(i) := log p(τi; θ) denote the

stacked “losses” corresponding to each trajectory in the
mini-batch. Given θ ∈ Rd and ∇ ≡ ∇θ, let ∇L1

(ij) :=
∂L1

(j)

∂θ(i) and ∇L2
(ij) := ∂L2

(j)

∂θ(i) . Then, L1,L2 ∈ Rn and
∇L1,∇L2 ∈ Rd×n by convention. Now, from (1), the gra-
dient and Hessian-vector products can be written in vector-

matrix notation as follows:

ḡ =
1

n

∑
i

∇L1
(i) = ∇

(
1

n

∑
i

L1
(i)

)
, and

H̄ · v =
1

n

∑
i

(∇L1
(i)∇⊤L2

(i) +∇2L1
(i)) · v

=
1

n
∇L1∇⊤L2v +∇ḡ⊤v.

The second term, i.e. ∇ḡ⊤v is straightforward to imple-
ment as we already have the computational graph of ḡ that
we retain and use it to re-differentiate its inner product with
v, and this requires just one additional auto-grad call. On
the other hand, estimating the first term, i.e. 1

n∇L1∇⊤L2v
is non-trivial but can be performed using three calls to the
back-propagation algorithm. To elaborate, we first define a
function ujp(f, u;x) := ∂f

∂xu, with f and u being vectors
of the same dimension and x being the input to differenti-
ate against. This function resembles the function signature
and working of the auto-grad function in PyTorch 3. Then
for some u ∈ Rn and v ∈ Rd, we have

ujp(L2, u; θ) = ∇θL2u = ∇⟨L2, u⟩ , ∈ Rd

ujp(∇L2u, v;u) = ∇u(∇L2u)v = ∇⊤L2v, ∈ Rn

ujp(L1,∇⊤L2v; θ) = ∇L1∇⊤L2v. ∈ Rd

The scheme outlined above provides the exact Hessian-
vector product for a neural network and this is unlike pre-
vious works, cf. [21], which employed finite-differences
to arrive at approximations to the Hessian-vector product.
The reader is referred to the GitHub implementation, which
is available at https://github.com/mizhaan23/
crpn_algo.

7 Conclusions and future work

In this paper, we proposed policy Newton algorithms with
cubic regularization. Our algorithms form unbiased esti-
mates of the gradient as well as the Hessian of the value
function using sample trajectories. Through a rigorous
convergence analysis, we established that our policy New-
ton algorithms converge to a second-order stationary point
(SOSP) of the value function, which implies the algorithms
avoid saddle points. Further, the sample complexity of our
algorithms to find an ϵ-SOSP is O(ϵ−3.5), and this result is
an improvement over the O(ϵ−4.5) bound currently avail-
able in the literature.

As future work, it would be interesting to extend the pol-
icy Newton algorithms to incorporate feature-based repre-
sentations and function approximation, and establish con-
vergence of the resulting actor-critic algorithms to SOSPs.
From an empirical standpoint, policy Newton algorithms
may be explored in real-life applications.

3See https://pytorch.org/docs/stable/
generated/torch.autograd.grad.html

https://github.com/mizhaan23/crpn_algo
https://github.com/mizhaan23/crpn_algo
https://pytorch.org/docs/stable/generated/torch.autograd.grad.html
https://pytorch.org/docs/stable/generated/torch.autograd.grad.html


A Cubic-regularized Policy Newton Algorithm for Reinforcement Learning

Acknowledgments

S.Bhatnagar was supported in part by the
J.C.Bose National Fellowship of SERB, Project
No. DFTM/02/3125/M/04/AIR-04 from DRDO under
DIA-RCOE, a grant from Walmart under the CSR
initiative as well as the RBCCPS, IISc.

References

[1] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Maha-
jan. Optimality and approximation with policy gradi-
ent methods in markov decision processes. In Confer-
ence on Learning Theory, volume 125, pages 64–66,
Jul 2020.

[2] K. Balasubramanian and S. Ghadimi. Zeroth-order
nonconvex stochastic optimization: Handling con-
straints, high dimensionality, and saddle points. Foun-
dations of Computational Mathematics, 22(1):35–76,
Feb 2022.

[3] S. Bhatnagar. An actor–critic algorithm with func-
tion approximation for discounted cost constrained
Markov decision processes. Systems & Control Let-
ters, 59(12):760–766, 2010.

[4] S. Bhatnagar and K. Lakshmanan. An online actor–
critic algorithm with function approximation for con-
strained Markov decision processes. Journal of Op-
timization Theory and Applications, 153:688–708,
2012.

[5] S. Bhatnagar, H. Prasad, and L. A. Prashanth.
Stochastic recursive algorithms for optimization.
Simultaneous perturbation methods, volume 434.
Springer-Verlag London, 01 2013.

[6] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and
M. Lee. Natural actor–critic algorithms. Automatica,
45(11):2471–2482, 2009.

[7] V. S. Borkar. An actor-critic algorithm for constrained
Markov decision processes. Systems & control letters,
54(3):207–213, 2005.

[8] Y. Carmon, J. Duchi, O. Hinder, and A. Sidford.
Accelerated methods for non-convex optimization.
arXiv preprint, arXiv:1611.00756, 2016.

[9] T. Furmston, G. Lever, and D. Barber. Approximate
Newton Methods for Policy Search in Markov De-
cision Processes. Journal of Machine Learning Re-
search, 17(226):1–51, 2016.

[10] S. Ghadimi and G. Lan. Stochastic first- and zeroth-
order methods for nonconvex stochastic program-
ming. SIAM J. Optim., 23:2341–2368, 2013.

[11] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I.
Jordan. How to escape saddle points efficiently.
ICML, 2017.

[12] V. R. Konda and V. S. Borkar. Actor-critic–type learn-
ing algorithms for Markov decision processes. SIAM
Journal on control and Optimization, 38(1):94–123,
1999.

[13] H. Kumar, A. Koppel, and A. Ribeiro. On the sam-
ple complexity of actor-critic method for reinforce-
ment learning with function approximation. Machine
Learning, pages 1–35, 2023.

[14] A. Mondal, L. A. Prashanth, and S. Bhatnagar. A Gra-
dient Smoothed Functional Algorithm with Truncated
Cauchy Random Perturbations for Stochastic Opti-
mization. arXiv preprint arXiv:2208.00290, 2022.

[15] Y. Nesterov and B. Polyak. Cubic regularization of
Newton method and its global performance. Math.
Program., 108:177–205, 08 2006.

[16] Y. Nesterov and B.T. Polyak. Cubic regularization of
newton method and its global performance. Mathe-
matical Programming, 112:159–181, 2007.

[17] M. Papini, D. Binaghi, G. Canonaco, M. Pirotta, and
M. Restelli. Stochastic variance-reduced policy gra-
dient. In ICML, volume 80, pages 4026–4035, Jul
2018.

[18] S. Paternain, A. Mokhtari, and A. Ribeiro. A Newton-
Based Method for Nonconvex Optimization with Fast
Evasion of Saddle Points. Society for Industrial and
Applied Mathematics, 29:343–368, 2019.

[19] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and
P. Abbeel. Trust region policy optimization. ICML,
pages 1889–1897, 2015.

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimovl. Proximal policy optimization algorithms.
arXiv:1707.06347, 2017.

[21] Z. Shen, A. Ribeiro, H. Hassani, H. Qian, and C. Mi.
Hessian aided policy gradient. In International Con-
ference on Machine Learning, pages 5729–5738.
PMLR, 2019.

[22] R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction. The MIT Press, 2 edition, 2018.

[23] R. S. Sutton, D. A. McAllester, S. P. Singh, and
Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In Ad-
vances in Neural Information Processing Systems,
volume 99, pages 1057–1063, 1999.



Mizhaan Prajit Maniyar, Prashanth L.A., Akash Mondal, and Shalabh Bhatnagar

[24] Y. Tassa, T. Erez, and E. Todorov. Synthesis and sta-
bilization of complex behaviors through online trajec-
tory optimization. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
4906–4913, 2012.

[25] N. Tripuraneni, M. Stern, C. Jin, J. Regier, and M. I.
Jordan. Stochastic cubic regularization for fast non-
convex optimization. In NeurIPS, volume 31. Curran
Associates, Inc., 2018.

[26] J. A Tropp. An Introduction to Matrix Concentration
Inequalities. Foundations and Trends® in Machine
Learning, 8(1-2):1–230, 2015.

[27] J. A. Tropp. The Expected Norm of a Sum of Indepen-
dent Random Matrices: An Elementary Approach. In
High Dimensional Probability VII: The Cargèse Vol-
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A Proof of Proposition 1

Lemma 4. Under Assumptions (A1) and (A2), for any parameter θ and trajectory τ , we have

∥∇Φ(θ; τ)∥ ≤ Gg,
∥∥∇2Φ(θ; τ)

∥∥ ≤ L1KH
2, ∥g(θ; τ)∥ ≤ Gg, and ∥H(θ; τ)∥ ≤ GH,

where Gg = GKH2, and GH := H3G2K + L1KH
2.

Proof. Using the definition of Φ(θ; τ), we have

∥∇Φ(θ; τ)∥ =

∥∥∥∥∥
H−1∑
i=0

Ψi(τ)∇ log π(ai|si; θ)

∥∥∥∥∥ ≤
H−1∑
i=0

|Ψi(τ)| ∥∇ log π(ai|si; θ)∥ ≤ G
H−1∑
i=0

|Ψi(τ)|.

We establish a bound on |Ψi(τ)| as follows:

|Ψi(τ)| = |
H−1∑
h=i

γh−1c(sh, ah)| ≤ K
H−1∑
h=i

γh−1 ≤ KH.

Thus,

∥∇Φ(θ; τ)∥ ≤ GKH2.

Similarly,

∥∥∇2Φ(θ; τ)
∥∥ =

∥∥∥∥∥
H−1∑
i=0

Ψi(τ)∇2 log π(ai|si; θ)

∥∥∥∥∥ ≤
H−1∑
i=0

|Ψi(τ)|
∥∥∇2 log π(ai|si; θ)

∥∥
≤ L1

H−1∑
i=0

|Ψi(τ)| ≤ L1KH
2.

It is now easy to show that the gradient estimate g(θ; τ) is bounded as follows:

∥g(θ; τ)∥ = ∥∇Φ(θ; τ)∥ ≤ GKH2 = Gg.

Next, we show that the Hessian estimateH(θ; τ) is bounded. Notice that

∥H(θ; τ)∥ =
∥∥∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ)

∥∥
≤ ∥∇Φ(θ; τ)∥ ∥∇ log p(τ ; θ)∥+

∥∥∇2Φ(θ; τ)
∥∥

≤ GKH2 ∥∇ log p(τ ; θ)∥+ L1KH
2.

Using the relation∇ log p(τ ; θ) =
∑H−1

h=0 ∇ log π(ah|sh; θ), we have

∥∇ log p(τ ; θ)∥ ≤
H−1∑
h=0

∥∇ log π(ah|sh; θ)∥ ≤ HG.

Therefore, we obtain

∥H(θ; τ)∥ ≤ H3G2K + L1KH
2 = GH.

Hence proved.

From the above lemma, one can easily interpret that the objective function, i.e., J(θ) and its gradient,∇J(θ) are Lipschitz
continuous. We now show that the Hessian of the objective, i.e.,∇2J(θ) is Lipschitz.

Lemma 5. Under Assumptions (A1), (A2) and (A3), we have for any (θ1, θ2),∥∥∇2J(θ1)−∇2J(θ2)
∥∥ ≤ LH ∥θ1 − θ2∥ , where (12)

LH := H4G3K + 3H3GL1K + L2KH
2.
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Proof. We begin with the expression for the Hessian of our objective, i.e.,

∇2J(θ) =
∑
τ

(∇Φ(θ; τ)∇⊤p(τ ; θ) + p(τ ; θ)∇2Φ(θ; τ)) .

Notice that

∇2J(θ1)−∇2J(θ2) =
∑
τ

(∇Φ(θ1; τ)∇⊤p(τ ; θ1) + p(τ ; θ1)∇2Φ(θ1; τ))

−
∑
τ

(∇Φ(θ2; τ)∇⊤p(τ ; θ2) + p(τ ; θ2)∇2Φ(θ2; τ))

=
∑
τ

(
∇Φ(θ1; τ)∇⊤p(τ ; θ1)−∇Φ(θ2; τ)∇⊤p(τ ; θ2)

)
+
∑
τ

(
p(τ ; θ1)∇2Φ(θ1; τ)− p(τ ; θ2)∇2Φ(θ2; τ)

)
Hence,

∥∥∇2J(θ1)−∇2J(θ2)
∥∥ ≤∑

τ

∥∥∇Φ(θ1; τ)∇⊤p(τ ; θ1)−∇Φ(θ2; τ)∇⊤p(τ ; θ2)
∥∥

+
∑
τ

∥∥p(τ ; θ1)∇2Φ(θ1; τ)− p(τ ; θ2)∇2Φ(θ2; τ)
∥∥ . (13)

For ease of notation, let Φj := Φ(θj ; τ) and pj := p(τ ; θj). We bound the first summand in (13) as follows:∥∥∇Φ1∇⊤p1 −∇Φ2∇⊤p2
∥∥ ≤ ∥∥∇Φ1∇⊤p1 −∇Φ1∇⊤p2

∥∥+ ∥∥∇Φ1∇⊤p2 −∇Φ2∇⊤p2
∥∥

≤ ∥∇Φ1∥ ∥∇p1 −∇p2∥+ ∥∇p2∥ ∥∇Φ1 −∇Φ2∥ . (14)

Using the mean-value theorem for vector-valued functions, we have

∇p1 −∇p2 = ∇2ph1
(θ1 − θ2),

where ph1
= p(τ ; θh1

), and θh1
= (1− h1)θ1 + h1θ2 for some h1 ∈ [0, 1]. Hence,

∥∇p1 −∇p2∥ ≤
∥∥∇2ph1

∥∥ ∥θ1 − θ2∥
= ∥∇(ph1

∇ log ph1
)∥ ∥θ1 − θ2∥

=
∥∥∇ph1

∇⊤ log ph1
+ ph1

∇2 log ph1

∥∥ ∥θ1 − θ2∥
=
∥∥ph1

(∇ log ph1
∇⊤ log ph1

+∇2 log ph1
)
∥∥ ∥θ1 − θ2∥

(a)

≤ ph1

(
∥∇ log ph1∥

2
+
∥∥∇2 log ph1

∥∥) ∥θ1 − θ2∥
≤ ph1

(
H2G2 +HL1

)
∥θ1 − θ2∥ , (15)

where (a) uses the relation∇ log pj =
∑H−1

h=0 ∇ log π(ah|sh; θj) and ∇2 log pj =
∑H−1

h=0 ∇2 log π(ah|sh; θj).

Similarly,

∥∇Φ1 −∇Φ2∥ ≤
∥∥∇2Φh2

∥∥ ∥θ1 − θ2∥ , (16)

where Φh2
= Φ(θh2

; τ), and θh2
= (1− h2)θ1 + h2θ2 for some h2 ∈ [0, 1]. Using (15) and (16) in (14), we obtain∥∥∇Φ1∇⊤p1 −∇Φ2∇⊤p2
∥∥ ≤ ph1

(
H2G2 +HL1

)
∥∇Φ1∥ ∥θ1 − θ2∥+ p2 ∥∇ log p2∥

∥∥∇2Φh2

∥∥ ∥θ1 − θ2∥
≤ ph1(H

4G3K +H3L1GK) ∥θ1 − θ2∥+ p2H
3GL1K ∥θ1 − θ2∥ , (17)

where the final inequality used the bounds obtained in Lemma 4.

Summing both the sides of (17) over τ , we obtain∑
τ

∥∥∇Φ1∇⊤p1 −∇Φ2∇⊤p2
∥∥ ≤ H4G3K + 2H3GL1K ∥θ1 − θ2∥ . (18)
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In the above inequality, we used the fact that
∑

τ p(τ ; θ) = 1 for all θ.

We now bound the second summand in (13). Notice that∥∥p1∇2Φ1 − p2∇2Φ2

∥∥ ≤ ∥∥p1∇2Φ1 − p1∇2Φ2

∥∥+ ∥∥p1∇2Φ2 − p2∇2Φ2

∥∥ ,
≤ p1

∥∥∇2Φ1 −∇2Φ2

∥∥+ ∥∥∇2Φ2

∥∥ |p1 − p2|. (19)

Using the mean value theorem, we obtain

|p1 − p2| ≤ ∥∇ph3∥ ∥θ1 − θ2∥
≤ ph3 ∥∇ log ph3∥ ∥θ1 − θ2∥
≤ ph3(HG) ∥θ1 − θ2∥ .

We now bound the first term in (19) as follows:

∥∥∇2Φ1 −∇2Φ2

∥∥ =

∥∥∥∥∥
H−1∑
i=0

Ψi(τ)
(
∇2 log π(ai|si; θ1)−∇2 log π(ai|si; θ2)

)∥∥∥∥∥
≤

H−1∑
i=0

|Ψi(τ)|
∥∥∇2 log π(ai|si; θ1)−∇2 log π(ai|si; θ2)

∥∥
≤ L2 ∥θ1 − θ2∥

H−1∑
i=0

KH ≤ L2KH
2 ∥θ1 − θ2∥ .

We used here (A3) in the second last inequality above. Plugging the above results in (19), we have∥∥p1∇2Φ1 − p2∇2Φ2

∥∥ ≤ p1L2KH
2 ∥θ1 − θ2∥+ ph3

H3GL1K ∥θ1 − θ2∥ .

Summing over trajectories on both sides above, we obtain∑
τ

∥∥p1∇2Φ1 − p2∇2Φ2

∥∥ ≤ (L2KH
2 +H3GL1K) ∥θ1 − θ2∥ . (20)

Using (18) and (20) in (13), we obtain∥∥∇2J(θ1)−∇2J(θ2)
∥∥ ≤ (H4G3K + 2H3GL1K) ∥θ1 − θ2∥+ (L2KH

2 +H3GL1K) ∥θ1 − θ2∥
= (H4G3K + 3H3GL1K + L2KH

2) ∥θ1 − θ2∥ .

The claim follows.

Remark 3. From (12), it can be easily seen that∥∥∇J(θ1)−∇J(θ2)−∇2J(θ2)(θ1 − θ2)
∥∥ ≤ LH

2
∥θ1 − θ2∥2 ,

|J(θ1)− J(θ2)− ⟨∇J(θ2), θ1 − θ2⟩ −
1

2

〈
θ1 − θ2,∇2J(θ2)(θ1 − θ2)

〉
| ≤ LH

6
∥θ1 − θ2∥3 .

B Proof of Theorem 1

Proof. The result is available in [21], and we provide the proof here for the sake of completeness. First, we re-write the
objective function (2) as follows:

J(θ) := Eτ∼p(τ ;θ) [G(τ)] = Eτ∼p(τ ;θ)

[
H−1∑
h=0

γh−1c(sh, ah)

]
=

H−1∑
h=0

Eτh∼p(τh;θ)

[
γh−1c(sh, ah)

]
.

The last equality above holds as the term inside the expectation is independent of future events, i.e., the trajectory
(s0:h, a0:h) does not depend on the trajectory (sh+1:H−1, ah+1:H−1). Replacing the expectation by a summation over
all trajectories

J(θ) =

H−1∑
h=0

∑
τh

γh−1c(sh, ah)p(τh; θ) .
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Differentiating on both sides, we obtain

∇J(θ) =
H−1∑
h=0

∑
τh

γh−1c(sh, ah)∇p(τh; θ) .

Using now the fact that∇p(τh; θ) = p(τh; θ)∇ log p(τh; θ), we obtain

∇J(θ) =
H−1∑
h=0

∑
τh

γh−1c(sh, ah)∇ log p(τh; θ) p(τh; θ)

=

H−1∑
h=0

Eτh∼p(τh;θ)

[
γh−1c(sh, ah)∇ log p(τh; θ)

]
.

From (1), we can show that∇ log p(τ ; θ) =
∑H−1

h=0 ∇ log π(ah|sh; θ), and thus

∇J(θ) =
H−1∑
h=0

Eτh∼p(τh;θ)

[
γh−1c(sh, ah)

h∑
i=1

∇ log π(ai|si; θ)

]

=

H−1∑
h=0

h∑
i=0

Eτh∼p(τh;θ)

[
γh−1c(sh, ah)∇ log π(ai|si; θ)

]
=

H−1∑
h=0

h∑
i=0

Eτ∼p(τ ;θ)

[
γh−1c(sh, ah)∇ log π(ai|si; θ)

]
.

where in the last equality we use the fact that γh−1c(sh, ah)∇ log π(ai|si; θ) with i ≤ h is independent of the randomness
after ah. Interchanging the order of summation, we obtain

∇J(θ) =
H−1∑
i=0

H−1∑
h=i

Eτ∼p(τ ;θ)

[
γh−1c(sh, ah)∇ log π(ai|si; θ)

]
=

H−1∑
i=0

Eτ∼p(τ ;θ)

[(
H−1∑
h=i

γh−1c(sh, ah)

)
∇ log π(ai|si; θ)

]

=

H−1∑
i=0

Eτ∼p(τ ;θ) [Ψi(τ)∇ log π(ai|si; θ)] .

This concludes the proof of the first claim. For the second claim, notice that

∇2J(θ) = ∇

(∑
τ

∇Φ(θ; τ)p(τ ; θ)

)
=
∑
τ

(∇Φ(θ; τ)∇⊤p(τ ; θ) +∇2Φ(θ; τ)p(τ ; θ)

=
∑
τ

(
∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ)

)
p(τ ; θ))

= Eτ∼p(τ ;θ)

[
∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ)

]
.

Hence proved.

C Proof of Theorem 2

The proof proceeds through a sequence of lemmas while following the technique from [2]. However, unlike the aforemen-
tioned reference, we operate in an RL framework and more importantly, with unbiased gradient and Hessian estimates,
leading to a major deviation in the proof as compared to [2].
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Lemma 6. Let θ̄ = argminx∈Rd J̃(x, θ,H, g, α). Then, we have

g +H(θ̄ − θ) + α

2

∥∥θ̄ − θ∥∥ (θ̄ − θ) = 0,

H+
α

2

∥∥θ̄ − θ∥∥ Id ⪰ 0.

where Id is the identity matrix.

Proof. See Lemma 4.3 from [2] and [15].

We now derive the second and third-order error bounds on our Hessian estimate.

Lemma 7. Let ḡk and H̄k be computed as in Algorithm 1, and assume bk ≥ 4(1 + 2 log 2d).

Then we have

E
[
∥ḡk −∇J(θk−1)∥2

]
≤
G2

g

mk
, E

[∥∥H̄k −∇2J(θk−1)
∥∥3] ≤ 4

√
15(1 + 2 log 2d)dG3

H

b
3
2

k

. (21)

Proof. Using the fact that the estimate ḡk is unbiased, we have

E
[
∥ḡk −∇J(θk−1)∥2

]
= E

∥∥∥∥∥ 1

mk

∑
τ∈Tm

(g(θk−1; τ)−∇J(θk−1))

∥∥∥∥∥
2


=
1

m2
k

∑
τ

E
[
∥g(θk−1; τ)−∇J(θk−1)∥2

]
+

1

m2
k

∑
τ ̸=τ ′

E [⟨g(θk−1; τ)−∇J(θk−1), g(θk−1; τ
′)−∇J(θk−1)⟩] , (22)

≤ 1

m2
k

E

[ ∑
τ∈Tm

∥g(θk−1; τ)∥2
]
≤
G2

g

mk
,

where the final inequality follows by equating the second summand in (22) to zero. This zeroing is justified from the fact
that the trajectories are independent. This establishes the first bound in (21).

Now we turn to proving the second bound in (21). By Theorem 1 in [27], we have

E
[∥∥H̄k −∇2J(θk−1)

∥∥2] ≤ 2C(d)

b2k

(∥∥∥∥∥∑
τ∈Tb

E
[
∆2

k,τ

]∥∥∥∥∥+ C(d)E
[
max

τ
∥∆k,τ∥2

])
, (23)

where ∆k,τ = H(θk−1; τ)−∇2J(θk−1) and C(d) = 4(1 + 2 log 2d). It is easy to see that

E
[
∥∆k,τ∥2

]
≤ E

[
∥H(θk−1; τ)∥2

]
≤ G2

H, and (24)∥∥∥∥∥∑
τ∈Tb

E
[
∆2

k,τ

]∥∥∥∥∥ ≤ ∑
τ∈Tb

∥∥E [∆2
k,τ

]∥∥ ≤ ∑
τ∈Tb

E
[
∥∆k,τ∥2

]
. (25)

Using (24) and (25) in (23), we obtain

E
[∥∥H̄k −∇2J(θk−1)

∥∥2] ≤ 2C(d)

b2k

(
bkG

2
H + C(d)G2

H
)
≤ 4C(d)

bk
G2

H,

where in the last inequality we use the assumption that bk ≥ C(d). Letting ∥∥F denote the Frobenius norm, and using
Holder’s inequality, we obtain

E
[∥∥H̄k −∇2J(θk−1)

∥∥3] ≤ E
[∥∥H̄k −∇2J(θk−1)

∥∥ · ∥∥H̄k −∇2J(θk−1)
∥∥2
F

]
(26)
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≤
(
E
[∥∥H̄k −∇2J(θk−1)

∥∥2] · E [∥∥H̄k −∇2J(θk−1)
∥∥4
F

]) 1
2

.

Note that H̄k −∇2J(θk−1) =
1
bk

∑
τ∈Tb

∆k,τ , therefore we have

E
[∥∥H̄k −∇2J(θk−1)

∥∥4
F

]
= E

∥∥∥∥∥ 1

bk

∑
τ∈Tb

∆k,τ

∥∥∥∥∥
4

F

 =
1

b4k
E

∥∥∥∥∥∑
τ∈Tb

∆k,τ

∥∥∥∥∥
4

F

 ≤ 3E
[
∥∆k,τ∥4F

]
b2k

,

where the final inequality comes from Rosenthal’s inequality (see Lemma 16 in Appendix G). Using the fact that ∥·∥F ≤√
d ∥·∥ and the inequality from Lemma 15 in Appendix G, we have

E
[∥∥H̄k −∇2J(θk−1)

∥∥4
F

]
≤

3d2E
[
∥∆k,τ∥4

]
b2k

≤
15d2E

[
∥H(θk−1; τi)∥4

]
b2k

≤ 15d2G4
H

b2k
,

which when combined in (26) leads to the second bound in (21).

We next state a result that will be used in a subsequent lemma.

Lemma 8. If for any two matrices A and B, and a scalar c, we have

A ⪯ B + cI,

where I is the identity matrix of the appropriate dimension, then the following holds:

c ≥ λmax(A)− ∥B∥

Proof. See Appendix F.

Lemma 9. Let {θk} be computed by Algorithm 1. Then, we have√
E
[
∥θk − θk−1∥2

]
≥ max


√

E [∥∇J(θk)∥]− δgk − δHk
LH + αK

,
−2

αk + 2LH

[
E
[
λmin

(
∇2J(θk)

)]
+
√
2(αk + LH)δHk

] , (27)

where δgk, δ
H
k > 0 are chosen such that

E
[
∥∇J(θk−1)− ḡk∥2

]
≤ (δgk)

2
, and E

[∥∥∇2J(θk−1)− H̄k

∥∥3] ≤ (2(LH + αk)δ
H
k

) 3
2 . (28)

Proof. From Lemma 7, note that δgk and δHk are inversely proportional to
√
mk and bk, respectively and are therefore

well-defined. Now, by the equality condition in Lemma 6, we have

∥∇J(θk)∥ ≤
∥∥∇J(θk)−∇J(θk−1)−∇2J(θk−1)(θk − θk−1)

∥∥+ ∥∇J(θk−1)− ḡk∥ (29)

+
∥∥∇2J(θk−1)− H̄k

∥∥ ∥θk − θk−1∥+
αk

2
∥θk − θk−1∥2

≤ (LH + αk)

2
∥θk − θk−1∥2 + ∥∇J(θk−1)− ḡk∥+

∥∥∇2J(θk−1)− H̄k

∥∥ ∥θk − θk−1∥

≤ (LH + αk) ∥θk − θk−1∥2 + ∥∇J(θk−1)− ḡk∥+
∥∥∇2J(θk−1)− H̄k

∥∥2
2(LH + αk)

,

where we used Young’s inequality. In the last step, we take expectation on both sides and use the relations in (28) to obtain

(E
[
∥∇J(θk)∥ − δgk − δHk

]
)

LH + αk
≤ E

[
∥θk − θk−1∥2

]
. (30)
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By the inequality in Lemma 6, and the smoothness result in Lemma 5, we have

∇2J(θk) ⪰ ∇2J(θk−1)− LH ∥θk − θk−1∥ Id = ∇2J(θk−1)− H̄k + H̄k − LH ∥θk − θk−1∥ Id

⪰ ∇2J(θk−1)− H̄k −
(αk + 2LH) ∥θk − θk−1∥

2
Id,

which, from Lemma 8, implies that

(αk + 2LH) ∥θk − θk−1∥
2

≥ λmax

(
−∇2J(θk)

)
−
∥∥∇2J(θk−1)− H̄k

∥∥ , (31)

= −λmin

(
∇2J(θk)

)
−
∥∥∇2J(θk−1)− H̄k

∥∥ .
Taking expectations on both sides, and using the definition of δHk in (28), we have√

E
[
∥θk − θk−1∥2

]
≥ E [∥θk − θk−1∥] (32)

≥ −2
αk + 2LH

[
E
[
λmin

(
∇2J(θk)

)]
+
√
2(αk + LH)δHk

]
.

Combining the above inequality with (30), we obtain (27).

Lemma 10. Let {θk} be computed by Algorithm [1] for a given iteration limit N ≥ 1, we have

E
[
∥θR − θR−1∥3

]
(33)

≤ 36∑N
k=1 αk

J(θ0)− J∗ +

N∑
k=1

4 (δgk)
3
2

√
3αk

+

N∑
k=1

(
18 4
√
2

αk

)2 (
(LH + αk)δ

H
k

) 3
2

 ,
where R is a random variable whose probability distribution PR(·) is supported on {1, . . . , N} and given by

PR(R = k) =
αk∑N
k=1 αk

, k = 1, . . . , N, (34)

and δgk, δ
H
k > 0 are defined as before in (28).

Proof. We can see that by Lemma 5, (6) and the fact that αk ≥ LH, we have

J(θk) ≤ J(θk−1) + J̃k(θk) + ∥∇J(θk−1 − ḡk)∥ ∥θk − θk−1∥+
1

2

∥∥∇2J(θk−1)− H̄k

∥∥ ∥θk − θk−1∥2 . (35)

Moreover, by Lemma 6, we have

J̃k(θk) = −
1

2

〈
H̄k(θk − θk−1), (θk − θk−1)

〉
− αk

3
∥θk − θk−1∥3 ≤ −

αk

12
∥θk − θk−1∥3 . (36)

Combining (35) and (36), we obtain
αk

12
∥θk−1 − θk∥3 ≤ J(θk−1)− J(θk) + ∥∇J(θk−1 − ḡk)∥ ∥θk − θk−1∥

+
1

2

∥∥∇2J(θk−1)− H̄k

∥∥ ∥θk − θk−1∥2

≤ J(θk−1)− J(θk) +
4√
3αk
∥∇J(θk−1 − ḡk)∥

3
2

+

(
9
√
2

αk

)2 ∥∥∇2J(θk−1 − H̄k)
∥∥3 + αk

18
∥θk − θk−1∥3 , (37)

where the last inequality follows from the fact ab ≤ ap

λpp + λqbq

q for p, q satisfying 1
p + 1

q = 1 and λ > 0.

We now take expectation on both sides of (37) and use (28) to obtain

αk

36
E
[
∥θk − θk−1∥3

]
≤ J(θk−1)− J(θk) +

4 (δgk)
3
2

√
3αk

+

(
18 4
√
2

αk

)2 (
(LH + αk)δ

H
k

) 3
2 .

Summing over k = 1, . . . , N , dividing both sides by
∑N

k=1 αk and noting (34), we obtain the bound in (33).
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Proof of Theorem 2

Proof. First, note that by (7), Lemma 21, we can ensure that (28) is satisfied by δgk = 2ϵ/5 and δHk = ϵ/144. Moreover,
by Lemma 10, we have

E
[
∥θR − θR−1∥3

]
≤ 12

LH

[
J(θ0)− J∗

N
+

4 (2/5)
3
2

3
√
LH

ϵ
3
2 +

182
√
2

9 · 63
√
LH

ϵ
3
2

]

≤ 1

L
3
2

H

[
12
√
LH(J(θ0)− J∗)

N
+ 6.88ϵ

3
2

]

≤ 8ϵ
3
2

L
3
2

H

. (38)

The inequality in (38) follows by substituting the value ofN specified in the theorem statement. Furthermore, from Lemma
9 and using Lyapunov inequality, we obtain[

E
[
∥θR − θR−1∥2

] ]1/2
≤
[
E
[
∥θR − θR−1∥3

] ]1/3
≤ 2ϵ

1
2

L
1
2

H

.

Using the bound above in conjunction with (30) and (32), we obtain

√
E [∥∇J(θk)∥] ≤

√(
16 +

2

5
+

1

144

)
ϵ ≤ 5

√
ϵ,

and

E
[
−λmin

(
∇2J(θk)

)]
√
LH

≤
(
5 +

1

3
√
2

)√
ϵ ≤ 6

√
ϵ.

The main result in (8) follows from the two inequalities above.

Finally, note that the total number of required samples to obtain such a solution is bounded by

N∑
k=1

mk = O

(
1

ϵ
7
2

)
,

N∑
k=1

bk = O

(
d

2
3

ϵ
5
2

)
.

D Proof of Lemma 1

Proof. Recall that g(θ; τ) = ∇Φ(θ, τ). By Lemma 4 we have ∥∇Φ(θ; τ)∥ ≤ GKH2. Further, from (4) ∥∇J(θ)∥ ≤
KGH3. Hence,

∥g(θ; τ)−∇J(θ)∥ ≤ ∥g(θ; τ)∥+ ∥∇J(θ)∥
≤ GKH2 +KGH3

= GKH2(H + 1) =M1.

Squaring and taking expectations, we obtain

E ∥g(θ; τ)−∇J(θ)∥2 ≤M2
1 .

Next, we establish bounds on the Hessian estimate. Note that ∥H(θ; τ)∥ ≤ H3G2K + L1KH
2 = GH. Further from (4)

we have
∥∥∇2J(θ)

∥∥ ≤ GH. Hence, ∥∥H(θ, τ)−∇2J(θ))
∥∥ ≤ 2GH =M2,

E
∥∥H(θ, τ)−∇2J(θ))

∥∥2 ≤M2
2 .
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E Proof of Theorem 3

For ease of exposition, we restate Lemma 3 below. This result will be used subsequently in the proof of Theorem 3.

Lemma 11. Let mk = max

(
M1

t ,
M2

1

t2

)
8
3 log

2d
δ′ , bk = max

(
M2√
t1
,
M2

2

t1

)
8
3 log

2d
δ′ any positive constants and δ′ ∈ (0, 1).

Then, with probability 1− δ′ we have

∥ḡk −∇J(θk)∥2 ≤ t2, and
∥∥H̄k −∇2J(θ)

∥∥3 ≤ t 3
2
1 .

Proof. Following [26, equation 2.2.8], we define the matrix variance statistic of a random matrix Z as

v(Z) = max{∥Var1(Z)∥, ∥Var2(Z)∥}, where

Var1(Z) = E
[
(Z − E(Z))(Z − E(Z))T

]
, and

Var2(Z) = E
[
(Z − E(Z))T (Z − E(Z))

]
.

Letting∇Φ̃(θ; τ) = ∇Φ(θ; τ)−∇J(θ), we have the following expression for the centered gradient estimate:

g̃k =
1

mk

∑
τ∈Tm

(
∇Φ̃(θ; τ)

)
.

Using the triangle inequality and Jensen’s inequality, the matrix variance v(g̃k) is simplified bounded as follows:

v(g̃k) =
1

m2
k

max
{∥∥∥E ∑

τ∈Tm

∇Φ̃(θ; τ)∇Φ̃(θ; τ)T
∥∥∥,∥∥∥E ∑

τ∈Tmk

∇Φ̃(θ; τ)T∇Φ̃(θ; τ)
∥∥∥},

≤ 1

m2
k

max
{
E
∑
τ∈Tm

∥∥∥∇Φ̃(θ; τ)∇Φ̃(θ; τ)T∥∥∥,E ∑
τ∈Tmk

∥∥∥∇Φ̃(θ; τ)T∇Φ̃(θ; τ)∥∥∥} ≤ M2
1

mk
.

From an application of matrix Bernstein inequality, see [26, Theorem 7.3.1], we obtain

P[∥ḡk −∇J(θ)∥ ≥ t] ≤ 2d exp

(
− t2/2

v(g̃k) +M1t/(3mk)

)
≤ 2d exp

(
− 3mk

8
min

{
t

M1

t2

M2
1

})
.

Thus, for mk ≥ max

(
M1

t ,
M2

1

t2

)
8
3 log

2d
δ′ , we have

∥ḡk −∇J(θ)∥ ≤ t with probability 1− δ′.

The first claim follows.

Next, we turn to proving the second claim concerning the Hessian estimate H̄k. As in the case of the high-probability
bound for the gradient estimate above, we define H̃(θ; τ) = H(θ; τ) − ∇2J(θ), and the centered Hessian H̃k =
1
bk

∑
τ∈Tb

H̃(θ; τ). The variance of H̃k can be bounded as follows:

v[H̃k] =
1

b2k

∥∥∥∥∥∥
∑

τ∈Tbk

E
[(
H̃(θ; τ)

)2]∥∥∥∥∥∥ ≤ M2
2

bk
.

Applying the matrix Bernstein inequality for the centered Hessian leads to the following bound:

P[
∥∥H̄k −∇2J(θ)

∥∥ ≥ t′] ≤ 2d exp

(
− 3bk

8
min

{
t′

M2

t′2

M2
2

})

Thus, for bk ≥ max

(
M2

t′ ,
M2

2

t′2

)
8
3 log

2d
δ′ , we have

∥∥H̄k −∇2J(θ)
∥∥ ≤ t′ with probability 1− δ′.

The claim concerning H̄k follows by setting t′ =
√
t1.
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Lemma 12. Let {θk} be computed by Algorithm 1. Then with,mk, bk as in Lemma 11, we have

∥θk − θk−1∥ ≥ max


√
∥∇J(θk)∥ − t− t1

LH + αK
,

−2
αk + 2LH

[
λmin

(
∇2J(θk)

)
+
√

2(αk + LH)t1

] , (39)

with probability 1− 2δ′.

Proof. We first recall (29) from the proof of Lemma 9 below.

∥∇J(θk)∥ ≤ (LH + αk) ∥θk − θk−1∥2 + ∥∇J(θk−1)− ḡk∥+
∥∥∇2J(θk−1)− H̄k

∥∥2
2(LH + αk)

,

From Lemma 11, with probability 1− δ′, we have

∥∇J(θk−1)− ḡk∥2 ≤ t2,
∥∥∇2J(θk−1)− H̄k

∥∥3 ≤ (2(LH + αk)t1)
3
2 . (40)

Thus, with probability 1− 2δ′, √
(∥∇J(θk)∥ − t− t1)

LH + αk
≤ ∥θk − θk−1∥. (41)

Recall that (31) from the proof of Lemma 9 established the following inequality:

(αk + 2LH) ∥θk − θk−1∥
2

≥ λmin(∇2J(θk−1)− H̄k)− λmin

(
∇2J(θk)

)
.

Using the bounds from (40) in the inequality above, we obtain

∥θk − θk−1∥ ≥
−2

αk + 2LH

[
λmin

(
∇2J(θk)

)
+
√

2(αk + LH))t1

]
.

Combining the above inequality with (41), we obtain (39). Hence proved.

Lemma 13. Let {θk} be computed by Algorithm [1] for a given iteration limit N ≥ 1. Then under the setting of Lemma
11 we have

∥θR − θR−1∥3 (42)

≤ 36∑N
k=1 αk

J(θ0)− J∗ +

N∑
k=1

4t
3
2

√
3αk

+

N∑
k=1

(
18 4
√
2

αk

)2

((LH + αk)t1)
3
2

 ,
with probability 1− 2δ′N and R is a random variable with distribution specified in Lemma 10

Proof. From (35),(36) and (37) in the proof of Lemma 10, we have

αk

12
∥θk−1 − θk∥3 ≤ J(θk−1)− J(θk) +

4√
3αk
∥∇J(θk−1 − ḡk)∥

3
2 +

(
9
√
2

αk

)2 ∥∥∇2J(θk−1 − H̄k)
∥∥3

+
αk

18
∥θk − θk−1∥3 .

Rearranging the terms above and using the bounds from (40), we obtain

αk

36
∥θk − θk−1∥3 ≤ J(θk−1)− J(θk) +

4t
3
2

√
3αk

+

(
18 4
√
2

αk

)2

((LH + αk)t1)
3
2 .

Summing over k = 1, . . . , N , dividing both sides by
∑N

k=1 αk, and noting the fact that after N -th iteration of Algorithm
1, the concentration bounds in Lemma 11 hold with probability 1 − 2δ′N , we obtain the bound in (42) with probability
1− 2δ′N .
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Proof of Theorem 3

Proof. By Lemma 13 and (38) with probability 1− 2δ′N , we have

∥θR − θR−1∥3 ≤
8ϵ

3
2

L
3
2

H

,

where we choose N according to (9).

From Lemma 12, with probability 1− 2δ′N , we have

√
∥∇J(θR)∥ ≤

√(
16 +

2

5
+

1

144

)
ϵ ≤ 5

√
ϵ and

−λmin

(
∇2J(θR)

)
√
LH

≤
(
5 +

1

3
√
2

)√
ϵ ≤ 6

√
ϵ.

Thus, (10) follows implying θR is a ϵ-SOSP with high-probability.

F Proof of Lemma 8

We state and prove a useful result that will imply bound in Lemma 8.
Lemma 14. For any square matrix A ∈ Rd×d and for all vectors v ∈ Rd, the following holds

v⊤Av ≤ λ ∥v∥2 , (43)

for some λ ∈ R, if and only if
λmax(A) ≤ λ. (44)

Proof. We shall first prove the forward argument which is quite trivial. We define the map

λv(A) :=
v⊤Av

∥v∥2

Now, given (43), we shall find a v∗ such that Av∗ = λmax(A)v∗, i.e. v∗ is the eigenvector associated with the largest
eigenvalue of A. As v∗ ∈ C(A) ⊆ Rd, the following should hold

λv∗(A) ≤ λ.

But,

λv∗(A) =
v⊤∗ Av∗

∥v∗∥2
= λmax(A)

v⊤∗ v∗

∥v∗∥2
= λmax(A) ≤ λ.

Now to check if the converse holds, we start by arguing that λv(A) ≤ λmax(A) for all v and A. We argue that λv(A) ∈
[λmin(A), λmax(A)], as it has the form

λv(A) =

∑r
i=1 λia

2
i∑r

i=1 a
2
i

,

where r is the rank of A and ai are the coefficients of v. Hence, λv(A) can be thought of as a weighted average of all
eigenvalues of A. Therefore, given (44), we have for all v ∈ Rd,

λv ≤ λ,

which satisfies (43).

Proof. (Lemma 8) For all v ∈ Rd, we have

v⊤Av ≤ v⊤Bv + c ∥v∥2

≤ ∥B∥ · ∥v∥2 + c ∥v∥2

= (∥B∥+ c) ∥v∥2 ,

where in the second line, we used the Cauchy-Schwartz inequality. Now by using, Lemma 14 in the last line, we obtain

λmax(A) ≤ ∥B∥+ c, implying c ≥ λmax(A)− ∥B∥ .
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G A few probabilistic inequalities

We state and prove two probabilistic inequalites, which are used in the proof of Theorem 2. In particular, the result below
as well as Rosenthal’s inequality (stated in Lemma 16) are used in the proof of Lemma 7

Lemma 15. Let Z ∈ Rd×d be a random matrix. Then, we have

E
[
∥Z − E [Z]∥4

]
≤ 5E

[
∥Z∥4

]
.

Proof. We can re-write the expectation as

E
[
∥Z − E [Z]∥4

]
= Var

(
∥Z − E [Z]∥2

)
+
(
E
[
∥Z − E [Z]∥2

])2
.

Consider the first term

Var
(
∥Z − E [Z]∥2

)
= Var

(
∥Z∥2 + ∥E [Z]∥2 − 2 ⟨Z,E [Z]⟩

)
= Var

(
∥Z∥2 − 2 ⟨Z,E [Z]⟩

) (
∵ Var

(
∥E [Z]∥2

)
= 0
)

≤ Var
(
∥Z∥2

)
+ 4Var (⟨Z,E [Z]⟩) + 4

√
Var

(
∥Z∥2

)√
Var (⟨Z,E [Z]⟩).

Now for the second term(
E
[
∥Z − E [Z]∥2

])2
=
(
E
[
∥Z∥2

]
− ∥E [Z]∥2

)2
=
(
E
[
∥Z∥2

])2
+ ∥E [Z]∥4 − 2E

[
∥Z∥2

]
∥E [Z]∥2 .

Simplifying the terms under the root√
Var

(
∥Z∥2

)
=

√
E
[
∥Z∥4

]
−
(
E
[
∥Z∥2

])2

=

√
E
[
∥Z∥4

]√√√√√√1−

(
E
[
∥Z∥2

])2
E
[
∥Z∥4

]

≤
√
E
[
∥Z∥4

]1−

(
E
[
∥Z∥2

])2
2E
[
∥Z∥4

]


where in the last inequality we used the fact that
√
1− x ≤ 1− x

2 .

Var (⟨Z,E [Z]⟩) = E
[
⟨Z,E [Z]⟩2

]
− (E [⟨Z,E [Z]⟩])2

≤ E
[
∥Z∥2 ∥E [Z]∥2

]
− ∥E [Z]∥4

≤ E
[
∥Z∥2

]
∥E [Z]∥2 .

Putting these results together

E
[
∥Z − E [Z]∥4

]
≤ Var

(
∥Z∥2

)
+
(
E
[
∥Z∥2

])2
+ 4Var (⟨Z,E [Z]⟩) + ∥E [Z]∥4 − 2E

[
∥Z∥2

]
∥E [Z]∥2

+ 4

√
Var

(
∥Z∥2

)√
Var (⟨Z,E [Z]⟩)
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≤ E
[
∥Z∥4

]
+ 2E

[
∥Z∥2

]
∥E [Z]∥2 − 3 ∥E [Z]∥4

+ 4

√
E
[
∥Z∥4

]1−

(
E
[
∥Z∥2

])2
2E
[
∥Z∥4

]
√E

[
∥Z∥2

]
∥E [Z]∥2.

Note that by Jensen’s inequality, we have E
[
∥Z∥2

]
∥E [Z]∥2 ≤

(
E
[
∥Z∥2

])2
≤ E

[
∥Z∥4

]
. Substituting these results

above and further simplification, we have

E
[
∥Z − E [Z]∥4

]
≤ 5E

[
∥Z∥4

]
− 3 ∥E [Z]∥4 ≤ 5E

[
∥Z∥4

]
.

Lemma 16 (Rosenthal’s inequality). Let {X1, . . . , Xn} be a sequence of random d× d square matrices with E [Xi] = 0
for all i. Then the following inequality holds

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
4

F

 ≤ 3n2E
[
∥Xi∥4F

]
,

where ∥·∥F denotes the Frobenius norm of a matrix.

Proof. We start by using the definition of variance as follows

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
4

F

 = Var

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

F

+

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

F

2

. (45)

Consider the first term in (45)

Var

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

F

 = Var

Tr

∑
i

X⊤
i

∑
j

Xj


= Var

Tr

∑
i

X⊤
i Xi + 2

∑
i<j

X⊤
i Xj


= Var

∑
i

∥Xi∥2F + 2
∑
i<j

Tr
(
X⊤

i Xj

)
=
∑
i

Var
(
∥Xi∥2F

)
+ 4

∑
i<j

Var
(
Tr
(
X⊤

i Xj

))
.

Expanding the terms under summation∑
i

Var
(
∥Xi∥2F

)
=
∑
i

E
[
∥Xi∥4F

]
−
∑
i

(
E
[
∥Xi∥2F

])2
,

∑
i<j

Var
(
Tr
(
X⊤

i Xj

))
=
∑
i<j

E
[(
Tr
(
X⊤

i Xj

))2]−∑
i<j

(
E
[
Tr
(
X⊤

i Xj

)])2
=
∑
i<j

E
[(
Tr
(
X⊤

i Xj

))2]
. (∵ E

[
Tr
(
X⊤

i Xj

)]
= 0 for i ̸= j)

Therefore,

Var

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

F

 =
∑
i

E
[
∥Xi∥4F

]
+ 4

∑
i<j

E
[(
Tr
(
X⊤

i Xj

))2]−∑
i

(
E
[
∥Xi∥2F

])2
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Table 2: Simulation hyper-parameter settings

Cart-Pole Reacher Humanoid
Horizon 500 50 1000

Batch-size 50 100 100
NN hidden sizes - 32× 32 64× 64

NN hidden activation - softmax softmax
REINFORCE λ 0.01 10−8/3 10−8/3

ACR-PN α 103 104 104

CR-PN α 103 - -

=
∑
i

E
[
∥Xi∥4F

]
+ 2

∑
i ̸=j

E
[(
Tr
(
X⊤

i Xj

))2]−∑
i

(
E
[
∥Xi∥2F

])2
≤ 2

∑
i

∑
j

E
[(
Tr
(
X⊤

i Xj

))2] ≤ 2
∑
i

∑
j

E
[(
Tr
(
X⊤

i Xi

))2]
= 2n2E

[
∥Xi∥4F

]
.

In the second last line we used the property of inner products, i.e. ⟨Xi, Xj⟩ ≤ ⟨Xi, Xi⟩ = ∥Xi∥2 for all (i, j) pairs. Now
taking the second term in (45)

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

F

 = E

Tr
∑

i

X⊤
i

∑
j

Xj


= Tr

∑
i

∑
j

E
[
X⊤

i Xj

]
= Tr

(∑
i

E
[
X⊤

i Xi

])
=
∑
i

E
[
∥Xi∥2F

]
= nE

[
∥Xi∥2F

]
.

Plugging these results in (45)

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
4

F

 ≤ 2n2E
[
∥Xi∥4F

]
+ n2

(
E
[
∥Xi∥2F

])2
≤ 2n2E

[
∥Xi∥4F

]
+ n2E

[
∥Xi∥4F

]
(Jensen’s inequality.)

= 3n2E
[
∥Xi∥4F

]
.

H Additional simulation details

Table 2 lists the various hyper-parameter values used in our experiments.

On comparing CRPN’s α and REINFORCE’s λ

The performance of CRPN and REINFORCE algorithms is highly sensitive to the selection of their respective hyper-
parameters. For a fair comparison, we chose the hyper-parameters for the two algorithms so that both converge to an
ϵ-FOSP. Towards this, we first provide a bound for REINFORCE algorithm in the result below.

Theorem 5 (Bound in expectation for REINFORCE). Let θk be computed by REINFORCE where λk is the step-size at
k, such that

θk = θk−1 − λkḡk,
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For any k, the step-size λk and batch size mk are set as follows:

λk = λ =
253

4GH
,mk =

25G2
g

4ϵ2
.

Set N = 2(J(θ0)−J∗)
252λϵ2 and choose θR uniformly at random from {θ1, . . . , θN}. Then, we have

E [∥∇J(θR)∥] ≤ 25ϵ.

where GH, LH and Gg are defined as in (1).

Proof. Assuming the objective is GH-smooth, we have the following according to Taylor’s theorem

J(θk) = J(θk−1 − λkḡk) ≤ J(θk−1)− λkḡTk∇J(θk−1) +
λ2k
2
GH ∥ḡk∥2 ,

taking expectation on both sides

E [J(θk)] ≤ E [J(θk−1)]− λkE [ḡk]
T ∇J(θk−1) +

λ2k
2
GHE

[
∥ḡk∥2

]
,

≤ E [J(θk−1)]− λkE
[∥∥∇J(θk−1)

2
∥∥]+ λ2k

2

GHG
2
g

mk
,

λkE
[∥∥∇J(θk−1)

2
∥∥] ≤ E [J(θk−1)]− E [J(θk)] +

λ2k
2

GHG
2
g

mk
.

Taking summation on both sides, and noticing the telescoping term
N−1∑
k=0

λkE
[∥∥∇J(θk−1)

2
∥∥] ≤ J(θ0)− J∗ +

N−1∑
k=0

λ2k
2

GHG
2
g

mk
,

If we sample θR according to the probability distribution PR(θR) =
λR∑N
k=0 λk

, then we can treat the L.H.S as a an expecta-
tion over this distribution and obtain∑N−1

k=0 λkE
[∥∥∇J(θk−1)

2
∥∥]∑N−1

k=0 λk
≤ J(θ0)− J∗∑N−1

k=0 λk
+
GHG

2
g

2mk

∑N−1
k=0 λ

2
k∑N−1

k=0 λk
,

E
[∥∥∇J(θR)2∥∥] ≤ J(θ0)− J∗

λN
+
λGHG

2
g

2mk
:= 252ϵ2.

Setting J(θ0)−J∗

λN =
λGHG2

g

2mk
= 252ϵ2

2 , we obtain the above relations.

Remark 4. Note that the sample complexity of REINFORCE is O(1/ϵ4), greater than our CRPN algorithm.
Theorem 6 (Relation between step-size and cubic-regularizer). Borrowing the results from (2) and (5) and by treating
the control hyper-parameters, i.e. N , ∆J := J(θ0) − J∗, mk, GH, LH and Gg same for both. Then from the following
relation

λ =
2

252 · 32/3 · 44/3

(
N

∆J

)1/3

α−2/3,

we can assure that both these algorithms converge to the same ϵ-FOSP.

Proof. Invoking the bounds of iterations N from (2) and (5), we can rearrange the terms to remove dependency on ϵ as
follows:

ϵ2 =
2(J(θ0)− J∗)

252λN
=

(
12
√
LH(J(θ0)− J∗)

N

)4/3

.

Note that number of iterations N for both algorithms in our experiments are assumed to be the same. Setting LH = α/3,
∆J := J(θ0)− J∗ and re-arranging we obtain the above relation.

Remark 5. The above results answer the question as to what is a “fair” relation between λ and α if both were to converge
to the same ϵ-FOSP given an identical setup. For our experiments, we set λ = α−2/3 while taking α large enough to avoid
the ill-conditioned sub-problem as described in [8].
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I Computing the exact Hessian-vector product efficiently using Auto-grad in an RL setting

Usually calculating the Hessian-vector product (or a linear map H̄[·]) is straight-forward by re-differentiating the quantity
given by the inner product of the gradient and the arbitrary vector. For e.g. for a function f and arbitrary vector v ∈ Rd,
∇2f · v = ∇⟨∇f, v⟩ which just requires 2 calls to the auto-grad function as given by packages like PyTorch etc. However,
our policy Hessian estimate consists of two quantities which we shall discuss below. As per convention, let L1

(i) :=
Φ(θ; τi) and L2

(i) := log p(τi; θ) denote the stacked “losses” corresponding to each of the n trajectories in the mini-batch.
Given θ ∈ Rd and ∇ ≡ ∇θ, let ∇L1

(ij) := ∂L1
(j)

∂θ(i) and ∇L2
(ij) := ∂L2

(j)

∂θ(i) . Then, L1,L2 ∈ Rn and ∇L1,∇L2 ∈ Rd×n

by construction. Recall from (1), we can now re-write our unbiased estimates in the following matrix-vector form

ḡ =
1

n

∑
i

∇L1
(i) = ∇

(
1

n

∑
i

L1
(i)

)
,

H̄ =
1

n

∑
i

(∇L1
(i)∇⊤L2

(i) +∇2L1
(i)) =

1

n

∑
i

(∇L1
(i)∇⊤L2

(i)) +
1

n

∑
i

∇2L1
(i).

The resulting Hessian-vector product can be shown as the following in matrix form,

H̄ · v =
1

n

∑
i

(∇L1
(i)∇⊤L2

(i)) · v + 1

n

∑
i

∇2L1
(i) · v,

=
1

n

∑
i

∇L1
(i)(∇⊤L2

(i)v) +∇ 1

n

∑
i

(∇⊤L1
(i)v),

=
1

n
∇L1∇⊤L2v +∇ḡ⊤v.

The second term, which we call hvp2 := ∇ḡ⊤v is straight-forward to implement, as we already have the computational
graph of ḡ that we have to retain and re-differentiate its inner product with v. Thus, we require just one additional auto-grad
call. However, estimating the first term, i.e. hvp1 is a little tricky. We could use brute-force and calculate the gradient for
each element in that mini-batch but that would scale according to O(n). But we can do it in constant time O(1) by using
the following trick.

Forward auto-diff trick 4

We first define a function ujp(f, u;x) := ∂f
∂xu, with f and u being vectors of the same dimension and x being the input

to differentiate against. This function resembles the function signature and working of the auto-grad function in PyTorch.
Recall that∇L1,∇L2 ∈ Rd×n and u ∈ Rn, v ∈ Rd, we have

ujp(L2, u; θ) = ∇θL2u = ∇⟨L2, u⟩ . ∈ Rd

The above quantity can be computed in constant time. Now we take the inner product of this quantity with our arbitrary
vector input v, and differentiate it w.r.t u to get,

ujp(∇L2u, v;u) = ∇u(∇L2u)v = ∇u ⟨∇L2u, v⟩ = ∇⊤L2v. ∈ Rn

Note that this quantity is now independent of u and thus, theoretically u can be initialized with any non-zero value. We
initialize u as a vector of ones. Making our third and final call to our ujp function in the following manner,

ujp(L1,∇⊤L2v; θ) = ∇L1∇⊤L2v. ∈ Rd

Notice that this resembles the quantity hvp1 exactly by a factor of 1
n . And therefore,

hvp1 =
1

n
∇L1∇⊤L2v =

1

n
ujp(L1,∇⊤L2v; θ).

Therefore, we make a total of three additional auto-grad calls for hvp1, where the first call, i.e. ujp(L2, u; θ) is indepen-
dent of the input vector v and thus can be stored in memory instead of re-calculating every-time our linear map H̄[·] is
called. This brings down the time complexity to O(1) making it an algorithm comparable to REINFORCE or other first
order methods in practice.

4inspired from : https://j-towns.github.io/2017/06/12/A-new-trick.html

https://j-towns.github.io/2017/06/12/A-new-trick.html


A Cubic-regularized Policy Newton Algorithm for Reinforcement Learning

J Pseudo-code of ACR-PN algorithm

Algorithm 2: Approximate cubic-regularized policy Newton (ACR-PN)

Input : mini-batch sizes mk, bk, initialization θ0, number of iterations N̄ , and final tolerance ϵ.
for k = 0 to N̄ do

/* Monte Carlo simulation */
Simulate min{mk, bk} number of trajectories according to θk−1, randomly pick mk trajectories for set Tm and bk
trajectories for set Tb.;
/* Gradient estimation */

ḡk =
1

mk

∑
τ∈Tm

H−1∑
h=0

Ψh(τ)∇ log π(ah|sh; θk−1);

/* Hessian estimation */

H̄k =
1

bk

∑
τ∈Tb

(H−1∑
h=0

Ψh(τ)∇ log π(ah|sh; θk−1)
∑H−1

h′=0∇⊤ log π(ah′ |sh′ ; θk−1)
)

+
1

bk

∑
τ∈Tb

∑H−1
h=0 Ψh(τ)∇2 log π(ah|sh; θk−1);

∆, δJ ← Cubic-Subsolver(ḡk, H̄k[·], ϵ)
θk+1 ← θk +∆

if δJ ≥ − 1
100

√
ϵ3

α then
∆← Cubic-Finalsolver(ḡk, H̄k[·], ϵ)
θ∗ ← θk +∆;
break;

end if
end for
Output: θ∗ if the early termination condition was reached, otherwise the final iterate θN̄

Algorithm 3: Cubic-Subsolver via Gradient Descent
Input : gradient estimate ḡ, Hessian-vector function H̄[·], and final tolerance ϵ.
if ∥ḡ∥ ≥ G2

H
α then

Rc ← − ḡ⊤H̄[ḡ]

α∥ḡ∥2 +

√(
ḡ⊤H̄[ḡ]

α∥ḡ∥2

)2
+ 2∥ḡ∥

α

∆← −Rc
ḡ

∥ḡ∥
end if
else

∆← 0, σ ← c′
√
ϵα

GH
, η ← 1

20GH

g̃ ← ḡ + σζ for ζ ∼ Unif (Sd−1)
for k = 0 to N̂ do

∆← ∆− η(g̃ + H̄[∆] + α
2 ∥∆∥∆)

end for
end if
δJ ← ḡ⊤∆+ 1

2∆H̄[∆] + α
6 ∥∆∥

3

Output: ∆, δJ .
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Algorithm 4: Cubic-Finalsolver via Gradient Descent
Input : gradient estimate ḡ, Hessian-vector function H̄[·], and final tolerance ϵ.
∆← 0, ḡJ ← ḡ, η ← 1

20GH

while ∥ḡJ∥ ≥ ϵ
2 do

∆← ∆− ηḡJ
ḡJ ← ḡJ + H̄[∆] + α

2 ∥∆∥∆
end while
Output: ∆.
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