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Abstract

A largely unaddressed problem in causal in-
ference is that of learning reliable policies in
continuous, high-dimensional treatment vari-
ables from observational data. Especially in
the presence of strong confounding, it can be
infeasible to learn the entire heterogeneous re-
sponse surface from treatment to outcome. It
is also not particularly useful, when there are
practical constraints on the size of the inter-
ventions altering the observational treatments.
Since it tends to be easier to learn the outcome
for treatments near existing observations, we
propose a new framework for evaluating and
optimizing the effect of small, tailored, and lo-
calized interventions that nudge the observed
treatment assignments. Our doubly robust ef-
fect estimator plugs into a policy learner that
stays within the interventional scope by opti-
mal transport. Consequently, the error of the
total policy effect is restricted to prediction
errors nearby the observational distribution,
rather than the whole response surface.

1 INTRODUCTION

Improvements in predictive power from large statisti-
cal models do not always translate to better decision
making. The best way to support decision-making is
to infer the outcomes from possibly relevant interven-
tions. Models built to describe observations like in
supervised or self-supervised learning tasks are not al-
ways adequate to predict interventional outcomes. In
the field of causal inference, the theory of causal-effect
estimation in a potential outcomes framework is largely
concerned with building statistical models that can
predict interventional outcomes explicitly.
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From observational data, it can be useful to learn the
causal effects of a treatment variable and then con-
struct a policy for prescribing treatments with the
goal of maximizing overall outcomes (Athey and Wa-
ger, 2021). This problem is often called offline policy
learning because one cannot take actions and observe
new outcomes like in an online setting. The structure
of the causal system, and in particular that of the
treatment variable, can have severe implications on
the feasibility of learning optimal policies. Treatments
are commonly assumed to be binary, although more
flexible settings are gaining traction, including for dis-
crete multi-valued treatments (Zhou et al., 2023; Kallus
et al., 2022; Uehara et al., 2020), continuous treat-
ments (Demirer et al., 2019), and discrete multivariate
treatments (Liang et al., 2018; Xu et al., 2023b,a).

When treatments are continuous and possibly multivari-
ate, it can be quite difficult to learn the full response
surface of every unit to every treatment value. Fur-
thermore, prevailing estimators require learning the
conditional probability density of the observational
treatment propensity, e.g. Nie et al. (2021); Colangelo
and Lee (2020); Marmarelis et al. (2023); Kallus and
Zhou (2018). That task might not scale well with co-
variate shift and increasing treatment dimensionality.

It could be simpler to estimate local causal deriva-
tives (Hines et al., 2023; Chernozhukov et al., 2022).
Focusing on derivatives restricts the learning problem
to the parts of the response surface near existing obser-
vations. Causal derivatives at observed treatments are
informative of incremental effects from small interven-
tions. Small interventions are often the most achievable.
Despite these benefits, it is not always obvious how to
learn a policy from causal derivatives. How small of an
intervention is small enough? How far can a derivative
extrapolate? Never mind the additional considerations
for outcome predictors with well-behaved derivatives,
which are needed in estimators of causal derivatives.

We therefore propose to learn the effects of nudging1

the treatment variable (§2), and to optimize budget-
constrained policies thereof (§3). A causal-effect es-
timator specifically for nudges coming from a nudge
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prior, representing the interventional scope and per-
haps budget under consideration, facilitates reliable
learning of nudge policies (§5). Figure 1 shows a simple
illustrative scenario calling for nudges.

Our solution involves a few novelties. We formulate a
learning objective (§2.3) for directly debiasing nudge-
effect estimates in a doubly robust framework. While
developing the policy learner, we discover a connection
to optimal transport with an unorthodox cost function
(§3.2), on transferring nudges to observational units.
This link further reveals the possibility of an efficient,
information-bottlenecked solver (§3.3).
Example (wildfires). Suppose we are attempting to
spatially target costly interventions that could reduce
the proclivity for wildfires. We are studying satellite
images (Drusch et al., 2012) to identify the pixels most
conducive to intervention before summer. From records
of past summers and perhaps large-scale climate mod-
els (Rodgers et al., 2021), we have learned a spatial
forecasting model for wildfire occurrence given a satel-
lite image of surrounding vegetation, moisture, and
topography. If the intervention to target is a reduction
in vegetation, then the machine-learning problem could
be to identify the high-vegetation pixels that would,
once lowered, causally reduce the risk of a wildfire. We
are effectively nudging multiple continuous-valued spa-
tial pixels because we are aiming to reduce vegetation
to varying degrees as determined by the optimal policy.

Relation to reinforcement learning. In the litera-
ture of proximal policy optimization (PPO) (Schulman
et al., 2015, 2017; Ouyang et al., 2022), a policy model
is optimized with respect to some reward model within
a trust region. Usually, the trust region is defined
by a cutoff or penalty on the KL-divergence between
the old (original or logging) and new (learned) pol-
icy. This prevents domain shift due to the updated
policy moving far from the data-generating process.
Our conception of nudge priors can be interpreted
as a trust region as well. However, to be faithful to
PPO, we would have the learned policy be similar to
the treatment propensity—the conditional distribution
governing treatment assignments. The true propensity
is unknown and has to be estimated in our problem
setup, and it can be difficult to guarantee its accuracy.
It can be untenable to base the trust region on this
estimate. Instead, we use a nudge prior that fixes the
marginal distribution of nudge policies over the data.
Our lack of a known logging policy also separates us
from offline contextual bandits (Yang et al., 2023).

1Even though we believe a “nudge” is the best term for
a small intervention, somewhere between infinitesimal and
global, we wish not to encourage associations with nudge
theory from the social/behavioural sciences (Ewert, 2020).

Doubly robust estimation. Stemming from semi-
parametric estimation theory (Hines et al., 2022;
Kennedy, 2022), the framework of double machine
learning (Chernozhukov et al., 2018) has become im-
mensely useful in the state of the art in causal-effect
estimation and offline policy learning (e.g. Oprescu
et al., 2023; Zhou et al., 2023; Kallus et al., 2022). We
employ this theory to derive estimators with increased
robustness to misspecification in the learned models.

Exemplar Causal Setting with Univariate Continuous
Treatment and Covariate

Figure 1. With continuous-valued treatments and sig-
nificant covariate shift illustrated by the observations
marked by xs, it can be infeasible to learn the full
response surface T,X 7→ Y . In this example the upper
left and lower right corners of the response would be im-
possible to predict without significant prior knowledge.
Subsequently, it would be impractical to learn policies
X 7→ T over the full surface, and perhaps infeasible
to act on them. We propose to learn localized policies
shown by the nudging arrows in gray.

2 ESTIMATING NUDGE EFFECTS

The first step of our methodology is to estimate nudge
effects. The overall approach is to use generic machine
learning to estimate certain functions of the data, which
are combined to form robust causal estimates.

2.1 Problem Setup

We consider vector treatments with unbounded support
T ∈ T = RdT under otherwise standard potential-
outcomes assumptions listed in Assumption 1 on the
system of (outcome, treatment, covariate) variables
W = (Y, T,X). Our aim is to learn the effect of an
interventional treatment nudge ξ ∈ RdT concretely
defined as ∆ξY ≜ Y (T + ξ)− Y (T ), where Y (t) is the
potential outcome at t. Only the realized outcome Y
at the assigned treatment T is ever observed for each
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unit in the sample. The rest must be inferred in a way
that accounts for selection and confounding biases.

Assumption 1 (Potential Outcomes). The standard
causal setting due to Rubin (1974).

(a) Stable unit treatment value assumption (SUTVA).
The potential outcomes for a unit do not depend
on the treatment assigned to any other unit.

(b) Overlap/positivity. All treatment values have a
nonzero probability of occurring for every unit.

(c) Ignorability. Potential outcomes are independent
of the treatment after conditioning on covariates.

Assumptions for nudges. A core assumption for
the learning problem posed in this work is tied to the
nudges under consideration. Our prior knowledge in
this regard will be encapsulated by a distribution over
the nudges, with a probability density p(ξ). This nudge
prior governs the domain for the estimation problem
covered in this section, for the policy learning in §3,
as well as the error bounds in §5. The distributional
assumption subsumes possible budgetary requirements
that could be written as expectations over nudges, like
a threshold over the average magnitude of prescriptions
to a sample. It can also reflect our degree of confidence
in the learned models, depending on the problem dif-
ficulty. Estimates that cannot extrapolate far should
only be trusted with narrow nudge priors.

2.2 Our Approach

We outline an estimator that synergizes two predictive
models for nuisance parameters, so-called because they
parametrize the causal-outcome estimates. These will
be combined to form a robust estimate of the nudge
effect ∆ξY conditional to other observable features
from X. We learn the following models:

• conditional outcome µ(T,X) ≜ E[Y | T,X], and

• propensity ratio ηξ(T,X) ≜ fξ(T |X) / f0(T |X).

The propensity density function is denoted as f0(T |X),
belonging to a family of propensities that have been
shifted by a nudge ξ, defined as fξ(t|X) = f0(t− ξ|X)
induced by the transport map (T,X) 7→ (T + ξ,X).

Taking inspiration from a rich line of work on efficient
influence functions (Hines et al., 2022; Kennedy, 2022),
we propose a pseudo-outcome for nudge effects that
combines nuisances and data:

φξ ≜ [ηξ(T,X)− 1] [Y − µ(T,X)] + ∆ξµ(T,X), (1)

where ∆ξµ(T,X) ≜ µ(T + ξ,X)− µ(T,X). Like other
parameters studied in the double machine learning lit-
erature, this pseudo-outcome is an unbiased estimator
for the nudge effect even if only one of the two nuisance
estimates {µ̂(T,X), η̂ξ(T,X)} is correctly specified (see
§5). Hence, φ̂ξ is considered doubly robust/debiased.
In fact, by iterated expectation over Y and T , it can
be shown that E[φ̂ξ | X] is a doubly robust estimator
of the heterogeneous nudge effects, E[∆ξY | X]. As is
explored further in §5, the local error of φ̂ξ at a specific
X is the product of the errors of the two nuisance esti-
mates {µ̂(T,X), η̂ξ(T,X)}, enabling faster convergence
for the effect estimate. We state a proposition that
serves as a theoretical basis for deriving Equation 1;
Proposition 1. The efficient influence function for
the average nudge effect is φξ − E[∆ξY ].

Kennedy (2020), Oprescu et al. (2023), and others have
already proposed regression on pseudo-outcomes with
a data-splitting strategy in order to accurately esti-
mate conditional average treatment effects (CATEs)
for binary treatments. In a typical data-splitting pro-
cedure, one estimates the functions (nuisance param-
eters) {µ(T,X), ηξ(T,X)} in one data partition, and
then computes pseudo-outcome estimates φ̂ξ(Y, T,X)
on another data partition using {µ̂(T,X), η̂ξ(T,X)}.
Heterogeneous effects can be identified by regressing
on the pseudo-outcomes in the second data partition.

2.3 Estimating the Propensity Ratio

The solution we present includes an approximation for
the propensity-density ratio parameter ηξ. Its form
is motivated by its limiting behavior as the negative
logarithmic gradient of the propensity density. Keeping
in mind that the estimate η̂ξ should be reliable in the
regime of the nudge prior p(ξ), we chose to construct
a set of learning problems defined over a sample of
nudges. We begin with a first-order multivariate Taylor
expansion of log fξ(T |X) in ξ,

log fξ(T |X) = log f0(T |X) + ξ · g(T,X) +O(∥ξ∥2)

where the identity fξ(T |X) = f0(T − ξ|X) reveals that
g(T,X) is indeed −∇T log f0(T |X). This expansion
suggests an approximation to the propensity ratio,

ηξ(T,X) =
fξ(T |X)

f0(T |X)
≈ exp{ξ · g(T,X)},

which leads to a reparametrization of the estimate
η̂ξ(T,X) in ĝ(T,X) for any ξ drawn from a prior of
relatively small nudges. Even though g(T,X) is defined
as a logarithmic gradient, the optimal estimator for
ĝ(T,X) over p(ξ) would minimize an average loss over
the nudges. This distinguishes our solution from tradi-
tional score matching (Hyvärinen and Dayan, 2005).



Policy Learning for Localized Interventions from Observational Data

Probabilistic classification (PC). Let qξ(T,X) be
the probability of T coming from fξ(T |X) rather than
f0(T |X). Then it follows that

ηξ(T,X) =
qξ(T |X)

1− qξ(T |X)
,

log ηξ(T,X) = log
qξ(T |X)

1− qξ(T |X)
= ξ · g(T,X).

Hence ξ · g(T,X) gives classification logits for fξ(T |X)
versus f0(T |X). In this way, we propose to learn
ĝ(T,X) from a set of classification problems over a
nudge sample by learning to classify (T + ξ,X) as pos-
itive and (T,X) as negative over the data (Y, T,X)
and the nudge prior p(ξ). Probablistic classification is
a simple approach to estimating density ratios (Tib-
shirani et al., 2019) and our scheme of formulating
many small classification problems is partly inspired
by recent work like that of Choi et al. (2022). All in
all, our loss function for ĝ(t, x) is given as

LPC[g] ≜ Ê(T,X)×p(ξ)

[
log σ(ξ · g(T,X))

− log σ(ξ · g(T + ξ,X))
]
, (2)

where σ(·) is the logistic sigmoid. As already mentioned,
this nuisance parameter ĝ(T,X) is estimated on one
dataset split and then used on the other dataset split.
When ĝ(T,X) is parametrized as a deep neural network,
we found that it can be helpful to calibrate it on the
second split with a low-dimensional adjustment like
temperature scaling (Guo et al., 2017). Well-calibrated
and smoothed logits are paramount to the stability of
probabilistic classification.

Comparison to denoising score matching (SMD).
The recent success of diffusion models (Croitoru et al.,
2023) has underscored the popularity of SMD (Vincent,
2011; Swersky et al., 2011). The objective of SMD
can be understood as score matching on a smoothed
(noised) version of the data distribution. It is similar to
our PC approach in that the score, i.e. log-gradient of a
density, is related to the log-ratio of an infinitesimally
perturbed density against the original density. See the
remark on causal derivatives, Equation 4. The smooth-
ing brings enjoyable finite-sample qualities and also
simplifies the learning objective. If we were to apply
SMD to estimating g(T,X) using the existing domain
knowledge for nudges, then the smoothing probabilistic
kernel over treatments would be defined as additive
noise in terms of nudges, probably coming from p(ξ).
Therefore the SMD loss would be

LSMD[g] ≜ Ê(T,X)×p(ξ) ∥∇ log p(ξ)− g(T + ξ,X)∥22
(3)

and it would uncover ĝ(t, x) ≈ ∇ logEp(ξ) f0(t− ξ | x).
On the other hand, our PC objective (Equation 2)

would uncover local linear coefficients ĝ such that
ξ · ĝ(t, x) ≈ log f0(t− ξ | x)/f0(t | x), trained by a lo-
gistic cross-entropy loss. While SMD could certainly
be used to approximate our learning task, it would be
suboptimal especially because the nudge expectation
resides within the logarithm.
Remark (causal derivative). Letting ξ = εv and ∇v

denote a directional derivative in the first argument of
a function with unit vector v, the quantity

ε−1[ηξ(T,X)− 1] −−−→
ε→0

−∇v log f0(T |X) (4)

recovers a multivariate version of the Riesz representer
for the average causal derivative (ACD) as considered
in prior works like Chernozhukov et al. (2022). The
form of Equation 1 resembles a finite-difference version
of the pseudo-outcomes for the ACD.

3 LEARNING NUDGE POLICIES

Our goal is to make policy prescriptions for nudge
interventions that reliably maximize nudge effects in
expectation. The policy should adhere to the nudge
prior for two reasons: first, any interventional budget
constraints should be respected. Second, as the effect
estimates are calibrated for the nudge prior distribution,
the policy should not stray from that domain where
generalization degrades. With that in mind, we seek a
learned heterogeneous policy that is a function of some
flexibly defined variable U ∈ U that satisfies U = f(X)
for some f , allowing for the simplest case U = X, or for
the cases of U being a subset of the covariate features
when one wishes to generalize to a broader population
with fewer recorded attributes. Consider a scenario
where one learns from a detailed survey (using X) and
then makes broader prescriptions (on a simpler U).

Letting Π be the set of conditional density functions
in P (Ξ|U), the ideal nudge policy is characterized by
an optimization problem constrained on the marginal.
Definition 1 (Optimal Nudge Policy). A nudge policy
given as a probability density π(ξ|U) conditional on
features U is considered optimal if it solves the following
constrained optimization problem:

max
π∈Π

E
[ ∫

Ξ

∆ξY π(ξ|U) dξ
]
,

s.t. ∀ξ ∈ Ξ, E[π(ξ|U)] = p(ξ).

The attained maximum value is considered the nudge-
policy effect because it integrates the population’s
nudge effects over the policy prescriptions.

Note on notation. As in the other sections of this
paper, the bare expectations E are with respect to
the data W = (Y, T,X), and the training set for the
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nuisances, but not the nudge variable ξ. Expectations
over the nudge only are denoted as Eπ or the integral
form shown in Definition 1. Of course, the nudge
domain Ξ is equal to the treatment domain T , and
they will be used interchangeably.

The infinite and idealized optimization problem in Defi-
nition 1 is intractable per se. To proceed, we introduce
two approximate solution schemes denoted as IB and
OT, eventually synergizing into IB+OT from the desirable
aspects of both perspectives.

3.1 IB — Information Bottleneck Policy
Learner

The first approach is to solve a more constrained
optimization problem inspired by the information-
bottleneck principle (Tishby et al., 2000) that is com-
monly employed in variational bounds for intractable
problems in representation learning (Higgins et al.,
2016). Notice that the hard constraint on the marginal
can be equivalently stated in the Kullback-Leibler (KL)
divergence, or relative entropy:

D
(
E[π(ξ|U)] ∥ p(ξ)

)
= 0. (5)

This can be turned into a single soft constraint by
penalizing the objective function with a Lagrange mul-
tiplier. However, it is still difficult to compute over
a large sample. We turn to the mutual information
between ξ and X induced by a given policy π,

Iπ(ξ;U) = D
(
π(ξ|U)p(U) ∥ p(ξ)p(U)

)
= E[ D

(
π(ξ|U) ∥ p(ξ)

)
],

(6)

which implicitly asserts that the nudge policy’s
marginal is identical to the nudge prior. It is easier to
compute because if the policy and prior are of the same
parametric family (e.g. conditionally Gaussian), the
inner divergence quantity can be solved analytically.
By Jensen’s inequality, this mutual information is an
upper bound on the marginal divergence constraint of
Equation 5. Therefore, the mutual information acts as
a stronger constraint: not only does it enforce correct
marginal behavior, but it also limits the specificity of
the policy. It introduces an information bottleneck.
This additional regularization from Equation 6 on the
policy implies that any policy prescription π(ξ|ui) for
a particular unit ui that strongly diverges from the
nudge prior would only do so for a large apparent ben-
efit. This phenomenon could be useful for ranking the
most beneficial interventions. The IB policy-learning
objective functional is stated as follows, for β > 0:

LIB[π, β] ≜ Ê
[
− Eπ φ̂ξ + βD

(
π(ξ|U) ∥ p(ξ)

)]
. (7)

The objective LIB can straightforwardly be used to
train a neural network parametrizing u 7→ π(ξ|u) with
hyperparameter β controlling the strength of the IB.

3.2 OT — Optimal Transport Policy Learner

The second approach is a natural consequence of the ob-
servation that the optimization problem in Definition 1
is an infinite linear program (Dantzig, 1963). Infor-
mally, we seek to maximize a massive sum of nudge
effects weighted by the policy density function, subject
to an equality constraint along every nudge value as
well as constraints ensuring that the conditional policy
is a valid probability density function.

This motivates a translation of Definition 1 to a form
where all the constraints are explicit and the optimiza-
tion is performed over all functions π : Ξ×X → R:

argmax
π

E
[ ∫

Ξ

∆ξY π(ξ|U) dξ
]
,

s.t. ∀ξ, E[π(ξ|U)] = p(ξ), (nudge prior)

∀u,
∫
Ξ

π(ξ|u) dξ = 1, (policy validity #1)

∀(ξ, u), π(ξ|u) ≥ 0. (policy validity #2)

The problem begins to look like an optimal transport
with a transference plan π′(ξ, u) = π(ξ|u)p(u) where
p(u) is the marginal density of X. The semblance be-
comes clearer when the second group of constraints
is written as

∫
Ξ
π′(ξ, u) dξ = p(u), mirroring the first

group of constraints on p(ξ). The connection between
linear programming and optimal transport was first
noticed by Kantorovich (1942). Concretely, the prob-
lem in Equation 8 is a Monge-Kantorovich optimal
transport with cost function −∆ξY , assuming it is con-
tinuous and finite (Villani et al., 2009). We substitute
this ideal cost function with a pseudo-outcome approx-
imation c(ξ,W ) ≜ −φξ(W ); recall that W = (Y, T,X)
describes a whole observational unit.

π⋆ = argmax
π

E
[ ∫

Ξ

φξ π(ξ|U) dξ
]
,

s.t. ∀ξ, E[π(ξ|U)] = p(ξ),

∀u,
∫
Ξ

π(ξ|u) dξ = 1, ∀(ξ, u), π(ξ|u) ≥ 0.

(8)

We study the finite-sample version of Equation 8, which
is again an optimal transport:

π̂(n,m) = argmax
π

n∑
j=1

m∑
i=1

φ̂ijπij ,

s.t.
1

m

m∑
i=1

πij = 1,
1

n

n∑
j=1

πij = 1, πij ≥ 0,

(9)

where the quantities have been written in matrix
form as φ̂ij = φ̂ξi(wj), πij = π(ξi|uj)/p(ξi) for con-
venience. We use i.i.d {ξi}mi=1 from the prior and
{wj = (yj , tj , xj)}nj=1 from the second dataset split
for computing φ̂ij in (m× n) batches.
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Even though we heretofore required that the policy
marginal adhered to the nudge prior, in practice any
additional sparsity in prescriptions for ineffective in-
terventions is helpful. In other words, it is desirable
to allow a policy to favor inaction. Any unmatched or
not-fully-matched unit uj to nudge points ξi implicitly
matches it to the null nudge ξ0 = 0 since ∆ξ=0Y = 0.
We shall permit any amount of null mass to be allocated
to units. Further, the problem naturally accommodates
L1-regularization of the policy by introducing a hyper-
parameter γ ≥ 0. This would encourage policies to
tend towards sparsity. Combining these two modifica-
tions to Equation 9 amounts to changing the equality
constraints to inequalities and perturbing the objective:

π̂(n,m)
γ = argmax

π

n∑
j=1

m∑
i=1

(φ̂ij − γ)πij ,

s.t.
m∑
i=1

πij ≤ m,

n∑
j=1

πij ≤ n, πij ≥ 0.

(10)

These finite linear programs can be solved straightfor-
wardly on the second dataset split. A solution [π̂ij ]
gives a particle approximation to the policy density for
the observations by

π̂(ξ|uj) =
1

m

m∑
i=1

π̂ij δ(ξ − ξi).

Finally, we propose a synthesis of the IB and OT ap-
proaches yielding computationally favorable properties.

3.3 IB+OT — Sinkhorn Policy Learner

Suppose one were to discretize the IB problem, with
objective in Equation 7, similarly to how OT was trans-
formed into a linear program. The result might look
like the finite-sample optimization problem detailed by
Equation 9 with a mutual-information penalty added
to the objective. Surprisingly, this is the exact problem
that is efficiently solvable by the popular Sinkhorn al-
gorithm (Cuturi, 2013; Peyré and Cuturi, 2019). Penal-
izing the mutual information is equivalent to rewarding
the joint entropy whenever the marginals are fixed;
hence, the information bottleneck corresponds to an
entropic regularization

π̂
(n,m)
β = argmax

π

n∑
j=1

m∑
i=1

(φ̂ijπij − β log πij),

s.t.
1

m

m∑
i=1

πij = 1,
1

n

n∑
j=1

πij = 1, πij ≥ 0.

(11)

By duality theory (Boyd and Vandenberghe, 2004),
for every β ≥ 0 there exists some α ≥ 0 such that
the admissible set of solutions is {π : Iπ(ξ;U) ≤ α},

with Iπ(· · ·) from Equation 6. For the remainder of
this paper, we largely concern ourselves with the finite-
sample OT solver and recommend IB+OT for larger data.

3.4 Generalizing Policy Prescriptions

The finite-sample policy learners shown above, namely
OT of Equation 10 and IB+OT of Equation 11, give pre-
scriptions on the units in the second dataset split. By
repeated application of our method with round-robin
splits, as will be discussed further in §4, one obtains
prescriptions for the entire sample. A generalizable pre-
scription rule (policy) can be obtained by a regression
on the in-sample prescriptions:

hπ̂(u) ≜ Ê[Eπ̂ ξ | U = u]. (12)

This estimation is “easy” in the sense that it lacks the
covariate/domain shift that tends to make causal-effect
estimation difficult. hπ̂(u) is tasked with predicting
the expected policy within the observational domain.
There is no extrapolation on (T,X) combinations.

4 A SCALABLE ALGORITHM

Algorithm 1: Finite-sample Nudge Policy Learner

Input : {(yj , tj , xj , uj)}nj=1 ∼i.i.d (Y, T,X,U),
policy regularization γ ≥ 0 or β ≥ 0

Output : policy predictor hπ̂(u), Equation 12
1 foreach k-fold partition of the training set do
2 Learn nuisances (µ̂, η̂ξ) using data outside the

current partition;
3 Calibrate temperature of propensity-ratio η̂ξ on

the current partition;

4 Pool the corresponding nuisances across the
partitions covering the entire training set;

5 Randomly re-partition the dataset into policy
batches of equal cardinality;

6 foreach policy batch do
7 Sample nudges {ξi}mi=1 from prior and compute

pseudo-outcomes φ̂ξi , Equation 1;
8 Optimize policy prescriptions π̂ by solving

linear program or Sinkhorn problem
(Equations 10 / 11);

9 Estimate policy rule hπ̂(u) by regressing expected
policy Eπ̂ ξ on U on entire training set;

It is usually statistically favorable to partition the
dataset into many small non-overlapping sets that each
act as the second split (for pseudo-outcomes) in a
problem instance with the rest of the data reserved for
that problem’s first split (for nuisances) (Chernozhukov
et al., 2018). The benefit of this strategy is that it
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avails more data for estimating the nuisances, and the
drawback is the additional computation cost. For our
method, estimating nuisances and pseudo-outcomes
(§2) is only the first learning problem. We also seek to
learn policies (§3), and it could be difficult to do so on
small second splits. Therefore, we decouple these two
data-partitioning design choices in Algorithm 1. For
effect estimation, nuisances for pseudo-outcomes are
estimated and then pooled across the whole sample.
Then the policy is optimized in randomly allocated
batches. Those prescriptions are pooled back together
in order to generalize the policy out of sample according
to the regression posed in Equation 12.

Whether the Sinkhorn or linear-program solver is used,
it would be more efficient for large datasets to learn
the policy in batches. Overall, for O(1) policy-batch
sizes, Algorithm 1 achieves a runtime and memory
complexity (in sample size) equivalent to that of the
constituent machine-learning procedures.

5 ESTIMATION PROPERTIES

A recurrent quantity in our analysis shall be the con-
ditional bias of the pseudo-outcome estimate for the
heterogeneous nudge effect, b̂ξ(X), defined in Lemma 1.
This reveals the double (rate) robustness property.

Lemma 1 (Effect Estimation). The plug-in estima-
tor for nudge effects φ̂ξ shown in Equation 1 is lo-
cally doubly robust in the sense that only one of the
two nuisances need be correctly specified; in other
words, if either µ̂(T,X) = µ(T,X) or η̂ξ(T,X) =
ηξ(T,X), then E[φ̂ξ | X] = E[∆ξY | X]. Further,
the estimator is doubly rate robust because for any
{µ̂(T,X), η̂ξ(T,X)},

b̂ξ(X) ≜ E[φ̂ξ − φξ | X] = E[−(µ̂− µ)(η̂ξ − ηξ) | X].

In order to study the convergence of the learned poli-
cies, we introduce π̂∗ that is the finite-sample solution
with oracle pseudo-outcomes φξ in place of their es-
timates φ̂ξ. This intermediate quantity shall allow
us to separate the consequences of imperfect effect
estimation from imperfect policy learning. Also, for
finite-sample estimates like π̂, the norm operator ∥·∥p
is taken elementwise, like the Frobenius norm for p = 2,
on the (m nudges × n units) matrices. For instance,
∥π̂∥2 =

√∑m
i=1

∑n
j=1(π̂ij)

2. The perturbation stabil-
ity of linear programs (Robinson, 1980) lets us compare
π̂ and π̂∗. We need one more assumption on uniqueness
in order to proceed with the remaining lemmas. This
assumption, while not guaranteed for our cost function
in general, helps to simplify the theoretical results.
Assumption 2. The policies π̂, π̂⋆, π⋆ are uniquely
optimal solutions to their respective programs.

Lemma 2. For the vanilla OT policy-learning problem
described by Equation 9, there exist positive constants
(ε, δ) such that for any ∥φ̂− φ∥ < δ, one has

∥π̂ − π̂∗∥ ≤ ε∥φ̂− φ∥.

In addition, E ∥φ̂− φ∥1 ≤
∑

i,j

√
(b̂ij)2 + (ŝij)2 where

ŝ2 is the finite-sample conditional error variance,

ŝξ(X)2 ≜ Var[φ̂ξ − φξ | X].

Finally, we study the asymptotics of the policy estimate
through optimal transport (Villani et al., 2009).
Lemma 3. Under mild conditions, transference plan
π̂∗ converges weakly to π∗ as n,m→ ∞. If, in addition,
η̂ξ → ηξ and µ̂ → µ uniformly in T × X as n → ∞,
then π̂ converges weakly to π̂⋆ as well.

Theorem 1 (Robust Policies). The policy-effect es-
timate is doubly rate robust in the sense that it can
only be overestimated up to a product of the nuisance
errors. In particular,

E[Eπ̂ φ̂ξ − Eπ∗ φξ] = E[Eπ̂ b̂ξ]

+ E[Eπ̂ φξ − Eπ̂∗ φξ]︸ ︷︷ ︸
(A) negative regret

+E[Eπ̂∗ φξ − Eπ∗ φξ]︸ ︷︷ ︸
(B) discretization

(13)

with the first term, E[Eπ̂ b̂ξ] is the product of errors lo-
calized around the learned policy. Term (A) is nonpos-
itive and term (B) is a discretization error unrelated
to the effect estimation. Further, if the assumptions
for Lemma 3 are satisfied,

E[Eπ̂ φ̂ξ − Eπ∗ φξ] → 0. (14)

We show that the policy-effect estimate is consistent
(Equation 14) and tends to be conservative (Equa-
tion 13), which is useful for prudent decision-making.
Next, we shed light on how the nudge-marginal con-
straint discussed in §3 guarantees error localization.
Corollary 1.1 (Localized Errors). The error-product
term E[Eπ̂ b̂ξ] in Theorem 1 can be understood in terms
of the nudge prior p(ξ), after observing the absolute
bound ∣∣∣E[Eπ̂ b̂ξ]

∣∣∣ ≤ Ep(ξ) sup
u∈U

∣∣∣b̂ξ(u)∣∣∣.
In words, the wort-case heterogeneous error is only
relevant around the nudge prior.

Next, we seek intuition on the consequences of this
bound via the nudge prior. Corollary 1.2 constructs an
illustrative scenario with one nudge prior being more
dispersed than another nudge prior.
Corollary 1.2 (Consequence of Nudge Dispersion).
Suppose that |b̂ξ(u)| is bounded above by some func-
tion w(|ξ|, u) that is monotonically non-decreasing in
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every dimension of |ξ| and has finite limit. Further,
consider two candidate nudge priors p1 and p2 such
that P1[∥ξ∥ > a] ≤ P2[∥ξ∥ > a] for every a > 0. Then
the error bound of Corollary 1.1 cannot be greater for
p1 than for p2.

6 EMPIRICAL EVALUATIONS

We sought to verify the empirical improvements con-
ferred by the doubly robust estimation (§2) and the
constrained policy learner (§3). Experiment source
code may be found in the supplementary material.

6.1 Semi-synthetic Policy Learning

Policy Effect
Learner Mean (Std.Err.)

Robust OT (Alg. 1) 0.80 (0.05)
Naïve OT −0.01 (0.01)
Robust Full −1.49 (0.16)
Naïve Full −1.49 (0.16)

Table 1. Mean (and standard error) of policy effects
on 20 trials (seeds 0–19) of the TCGA semi-synthetic
benchmark. Our robust OT learner with k = 5 dataset
splits is compared to three ablated baselines that do
not achieve policy improvement. Units are in standard
deviations of the observational outcomes.

The first benchmark we conducted was built off of the
cancer genome atlas (TCGA) dataset originally pro-
posed for causal-estimation benchmarking by Bica et al.
(2020). Our semi-synthetic causal setting was designed
to resemble a wide diversity of the problems mentioned
in §1. Concretely, we aimed for real-valued multivariate
treatments with significant covariate shift and complex
response surfaces that reach a floor (of zero) at extreme-
valued treatments. These are all reasonable traits for
real-life policy learning from observational studies.

The baselines considered in Table 1 were ablations to
Algorithm 1. The Robust/Naïve demarcation indicated
whether φ̂ξ was used or the direct prediction ∆ξµ̂. On
the other hand, OT → Full indicated a policy learned
by directly optimizing the effect estimate rather than
regression on the OT transference plan. Figure 2 shows
the change in performance at different nudge priors.

To verify that the policy learner of Equation 12 abides
by the nudge prior, we present Figure 3 comparing the
quantiles of the empirical nudges with the prior. They
appear to align overall, although the learned prescrip-
tions are slightly under-dispersed, which is reasonable.
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Figure 2. Achieved TCGA policy effects for different
nudge priors (interventional budgets), across the 20 ran-
dom seeds. Table 1 reports evaluations for nudge-prior
standard deviation set to 0.5. We observe increasing
policy-effect variance with increasing nudge dispersion.
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Figure 3. A quantile-quantile plot of the TCGA nudge
prior compared with the empirical distribution of the
20 learned policy prescriptions applied out of sample.

6.2 Experiment with Yelp & IRS Data

The second benchmark used latitudes and longitudes
of Yelp establishments across the United States as
the “treatment” variable (Yelp, 2023). In this case, the
treatment assignment is not synthetic and indeed rather
complex because it relies on the geography of major
cities in the country. The outcome was a semi-synthetic
imitation of revenue that depended on features like Yelp
reviews and income brackets of the establishment’s
ZIP Code (Internal Revenue Service, 2020). Here, a
nudge effect is defined as the change in revenue from
moving location, using a Gaussian nudge prior with 1◦

of standard deviation.

We trained nuisance models on half the dataset and
learned policies on the other half in order to compare
variations of the effect estimator. All policies were
learned by OT with γ = 0, so the experiment in Table 2
served to contrast the proposed estimator against the
naïve direct estimate, and the robust estimate with an
SMD-trained (Equation 3) propensity in place of the
recommended PC of Equation 2.
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Policy Effect
Learner Mean (Std.Err.)

Robust OT 0.39 (0.03)
Naïve OT 0.27 (0.002)
SMD OT 0.27 (0.002)

Table 2. Mean (and standard error) of policy effects on
10 trials of the Yelp & IRS semi-synthetic benchmark.
Both the robust estimator equipped with an alternative
SMD-trained propensity, and the naïve estimator, do
not improve upon the proposed robust estimator.

7 DISCUSSION

Our analyses focus on the OT (§3.2) policy-learning
scheme, although we began §3 by building IB (§3.1)
in order to justify IB+OT (§3.3) down the line. Our
results validate OT and, moving forward, suggest the
general utility of the Sinkhorn algorithm for solving
the entropically regularized version, which is IB+OT.

In our analysis of the estimation properties (§5), we
revealed fundamental properties of the learned policy
in relation to oracle pseudo-outcomes. Theorem 1 de-
constructs the policy-effect error into understandable
components, and its corollaries explore basic phenom-
ena arising from the choice of nudge prior.

In our empirical evaluations (§6), we demonstrated
the necessity of each ingredient for the proposed ap-
proach. The TCGA benchmark (§6.1) showed that a
learned prescription rule applied out of sample requires
the added robustness of pseudo-outcomes along with
the OT policy-learning scheme to reliably achieve posi-
tive policy effects. The Yelp & IRS experiment (§6.2)
that the propensity nuisance for the pseudo-outcome
estimate must be learned using the novel PC loss of
Equation 2 for significantly higher policy effects.

Possible extensions. Returning to the wildfire ex-
ample laid out in §1, we are struck with the need to
deal with two difficulties often faced in real-life causal
inference: treatment interference, and hidden confound-
ing. Spatially proximal observation units, like patches
of land, can be affected by one another’s interven-
tions. Also, not all confounders are recorded—much
less perfectly. Both of these issues can be handled with
extensions to the proposed nudge-policy framework.

Future work. We recognize the need to further study
the consequences of using pseudo-outcomes as an ap-
proximation of the truly sought optimal-transport ob-
jective. We plan to augment the proposed policy learn-
ers in a way that gives stronger statistical guarantees
on the actual policy effect. This would likely entail
alterations to the optimization problem in order to in-

clude a conditional independence constraint, ensuring
that the transference plan is only a function of the
relevant covariates U , and not T .

8 CONCLUSION

We present a set of algorithms for learning continu-
ous and multivariate policies for localized interventions,
from offline observational data. We demonstrated our
Algorithm 1 on semi-synthetic datasets against base-
lines that showcase the benefits offered by each compo-
nent of the algorithm. Further, our Theorem 1 supplies
an interpretable guarantee on the policy-effect error
localized by the nudge prior, which can be dictated by
interventional budgets or other domain knowledge.
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A PROOFS

A.1 Proof of Proposition 1

Following closely the approaches of Ichimura and Newey (2022) and Hines et al. (2022), we give a brief exposition
on deriving the efficient influence function for E[∆ξY ]. The notation for these semiparametric estimators is a
little different than in our paper. For instance, we denote the oracle estimator as P and the oracle estimate for a
parameter θ as θ(P). We compare these quantities to those from arbitrary estimators P̃ and the empirical plug-in
estimator P̂n. With nudge effects, we have θ(P) ≜ E[∆ξY ] for some ξ.

θ(P) = E[E[Y | T = T + ξ, X]− E[Y | T, X] ],

θ(P̂n) = n−1
n∑

j=1

(
Ên[Y | T = tj + ξ, X = xj ]− Ên[Y | T = tj , X = xj ]

)
.

Then we look at a parametric submodel with some perturbation to the oracle estimator: Pτ = τ P̃ + (1− τ)P
for τ ∈ [0, 1]. Let us assume that P̃ is a point mass in some w̃ = (ỹ, t̃, x̃). We calculate the following Gateaux
derivative:

dθ(Pτ )

dτ

∣∣∣∣
τ=0

≜ ψ(w̃,P) termed canonical gradient at w̃, through Riesz representer theorem.

Now denoting the density estimates using Pτ as fτ (. . . ), it holds under mild regularity conditions that

θ(Pτ ) =

∫∫∫ [
yfτ (y|t+ ξ, x)fτ (t, x)− yfτ (y|t, x)fτ (t, x)

]
dy dtdx,

=

∫∫∫ [
fτ (y|t+ ξ, x)− fτ (y|t, x)

]
yfτ (t, x) dy dtdx.

To zoom in on one of these terms, we denote θξ(Pτ ) =
∫∫∫

fτ (y|t + ξ, x) yfτ (t, x) dy dtdx. Now, taking the
derivative,

dθξ(Pτ )

dτ

∣∣∣∣
τ=0

=

∫∫∫ {
fτ=0(t, x)

fτ=0(t+ ξ, x)

d

dτ
fτ (y, t+ ξ, x)|τ=0

− fτ=0(t, x)fτ=0(y, t+ ξ, x)

fτ=0(t+ ξ, x)2
d

dτ
fτ (t+ ξ, x)|τ=0

+
fτ=0(y, t+ ξ, x)

fτ=0(t+ ξ, x)

d

dτ
fτ (t, x)|τ=0

}
y dy dtdx

By using the identity dfτ (w)/dτ |τ=0 = δw̃(w)− fτ=0(w) (Hines et al., 2022), which means for nudges that

dfτ (t+ ξ, x)

dτ

∣∣∣∣
τ=0

= δ(t̃,x̃)(t+ ξ, x)− fτ=0(t+ ξ, x),

dθξ(Pτ )

dτ

∣∣∣∣
τ=0

=

∫∫∫
yfτ=0(y|t+ ξ, x)fτ=0(t, x)

{
δw̃(y, t+ ξ, x)

fτ=0(y, t+ ξ, x)
−
δ(t̃,x̃)(t+ ξ, x)

fτ=0(t+ ξ, x)
+
δ(t̃,x̃)(t, x)

fτ=0(t, x)
− 1

}
,

=
fτ=0(t̃− ξ, x̃)

fτ=0(t̃, x̃)
ỹ − fτ=0(t̃− ξ, x̃)

fτ=0(t̃, x̃)
E[Y | T = t̃, X = x̃] + E[Y | T = t̃+ ξ, X = x̃]− θξ(P),

= ηξ(t̃, x̃)
[
ỹ − µ(t̃, x̃)

]
+ µ(t̃+ ξ, x̃)− θξ(P).

∴
dθ(Pτ )

dτ

∣∣∣∣
τ=0

=
[
ηξ(t̃, x̃)− 1

][
ỹ − µ(t̃, x̃)

]
+∆ξµ(t̃, x̃)− θξ(P).

This result proves the proposition. The way the efficient influence function is used to form a corrective term in a
doubly robust estimate is by the following von Mises expansion,

θ(P) = θ(P̃)− dθ(Pτ )

dτ

∣∣∣∣
τ=1

+ remainder.
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Notice that the Gateaux derivative is evaluated at τ = 1 rather than τ = 0. It is known that

dθ(Pτ )

dτ

∣∣∣∣
τ=1

= −P{ψ(W, P̃)},

which we estimate as P{ψ(W, P̂n)} ≈ n−1
∑n

j=1 ψ(wj , P̂n) when P̃ = P̂n. Finally, θ(P) ≈ φ̂ξ harkening back to
Equation 1, since φ̂ξ = P̂n{ψ(W, P̂n)}+ θ(P̂n).

A.2 Proof of Lemma 1

These proofs rely largely on iterated expectations. We first show that the conditional expectation of the pseudo-
outcome φ̂ξ is doubly robust to nuisance misspecification. There are two branches in this proof, from either
considering (a) µ̂ = µ or (b) η̂ξ = ηξ.

For (µ̂ = µ), the expectation is quite simple: (arguments T,X to the parameters omitted for brevity)

E[φ̂ξ | X] = E[(η̂ξ − 1)(Y − µ) + ∆ξµ | X] = ET

[
EY [(η̂ξ − 1)(Y − µ) | T,X] + ∆ξµ | X

]
,

= ET [(η̂ξ − 1)(µ− µ) + ∆ξµ | X] = E[∆ξY | X].

The (η̂ξ = ηξ) branch is slightly more involved,

E[(ηξ − 1)(Y − µ̂) + ∆ξµ̂ | X] = ET [(ηξ − 1)(µ− µ̂) + ∆ξµ̂ | X],

= ET

[
ηξ(T,X)

[
µ(T,X)− µ̂(T,X)

]
+ µ̂(T + ξ,X)− µ(T,X)

∣∣∣ X].
Lemma 0. Notice that for any integrable v(T,X), we have

E[ηξv | X] =

∫
T
ηξ(t,X)v(t,X)f0(t|X) dt,

=

∫
T

f0(t− ξ|X)

f0(t|X)
v(t,X)f0(t|X) dt,

=

∫
T
f0(t

′|X) v(t′ + ξ,X) dt′ where t′ = t− ξ,

= E[v(T + ξ,X) | X].

We have leveraged the assumption that T is unbounded.

Hence,

ET

[
ηξ(T,X)[µ(T,X)− µ̂(T,X)]

∣∣ X] = ET

[
µ(T + ξ,X)− µ̂(T + ξ,X)

∣∣ X],
∴ E[(ηξ − 1)(Y − µ̂) + ∆ξµ̂ | X] = ET

[
µ(T + ξ,X)− µ(T,X)

∣∣ X] = E[∆ξY | X].

Double rate robustness. We follow a similar path for the double rate robustness property, revealed as a
product of errors in b̂ξ(X) ≜ E[φ̂ξ − φξ | X]. To start, we examine the difference in the corrective term of the
pseudo-outcome, (ηξ − 1)(Y − µ), coincidentally the only part that depends on Y :

EY

[
(η̂ξ − 1)(Y − µ̂)− (ηξ − 1)(Y − µ) | T,X

]
= (η̂ξ − 1)(µ− µ̂).

Again, when arguments are omitted, (T,X) are implied. The fact above allows us to short-circuit to

b̂ξ(X) = ET

[
(η̂ξ − 1)(µ− µ̂) + ∆ξµ̂−∆ξµ | X

]
= ET

[
η̂ξ × (µ− µ̂) + µ̂(T + ξ,X)− µ(T + ξ,X) | X

]
,

= ET

[
η̂ξ × (µ− µ̂) + ηξµ̂− ηξµ | X

]
by Lemma 0 above,

= ET

[
− (η̂ξ − ηξ)(µ̂− µ) | X].
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A.3 Proof of Lemma 2

This result follows from the main theorem of Robinson (1980). By construction, what distinguishes the finite-
sample π̂ from its oracle intermediary π̂∗ is the substitution φ̂ξ 7→ φξ. As long as the solution set for the linear
program posed in Equation 9 is nonempty and bounded, then the (ε, δ) condition asserted in the lemma holds.

The second part of the lemma, decomposing the absolute norm in terms of the conditional bias b̂ξ and the
conditional error variance ŝ2ξ , follows from a simple norm inequality.

By the definition of variance, we have E[(φ̂ij − φij)
2] = (b̂ij)

2 + (ŝij)
2. Recall that φij is shorthand for φξi(uj),

and so on. Additionally, by Jensen’s inequality, E |φ̂ij − φij | ≤
√
E(φ̂ij − φij)2. Therefore,

E |φ̂ij − φij | ≤
√

(b̂ij)2 + (ŝij)2 ⇐⇒ E ∥φ̂− φ∥1 ≤
m∑
i=1

n∑
j=1

√
(b̂ij)2 + (ŝij)2.

A.4 Proof of Lemma 3

This result relies on Theorem 5.20 of Villani et al. (2009). To satisfy all the conditions of convergence, we must
assume that the finite-sample and infinite-sample oracle transference plans π̂∗ and π∗ are both uniquely optimal
for their respective problems.

First we investigate the requirements for π̂∗ → π∗ weakly. The (oracle) cost functions are identical here:
c(ξ,W ) = −φξ(W ). However, one is finite-sample and the other is infinite. The stability theorem of optimal
transport requires that the marginals converge weakly. In our case, the empirical nudge sample and the empirical
observational sample both converge weakly to their oracle equivalents.

Next we prove that π̂ → π̂∗. The corresponding marginals for π̂ and π̂∗ are identical, simplifying the conditions for
convergence. Since we presupposed uniform convergence of the nuisance parameters, we have uniform convergence
in the pseudo-outcome φ̂ξ → φξ as well. Hence the cost function converges uniformly and all the conditions for
transference-plan convergence are satisfied.

A.5 Proof of Theorem 1

The decomposition of Equation 13 is straightforward to derive. The key ingredient is showing that, for any π,

E[Eπ φ̂ξ] = E[Eπ φξ] + E[Eπ(φ̂ξ − φξ)] = E[Eπ φξ] + E[Eπ b̂ξ].

Then, by setting π = π̂, we obtain E[Eπ̂ φ̂ξ − Eπ∗ φξ] = E[Eπ b̂ξ] + E[Eπ̂ φξ − Eπ∗ φξ], and the rest follows from
linearity of expectation. Equipped additionally with Lemma 3, we can show that every one of these expectations
vanishes asymptotically as in Equation 14. We restate the main decomposition;

E[Eπ̂ φ̂ξ − Eπ∗ φξ] = E[Eπ̂ b̂ξ] + E[Eπ̂ φξ − Eπ̂∗ φξ]︸ ︷︷ ︸
(A) negative regret

+E[Eπ̂∗ φξ − Eπ∗ φξ]︸ ︷︷ ︸
(B) discretization

By uniform convergence in the nuisances, we have the first error-localization term converge to zero. Both (A) and
(B) likewise converge due to the weak respective convergences in the transference plans as stated by Lemma 3.

A.6 Proof of Corollary 1.1

Firstly we notice that E[Eπ̂ b̂ξ] =
∫
T E[b̂ξ(U)π̂(ξ|U)] dξ. Taking absolute values,∣∣∣E[Eπ̂ b̂ξ]

∣∣∣ ≤ ∫
T
E
∣∣∣b̂ξ(U)π̂(ξ|U)

∣∣∣ dξ = ∫
T

∥∥∥b̂ξπ̂∥∥∥
1
dξ (where this norm is over the expectation)

≤
∫
T

∥∥∥b̂ξ∥∥∥
∞
∥π̂∥1 dξ (by Hölder’s inequality)

=

∫
T
sup
u∈U

{
|b̂ξ(u)|

}
p(ξ) dξ (by the prior constraint on the marginal)

= Ep(ξ) sup
u∈U

∣∣∣b̂ξ(u)∣∣∣.
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A.7 Proof of Corollary 1.2

We begin by proving the univariate-treatment case, for simplicity. The univarite nudge will be denoted as ξ0.

Since w(|ξ0|, u) is monotonically non-decreasing in |ξ0|, so is the function v(ξ0) ≜ supu∈U w(|ξ0|, u), which is an
upper bound of ξ0 7→ supu∈U |b̂ξ0(u)|. For nudge-prior CDFs (F1, F2) we have F1(ξ

0) ≥ F2(ξ
0) for all ξ0 > 0 and

F1(ξ
0) ≤ F2(ξ

0) for all ξ0 < 0, by the dispersion assumption. Also, for k ∈ {1, 2},

Epk
v(ξ0) =

∫ +∞

−∞
v(ξ0)pk(ξ

0) dξ0 =
[
v(ξ0)Fk(ξ

0)
]+∞

−∞
−
∫ +∞

−∞
v̇(ξ0)Fk(ξ

0) dξ0

∴ Ep2
v(ξ0)− Ep1

v(ξ0) = [v(+∞)− v(+∞)]︸ ︷︷ ︸
→0

+

∫ +∞

−∞
v̇[F1 − F2] dξ

0 (by finite limit assumption)

=

∫ +∞

0

v̇[F1 − F2] dξ
0︸ ︷︷ ︸

≥0

−
∫ −∞

0

v̇[F1 − F2] dξ
0︸ ︷︷ ︸

≤0

≥ 0.

To generalize to multivariate nudges, we bring in the multivariate densities p1(ξ), p2(ξ) as well as their multivariate
CDFs. The above inequality can be attained for vectors ξ by iterated integration on each dimension.

B EXPERIMENTAL SETUP

All experiments were performed in an internal cluster of Intel Xeon servers with Nvidia 1080Ti GPUs.

B.1 TCGA

There were 9,659 individuals in this panel dataset with sampled expressions for 4,000 genes. Like in previous
usages of TCGA for causal-effect benchmarking, we projected the genes into a smaller set of variables. In our case
we built the outcomes as random polynomials in these random projections. Namely, with all Z variables denoting
matrices with i.i.d standard Gaussian random entries, and G the (genes × units) expression matrix, we projected

X̃ = ZxG, T̃ = (Zt + Zx→tZx)G

and let X and T be the z-score normalized versions of these projections. We had 60 covariates and 4 treatments
for the purpose of our experiments. It follows that, Zx ∈ R60×4000, Zt ∈ R4×4000, and Zx→t ∈ R4×60. The latter
is a mixing matrix that increases dependence between X and T , i.e. covariate shift. Now, by stretching the
notation, we also considered Zx→y ∈ R4×60 and Zt→y ∈ R4×4 to project the observed variables into 4 latent
variables that passed through nonlinearities to form the outcome, which took the structural form

Y = softplus

(
−

4∑
b=1

(Zx→yX
√

4/60 + Zt→y T
√
60/4√

64

)b
− ∥[X T ]∥62 + S

)
, where S ∼ Normal(0, 0.12).

The scaling terms serve to weigh the treatment and covariates similarly. The norm on the concatenated covariates
and treatments exists to ensure that extreme treatments push the outcome towards zero and not +∞.

Estimation. As for the specific invocation of Algorithm 1, we estimated nuisances on a classic 5-fold dataset
split using typical 2-layer, 50-unit, SiLU-activated feedforward neural networks (as well as for the final step
of policy regression.) Batches had size 256, training always ran for 1024 epochs, nudge sample sizes were also
1024 for the OT step, and ADAM learning rates were set to 1× 10−5 for the outcome model and 5× 10−5 for
everything else by simple hyperparameter search via the validation sets. When OT was used, we employed the
rendition of Equation 10 with γ = 0 (for no L1 regularization). This way, we did not have to tune any further
hyperparameters, and we could efficiently repeat the whole experimental setup for many random seeds.
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B.2 Yelp & IRS

There were 150,243 restaurants with valid entries in the Yelp dataset (Yelp, 2023). We extracted five-dimensional
UMAP (McInnes et al., 2018) embeddings from BERTopic (Grootendorst, 2022) on the establishments’ category
fields. These counted as covariates. They were supplemented by the establishments’ number of reviews, average
score, and whether they were open or permanently closed. For the purpose of this section, we denote all
those covariates as X1:5 (UMAP), X6, X7, X8 respectively. The treatment, T , is (latitude, longitude) of the
establishment. We also obtained resident income information for the ZIP codes of T via an IRS dataset (Internal
Revenue Service, 2020). The number of people (field “N2”) in the top two brackets, #6 and #5, were used in
constructing the link to the synthetic revenue outcome variable. We denote these count variables as R1(T ), R2(T ).

The revenue outcome is modeled as

Y =
[10R1(T ) +X8R2(T )]

(√
X6 + S

)
X7

∥X1:5∥2
, where S ∼ Exp(µ = 10),

which heterogeneously relates revenue to neighborhood income and Yelp reviews, incorporating nonlinear noise S.

Nuisance estimation. We used XGBoost (Chen and Guestrin, 2016) with 5-fold cross-validation to select an
outcome model, using grid search over 3–10 maximum depths and {4k, 8k, 12k, 16k, 20k} tree-ensemble sizes.

For propensity-related models, we trained feedforward neural networks with SiLU activations, width of 256
neuronal units, and depth of 3 layers. ADAM learning rates were 10−5 for 1, 000, 000 epochs, with dropout of 5%
and weight decay of 10−5.

Policy learning. The OT program is employed with (1,000 nudges × 1,000 units) on the second/test sample
per experimental invocation.

Dataset access. The Yelp dataset and its terms of use can be accessed at https://www.yelp.com/dataset.

https://www.yelp.com/dataset
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