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Abstract

Learning with abstention is a key scenario
where the learner can abstain from making a
prediction at some cost. In this paper, we an-
alyze the score-based formulation of learning
with abstention in the multi-class classifica-
tion setting. We introduce new families of
surrogate losses for the abstention loss func-
tion, which include the state-of-the-art surro-
gate losses in the single-stage setting and a
novel family of loss functions in the two-stage
setting. We prove strong non-asymptotic
and hypothesis set-specific consistency guar-
antees for these surrogate losses, which upper-
bound the estimation error of the abstention
loss function in terms of the estimation er-
ror of the surrogate loss. Our bounds can
help compare different score-based surrogates
and guide the design of novel abstention algo-
rithms by minimizing the proposed surrogate
losses. We experimentally evaluate our new
algorithms on CIFAR-10, CIFAR-100, and
SVHN datasets and the practical significance
of our new surrogate losses and two-stage ab-
stention algorithms. Our results also show
that the relative performance of the state-of-
the-art score-based surrogate losses can vary
across datasets.

1 INTRODUCTION

In many applications, incorrect predictions can be
costly and it is then preferable to abstain from making
predictions for some input instances, since the cost of
abstention is typically less significant. As an example,
in medical diagnosis, the cost of an incorrect diagnosis
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is incommensurable since the patient’s health may be
jeopardized. In contrast, the cost of abstention is typ-
ically that of resorting to some additional laboratory
tests. For a spoken-dialog system, an incorrect predic-
tion may result in canceling a credit card, for a bank,
or shipping the wrong medication to the patient, for
a pharmacy, while the cost of abstaining is limited to
that of switching to a human operator.

A related problem arises in applications where a learn-
ing model distilled from a very complex one is used,
due to its more modest inference cost. However, since
it is less accurate, one may need to resort to abstention
for some inputs and instead predict using the more
complex model, despite its higher inference cost. This
problem of deferring to an alternative model, in fact to
a human in some cases, can also be viewed as a special
case of the general abstention scenario (Madras et al.,
2018; Raghu et al., 2019a; Mozannar and Sontag, 2020;
Okati et al., 2021; Wilder et al., 2021; Verma and Nalis-
nick, 2022; Narasimhan et al., 2022; Verma et al., 2023).
In other applications such as information extraction or
natural language text generation or question-answering,
the output is sometimes not factual (Filippova, 2020;
Maynez et al., 2020). It can then be important to learn
to abstain from responding to avoid such hallucinations
and instead defer to a more costly predictor.

The scenario of classification with abstention is very
broad and admits increasingly many important appli-
cations, including as a subroutine for other algorithms
such as active learning (Zhang and Chaudhuri, 2016a)
or dual purpose learning (Amin et al., 2021). But, how
should we formulate the problem of multi-class classifi-
cation with abstention and when should we abstain?

There is a vast literature related to the problem of ab-
stention or rejection. Here, we briefly discuss work di-
rectly related to this study and give a more detailed dis-
cussion in Appendix A. A standard method for absten-
tion adopted in the past, which covers a very large num-
ber of publications (e.g., Herbei and Wegkamp (2005);
Bartlett and Wegkamp (2008); Yuan and Wegkamp
(2010); Lei (2014); Denis and Hebiri (2020)) and dates
back to the early work of Chow (1957, 1970), is the
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so-called confidence-based abstention. This consists of
first learning a predictor and then abstaining when
the score returned by the predictor falls below some
fixed threshold. Herbei and Wegkamp (2005) exam-
ined binary classification with abstention by giving the
optimal rule for these ternary functions. Bartlett and
Wegkamp (2008) formulated a loss function for this
setting taking into consideration the abstention cost c
and suggested to learn a predictor using a double hinge
loss that they showed benefits from consistency results.
Yuan and Wegkamp (2010) investigated the necessary
and sufficient condition for consistency of convex risk
minimization with respect to the abstention loss and
obtained the corresponding excess error bounds in the
same setting. Other variants of this framework have
also been studied in (Lei, 2014; Denis and Hebiri, 2020).

However, Cortes, DeSalvo, and Mohri (2016a, 2023)
argued that, in general, confidence-based abstention is
suboptimal, unless the predictor learned is the Bayes
classifier. They showed that, in general, even in simple
cases, no threshold-based abstention can achieve the
desired result. They introduced a novel framework
for abstention that consists of learning simultaneously
both a predictor h and a rejector r that, in general,
can be distinct from a threshold-based function. They
further defined a predictor-rejector formulation loss
function for the pair (h, r), taking into consideration
the abstention cost c. The authors gave Rademacher
complexity-based generalization bounds for this learn-
ing problem. They also suggested several surrogate loss
functions for the abstention loss in the binary classifi-
cation setting, and further showed that these surrogate
losses benefitted from consistency guarantees. They
designed algorithms based on these surrogate losses,
which they showed empirically outperform confidence-
based abstention baselines. This work had multiple
follow-up studies, including a theoretical and algorith-
mic study of boosting with abstention (Cortes et al.,
2016b) and a study of the extension of the results to
multi-class setting (Ni et al., 2019). These authors ar-
gued that the design of calibrated or Bayes-consistent
surrogate losses in the multi-class classification set-
ting based on the predictor-rejector abstention loss
of Cortes et al. (2016a) was difficult and left that as
an open problem. Recently, Mao et al. (2024b) intro-
duced several new theoretical and algorithmic findings
within this framework, effectively addressing the open
question. Furthermore, Mohri et al. (2024) explored
the framework from the perspective of learning with
a fixed predictor, applying their novel algorithms to
decontextualization tasks.

Mozannar and Sontag (2020) proposed instead for the
multi-class abstention setting a score-based formulation,
where, in addition to the standard scoring functions

associated to each label, a new scoring function is
associated to a new rejection label. Rejection takes
places when the score given to the rejection label is
higher than other scores and the rejector is therefore
implicitly defined via this specific rule. The authors
suggested a surrogate loss for their approach based on
the cross-entropy (logistic loss with softmax applied
to neural networks outputs), which they proved to be
Bayes-consistent. More recently, Cao et al. (2022) gave
a more general family of Bayes-consistent surrogate
losses for the score-based formulation that can be built
upon any consistent loss for the standard multi-class
classification problem. Most recent research by Mozan-
nar et al. (2023) demonstrates that cross-entropy score-
based surrogate losses are not realizable H-consistent,
as defined by Long and Servedio (2013); Zhang and
Agarwal (2020), in relation to abstention loss. Instead,
the authors propose a novel surrogate loss that is proved
to be realizable H-consistent when H is closed under
scaling, although its Bayes-consistency remains unclear.
The challenge of devising a surrogate loss that exhibits
both Bayes-consistency and realizable H-consistency
remains an open problem.

This paper presents a series of new theoretical and
algorithmic results for multi-class classification for the
score-based abstention formulation. In Section 2, we
formalize the setting and first define explicitly the un-
derlying abstention loss. We then show how the gen-
eral family of surrogate losses introduced by Cao et al.
(2022) can be naturally derived from that expression
in Section 3.1.

More importantly, we prove H-consistency bounds
for these surrogate losses (Section 3.2), which are
non-asymptotic and hypothesis set-specific guarantees
upper-bounding the estimation error of the abstention
loss function in terms of the estimation error of the
surrogate loss (Awasthi et al., 2022b). These provide
stronger guarantees than Bayes-consistency guarantees,
which only provide an asymptotic guarantee and hold
only for the full family of measurable functions. We first
derive our guarantees for a broad family of score-based
abstention surrogates, which we name cross-entropy
score-based surrogate losses. These include the surro-
gate losses in (Mozannar and Sontag, 2020; Cao et al.,
2022), for which our guarantees admit their Bayes-
consistency as a special case. Our theory can also
help compare different surrogate losses. To make it
more explicit, we give an explicit analysis of the mini-
mizability gaps appearing in our bounds. We further
prove a general result showing that an H-consistency
bound in standard classification yields immediately an
H-consistency bound for score-based abstention losses.
Minimization of these new surrogate losses directly
leads to new algorithm for multi-class abstention.
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In Section 4, we analyze a two-stage algorithmic scheme
often more relevant in practice, for which we give surro-
gate losses that we prove to benefit from H-consistency
bounds. These are also non-asymptotic and hypothesis
set-specific guarantees upper-bounding the estimation
error of the abstention loss function in terms of the
estimation error of the first-stage surrogate loss and
second-stage one. Minimizing these new surrogate
losses directly leads to new algorithm for multi-class
abstention.

In Section 5, we demonstrate that our proposed two-
stage score-based surrogate losses are not only Bayes-
consistent, but also realizable H-consistent. This effec-
tively addresses the open question posed by Mozannar
et al. (2023) and highlights the benefits of the two-stage
formulation.

In Section 6, we show that our H-consistency bounds
can be directly used to derive finite sample estimation
bounds for a surrogate loss minimizer of the abstention
loss. These are more favorable and more relevant guar-
antee than a similar finite sample guarantee that could
be derived from an excess error bound.

In Section 7, we report the results of several experi-
ments comparing these algorithms and discuss them in
light of our theoretical guarantees. Our empirical re-
sults show, in particular, that the two-stage score-based
abstention surrogate loss consistently outperforms the
state-of-the-art cross-entropy scored-based abstention
surrogate losses on CIFAR-10, CIFAR-100 and SVHN,
while highlighting that the relative performance of the
state-of-the-art cross-entropy scored-based abstention
losses varies by the datasets. We present a summary
of our main contribution as follows and start with a
formal description of the problem formulations.

• Derivation of the cross-entropy score-based surro-
gate loss from first principles, which include the
state-of-the-art surrogate losses as special cases.

• H-consistency bounds for cross-entropy score-
based surrogate losses, which can help theoretically
compare different cross-entropy score-based surro-
gate losses and guide the design of a multi-class
abstention algorithm in comparison to the existing
asymptotic consistency guarantees.

• A novel family of surrogate loss functions in the
two-stage setting and their strong H-consistency
bounds guarantees.

• Realizable H-consistency guarantees of proposed
two-stage score-based surrogate loss, which effec-
tively addresses the open question posed by Mozan-
nar et al. (2023) and highlights the benefits of the
two-stage formulation.

• Extensive experiments demonstrating the practical
significance of our new surrogate losses and the
varying relative performance of the state-of-the-art
cross-entropy score-based surrogate losses across
datasets.

2 PRELIMINARY

We consider the standard multi-class classification
setting with an input space X and a set of n ≥ 2
classes or labels Y = {1, . . . , n}. We will denote by
D a distribution over X × Y and by p(x, y), the con-
ditional probability of Y = y given X = x, that
is p(x, y) = D(Y = y ∣ X = x). We will also use
p(x) = (p(x,1), . . . , p(x,n)) to denote the vectors of
these probabilities for a given x.

We study the learning scenario of multi-class classifi-
cation with abstention in the score-based formulation
proposed by Mozannar and Sontag (2020) and recently
studied by Cao et al. (2022).

Score-Based Abstention Formulation In this
formulation of the abstention problem, the label set Y
is augmented with an additional category (n + 1) cor-
responding to abstention. We denote by Y ∪ {n + 1} =
{1, . . . , n, n + 1} the augmented set and consider a hy-
pothesis set H of functions mapping from X × (Y ∪

{n + 1}) to R. The label associated by h ∈ H to
an input x ∈ X is denoted by h(x) and defined by
h(x) = n + 1 if h(x,n + 1) ≥ maxy∈Y h(x, y); otherwise,
h(x) is defined as an element in Y with the highest
score, h(x) = argmaxy∈Y h(x, y), with an arbitrary but
fixed deterministic strategy for breaking ties. When
h(x) = n+1, the learner abstains from making a predic-
tion for x and incurs a cost c(x). Otherwise, it predicts
the label y = h(x). The score-based abstention loss Labs

for this formulation is defined as follows for any h ∈H
and (x, y) ∈ X × Y:

Labs(h,x, y) = 1h(x)≠y1h(x)≠n+1 + c(x)1h(x)=n+1. (1)

Thus, when it does not abstain, h(x) ≠ n + 1, the
learner incurs the familiar zero-one classification loss
and when it abstains, h(x) = n + 1, the cost c(x).
Given a finite sample drawn i.i.d. from D, the learn-
ing problem consists of selecting a hypothesis h in
H with small expected score-based abstention loss,
E(x,y)∼D[Labs(h,x, y)]. Note that the cost c implic-
itly controls the rejection rate when minimizing the
abstention loss.

Optimizing the score-based abstention loss is in-
tractable for most hypothesis sets. Thus, instead,
learning algorithms for this scenario must resort to
a surrogate loss L for Labs. In the next sections, we
will define score-based surrogate losses and analyze
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their properties. Given a loss function L, we denote by
EL(h) = E(x,y)∼D[L(h,x, y)] the generalization error or
expected loss of h and by E∗L(H) = infh∈H EL(h) the
minimal generalization error. In the following, to sim-
plify the presentation, we assume that the cost function
c ∈ (0,1) is constant. However, many of our results
extend straightforwardly to the general case.

H-Consistency Bounds We will seek to derive H-
consistency bounds for L. These are strong guar-
antees that take the form of inequalities establish-
ing a relationship between the abstention loss Labs

of any hypothesis h ∈ H and the surrogate loss L
associated with it (Awasthi et al., 2021a,b, 2022a,b,
2023, 2024; Mao et al., 2023c,d,e; Zheng et al., 2023;
Mao et al., 2023b,f). These are bounds of the form
ELabs

(h)−E∗Labs
(H) ≤ f(EL(h) − E∗L(H)), for some non-

decreasing function f , that upper-bound the estimation
error of the loss Labs in terms of that of L for a given
hypothesis set H. Thus, they show that if we can re-
duce the surrogate estimation error (EL(h)−E

∗
L(H)) to

ε > 0, then the estimation error of Labs is guaranteed to
be at most f(ε). These guarantees are non-asymptotic
and take into consideration the specific hypothesis set
H used.

Minimizability Gaps A key quantity appearing
in these bounds is the minimizability gap, denoted
by ML(H) and defined by ML(H) = E∗L(H) −

Ex[infh∈H Ey[L(h,X, y) ∣X = x]] for a given hypoth-
esis set H. Thus, the minimizability gap for a hypoth-
esis set H and loss function L measures the difference
of the best-in-class expected loss and the expected
pointwise infimum of the loss. Since the infimum is
super-additive, it follows that the minimizability gap
is always non-negative. When the loss function L de-
pends only on h(x, ⋅) for all h, x, and y ∈ Y, that is,
L(h,x, y) = Ψ(h(x, 1), . . . , h(x,n + 1), y) for some func-
tion Ψ, it can be shown that the minimizability gap
vanishes for the family of all measurable functions:
M(Hall) = 0 (Steinwart, 2007, lemma 2.5). However,
in general, the minimizability gap is non-zero for re-
stricted hypothesis sets H and is therefore essential
to analyze. It is worth noting that the minimizability
gap can be upper bounded by the approximation error
AL(H) = E∗L(H) − Ex[infh∈Hall

Ey[L(h,X, y) ∣ X = x]].
However, the minimizability gap is a more refined quan-
tity than the approximation error and can lead to more
favorable guarantees (see Appendix D).

3 SINGLE-STAGE SCORE-BASED
FORMULATION

In this section, we first derive the general form of a
family of surrogate loss functions L for Labs by analyzing

the abstention loss Labs. Next, we give H-consistency
bounds for these surrogate losses, which provide non-
asymptotic hypothesis set-specific guarantees upper-
bounding the estimation error of the loss function Labs

in terms of estimation error of L.

3.1 General Surrogate Losses

Consider a hypothesis h in the score-based setting.
Note that for any (x, y) ∈ X × Y, h(x) = n + 1 im-
plies h(x) ≠ y, therefore, we have: 1h(x)≠y1h(x)=n+1 =

1h(x)=n+1. Thus, Labs(h,x, y) can be rewritten as fol-
lows:

Labs(h,x, y) = 1h(x)≠y(1 − 1h(x)=n+1) + c1h(x)=n+1

= 1h(x)≠y − 1h(x)≠y1h(x)=n+1 + c1h(x)=n+1

= 1h(x)≠y − 1h(x)=n+1 + c1h(x)=n+1

= 1h(x)≠y + (c − 1)1h(x)=n+1

= 1h(x)≠y + (1 − c)1h(x)≠n+1 + c − 1.

In view of this expression, since the last term (c − 1)
is a constant, if ` is a surrogate loss for the zero-one
multi-class classification loss over the set of labels Y,
then L defined as follows is a natural surrogate loss for
Labs: for all (x, y) ∈ X × Y,

L(h,x, y) = `(h,x, y) + (1 − c) `(h,x,n + 1). (2)

This is precisely the form of the surrogate losses pro-
posed by Mozannar and Sontag (2020), for which the
analysis just presented gives a natural derivation. This
is also the form of the surrogate losses adopted by Cao
et al. (2022).

3.2 H-Consistency Bounds Guarantees

Cao et al. (2022) presented a nice study of the surrogate
loss L for a specific family of zero-one loss surrogates `.
The authors showed that the surrogate loss L is Bayes-
consistent with respect to the score-based abstention
loss Labs when ` is Bayes-consistent with respect to
the multi-class zero-one classification loss `0−1. Bayes-
consistency guarantees that, asymptotically, a nearly
optimal minimizer of L over the family of all measur-
able functions is also a nearly optimal minimizer of
Labs. However, this does not provide any guarantee for
a restricted subset H of the family of all measurable
functions. It also provides no guarantee for approxi-
mate minimizers since convergence could be arbitrarily
slow and the result is only asymptotic.

In the following, we will prove H-consistency bounds
guarantees, which are stronger results that are non-
asymptotic and that hold for a restricted hypothesis
set H. The specific instance of our results where H is
the family of all measurable functions directly implies
the Bayes-consistency results of Cao et al. (2022).
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H-Consistency Bounds for Cross-Entropy Ab-
stention Losses We first prove H-consistency
bounds for a broad family of score-based abstention sur-
rogate losses Lµ, that we will refer to as cross-entropy
score-based surrogate losses. These are loss functions
defined by

Lµ(h,x, y) = `µ(h,x, y) + (1 − c) `µ(h,x,n + 1), (3)

where, for any h ∈H, x ∈ X, y ∈ Y and µ ≥ 0,

`µ(h,x, y)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
1−µ([∑y′∈Y∪{n+1} e

h(x,y′)−h(x,y)]
1−µ

− 1) µ ≠ 1

log(∑y′∈Y∪{n+1} e
h(x,y′)−h(x,y)) µ = 1.

The loss function `µ coincides with the (multinomial)
logistic loss (Verhulst, 1838, 1845; Berkson, 1944, 1951)
when µ = 1, matches the generalized cross-entropy loss
(Zhang and Sabuncu, 2018) when µ ∈ (1,2), and the
mean absolute loss (Ghosh et al., 2017) when µ = 2.
Thus, the cross-entropy score-based surrogate losses
Lµ include the abstention surrogate losses proposed in
(Mozannar and Sontag, 2020) which correspond to the
special case of µ = 1 and the abstention surrogate losses
adopted in (Cao et al., 2022), which correspond to the
special case of µ ∈ [1,2].

We say that a hypothesis set H is symmetric
when the scoring functions it induces do not de-
pend on any particular ordering of the labels,
that is when there exists a family F of func-
tions f mapping from X to R such that, for any
x ∈ X, {[h(x,1), . . . , h(x,n), h(x,n + 1)]∶h ∈H} =

{[f1(x), . . . , fn(x), fn+1(x)]∶ f1, . . . , fn+1 ∈ F}. We say
that a hypothesis set H is complete if the set of scores
it generates spans R, that is, {h(x, y)∶h ∈H} = R, for
any (x, y) ∈ X × Y ∪ {n + 1}. Common hypothesis sets
used in practice, such as the family of linear models,
that of neural networks and of course that of all mea-
surable functions are all symmetric and complete. The
guarantees given in the following result are thus general
and widely applicable.

Theorem 1 (H-consistency bounds for cross-en-
tropy score-based surrogates). Assume that H is
symmetric and complete. Then, for any hypothesis
h ∈H and any distribution D, the following inequality
holds:

ELabs
(h) − E∗Labs

(H) +MLabs
(H)

≤ Γµ(ELµ(h) − E∗Lµ(H) +MLµ(H)),

where Γµ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

√
(2 − c)2µ(2 − µ)t µ ∈ [0,1)

√
2(2 − c)(n + 1)µ−1t µ ∈ [1,2)

(µ − 1)(n + 1)µ−1t µ ∈ [2,+∞).

The proof is given in Appendix C.1. It consists of
analyzing the calibration gap of the score-based absten-
tion loss Labs and that of Lµ, and of finding a concave
function Γµ relating these two quantities. Note that
our proofs and results are distinct, original, and more
complex than those in the standard setting (Mao et al.,
2023c), where the standard loss `µ is analyzed. Estab-
lishing H-consistency bounds for Lµ is more intricate
compared to `µ. This is because the target loss in the
score-based multi-class abstention is inherently differ-
ent from that of the standard multi-class scenario (the
multi-class zero-one loss). Thus, we need to tackle a
more complex calibration gap, integrating both the
conditional probability vector and the cost function.
This complexity presents an added layer of challenge
when attempting to establish a lower bound for the
calibration gap of the surrogate loss in relation to the
target loss in the score-based abstention setting.

To understand the result, consider first the case where
the minimizability gaps are zero. As mentioned earlier,
this would be the case, for example, when H is the
family of all measurable functions or when H contains
the Bayes classifier. In that case, the theorem shows
that if the estimation loss (ELµ(h)−E

∗
Lµ

(H)) is reduced
to ε, then, for µ ∈ [0,2), in particular for the logistic
score-based surrogate (µ = 1) and the generalized cross-
entropy score-based surrogate (µ ∈ (1,2)), modulo a
multiplicative constant, the score-based abstention es-
timation loss (ELabs

(h) − E∗Labs
(H)) is bounded by

√
ε.

The bound is even more favorable for the mean absolute
error score-based surrogate (µ = 2) or for cross-entropy
score-based surrogate Lµ with µ ∈ (2,+∞) since in
that case, modulo a multiplicative constant, the score-
based abstention estimation loss (ELabs

(h) − E∗Labs
(H))

is bounded by ε.

These are strong results since they are not asymptotic
and are hypothesis set-specific. In particular, Theo-
rem 1 provides stronger guarantees than the Bayes-
consistency results of Mozannar and Sontag (2020) or
Cao et al. (2022) for cross-entropy abstention surrogate
losses (3) with the logistic loss (µ = 1), generalized
cross-entropy loss (µ ∈ (1,2)) and mean absolute error
loss (µ = 2) adopted for `. These Bayes-consistency
results can be obtained by considering the special case
of H being the family of all measurable functions and
taking the limit.

Moreover, Theorem 1 also provides similar guarantees
for other types of cross-entropy score-based surrogate
losses, such as µ ∈ [0, 1) and µ ∈ [2,+∞), which are new
surrogate losses for score-based multi-class abstention
that, to the best of our knowledge, have not been
previously studied in the literature. In particular, our
H-consistency bounds can help theoretically compare
different cross-entropy score-based surrogate losses and
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guide the design of a multi-class abstention algorithm.
In contrast, asymptotic consistency guarantees given for
a subset of cross-entropy score-based surrogate losses
in (Mozannar and Sontag, 2020; Cao et al., 2022) do
not provide any such comparative information.

Recall that the minimizability gap is always upper
bounded by the approximation error. By Lemma 5 in
Appendix C, the minimizability gap for the abstention
loss MLabs

(H) coincides with the approximation error
ALabs

(H) when the labels generated by the hypothesis
set encompass all possible outcomes, which naturally
holds true for typical hypothesis sets. However, for
a surrogate loss, the minimizability gap is in general
a more refined quantity than the approximation er-
ror and can lead to more favorable guarantees. More
precisely, H-consistency bounds expressed in terms of
minimizability gaps are better and more significant
than the excess error bounds expressed in terms of ap-
proximation errors (See Appendix D for a more detailed
discussion).

3.3 Analysis of Minimizability Gaps

In general, the minimizability gaps do not vanish and
their magnitude, MLµ(H), is important to take into
account when comparing cross-entropy score-based sur-
rogate losses, in addition to the functional form of Γµ.
Thus, we will specifically analyze them below. Note
that the dependency of the multiplicative constant
on the number of classes in some of these bounds
(µ ∈ (1,+∞)) makes them less favorable, while for
µ ∈ [0, 1], the bounds do not depend on the number of
classes.

In the deterministic cases where for any x ∈ X and
y ∈ Y, either p(x, y) = 0 or 1, the pointwise expected
loss admits an explicit form. Thus, the following result
characterizes the minimizability gaps directly in those
cases.
Theorem 2 (Characterization of minimizability
gaps). Assume that H is symmetric and complete.
Then, for the cross-entropy score-based surrogate losses
Lµ and any deterministic distribution, the minimizabil-
ity gaps can be characterized as follows:

MLµ(H)

= E∗Lµ(H) −

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
1−µ[[1 + (1 − c)

1
2−µ ]

2−µ
− (2 − c)] µ ∉ {1,2}

− log( 1
2−c) − (1 − c) log( 1−c

2−c) µ = 1

1 − c µ = 2.

See Appendix C.2 for the proof. By l’Hôpital’s rule,
E∗Lµ(H) −MLµ(H) is continuous as a function of µ at
µ = 1. In light of the equality limx→0+(1 + u

1
x )
x
=

max{1, u} = 1, for u ∈ [0,1], E∗Lµ(H) −MLµ(H) is con-

tinuous as a function of µ at µ = 2. Moreover, for
any c ∈ (0,1), E∗Lµ(H) −MLµ(H) is decreasing with
respect to µ. On the other hand, since the function
µ ↦ 1

1−µ(t
1−µ − 1)1µ≠1 + log(t)1µ=1 is decreasing for

any t > 0, we obtain that `µ is decreasing with respect
to µ, which implies that Lµ is decreasing and then
E∗Lµ(H) is decreasing with respect to µ as well. For
a specific problem, a favorable µ ∈ [0,∞) is one that
minimizes MLµ(H), which, in practice, can be selected
via cross-validation.

3.4 General Transformation

More generally, we prove the following result, which
shows that anH-consistency bound for ` with respect to
the zero-one loss, yields immediately an H-consistency
bound for L with respect to Labs.

Theorem 3. Assume that ` admits an H-consistency
bound with respect to the multi-class zero-one classifi-
cation loss `0−1 with a concave function Γ, that is, for
all h ∈H, the following inequality holds:

E`0−1(h) − E∗`0−1(H) +M`0−1(H)

≤ Γ(E`(h) − E∗` (H) +M`(H)).

Then, L defined by (2) admits an H-consistency bound
with respect to Labs with the functional form (2 −

c)Γ( t
2−c), that is, for all h ∈H, we have

ELabs
(h) − E∗Labs

(H) +MLabs
(H)

≤ (2 − c)Γ(
EL(h) − E∗L(H) +ML(H)

2 − c
).

The proof is given in Appendix C.3. Awasthi et al.
(2022b) recently presented a series of results providing
H-consistency bounds for common surrogate losses in
the standard multi-class classification, including max
losses such as those of Crammer and Singer (2001), sum
losses such as those of Weston and Watkins (1998) and
constrained losses such as the loss functions adopted
by Lee et al. (2004). Thus, plugging in any of those H-
consistency bounds in Theorem 3 yields immediately a
new H-consistency bound for the corresponding score-
based abstention surrogate losses.

4 TWO-STAGE SCORE-BASED
FORMULATION

In the single-stage scenario discussed in Section 3, the
learner simultaneously learns when to abstain and how
to make predictions otherwise. However, in practice of-
ten there is already a predictor available and retraining
can be very costly. A two-stage solution is thus much
more relevant for those critical applications, where the
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learner only learns when to abstain in the second stage
based on the predictor trained in the first stage. With
the two stage solution, we can improve the performance
of a large pre-trained model by teaching it the option
of abstaining without having to retrain the model. In
this section, we analyze a two-stage algorithmic scheme,
for which we propose surrogate losses that we prove to
benefit from H-consistency bounds.

Given a hypothesis setH of functions mapping from X×

(Y∪{n + 1}) to R, it can be decomposed into H =HY×

Hn+1, where HY denotes the hypothesis set spanned by
the first n scores corresponding to the labels, and Hn+1

represents the hypothesis set spanned by the last score
corresponding to the additional category. We consider
the following two-stage algorithmic scheme: in the first
stage, we learn a hypothesis hY ∈HY by optimizing a
surrogate loss ` for standard multi-class classification;
in the second stage, we fix the hY learned in the first
stage and then learn a hypothesis hn+1 ∈ Hn+1 by
optimizing a surrogate loss function `hY

defined for any
hn+1 ∈Hn+1 and (x, y) ∈ X × Y by

`hY
(hn+1, x, y) = 1hY(x)≠yΦ(hn+1(x) −max

y∈Y
hY(x, y))

+ cΦ(max
y∈Y

hY(x, y) − hn+1(x)), (4)

where Φ is a decreasing function. The learned hypoth-
esis h ∈ H corresponding to those two stages can be
expressed as h = (hY, hn+1). We note that the first
stage consists of the familiar task of finding a predictor
using a standard surrogate loss such as the logistic loss
`(h,x, y) = log(∑y′∈Y e

h(x,y′)−h(x,y)) (or cross-entropy
combined with the softmax). Recall that the learner
abstains from making a prediction for x and incurs a
cost c when hn+1(x) ≥ maxy∈Y hY(x, y). In the second
stage, the first term of (4) encourages abstention for
an input instance whose prediction made by the pre-
trained predictor hY is incorrect, while the second term
penalizes abstention according to the cost c. The func-
tion Φ can be chosen as any margin-based loss function
in binary classification, including the exponential loss
or the logistic loss.

Let `binary
0−1 be the binary zero-one classification loss.

Then, the two-stage surrogate losses benefit from the
H-consistency bounds shown in Theorem 4. For a fixed
parameter τ , we define the τ -translated hypothesis set
of Hn+1 by Hτ

n+1 = {hn+1 − τ ∶ hn+1 ∈Hn+1}.
Theorem 4 (H-consistency bounds for two-stage
surrogates). Given a hypothesis set H =HY ×Hn+1.
Assume that ` admits an HY-consistency bound with
respect to the multi-class zero-one classification loss
`0−1 and that Φ admits an Hτ

n+1-consistency bound
with respect to the binary zero-one classification loss
`binary
0−1 for any τ ∈ R. Thus, there are non-decreasing

concave functions Γ1 and Γ2 such that, for all hY ∈HY,
hτn+1 ∈H

τ
n+1 and τ ∈ R, we have

E`0−1(hY) − E∗`0−1(HY) +M`0−1(HY)

≤ Γ1(E`(hY) − E∗` (HY) +M`(HY))

E`binary0−1
(hτn+1) − E∗

`binary0−1
(Hτ

n+1) +M`binary0−1
(Hτ

n+1)

≤ Γ2(EΦ(hτn+1) − E∗Φ(Hτ
n+1) +MΦ(Hτ

n+1)).

Then, the following holds for all h = (hY, hn+1) ∈H:

ELabs
(h) − E∗Labs

(H) +MLabs
(H)

≤ Γ1(E`(hY) − E∗` (HY) +M`(HY))

+ (1 + c)Γ2(
E`hY (hn+1) − E∗`hY

(Hn+1) +M`hY
(Hn+1)

c
),

where the constant factors (1+c) and 1
c
can be removed

when Γ2 is linear.

The proof is given in Appendix C.4. The assumptions
in Theorem 4 are mild and hold for common hypothesis
sets such as linear models and neural networks with
common surrogate losses in the binary and multi-class
classification, as shown by (Awasthi et al., 2022a,b).
Recall that the minimizability gaps vanish when HY

and Hn+1 are the family of all measurable functions or
when HY and Hn+1 contain the Bayes predictors. In
their absence, the theorem shows that if the estima-
tion loss (E`(hY) − E∗` (HY)) is reduced to ε1 and the
estimation loss (E`hY (hn+1) − E∗`hY

(Hn+1)) to ε2, then,
modulo constant factors, the score-based abstention
estimation loss (ELabs

(h) − E∗Labs
(H)) is bounded by

Γ1(ε1)+Γ2(ε2). Thus, this gives a strong guarantee for
the surrogate losses described in this two-stage setting.

5 REALIZABLE H-CONSISTENCY
AND BENEFITS OF TWO-STAGE
SURROGATE LOSSES

Mozannar et al. (2023) recently showed that cross-
entropy score-based surrogate losses are not realizable
H-consistent, as defined by Long and Servedio (2013);
Zhang and Agarwal (2020), in relation to abstention
loss. Instead, the authors proposed a novel surrogate
loss that is proved to be realizableH-consistent whenH

is closed under scaling, although its Bayes-consistency
remains unclear. Devising a surrogate loss that exhibits
both Bayes-consistency and realizable H-consistency
remains an open problem. A hypothesis set H is said
to be closed under scaling if, for any hypothesis h
belonging to H, the scaled hypothesis αh also belongs
to H for all α ∈ R.

We prove in Theorem 8 of Appendix C.5, that for
any realizable distribution, when both the first-stage
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surrogate estimation loss E`(hY) − E∗` (HY) and the
second-stage surrogate estimation loss E`hY (hn+1) −

E∗`hY
(Hn+1) converge to zero, the abstention estima-

tion loss ELabs
(h)−E∗Labs

(H) also approaches zero. This
implies that the two-stage score-based surrogate loss
is realizable H-consistent with respect to Labs, which
provides a significant advantage over the single-stage
cross-entropy score-based surrogate loss. It is important
to note that Theorem 4 shows that the two-stage formu-
lation is also Bayes-consistent. This addresses the open
problem in (Mozannar et al., 2023) and highlights the
benefits of the two-stage formulation. In the following
section, our empirical results further demonstrate that
the two-stage score-based surrogate loss outperforms
the state-of-the-art cross-entropy score-based surrogate
loss.

6 FINITE SAMPLE GUARANTEES

Our H-consistency bounds enable the direct deriva-
tion of finite-sample estimation bounds for a surrogate
loss minimizer. These are expressed in terms of the
Rademacher complexity of the hypothesis set H, the
loss function, and the minimizability gaps. Here, we
provide a simple illustration based on Theorem 1.

Let ĥS be the empirical minimizer of the surrogate
loss Lµ: ĥS = argminh∈H

1
m ∑

m
i=1 Lµ(h,xi, yi), for an

i.i.d sample S = ((x1, y1), . . . , (xm, ym)) of size m. Let
R

Lµ
m (H) be the Rademacher complexity of the set

HLµ = {(x, y)↦ Lµ(h,x, y)∶h ∈H} and BLµ an upper
bound on the surrogate loss Lµ. By using the stan-
dard Rademacher complexity bounds (Mohri et al.,
2018), for any δ > 0, with probability at least 1 − δ, the
following holds for all h ∈H:

∣ELµ(h) − ÊLµ,S(h)∣ ≤ 2RLµ
m (H) +BLµ

√
log(2/δ)

2m
.

Fix ε > 0. By the definition of the infimum, there exists
h∗ ∈H such that ELµ(h

∗) ≤ E∗Lµ(H) + ε. By definition
of ĥS , we have

ELµ(ĥS) − E∗Lµ(H)

= ELµ(ĥS) − ÊLµ,S(ĥS) + ÊLµ,S(ĥS) − E∗Lµ(H)

≤ ELµ(ĥS) − ÊLµ,S(ĥS) + ÊLµ,S(h
∗
) − E∗Lµ(H)

≤ ELµ(ĥS) − ÊLµ,S(ĥS) + ÊLµ,S(h
∗
) − E∗Lµ(h

∗
) + ε

≤ 2[2RLµ
m (H) +BLµ

√
log(2/δ)

2m
] + ε.

Since the inequality holds for all ε > 0, it implies:

ELµ(ĥS) − E∗Lµ(H) ≤ 4RLµ
m (H) + 2BLµ

√
log(2/δ)

2m
.

Plugging in this inequality in the bound of Theorem 1,
we obtain that for any δ > 0, with probability at least

1 − δ over the draw of an i.i.d sample S of size m, the
following finite sample guarantee holds for ĥS :

ELabs
(ĥS) − E∗Labs

(H)

≤ Γµ(4RLµ
m (H) + 2BLµ

√
log 2

δ

2m
+MLµ(H)) −MLabs

(H).

To our knowledge, these are the first abstention es-
timation loss guarantees for empirical minimizers of
a cross-entropy score-based surrogate loss. Our com-
ments about the properties of Γµ below Theorem 1,
in particular its functional form or its dependency on
the number of classes n, similarly apply here. Similar
finite sample guarantees can also be derived based on
Theorems 3 and 4.

As commented before Section 3.3, for a surrogate loss,
the minimizability gap is in general a more refined
quantity than the approximation error, while for the
abstention loss, these two quantities coincide for typical
hypothesis sets (See Appendix D). Thus, our bound
can be rewritten as follows for typical hypothesis sets:

ELabs
(ĥS) − E∗Labs

(Hall)

≤ Γµ
⎛
⎜
⎝

4RLµ
m (H) + 2BLµ

√
log 2

δ

2m
+MLµ(H)

⎞
⎟
⎠
.

Our guarantee is thus more favorable and more relevant
than a similar finite sample guarantee where MLµ(H)

is replaced with ALµ(H), which could be derived from
an excess error bound.

7 EXPERIMENTS

In this section, we report the results of experiments com-
paring the single-stage and two-stage score-based ab-
stention surrogate losses, for three widely used datasets
CIFAR-10, CIFAR-100 (Krizhevsky, 2009) and SVHN
(Netzer et al., 2011).

Experimental Settings As with (Mozannar and
Sontag, 2020; Cao et al., 2022), we use ResNet (He et al.,
2016) and WideResNet (WRN) (Zagoruyko and Ko-
modakis, 2016) with ReLU activations. Here, ResNet-n
denotes a residual network with n convolutional layers
and WRN-n-k denotes a residual network with n con-
volutional layers and a widening factor k. We trained
ResNet-34 for CIFAR-10 and SVHN, and WRN-28-10
for CIFAR-100. We applied standard data augmenta-
tions, 4-pixel padding with 32 × 32 random crops and
random horizontal flips for CIFAR-10 and CIFAR-100.
We used Stochastic Gradient Descent (SGD) with Nes-
terov momentum (Nesterov, 1983) and set batch size
1,024 and weight decay 1 × 10−4 in the training. We
trained for 200 epochs using the cosine decay learning
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Table 1: Abstention Loss for Models Obtained with Different Surrogate Losses; Mean ± Standard Deviation for
Both Two-Stage Score-Based Abstention Surrogate Loss and The State-Of-The-Art Cross-Entropy Score-Based
Surrogate Losses in (Mozannar and Sontag, 2020) (µ = 1.0) and (Cao et al., 2022) (µ = 1.7).

METHOD DATASET ABSTENTION LOSS

Cross-entropy score-based (µ = 1.0)
CIFAR-10

4.48% ± 0.10%
cross-entropy score-based (µ = 1.7) 3.62% ± 0.07%
Two-stage score-based 3.22% ± 0.04%

Cross-entropy score-based (µ = 1.0)
CIFAR-100

10.40% ± 0.10%
Cross-entropy score-based (µ = 1.7) 14.99% ± 0.01%
Two-stage score-based 9.54% ± 0.07%

Cross-entropy score-based (µ = 1.0)
SVHN

1.61% ± 0.06%
Cross-entropy score-based (µ = 1.7) 2.16% ± 0.04%
Two-stage score-based 0.93% ± 0.02%

rate schedule (Loshchilov and Hutter, 2016) with the
initial learning rate of 0.1.

For each dataset, the cost value c was selected to be
close to the best-in-class zero-one classification loss,
which are {0.05,0.15,0.03} for CIFAR-10, CIFAR-100
and SVHN respectively, since a too small value leads to
abstention on almost all points and a too large one leads
to almost no abstention. Other neighboring values for
c lead to similar results.

The abstention surrogate loss proposed in (Mozannar
and Sontag, 2020) corresponds to the special case of
cross-entropy score-based surrogate losses Lµ with µ = 1,
and meanwhile the abstention surrogate loss adopted
in (Cao et al., 2022) corresponds to the special case of
cross-entropy score-based surrogate losses Lµ with µ =

1.7. Note that the simple confidence-based approach
by thresholding estimators of conditional probability
typically does not perform as well as these state-of-the-
art surrogate losses (Cao et al., 2022). For our two-stage
score-based abstention surrogate loss, we adopted the
logistic loss in the first stage and the exponential loss
Φ(t) = exp(−t) in the second stage.

Evaluation We evaluated all the models based on
the abstention loss Labs, and reported the mean and
standard deviation over three trials.

Results Table 1 shows that the two-stage score-based
surrogate losses consistently outperform the cross-
entropy score-based surrogate losses used in the state-
of-the-art algorithms (Mozannar and Sontag, 2020; Cao
et al., 2022) for all the datasets. Table 1 also shows
the relative performance of the cross-entropy surrogate
(3) with `µ adopted as the generalized cross-entropy
loss (µ = 1.7) and that with `µ adopted as the logistic
loss (µ = 1.0) varies by the datasets.

As show in Section 4 and Section 5, the two-stage
surrogate losses benefit from the guarantees of both re-

alizable H-consistency and Bayes-consistency while the
cross-entropy surrogate loss does not exhibit realizable
H-consistency, as shown by Mozannar et al. (2023).
This explains the superior performance of two-stage
surrogate losses over the cross-entropy surrogate loss.
It is worth noting that the hypothesis set we used for
each dataset is sufficiently rich, and the experimental
setup closely resembles a realizable scenario.

As our theoretical analysis (Theorem 1 and Theorem 2)
suggests, the relative performance variation between
the cross-entropy surrogate loss with µ = 1.0 used in
(Mozannar and Sontag, 2020) and the cross-entropy sur-
rogate loss with µ = 1.7 used in (Cao et al., 2022) can be
explained by the functional forms of theirH-consistency
bounds and the magnitude of their minimizability gaps.
Specifically, the dependency of the multiplicative con-
stant on the number of classes in H-consistency bounds
(Theorem 1) for the cross-entropy surrogate loss with
µ = 1.7 makes it less favorable when dealing with a
large number of classes, such as in the case of CIFAR-
100. This suggests that the recent observation made
in (Cao et al., 2022) that the cross-entropy surrogate
with µ = 1.7 outperforms the one with µ = 1.0 does
not apply to the scenario where the evaluation involves
datasets like CIFAR-100. For a more comprehensive
discussion of our experimental results, please refer to
Appendix B.

8 CONCLUSION

Our comprehensive study of score-based multi-class ab-
stention introduced novel surrogate loss families with
strong hypothesis set-specific and non-asymptotic the-
oretical guarantees. Empirical results demonstrate the
practical advantage of these surrogate losses and their
derived algorithms. This work establishes a powerful
framework for designing new, more reliable abstention-
aware algorithms applicable across diverse domains.
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A RELATED WORK

The problem of abstention (or rejection) has been studied in several publications in the past. Chow (1957, 1970)
studied the trade-off between error rate and rejection rate and also presented an analysis of the Bayes optimal
decision for this setting. Later, Fumera et al. (2000) suggested a multiple thresholds rule when the a posteriori
probabilities were affected by errors. Tortorella (2001) introduced an optimal rejection rule for binary classifiers
based on the Receiver Operating Characteristic curve (ROC curve) and Pereira and Pires (2005) compared their
approach with that of Chow (1970). A number of other publications suggested various rejection techniques to
decrease the misclassification rate, though without a theoretical analysis (Fumera and Roli, 2002; Pietraszek,
2005; Bounsiar et al., 2007; Landgrebe et al., 2005; Melvin et al., 2008). Classification with a rejection option
that incurs a cost was examined by Herbei and Wegkamp (2005), who gave the optimal rule for these ternary
functions.

El-Yaniv et al. (2010) and Wiener and El-Yaniv (2011) proposed and studied a framework for selective classification
based on a classifier and a selector and an objective function defined as the average loss on accepted samples,
normalized by the average selection. Several related connections with abstention have been studied, including
active learning (El-Yaniv and Wiener, 2012; Wiener et al., 2015; Wiener and El-Yaniv, 2015; Puchkin and
Zhivotovskiy, 2021; Denis et al., 2022; Zhu and Nowak, 2022), rejection in the multi-class setting (Dubuisson and
Masson, 1993; Tax and Duin, 2008; Le Capitaine and Frelicot, 2010), reinforcement learning (Li et al., 2008),
online learning (Zhang and Chaudhuri, 2016b), modern confidence-based rejection techniques (Geifman and
El-Yaniv, 2017), neural network architectures for abstention (Geifman and El-Yaniv, 2019), loss functions derived
from the doubling rate of gambling (Ziyin et al., 2019), disparity-free methods (Schreuder and Chzhen, 2021),
the abstention problem within a "confidence set" framework (Gangrade et al., 2021; Chzhen et al., 2021) and
out-of-distribution detection (Narasimhan et al., 2023).

A standard method for abstention adopted in the past, which covers a very large number of publications and
dates back to the early work of Chow (1957, 1970), is the so-called confidence-based abstention. This consists of
first learning a predictor and then abstaining when the score returned by the predictor falls below some fixed
threshold. Bartlett and Wegkamp (2008) formulated a loss function for this setting taking into consideration
the abstention cost c and suggested to learn a predictor using a double hinge loss that they showed benefits
from consistency results. Several other publications followed up on this approach (Grandvalet et al., 2008; Yuan
and Wegkamp, 2010, 2011). Yuan and Wegkamp (2010) investigated the necessary and sufficient condition for
consistency of convex risk minimization with respect to the abstention loss and obtained the corresponding excess
error bounds in the same setting. Other variants of this framework have also been studied in (Lei, 2014; Denis
and Hebiri, 2020).

However, Cortes, DeSalvo, and Mohri (2016a, 2023) argued that, in general, confidence-based abstention is
suboptimal, unless the predictor learned is the Bayes classifier. They showed that, in general, even in simple cases,
no threshold-based abstention can achieve the desired result. They introduced a novel framework for abstention
that consists of learning simultaneously both a predictor h and a rejector r that, in general, can be distinct from
a threshold-based function. They further defined a predictor-rejector formulation loss function for the pair (h, r),
taking into consideration the abstention cost c. The authors gave Rademacher complexity-based generalization
bounds for this learning problem. They also suggested several surrogate loss functions for the abstention loss
in the binary classification setting, and further showed that these surrogate losses benefitted from consistency
guarantees. They designed algorithms based on these surrogate losses, which they showed empirically outperform
confidence-based abstention baselines. This work had multiple follow-up studies, including a theoretical and
algorithmic study of boosting with abstention (Cortes et al., 2016b) and a study of the extension of the results
to multi-class setting (Ni et al., 2019). These authors argued that the design of calibrated or Bayes-consistent
surrogate losses in the multi-class classification setting based on the predictor-rejector abstention loss of Cortes
et al. (2016a) was difficult and left that as an open problem. Recently, Mao et al. (2024b) introduced several new
theoretical and algorithmic findings within this framework, effectively addressing the open question. Furthermore,
Mohri et al. (2024) explored the framework from the perspective of learning with a fixed predictor, applying their
novel algorithms to decontextualization tasks. Li et al. (2024) investigated the Bayes-consistency of no-rejection
learning in the setting of regression with abstention. Ramaswamy et al. (2018) also studied the confidence-based
abstention in the multi-class classification, where they show certain multi-class hinge loss formulations and a new
constructed polyhedral binary encoded predictions (BEP) surrogate loss are Bayes-consistent. Charoenphakdee
et al. (2021) proposed a cost-sensitive approach for the multi-class abstention, where they decomposed the
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multi-class problem into multiple binary cost-sensitive classification problems (Elkan, 2001). They proposed a
family of cost-sensitive one-versus-all surrogate losses, which are Bayes-consistent in that setting.

Mozannar and Sontag (2020) proposed instead for the multi-class abstention setting a score-based formulation,
where, in addition to the standard scoring functions associated to each label, a new scoring function is associated
to a new rejection label. Rejection takes places when the score given to the rejection label is higher than other
scores and the rejector is therefore implicitly defined via this specific rule. The authors suggested a surrogate loss
for their approach based on the cross-entropy (logistic loss with softmax applied to neural networks outputs),
which they proved to be Bayes-consistent. More recently, Cao et al. (2022) gave a more general family of
Bayes-consistent surrogate losses for the score-based formulation that can be built upon any consistent loss for
the standard multi-class classification problem.

A problem directly related to our study is that of learning to defer, which can be directly cast as an instance
of learning with abstention. There are several recent publications studying this formulation of the problem
(Madras et al., 2018; Raghu et al., 2019a,b; Mozannar and Sontag, 2020; Okati et al., 2021; Wilder et al., 2021;
Bansal et al., 2021; Verma and Nalisnick, 2022; Narasimhan et al., 2022; Verma et al., 2023; Mao et al., 2023a,
2024a). Raghu et al. (2019b); Wilder et al. (2021); Bansal et al. (2021) studied confidence-based methods to make
deferral decisions, which may be sub-optimal for low capital models (Cortes et al., 2016a, 2023). To overcome
this limitation, Mozannar and Sontag (2020) proposed cost-sensitive logistic loss and Verma and Nalisnick (2022)
proposed cost-sensitive one-versus-all proper composite loss (Reid and Williamson, 2010), both in the score-based
formulation. Verma et al. (2023) further generalized the surrogate loss in (Verma and Nalisnick, 2022) to the
setting of deferring with multiple experts. Furthermore, Mao et al. (2024a) introduced a new and more general
family of surrogate losses specifically tailored for this setting and proved that these surrogate losses benefit from
strong H-consistency bounds. More recently, Narasimhan et al. (2022) pointed out that the existing surrogate
losses for learning to defer (Mozannar and Sontag, 2020; Verma and Nalisnick, 2022) may underfit in an important
practical setting and proposed a post-hoc correction for these loss functions. Moreover, Mao et al. (2023a) studied
a two-stage scenario for learning to defer with multiple experts, where a predictor is first trained using a standard
loss function such as cross-entropy, and a deferral function is subsequently learned. They introduced a novel family
of surrogate loss functions and algorithms for this crucial scenario, supported by H-consistency bounds. Most
recently, Chen et al. (2024) incorporated deferral into a sequential decision-making model, leading to improved
theoretical convergence and empirical performance.

B DISCUSSION ON EXPERIMENTS

This section presents a detailed analysis of the experimental results.

For CIFAR-10, the two-stage score-based abstention surrogate loss outperforms the cross-entropy scored-based
abstention surrogate loss (µ = 1.0) used in (Mozannar and Sontag, 2020) by 1.26%, and outperforms the cross-
entropy scored-based abstention surrogate loss (µ = 1.7) used in (Cao et al., 2022) by 0.4%. Our results for the
score-based surrogate losses are also consistent with those of Cao et al. (2022), who showed that the scored-based
abstention loss (2) with `µ adopted as the generalized cross-entropy loss (µ = 1.7) performs better than the
scored-based abstention loss with `µ adopted as the logistic loss (µ = 1). This agrees with our theoretical analysis
based on H-consistency bounds and minimizability gaps in Theorem 1 and Theorem 2, since both losses have the
same square-root functional form while the magnitude of the minimizability gap decreases with µ in light of the
fact that E∗Lµ(H) is close for both losses.

Table 1 also shows that on SVHN, using deeper neural networks than (Cao et al., 2022), the cross-entropy
scored-based abstention loss (µ = 1.7) actually performs worse than the cross-entropy scored-based abstention loss
(µ = 1) in (Mozannar and Sontag, 2020), in contrast with the opposite results observed in (Cao et al., 2022) when
using shallower neural networks. This is consistent with our theoretical analysis based on their H-consistency
bounds (Theorem 1): the minimizability gaps are basically the same while the dependency of the multiplicative
constant on the number of classes appears for µ = 1.7, which makes the scored-based abstention loss (2) with
`µ adopted as the generalized cross-entropy loss (µ = 1.7) less favorable. Here too, the two-stage score-based
abstention surrogate loss is superior to both, with an abstention loss 1.23% lower than that of (Cao et al., 2022)
and 0.68% lower than that of (Mozannar and Sontag, 2020).

To further test the algorithms, we also carried out experiments on CIFAR-100, with deeper neural networks.
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Table 1 shows that score-based abstention loss with generalized cross-entropy adopted in (Cao et al., 2022) does not
perform well in this case. In contrast, the score-based abstention loss with the logistic loss adopted in (Mozannar
and Sontag, 2020) performs better and surpasses it by 4.59%. Our two-stage score-based abstention loss is still
the most favorable, here too, with 0.86% lower abstention loss than that of (Mozannar and Sontag, 2020). As with
the case of SVHN, the inferior performance of the cross-entropy scored-based abstention surrogate loss (µ = 1.7)
can be seen from the dependency of the multiplicative constant on the number of classes in H-consistency bounds
(Theorem 1), which is worse when the number of classes is much larger as in the case of CIFAR-100.

C PROOFS FOR SCORE-BASED ABSTENTION LOSSES

To begin with the proof, we first introduce some notation. Recall that we denote by p(x, y) =D(Y = y ∣X = x)
the conditional probability of Y = y given X = x. For simplicity of the notation, we let p(x,n + 1) = 1 − c and
denote by ymax ∈ Y⋃{n + 1} the label associated to an input x ∈ X, defined as ymax = n+1 if 1− c ≥ maxy∈Y p(x, y);
otherwise, ymax is defined as an element in Y with the highest conditional probability, ymax = argmaxy∈Y p(x, y),
with the same deterministic strategy for breaking ties as that of h(x). Thus, the generalization error for a
score-based abstention surrogate loss can be rewritten as EL(h) = EX[CL(h,x)], where CL(h,x) is the conditional
L-risk, defined by

CL(h,x) = ∑
y∈Y⋃{n+1}

p(x, y)`(h,x, y).

We denote by C∗L(H, x) = infh∈H CL(h,x) the minimal conditional L-risk. Then, the minimizability gap can be
rewritten as follows:

ML(H) = E∗L(H) −EX[C∗L(H, x)].

We further refer to CL(h,x) − C∗L(H, x) as the calibration gap and denote it by ∆CL,H(h,x). We first prove a
lemma on the calibration gap of the score-based abstention loss. For any x ∈ X, we will denote by H(x) the set of
labels generated by hypotheses in H: H(x) = {h(x)∶h ∈H}.
Lemma 5. For any x ∈ X, the minimal conditional Labs-risk and the calibration gap for Labs can be expressed as
follows:

C∗Labs
(H, x) = 1 − max

y∈H(x)
p(x, y)

∆CLabs,H(h,x) = max
y∈H(x)

p(x, y) − p(x,h(x)).

Proof. The conditional Labs-risk of h can be expressed as follows:

CLabs
(h,x) = ∑

y∈Y
p(x, y)1h(x)≠y1h(x)≠n+1 + c1h(x)=n+1 = 1 − p(x,h(x)).

Then, the minimal conditional Labs-risk is given by

C∗Labs
(H, x) = 1 − max

y∈H(x)
p(x, y),

and the calibration gap can be expressed as follows:

∆CLabs,H(h,x) = CLabs
(h,x) − C∗Labs

(H, x) = max
y∈H(x)

p(x, y) − p(x,h(x)).

This completes the proof.

Note that when H is symmetric, H(x) = Y⋃{n + 1}. By Lemma 5, in those cases, we obtain the following result,
Corollary 6. Assume that H is symmetric. Then, for any x ∈ X, the minimal conditional Labs-risk and the
calibration gap for Labs can be expressed as follows:

C∗Labs
(H, x) = 1 − p(x, ymax)

∆CLabs,H(h,x) = p(x, ymax) − p(x,h(x)).
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C.1 Proof of H-Consistency bounds for Cross-Entropy Score-Based Surrogates (Theorem 1)

Theorem 1 (H-consistency bounds for cross-entropy score-based surrogates). Assume that H is sym-
metric and complete. Then, for any hypothesis h ∈H and any distribution D, the following inequality holds:

ELabs
(h) − E∗Labs

(H) +MLabs
(H) ≤ Γµ(ELµ(h) − E∗Lµ(H) +MLµ(H)),

where Γµ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

√
(2 − c)2µ(2 − µ)t µ ∈ [0,1)

√
2(2 − c)(n + 1)µ−1t µ ∈ [1,2)

(µ − 1)(n + 1)µ−1t µ ∈ [2,+∞).

Proof. The main proof idea is similar for each case of µ: we will lower bound the calibration gap of Lµ by that of
Labs by carefully selecting a hypothesis hλ in the hypothesis set H. In particular, we analyze different cases as
follows.

The Case Where µ ∈ [0,1) For any h ∈H and x ∈ X, choose hypothesis hλ ∈H such that

hλ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}

log(exp[h(x, ymax)] + λ) if y = h(x)

log(exp[h(x,h(x))] − λ) if y = ymax,

where λ = exp[h(x,h(x))]p(x,h(x))
1

2−µ −exp[h(x,ymax)]p(x,ymax)
1

2−µ

p(x,ymax)
1

2−µ +p(x,h(x))
1

2−µ
. The existence of such a hλ in the hypothesis set H is

guaranteed by the assumption that H is symmetry and complete. Thus, the calibration gap can be expressed and
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lower-bounded as follows:

(1 − µ)∆CLµ,H(h,x)

= (1 − µ)(CLµ(h,x) − C∗Lµ(H, x))

≥ (1 − µ)(CLµ(h,x) − CLµ(hλ, x))

= p(x, ymax)
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−h(x,ymax)

⎤
⎥
⎥
⎥
⎥
⎦

1−µ

− 1
⎞
⎟
⎠
+ p(x,h(x))

⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−h(x,h(x))

⎤
⎥
⎥
⎥
⎥
⎦

1−µ

− 1
⎞
⎟
⎠

− p(x, ymax)
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−h(x,h(x))+λ

⎤
⎥
⎥
⎥
⎥
⎦

1−µ

− 1
⎞
⎟
⎠
− p(x,h(x))

⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−h(x,ymax)−λ

⎤
⎥
⎥
⎥
⎥
⎦

1−µ

− 1
⎞
⎟
⎠

= p(x, ymax)

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−eh(x,ymax)

⎤
⎥
⎥
⎥
⎥
⎦

1−µ

− p(x, ymax)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑y′∈Y⋃{n+1} e
h(x,y′)[p(x, ymax)

1
2−µ + p(x,h(x))

1
2−µ ]

[eh(x,ymax) + eh(x,h(x))]p(x, ymax)
1

2−µ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1−µ

+ p(x,h(x))

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−h(x,h(x))

⎤
⎥
⎥
⎥
⎥
⎦

1−µ

− p(x,h(x))

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑y′∈Y⋃{n+1} e
h(x,y′)[p(x, ymax)

1
2−µ + p(x,h(x))

1
2−µ ]

[eh(x,ymax) + eh(x,h(x))]p(x,h(x))
1

2−µ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1−µ

≥ p(x, ymax)[e
h(x,h(x))−h(x,ymax) + 1]

1−µ
− p(x, ymax)

⎡
⎢
⎢
⎢
⎢
⎣

p(x, ymax)
1

2−µ + p(x,h(x))
1

2−µ

p(x, ymax)
1

2−µ

⎤
⎥
⎥
⎥
⎥
⎦

1−µ

+ p(x,h(x))[eh(x,ymax)−h(x,h(x)) + 1]
1−µ

− p(x,h(x))

⎡
⎢
⎢
⎢
⎢
⎣

p(x, ymax)
1

2−µ + p(x,h(x))
1

2−µ

p(x,h(x))
1

2−µ

⎤
⎥
⎥
⎥
⎥
⎦

1−µ

(∑y′∈Y⋃{n+1} e
h(x,y′) ≥ eh(x,h(x)) + eh(x,ymax))

≥ p(x, ymax)2
1−µ

− p(x, ymax)
1

2−µ [p(x, ymax)
1

2−µ + p(x,h(x))
1

2−µ ]
1−µ

+ p(x,h(x))21−µ
− p(x,h(x))

1
2−µ [p(x, ymax)

1
2−µ + p(x,h(x))

1
2−µ ]

1−µ

(minimum is attained when eh(x,h(x)) = eh(x,ymax))

= 21−µ
(p(x, ymax) + p(x,h(x))) − [p(x, ymax)

1
2−µ + p(x,h(x))

1
2−µ ]

2−µ

= 22−µ
⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
p(x, ymax) + p(x,h(x))

2
) −

⎡
⎢
⎢
⎢
⎢
⎣

p(x, ymax)
1

2−µ + p(x,h(x))
1

2−µ

2

⎤
⎥
⎥
⎥
⎥
⎦

2−µ⎤
⎥
⎥
⎥
⎥
⎥
⎦

≥
1 − µ

(2 − c)2µ(2 − µ)
(p(x, ymax) − p(x,h(x)))

2

(p(x, ymax) + p(x,h(x)) ≤ 2 − c and by analyzing the Taylor expansion)

=
1 − µ

(2 − c)2µ(2 − µ)
∆CLabs,H(h,x)2 (Corollary 6)

Thus, we have

ELabs
(h) − E∗Labs

(H) +MLabs
(H) = E

X
[∆CLabs,H(h,x)]

≤ E
X
[Γµ(∆CLµ,H(h,x))]

≤ Γµ(E
X
[∆CLµ,H(h,x)]) (Γµ is concave)

= Γµ(ELµ(h) − E∗Lµ(H) +MLµ(H)),

where Γµ(t) =
√

(2 − c)2µ(2 − µ)t.
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The Case Where µ = 1 For any h ∈H and x ∈ X, choose hypothesis hλ ∈H such that

hλ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}

log(exp[h(x, ymax)] + λ) if y = h(x)

log(exp[h(x,h(x))] − λ) if y = ymax

where λ = exp[h(x,h(x))]p(x,h(x))−exp[h(x,ymax)]p(x,ymax)
p(x,ymax)+p(x,h(x)) . The existence of such a hλ in hypothesis set H is guaranteed

by the fact that H is symmetry and complete. Thus, the calibration gap can be expressed and lower-bounded as
follows:

∆CLµ,H(h,x)

= CLµ(h,x) − C∗Lµ(H, x)

≥ CLµ(h,x) − CLµ(hλ, x)

= −p(x, ymax) log[eh(x,ymax)] − p(x,h(x)) log[eh(x,h(x))]

+ p(x, ymax) log[eh(x,h(x)) − λ] + p(x,h(x)) log[eh(x,ymax) + λ]

= p(x, ymax) log
⎡
⎢
⎢
⎢
⎣

[eh(x,ymax) + eh(x,h(x))]p(x, ymax)

eh(x,ymax)[p(x, ymax) + p(x,h(x))]

⎤
⎥
⎥
⎥
⎦
+ p(x,h(x)) log

⎡
⎢
⎢
⎢
⎣

[eh(x,ymax) + eh(x,h(x))]p(x,h(x))

eh(x,h(x))[p(x, ymax) + p(x,h(x))]

⎤
⎥
⎥
⎥
⎦

≥ p(x, ymax) log[
2p(x, ymax)

p(x, ymax) + p(x,h(x))
] + p(x,h(x)) log[

2p(x,h(x))

p(x, ymax) + p(x,h(x))
]

(minimum is attained when eh(x,h(x)) = eh(x,ymax))

≥ [p(x, ymax) + p(x,h(x))] ×
1

2
[∣

p(x, ymax)

p(x, ymax) + p(x,h(x))
−

1

2
∣ + ∣

p(x,h(x))

p(x, ymax) + p(x,h(x))
−

1

2
∣]

2

(Pinsker’s inequality (Mohri et al., 2018, Proposition E.7))

= [p(x, ymax) + p(x,h(x))] ×
1

2
[
p(x, ymax) − p(x,h(x))

p(x, ymax) + p(x,h(x))
]

2

(p(x, ymax) ≥ p(x,h(x)))

≥
1

2(2 − c)
(p(x, ymax) − p(x,h(x)))

2

(p(x, ymax) + p(x,h(x)) ≤ 2 − c)

=
1

2(2 − c)
∆CLabs,H(h,x)2 (Corollary 6)

Thus, we have

ELabs
(h) − E∗Labs

(H) +MLabs
(H) = E

X
[∆CLabs,H(h,x)]

≤ E
X
[Γµ(∆CLµ,H(h,x))]

≤ Γµ(E
X
[∆CLµ,H(h,x)]) (Γµ is concave)

= Γµ(ELµ(h) − E∗Lµ(H) +MLµ(H)),

where Γµ(t) =
√

2(2 − c)t.

The Case Where µ ∈ [2,+∞) For any h ∈H and x ∈ X, choose hypothesis hλ ∈H such that

hλ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}

log(exp[h(x, ymax)] + λ) if y = h(x)

log(exp[h(x,h(x))] − λ) if y = ymax
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where λ = − exp[h(x, ymax)]. The existence of such a hλ in hypothesis set H is guaranteed by the fact that H is
symmetry and complete. Thus, the calibration gap can be expressed and lower-bounded as follows:

(µ − 1)∆CLµ,H(h,x)

= (µ − 1)(CLµ(h,x) − C∗Lµ(H, x))

≥ (µ − 1)(CLµ(h,x) − CLµ(hλ, x))

= p(x, ymax)
⎛

⎝
1 − [

eh(x,ymax)

∑y′∈Y⋃{n+1} e
h(x,y′) ]

µ−1
⎞

⎠
+ p(x,h(x))

⎛

⎝
1 − [

eh(x,h(x))

∑y′∈Y⋃{n+1} e
h(x,y′) ]

µ−1
⎞

⎠

− p(x, ymax)
⎛

⎝
1 − [

eh(x,h(x)) − µ

∑y′∈Y⋃{n+1} e
h(x,y′) ]

µ−1
⎞

⎠
− p(x,h(x))

⎛

⎝
1 − [

eh(x,ymax) + µ

∑y′∈Y⋃{n+1} e
h(x,y′) ]

µ−1
⎞

⎠

= p(x, ymax)[
eh(x,h(x)) + eh(x,ymax)

∑y′∈Y⋃{n+1} e
h(x,y′) ]

µ−1

− p(x, ymax)[
eh(x,ymax)

∑y′∈Y⋃{n+1} e
h(x,y′) ]

µ−1

− p(x,h(x))[
eh(x,h(x))

∑y′∈Y⋃{n+1} e
h(x,y′) ]

µ−1

≥ p(x, ymax)[
eh(x,h(x))

∑y′∈Y⋃{n+1} e
h(x,y′) ]

µ−1

− p(x,h(x))[
eh(x,h(x))

∑y′∈Y⋃{n+1} e
h(x,y′) ]

µ−1

((x + y)µ−1 ≥ xµ−1 + yµ−1, ∀x, y ≥ 0, µ ≥ 2)

≥
1

(n + 1)µ−1
(p(x, ymax) − p(x,h(x))) ( eh(x,h(x))

∑y′∈Y⋃{n+1} eh(x,y
′) ≥

1
n+1

)

=
1

(n + 1)µ−1
∆CLabs,H(h,x) (Corollary 6)

Thus, we have

ELabs
(h) − E∗Labs

(H) +MLabs
(H) = E

X
[∆CLabs,H(h,x)]

≤ E
X
[Γµ(∆CLµ,H(h,x))]

≤ Γµ(E
X
[∆CLµ,H(h,x)]) (Γµ is concave)

= Γµ(ELµ(h) − E∗Lµ(H) +MLµ(H)),

where Γµ(t) = (µ − 1)(n + 1)µ−1t.

The Case Where µ ∈ (1,2) For any h ∈H and x ∈ X, choose hypothesis hλ ∈H such that

hλ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}

log(exp[h(x, ymax)] + λ) if y = h(x)

log(exp[h(x,h(x))] − λ) if y = ymax

where λ =
exp[h(x,h(x))]p(x,ymax)

1
µ−2 −exp[h(x,ymax)]p(x,h(x))

1
µ−2

p(x,ymax)
1
µ−2 +p(x,h(x))

1
µ−2

. The existence of such a hλ in hypothesis set H is

guaranteed by the fact that H is symmetry and complete. Thus, the calibration gap can be lower-bounded as
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follows:

(µ − 1)∆CLµ,H(h,x)

= (µ − 1)(CLµ(h,x) − C∗Lµ(H, x))

≥ (µ − 1)(CLµ(h,x) − CLµ(hλ, x))

= p(x, ymax)
⎛
⎜
⎝

1 −

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−h(x,ymax)

⎤
⎥
⎥
⎥
⎥
⎦

1−µ
⎞
⎟
⎠
+ p(x,h(x))

⎛
⎜
⎝

1 −

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−h(x,h(x))

⎤
⎥
⎥
⎥
⎥
⎦

1−µ
⎞
⎟
⎠

− p(x, ymax)
⎛
⎜
⎝

1 −

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−h(x,h(x))+λ

⎤
⎥
⎥
⎥
⎥
⎦

1−µ
⎞
⎟
⎠
− p(x,h(x))

⎛
⎜
⎝

1 −

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−h(x,ymax)−λ

⎤
⎥
⎥
⎥
⎥
⎦

1−µ
⎞
⎟
⎠

= −p(x, ymax)

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−eh(x,ymax)

⎤
⎥
⎥
⎥
⎥
⎦

1−µ

+ p(x, ymax)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑y′∈Y⋃{n+1} e
h(x,y′)[p(x, ymax)

1
µ−2 + p(x,h(x))

1
µ−2 ]

[eh(x,ymax) + eh(x,h(x))]p(x,h(x))
1
µ−2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1−µ

− p(x,h(x))

⎡
⎢
⎢
⎢
⎢
⎣

∑
y′∈Y⋃{n+1}

eh(x,y
′)−h(x,h(x))

⎤
⎥
⎥
⎥
⎥
⎦

1−µ

+ p(x,h(x))

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑y′∈Y⋃{n+1} e
h(x,y′)[p(x, ymax)

1
µ−2 + p(x,h(x))

1
µ−2 ]

[eh(x,ymax) + eh(x,h(x))]p(x, ymax)
1
µ−2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1−µ

≥
1

(n + 1)µ−1

⎛
⎜
⎜
⎝

p(x, ymax)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[eh(x,ymax) + eh(x,h(x))]p(x,h(x))
1
µ−2

eh(x,h(x))[p(x, ymax)
1
µ−2 + p(x,h(x))

1
µ−2 ]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

µ−1

− p(x, ymax)[e
h(x,ymax)−h(x,h(x))]

µ−1
⎞
⎟
⎟
⎠

+
1

(n + 1)µ−1

⎛
⎜
⎜
⎝

p(x,h(x))

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[eh(x,ymax) + eh(x,h(x))]p(x, ymax)
1
µ−2

eh(x,h(x))[p(x, ymax)
1
µ−2 + p(x,h(x))

1
µ−2 ]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

µ−1

− p(x,h(x))

⎞
⎟
⎟
⎠

( eh(x,h(x))

∑y′∈Y⋃{n+1} eh(x,y
′) ≥

1
(n+1)µ−1 )

≥
1

(n + 1)µ−1

⎛
⎜
⎝
p(x, ymax)

⎡
⎢
⎢
⎢
⎢
⎣

2p(x,h(x))
1
µ−2

p(x, ymax)
1
µ−2 + p(x,h(x))

1
µ−2

⎤
⎥
⎥
⎥
⎥
⎦

µ−1

− p(x, ymax)
⎞
⎟
⎠

+
1

(n + 1)µ−1

⎛
⎜
⎝
p(x,h(x))

⎡
⎢
⎢
⎢
⎢
⎣

2p(x, ymax)
1
µ−2

p(x, ymax)
1
µ−2 + p(x,h(x))

1
µ−2

⎤
⎥
⎥
⎥
⎥
⎦

µ−1

− p(x,h(x))
⎞
⎟
⎠

(minimum is attained when eh(x,h(x)) = eh(x,ymax))

=
1

(n + 1)µ−1
(2µ−1

[p(x, ymax)
1

2−µ + p(x,h(x))
1

2−µ ]
2−µ

− p(x, ymax) − p(x,h(x)))

=
2

(n + 1)µ−1

⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

p(x, ymax)
1

2−µ + p(x,h(x))
1

2−µ

2

⎤
⎥
⎥
⎥
⎥
⎦

2−µ

−
p(x, ymax) + p(x,h(x))

2

⎞
⎟
⎠

≥
µ − 1

2(2 − c)(n + 1)µ−1
(p(x, ymax) − p(x,h(x)))

2

(p(x, ymax) + p(x,h(x)) ≤ 2 − c and by analyzing the Taylor expansion)

=
µ − 1

2(2 − c)(n + 1)µ−1
∆CLabs,H(h,x)2 (Corollary 6)

Thus, we have

ELabs
(h) − E∗Labs

(H) +MLabs
(H) = E

X
[∆CLabs,H(h,x)]

≤ E
X
[Γµ(∆CLµ,H(h,x))]

≤ Γµ(E
X
[∆CLµ,H(h,x)]) (Γµ is concave)

= Γµ(ELµ(h) − E∗Lµ(H) +MLµ(H)),
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where Γµ(t) =
√

2(2 − c)(n + 1)µ−1t.

C.2 Characterization of Minimizability Gaps (Theorem 2)

Theorem 2 (Characterization of minimizability gaps). Assume that H is symmetric and complete. Then,
for the cross-entropy score-based surrogate losses Lµ and any deterministic distribution, the minimizability gaps
can be characterized as follows:

MLµ(H)

= E∗Lµ(H) −

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
1−µ[[1 + (1 − c)

1
2−µ ]

2−µ
− (2 − c)] µ ∉ {1,2}

− log( 1
2−c) − (1 − c) log( 1−c

2−c) µ = 1

1 − c µ = 2.

Proof. Let sh(x, y) = eh(x,y)

∑y′∈Y⋃{n+1} h(x,y′)
∈ [0,1], ∀y ∈ Y. By the definition, for any deterministic distribution,

MLµ(H) = E∗Lµ(H) −EX[infh∈H CLµ(H, x)], where

CLµ(h,x)

= ∑
y∈Y⋃{n+1}

p(x, y)`µ(h,x, y)

= `µ(h,x, ymax) + (1 − c)`µ(h,x,n + 1)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
1−µ([∑y′∈Y⋃{n+1} e

h(x,y′)−h(x,ymax)]
1−µ

− 1) + (1 − c) 1
1−µ([∑y′∈Y⋃{n+1} e

h(x,y′)−h(x,n+1)]
1−µ

− 1) µ ≠ 1

log(∑y′∈Y⋃{n+1} e
h(x,y′)−h(x,ymax)) + (1 − c) log(∑y′∈Y⋃{n+1} e

h(x,y′)−h(x,n+1)) µ = 1.

=

⎧⎪⎪
⎨
⎪⎪⎩

1
1−µ(sh(x, ymax)

µ−1
− 1) + (1 − c) 1

1−µ([sh(x,n + 1)]
µ−1

− 1) µ ≠ 1

− log(sh(x, ymax)) − (1 − c) log(sh(x,n + 1)) µ = 1.

Since 0 ≤ sh(x, ymax) + sh(x,n + 1) ≤ 1, by taking the partial derivative, we obtain that the minimum can be
attained by

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

s∗h(x, ymax) =
1

1+(1−c)
1

2−µ
and s∗h(x,n + 1) = (1−c)

1
2−µ

1+(1−c)
1

2−µ
µ ≠ 2

s∗h(x, ymax) = 1 and s∗h(x,n + 1) = 0 µ = 2.
(5)

Since H is symmetric and complete, there exists h ∈H such that (5) is achieved. Therefore,

inf
h∈H

CLµ(H, x) =

⎧⎪⎪
⎨
⎪⎪⎩

1
1−µ(s

∗
h(x, ymax)

µ−1
− 1) + (1 − c) 1

1−µ([s
∗
h(x,n + 1)]

µ−1
− 1) µ ≠ 1

− log(s∗h(x, ymax)) − (1 − c) log(s∗h(x,n + 1)) µ = 1

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
1−µ[[1 + (1 − c)

1
2−µ ]

2−µ
− (2 − c)] µ ∉ {1,2}

− log( 1
2−c) − (1 − c) log( 1−c

2−c) µ = 1

1 − c µ = 2.

Since infh∈H CLµ(H, x) is independent of x, we obtain that EX[infh∈H CLµ(H, x)] = infh∈H CLµ(H, x), which
completes the proof.

C.3 Proof of General Transformation of H-Consistency Bounds (Theorem 3)

Theorem 3. Assume that ` admits an H-consistency bound with respect to the multi-class zero-one classification
loss `0−1 with a concave function Γ, that is, for all h ∈H, the following inequality holds:

E`0−1(h) − E∗`0−1(H) +M`0−1(H) ≤ Γ(E`(h) − E∗` (H) +M`(H)).
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Then, L defined by (2) admits an H-consistency bound with respect to Labs with the functional form (2− c)Γ( t
2−c),

that is, for all h ∈H, we have

ELabs
(h) − E∗Labs

(H) +MLabs
(H) ≤ (2 − c)Γ(

EL(h) − E∗L(H) +ML(H)

2 − c
).

Proof. By Lemma 5, the calibration gap of Labs can be expressed and upper-bounded as follows:

∆CLabs,H(h,x)

= CLabs
(h,x) − C∗Labs

(H, x)

= max
y∈H(x)

p(x, y) − p(x,h(x))

= (2 − c)( max
y∈H(x)

p(x, y) − p(x,h(x))) (Let p(x, y) = p(x,y)
2−c 1y∈Y +

1−c
2−c1y=n+1)

= (2 − c)∆C`0−1,H(h,x) (By (Awasthi et al., 2022b, Lemma 3))
≤ (2 − c)Γ(∆C`,H(h,x)) (By H-consistency bound of `)

= (2 − c)Γ
⎛

⎝
∑

y∈Y⋃{n+1}
p(x, y)`(h,x, y) − inf

h∈H
∑

y∈Y⋃{n+1}
p(x, y)`(h,x, y)

⎞

⎠

= (2 − c)Γ
⎛

⎝
∑
y∈Y

p(x, y)

2 − c
`(h,x, y) +

1 − c

2 − c
`(h,x,n + 1) − inf

h∈H

⎛

⎝
∑
y∈Y

p(x, y)

2 − c
`(h,x, y) +

1 − c

2 − c
`(h,x,n + 1)

⎞

⎠

⎞

⎠

(Plug in p(x, y) = p(x,y)
2−c 1y∈Y +

1−c
2−c1y=n+1)

= (2 − c)Γ
⎛

⎝

1

2 − c

⎡
⎢
⎢
⎢
⎢
⎣

∑
y∈Y

p(x, y)L(h,x, y) − inf
h∈H

∑
y∈Y

p(x, y)L(h,x, y)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

= (2 − c)Γ(
1

2 − c
∆CL,H(h,x)).

Thus, we have

ELabs
(h) − E∗Labs

(H) +MLabs
(H) = E

X
[∆CLabs,H(h,x)]

≤ E
X
[(2 − c)Γ(

1

2 − c
∆CL,H(h,x))]

≤ (2 − c)Γ(
1

2 − c
E
X
[∆CL,H(h,x)]) (Γ is concave)

= (2 − c)Γ(
EL(h) − E∗L(H) +ML(H)

2 − c
),

which completes the proof.

C.4 Proof of H-Consistency Bounds for Two-Stage Surrogates (Theorem 4)

Theorem 4 (H-consistency bounds for two-stage surrogates). Given a hypothesis set H = HY ×Hn+1.
Assume that ` admits an HY-consistency bound with respect to the multi-class zero-one classification loss `0−1

and that Φ admits an Hτ
n+1-consistency bound with respect to the binary zero-one classification loss `binary

0−1 for
any τ ∈ R. Thus, there are non-decreasing concave functions Γ1 and Γ2 such that, for all hY ∈HY, hτn+1 ∈H

τ
n+1

and τ ∈ R, we have

E`0−1(hY) − E∗`0−1(HY) +M`0−1(HY)

≤ Γ1(E`(hY) − E∗` (HY) +M`(HY))

E`binary
0−1

(hτn+1) − E∗
`binary0−1

(Hτ
n+1) +M`binary0−1

(Hτ
n+1)

≤ Γ2(EΦ(hτn+1) − E∗Φ(Hτ
n+1) +MΦ(Hτ

n+1)).
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Then, the following holds for all h = (hY, hn+1) ∈H:

ELabs
(h) − E∗Labs

(H) +MLabs
(H)

≤ Γ1(E`(hY) − E∗` (HY) +M`(HY))

+ (1 + c)Γ2(
E`hY (hn+1) − E∗`hY

(Hn+1) +M`hY
(Hn+1)

c
),

where the constant factors (1 + c) and 1
c
can be removed when Γ2 is linear.

Proof. For any h = (hY, hn+1), we can rewrite ELabs
(h) − E∗Labs

(H) +MLabs
(H) as

ELabs
(h) − E∗Labs

(H) +MLabs
(H)

= E
X
[CLabs

(h,x) − C∗Labs
(H, x)]

= E
X
[CLabs

(h,x) − inf
hn+1∈Hn+1

CLabs
(h,x) + inf

hn+1∈Hn+1
CLabs

(h,x) − C∗Labs
(H, x)]

= E
X
[CLabs

(h,x) − inf
hn+1∈Hn+1

CLabs
(h,x)] + E

X
[ inf
hn+1∈Hn+1

CLabs
(h,x) − C∗Labs

(H, x)]

(6)

By the assumptions, we have

CLabs
(h,x) − inf

hn+1∈Hn+1
CLabs

(h,x)

= ∑
y∈Y

p(x, y)1hY(x)≠y1h(x)≠n+1 + c1h(x)=n+1 − inf
hn+1∈Hn+1

⎛

⎝
∑
y∈Y

p(x, y)1hY(x)≠y1h(x)≠n+1 + c1h(x)=n+1

⎞

⎠

=
⎛

⎝
∑
y∈Y

p(x, y)1hY(x)≠y + c
⎞

⎠
× [η(x)`binary

0−1 (hn+1 −max
y∈Y

hY(x, y), x,+1) + (1 − η(x))`binary
0−1 (hn+1 −max

y∈Y
hY(x, y), x,−1)

− inf
hn+1∈Hn+1

(η(x)`binary
0−1 (hn+1 −max

y∈Y
hY(x, y), x,+1) + (1 − η(x))`binary

0−1 (hn+1 −max
y∈Y

hY(x, y), x,−1))]

(Let η(x) = ∑y∈Y p(x,y)1hY(x)≠y

∑y∈Y p(x,y)1hY(x)≠y+c
)

≤
⎛

⎝
∑
y∈Y

p(x, y)1hY(x)≠y + c
⎞

⎠
Γ2[η(x)Φ(hn+1(x) −max

y∈Y
hY(x, y)) + (1 − η(x))Φ(max

y∈Y
hY(x, y) − hn+1(x))

− inf
hn+1∈Hn+1

(η(x)Φ(hn+1(x) −max
y∈Y

hY(x, y)) + (1 − η(x))Φ(max
y∈Y

hY(x, y) − hn+1(x)))]

(By Hτ
n+1-consistency bounds of Φ under assumption, τ = maxy∈Y hY(x, y))

=
⎛

⎝
∑
y∈Y

p(x, y)1hY(x)≠y + c
⎞

⎠
Γ2(

∑y∈Y p(x, y)`hY
(hn+1, x, y) − infhn+1∈Hn+1 ∑y∈Y p(x, y)`hY

(hn+1, x, y)

∑y∈Y p(x, y)1hY(x)≠y + c
)

( η(x) = ∑y∈Y p(x,y)1hY(x)≠y

∑y∈Y p(x,y)1hY(x)≠y+c
and formulation (4))

=
⎛

⎝
∑
y∈Y

p(x, y)1hY(x)≠y + c
⎞

⎠
Γ2

⎛

⎝

C`hY (hn+1, x) − C∗`hY
(Hn+1, x)

∑y∈Y p(x, y)1hY(x)≠y + c

⎞

⎠

≤

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Γ2(C`hY (hn+1, x) − C∗`hY
(Hn+1, x)) when Γ2 is linear

(1 + c)Γ2(
C`hY

(hn+1,x)−C∗`hY
(Hn+1,x)

c
) otherwise

(c ≤ ∑y∈Y p(x, y)1hY(x)≠y + c ≤ 1 + c and Γ2 is non-decreasing)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Γ2(∆C`hY ,Hn+1(hn+1, x)) when Γ2 is linear

(1 + c)Γ2(
∆C`hY

,Hn+1(hn+1,x)
c

) otherwise
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and

inf
hn+1∈Hn+1

CLabs
(h,x) − C∗Labs

(H, x)

= inf
hn+1∈Hn+1

CLabs
(h,x) − inf

hY∈HY,hn+1∈Hn+1
CLabs

(h,x)

= inf
hn+1∈Hn+1

⎛

⎝
∑
y∈Y

p(x, y)1hY(x)≠y1h(x)≠n+1 + c1h(x)=n+1

⎞

⎠
− inf
hY∈HY,hn+1∈Hn+1

⎛

⎝
∑
y∈Y

p(x, y)1hY(x)≠y1h(x)≠n+1 + c1h(x)=n+1

⎞

⎠

= inf
hn+1∈Hn+1

⎛

⎝
∑
y∈Y

p(x, y)1hY(x)≠y1h(x)≠n+1 + c1h(x)=n+1

⎞

⎠
− inf
hn+1∈Hn+1

⎛

⎝
inf

hY∈HY

∑
y∈Y

p(x, y)1hY(x)≠y1h(x)≠n+1 + c1h(x)=n+1

⎞

⎠

= min

⎧⎪⎪
⎨
⎪⎪⎩

∑
y∈Y

p(x, y)1hY(x)≠y, c
⎫⎪⎪
⎬
⎪⎪⎭

−min

⎧⎪⎪
⎨
⎪⎪⎩

inf
hY∈HY

∑
y∈Y

p(x, y)1hY(x)≠y, c
⎫⎪⎪
⎬
⎪⎪⎭

≤ ∑
y∈Y

p(x, y)1hY(x)≠y − inf
hY∈HY

∑
y∈Y

p(x, y)1hY(x)≠y

= C`0−1(hY, x) − C∗`0−1(HY, x)

= ∆C`0−1,HY
(hY, x)

≤ Γ1(∆C`,HY
(hY, x)). (By HY-consistency bounds of ` under assumption)

Therefore, by (6), we obtain

ELabs
(h) − E∗Labs

(HY) +MLabs
(HY)

≤

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

EX[Γ2(∆C`hY ,Hn+1(hn+1, x))] +EX[Γ1(∆C`,HY
(hY, x))] when Γ2 is linear

(1 + c)EX[Γ2(
∆C`hY

,Hn+1(hn+1,x)
c

)] +EX[Γ1(∆C`,HY
(hY, x))] otherwise

≤

⎧⎪⎪
⎨
⎪⎪⎩

Γ2(EX[∆C`hY ,Hn+1(hn+1, x)]) + Γ1(EX[∆C`,HY
(hY, x)]) when Γ2 is linear

(1 + c)Γ2(
1
c
EX[∆C`hY ,Hn+1(hn+1, x)]) + Γ1(EX[∆C`,HY

(hY, x)]) otherwise
(Γ1 and Γ2 are concave)

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Γ1(E`(h) − E∗` (HY) +M`(HY)) + Γ2(E`hY (hn+1) − E∗`hY
(Hn+1) +M`hY

(Hn+1)) when Γ2 is linear

(Γ1(E`(h) − E∗` (HY) +M`(HY)) + (1 + c)Γ2(
E`hY

(hn+1)−E∗`hY
(Hn+1)+M`hY

(Hn+1)
c

) otherwise,

which completes the proof.

C.5 Proof of Realizable H-Consistency for Two-Stage Surrogates (Theorem 8)

Definition 7 (Realizable H-consistency). Let ĥ denote a hypothesis attaining the infimum of the expected
surrogate loss, EL(ĥ) = E∗L(H). A score-based abstention surrogate loss L is said to be realizable H-consistent with
respect to the abstention loss Labs if, for any distribution in which an optimal hypothesis h∗ exists in H with an
abstention loss of zero (i.e., ELabs

(h∗) = 0), we have ELabs
(ĥ) = 0.

Next, we demonstrate that our proposed two-stage score-based surrogate losses are not only Bayes-consistent, as
previously established in Section 4, but also realizable H-consistent, which will be shown in Theorem 8. This
effectively addresses the open question posed by Mozannar et al. (2023) in the context of score-based multi-class
abstention and highlights the benefits of the two-stage formulation.

Theorem 8 (Realizable H-consistency for two-stage surrogates). Given a hypothesis set H =HY ×Hn+1

that is closed under scaling. Let Φ be a function that satisfies the condition limt→+∞ Φ(t) = 0 and Φ(t) ≥ 1t≤0 for any
t ∈ R. Assume that ĥ = (ĥY, ĥn+1) ∈H attains the infimum of the expected surrogate loss, E`(ĥY) = infhY∈HY

E`(hY)

and E`ĥY
(ĥn+1) = infh∈H E`hY (hn+1). Then, for any distribution in which an optimal hypothesis h∗ = (h∗Y, h

∗
n+1)

exists in H with ELabs
(h∗) = 0, we have ELabs

(ĥ) = 0.
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Proof. By the assumptions, `hY
serves as an upper bound for Labs and thus ELabs

(ĥ) ≤ E`ĥY
(ĥn+1). If abstention

happens, that is h∗n+1(x) > maxy∈Y h
∗
Y(x, y) for some point x, then we must have c = 0 by the realizability

assumption. Therefore, there exists an optimal h∗∗ such that h∗∗n+1(x) > maxy∈Y h
∗∗
Y (x, y) for all x ∈ X without

incurring any cost. Then, by the Lebesgue dominated convergence theorem and the assumption that H is closed
under scaling,

ELabs
(ĥ) ≤ E`ĥY

(ĥn+1)

≤ lim
α→+∞

E`αh∗∗
Y

(αh∗∗n+1)

= lim
α→+∞

E[`αh∗∗
Y
(αh∗∗n+1, x, y)]

= lim
α→+∞

E[1h∗∗
Y

(x)≠yΦ(α(h∗∗n+1(x) −max
y∈Y

h∗∗Y (x, y))) + cΦ(α(max
y∈Y

h∗∗Y (x, y) − h∗∗n+1(x)))]

= lim
α→+∞

E[1h∗∗
Y

(x)≠yΦ(α(h∗∗n+1(x) −max
y∈Y

h∗∗Y (x, y)))] (c = 0)

= 0. (using limt→+∞ Φ(t) = 0 and the Lebesgue dominated convergence theorem)

If abstention does not happen, that is h∗n+1(x) −maxy∈Y h
∗
Y(x, y) < 0 for all x ∈ X, then we must have h∗Y(x, y) −

maxy′≠y h
∗
Y(x, y

′) > 0 for all x ∈ X and y ∈ Y by the realizability assumption. Then, by the Lebesgue dominated
convergence theorem and the assumption that H is closed under scaling,

ELabs
(ĥ) ≤ E`ĥY

(ĥn+1)

≤ lim
α→+∞

E`αh∗
Y

(αh∗n+1)

= lim
α→+∞

E[`αh∗
Y
(αh∗n+1, x, y)]

= lim
α→+∞

E[1h∗
Y
(x)≠yΦ(α(h∗n+1(x) −max

y∈Y
h∗Y(x, y))) + cΦ(α(max

y∈Y
h∗Y(x, y) − h

∗
n+1(x)))]

= lim
α→+∞

E[cΦ(α(max
y∈Y

h∗Y(x, y) − h
∗
n+1(x)))] (h∗Y(x, y) −maxy′≠y h

∗
Y(x, y

′) > 0)

= 0. (using limt→+∞ Φ(t) = 0 and the Lebesgue dominated convergence theorem)

By combining the above two analysis, we conclude the proof.

D SIGNIFICANCE OF H-CONSISTENCY BOUNDS WITH
MINIMIZABILITY GAPS

As previously highlighted, the minimizabiliy gap can be upper bounded by the approximation error AL(H) =

E∗L(H) − Ex[infh∈Hall
Ey[L(h,X, y) ∣ X = x]] = E∗L(H) − E∗L(Hall). However, it is a finer quantity than the

approximation error, and as such, it can potentially provide more significant guarantees. To elaborate, as shown
by (Awasthi et al., 2022a,b), for a target loss function L2 and a surrogate loss function L1, the excess error bound
EL2(h) − E∗L2

(Hall) ≤ Γ(EL1(h) − E∗L1
(Hall)) can be reformulated as

EL2(h) − E∗L2
(H) +AL2(H) ≤ Γ(EL1(h) − E∗L1

(H) +AL1(H)),

where Γ is typically linear or the square-root function modulo constants. On the other hand, an H-consistency
bound can be expressed as follows:

EL2(h) − E∗L2
(H) +ML2(H) ≤ Γ(EL1(h) − E∗L1

(H) +ML1(H).

For a target loss function L2 with discrete outputs, such as the zero-one loss or the deferral loss, we have
Ex[infh∈H Ey[L2(h,x, y) ∣X = x]] = Ex[infh∈Hall

Ey[L2(h,x, y) ∣X = x]] when the hypothesis set generates labels
that cover all possible outcomes for each input (See (Awasthi et al., 2022b, Lemma 3), Lemma 5 in Appendix C).
Consequently, we have ML2(H) = AL2(H). However, for a surrogate loss function L1, the minimizability gap is
upper bounded by the approximation error, ML1(H) ≤ AL1(H), and is generally finer.

Let us consider a straightforward binary classification example where the conditional distribution is denoted as
η(x) =D(Y = 1∣X = x). We will define H as a set of functions h, such that ∣h(x)∣ ≤ Λ for all x ∈ X, for some Λ > 0,
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and it is also possible to achieve any value in the range [−Λ,+Λ]. For the exponential-based margin loss, which
we define as L(h,x, y) = e−yh(x), we obtain the following equation:

E
y
[L(h,x, y) ∣X = x] = η(x)e−h(x) + (1 − η(x))eh(x).

Upon observing this, it becomes apparent that the infimum over all measurable functions can be expressed in the
following way, for all x:

inf
h∈Hall

E
y
[L(h,x, y) ∣X = x] = 2

√
η(x)(1 − η(x)),

while the infimum over H, infh∈H Ey[L(h,x, y) ∣X = x], depends on Λ and can be expressed as

inf
h∈H

E
y
[L(h,x, y) ∣X = x] =

⎧⎪⎪
⎨
⎪⎪⎩

max{η(x),1 − η(x)}e−Λ +min{η(x),1 − η(x)}eΛ Λ < 1
2
∣log η(x)

1−η(x) ∣

2
√
η(x)(1 − η(x)) otherwise.

Thus, in the deterministic scenario, the discrepancy between the approximation error AL(H) and the minimizability
gap ML(H) is:

AL(H) −ML(H) = E
x
[ inf
h∈H

E
y
[L(h,x, y) ∣X = x] − inf

h∈Hall

E
y
[L(h,x, y) ∣X = x]] = e−Λ.

Therefore, for a surrogate loss, the minimizability gap can be strictly less than the approximation error. In
summary, an H-consistency bound can be more significant than the excess error bound as ML2(H) = AL2(H)

when L2 represents the zero-one loss or deferral loss, and ML1(H) ≤ AL1(H). They can also be directly used to
derive finite sample estimation bounds for a surrogate loss minimizer, which are more favorable and relevant than
a similar finite sample guarantee that could be derived from an excess error bound (see Section 6).
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