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Abstract

For training an encoder network to perform
amortized variational inference, the Kullback-
Leibler (KL) divergence from the exact poste-
rior to its approximation, known as the inclu-
sive or forward KL, is an increasingly popular
choice of variational objective due to the mass-
covering property of its minimizer. However,
minimizing this objective is challenging. A
popular existing approach, Reweighted Wake-
Sleep (RWS), suffers from heavily biased gra-
dients and a circular pathology that results in
highly concentrated variational distributions.
As an alternative, we propose SMC-Wake, a
procedure for fitting an amortized variational
approximation that uses likelihood-tempered
sequential Monte Carlo samplers to estimate
the gradient of the inclusive KL divergence.
We propose three gradient estimators, all of
which are asymptotically unbiased in the num-
ber of iterations and two of which are strongly
consistent. Our method interleaves stochas-
tic gradient updates, SMC samplers, and it-
erative improvement to an estimate of the
normalizing constant to reduce bias from self-
normalization. In experiments with both sim-
ulated and real datasets, SMC-Wake fits vari-
ational distributions that approximate the
posterior more accurately than existing meth-
ods.

1 INTRODUCTION

Amortized variational inference (VI) fits an encoder
qϕ(z | x) to approximate the posterior for each x in a
dataset D = {x1, . . . , xn}. The encoder parameters ϕ
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are selected to minimize some divergence between the
variational posteriors qϕ(z | x) and the exact posteri-
ors p(z | x), averaged over observations x ∈ D. The
forward KL divergence (Equation 1), also known as
the inclusive KL divergence, is an increasingly popular
variational objective because minimizers qϕ tend to be
mass covering (overdispersed) with respect to the true
posterior (Gu, Ghahramani, and Turner, 2015); this
property is desirable for applications benefiting from
conservative uncertainty quantification. In contrast,
reverse KL minimizers tend to be mode-seeking and to
underestimate uncertainty (Domke and Sheldon, 2018).

Reweighted Wake-Sleep (RWS) is a popular method
for performing amortized variational inference that at-
tempts to minimize the forward KL divergence, but,
surprisingly, in practice wake-phase training can re-
sult in variational posteriors that are severely under-
dispersed (Le et al., 2019). We conjecture that this
behavior results from a “circular pathology” that arises
from fitting qϕ with particles proposed from qϕ itself
(Section 3).

To address these limitations of RWS, we propose SMC-
Wake, a method to fit an amortized encoder by minimiz-
ing the average forward KL divergence via stochastic
gradient descent (SGD) with gradients estimated using
sequential Monte Carlo (SMC) samplers (Section 2).
We propose three new estimators of the gradient of the
forward KL that combine SMC samplers in different
ways (Section 4), and we prove that each is asymptoti-
cally unbiased and that two are also strongly consistent
(Section 4.3). Our method compares favorably to those
in related work (Section 5), and we demonstrate these
advantages empirically in a variety of experimental
settings (Section 6). Compared to other forward KL
minimization methods based on importance sampling,
SMC-Wake leverages higher-fidelity particle approx-
imations with lower-variance weights, resulting in a
stable training regime that avoids weight degeneracy
and the circular pathology we identify in RWS.
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2 BACKGROUND

2.1 Reweighted Wake-Sleep

Given a dataset D = {x1, . . . , xn}, the wake-phase
update to the variational parameters in reweighted
wake-sleep (RWS) (Bornschein and Bengio, 2015) aims
to minimize the average forward KL divergence:

1

n

nX
j=1

KL(p(z | xj) || qϕ(z | xj)). (1)

The gradient of this objective, however, is generally
intractable; even a Monte Carlo estimate of it requires
sampling from the exact posteriors p(z | xj) for each
xj ∈ D. Instead, RWS approximates the gradient of
each term of Equation 1 using self-normalized impor-
tance sampling, with the current iterate of qϕ(z | x)
serving as the proposal. With K particles, the resulting
gradient estimator is

−
KX
i=1

wi∇ϕ log qϕ(zi | x), where wi =
w̃iP
j w̃

j
, (2)

w̃i = p(zi,x)
q�(zijx) are unnormalized importance weights,

and z1, . . . , zK
iid∼ qϕ(z | x) for a given x. Although

biased, this estimator converges almost surely to the
gradient of the forward KL divergence as K →∞, un-
der mild conditions (Owen, 2013). RWS also includes a
sleep phase that averages exact gradients of simulated
(“dreamt”) data in a likelihood-free approach to infer-
ence. However, this approach has its own limitations
and has been shown to underperform the wake-phase
update in some cases (Le et al., 2019).

2.2 Sequential Monte Carlo samplers

Sequential Monte Carlo (SMC) samplers (Del Moral,
Doucet, and Jasra, 2006) compute estimates of µ =
Eγ(z)f(z) for an integrable test function f and a tar-
get distribution γ. SMC samplers generalize self-
normalized importance sampling (SNIS) (Owen, 2013):
instead of a single target γ, a sequence of targets
γ1, . . . , γT is approximated. Even if only a single target
γ is of interest, SMC samplers can improve estima-
tion through annealing. One selects a sequence of
distributions such that γ1 is tractable and γT = γ,
with intermediate distributions that facilitate moves
between these (Chopin and Papaspiliopoulos, 2020).

In a Bayesian setting, where approximations of the
posterior are of interest, typically the final target is
γ

d
= p(z | x) for some observation x. A particular

sequence of targets is given by likelihood-tempered
sequential Monte Carlo (LT-SMC) (Chopin and Pa-

paspiliopoulos, 2020). LT-SMC runs SMC samplers
using a base distribution, typically the prior p(z), as
the initial target γ1, and then anneals toward p(z | x)
through the intermediate targets γt(z) ∝ p(z)p(x | z)τt
with 0 = τ1 < · · · < τT = 1.

SMC samplers form discrete or empirical approxima-
tions to each distribution γt(z). The discrete ap-
proximation to γ1 is computed by importance sam-
pling, which produces an initial K-particle approxi-
mation Cat(z1:K1 , w1:K

1 ) to γ1. Then, at each stage
t = 1, . . . , T − 1, three distinct steps are performed:

Resample: Draw z
(i)
t

iid∼ Cat(z1:Kt , w1:K
t ), i ∈ [K].

Mutate: Propose zit+1 ∼M(z
(i)
t , dzt+1), i ∈ [K].

Update: Recalculate weights w1:K
t+1 for z1:Kt+1 .

Above, Cat(·, ·) denotes a categorical distribution and
M(·, dz) denotes a transition kernel. The weight up-
date depends on the transition kernel. Expectations
with respect to the posterior γT = p(z | x) can be
approximated by Monte Carlo integration, that is,
EγT f(z) ≈

PK
i=1 w

i
T f(z

i
T ). These approximations are

biased but consistent as K →∞ with bias and variance
of order O( 1

K ) (Chopin and Papaspiliopoulos, 2020).

The random variables z1:Kt and w1:K
t for t < T are aux-

iliary: they are not used to approximate Ep(zjx)f(z),
but to guide particles toward areas of high mass in the
target distribution. Resampling eliminates particles
with low weights, while mutation and reweighting pro-
vide a means to produce new particles and to weight
them according to their quality with respect to the
subsequent target γt+1(z).

Like SNIS, SMC only requires the evaluation of an un-
normalized density γ̃t(z) of each target distribution, as
is typically required in a Bayesian setting. Compared
to Markov chain Monte Carlo (MCMC) methods, SMC
typically requires many fewer steps (e.g., T < 100)
and is more readily adaptable: for example, the muta-
tion kernel need not satisfy detailed balance conditions
(Naesseth, Lindsten, and Schön, 2019). Although SMC
is more expensive than SNIS due to the T > 1 stages,
parallelization of operations across the K particles can
be highly efficient.

3 MASS CONCENTRATION IN RWS

To fit an amortized encoder network to minimize the
forward KL divergence through iterative optimization,
we repeatedly evaluate its gradient:

1

n

nX
j=1

Ep(zjxj)∇ϕ log qϕ(z | xj). (3)
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Doing so requires us to evaluate expectations with re-
spect to the posteriorsp(z j x j ). Estimating each term
of Equation 3 using self-normalized importance sam-
pling (SNIS) with q� as the proposal, as in wake-phase
training, can result in degenerate variational distribu-
tions that concentrate mass. Le et al. (2019) �rst noted
this degeneracy for smallK , but our case studies show
that it persists in practice even for large numbers of
particles, such asK = 1000, and, surprisingly, it is not
resolved by taking a defensive approach to importance
sampling (Section 6). We conjecture that this failure
mode is due to a �circular pathology� that arises when
simultaneously proposing fromq� to optimize the score
of q� itself. Consider the wake-phase gradient

�
KX

i =1

wi r � logq� (zi j x)

for �xed x, with wi denoting the normalized weights.
This gradient can be viewed as a Monte Carlo estimate
of the gradient of the surrogate objective

E
z1 ;:::;z K iid

� q� (zjx )
�

KX

i =1

wi logq� (zi j x) (4)

if one places stop gradient operators on the weights and
the law used to generate samples (refer to Appendix B
for more details). We now investigate the properties
of this objective. Note that wake-phase updates do
not directly optimize Equation 4, but the wake-phase
gradient estimator is computed identically to a Monte
Carlo estimator of the gradient of Equation 4 with
stop gradient operations in place. It is illustrative to
consider what might go wrong if one attempted to
minimize this surrogate objective directly, as wake-
phase training dynamics may behave similarly.

Let L (q� ) denote the value of the surrogate functional
above for any given proposal distribution q� . When
K = 1 we note that this objective can made arbitrarily
low by choosing a value ofq that is quite peaked (and
also arbitrarily di�erent from the true posterior). For
any x, a samplez0 � q� (z j x) is drawn and the objec-
tive is approximated using the log of its own density, i.e.
logq� (z0 j x). Thus, a highly peaked q� can trivially
achieve an arbitrarily low value of the objective. This
result should not be so surprising: SNIS fails when ap-
plied with only a single sample. As is well known, SNIS
also fails when the target is not absolutely continuous
with respect to the proposal. As a result, even taking
K to be arbitrarily large, it is possible to �nd peaked
proposals that are arbitrarily dissimilar from the true
posterior and yet lead to arbitrarily low values of the
surrogate objective.

Proposition 1. Let L (q) denote the surrogate objective

de�ned above for �xed x and �xed K 2 N. Let p denote
the posterior p(z j x). Then there existsq(z) 6= p(z j x)
such that L (q) < L (p).

Appendix B provides a proof. Proposition 1 implies
that even for arbitrarily large K , there exists aq with a
lower surrogate objective value than the exact posterior
has. Our proof constructsq � Unif(0 ; � ) for small � .

In practice, the same issue arises even whenp(z j
x) is absolutely continuous with respect to q� , as
demonstrated by the following toy example. Take
z � N (0; 102) and x j z � N (z;12). The exact pos-
terior is N ( 100

101 x; 100
101 ). Using K = 10; 000 importance

samples, we estimate the surrogate objective for each
of the highly peaked Gaussian variational distributions
in Table 1 for a �xed, simulated draw x. The estimated
objective for each peaked Gaussian is lower than the
estimated objective for the exact posterior.

Proposal Distribution Wake Objective

q � N (0; :00012) -4.690 (1.471)
q � N (0; :000012) -6.841 (1.947)
q � N (0; :0000012) -9.439 (1.497)
q � N (0; :00000012) -11.798 (1.585)
q � N ( 100

101 x; 100
101 ) 1.415 (0.008)

Table 1: Avg. surrogate objective values for highly-
peaked Gaussian proposals (standard errors in paren-
theses).

Using q� as a proposal for SNIS (as in RWS) is common,
perhaps because there is a known case in which doing so
results in unbiased SNIS estimates: ifq� (z j x j ) = p(z j
x j ) for all x j 2 D , the SNIS estimate of Equation 3
is unbiased. However, this special case is likely to be
irrelevant in real-world settings: �rstly, there may be
no parameters for which this equality holds due to the
variational gap and the �amortization gap� (Cremer,
Li, and Duvenaud, 2018), and secondly, the circular
pathology itself may prevent optimization trajectories
from converging to such parameter values. The circular
pathology can be remedied by using an SNIS proposal
that does not depend onq� , such as the prior p(z).
However, the prior is largely uninformative, so most of
the particles sampled from it will be of poor quality.

4 SMC-WAKE

To address the de�ciencies of RWS, we propose a
method called SMC-Wake for �tting q� (z j x) to mini-
mize the average forward KL divergence (Equation 1).
Our method is detailed in Algorithm 1. SMC-Wake
generates discrete particle approximationsP̂ to the
posterior p(z j x j ) for each point x j 2 D , and �ts
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the encoderq� (z j x) by using these to estimate the
gradient of the forward KL divergence. The proposed
method uses sequential Monte Carlo samplers to con-
struct discrete particle approximations to the posterior,
rather than importance samplers. SMC-Wake also uses
a gradient estimator that is consistent as the number
of SMC sampler runs tends to in�nity (with a �xed
number of SMC particles per sampler).

4.1 Our LT-SMC subroutine

For each point x j 2 D , SMC-Wake constructs discrete
particle approximations P̂ to p(z j x j ) using LT-SMC
(sketched in Algorithm 3, Appendix C). We perform
mutation at each stage using a random-walk Metropolis-
Hastings kernelM t (�; dzt ) that is invariant with respect
to 
 t � 1. Our exact implementation (Appendix C) fol-
lows that of Chopin and Papaspiliopoulos (2020) and
uses adaptive temperature selection and optional re-
sampling. Given an observationx j and a number of
particles K , LT-SMC provides a discrete approxima-
tion Cat(z1:K

T ; w1:K
T ) to the posterior p(z j x j ), which

we use to estimate a term of the gradient of the forward
KL divergence (Equation 3). In our notation, we hence-
forth suppress the dependence onT, as we always use
discrete particle approximations from the �nal stage T
to compute expectations. Importantly, the entire LT-
SMC procedure does not depend onq� . By using the
prior as the base distribution 
 1, LT-SMC avoids the
circular pathology that we previously identi�ed (Sec-
tion 3). Although the prior alone is uninformative as a
proposal, annealing along a tempering schedule results
in discrete particle approximations that approximate
the per-observation posteriorsp(z j x j ) well.

4.2 Consistent gradient estimation

For any �xed number of particles K and observation
x j 2 D , the particle approximations from LT-SMC
yield gradient estimators �

P K
i =1 wi r � logq� (zi j x j ),

which are biased for� j = � Ep(zjx j ) r � logq� (z j x j ).
This is problematic because stochastic gradient de-
scent based on biased estimators is not guaranteed to
converge. In this section, we propose three gradient
estimators that are asymptotically unbiased, including
two that are consistent. Our estimators accomplish
this by reducing the bias from self-normalization by
averaging the di�erent particle approximations that are
computed across the optimizer iterations. Asymptotic
results are obtained as the number of particle approx-
imations M ! 1 , where the number of particlesK
remains �xed.

Consider a �xed observation x. The �nal target

 T (z) / p(z; x) in LT-SMC is known up to a nor-
malization constant C such that p(z; x) = C
 T (z), i.e.,

C = p(x). Each individual LT-SMC sampler yields an
estimate

Ĉ =
TY

t =1

�
1
K

KX

i =1

~wi
t

�
; (5)

where ~w1:K
t are the unnormalized weights from Algo-

rithm 3. This estimate satis�es EĈ = C, with the ex-
pectation taken over all the random variables generated
by the SMC algorithm (Naesseth, Lindsten, and Schön,
2019). SMC-Wake constructs an estimate ofC from
M LT-SMC runs using the estimator 1

M

P M
m =1 Ĉ(m ) ,

where Ĉ(m ) is the estimate of the normalization con-
stant from iteration m 2 f 1; : : : ; M g. By the strong
law of large numbers, 1

M

P M
m =1 Ĉ(m )

a:s:! C asM ! 1 .

SMC samplers can provide unbiased estimates of
CEp(zjx ) f (z) for a test function f . As C = p(x) is
a high-dimensional integral, C is usually unknown and
so one typically divides by the estimateĈ, resulting in
bias. Within our iterative �tting procedure for q� , we
instead propose to combine many normalization con-
stant estimates produced by many runs of SMC. These
can be averaged withO(1) memory to iteratively re�ne
our estimate of C while simultaneously �tting the vari-
ational parameters � . As the number of LT-SMC runs
M increases, 1

M

P M
m =1 Ĉ(m ) converges toC, leading to

unbiased estimates ofEp(zjx ) f (z) as M ! 1 .

Table 2 provides three di�erent ratio estimators, con-
structed with f (z) = �r � logq� (z j x) as the test
function for estimating the gradient of the forward KL
divergence. In each case,z1:K

(m ) , w1:K
(m ) , and Ĉ(m ) denote

the atom positions, weights, and normalizing constant
estimates returned by the mth run of LT-SMC. For
r̂ (b) , ~z(m ) refers to a single draw fromCat(z1:K

(m ) ; w1:K
(m ) ).

Each of the numerators in Table 2 is an unbiased estima-
tor of CEp(zjx ) f (z). Dividing each by 1

M

P M
m =1 Ĉ(m )

yields an estimator of Ep(zjx ) f (z). The di�erent nu-
merators exploit di�erent aggregations of the empirical
distributions Cat(z1:K

(m ) ; w1:K
(m ) ) to approximate the poste-

rior p(z j x), each with di�erent memory requirements.

Table 2: Forward KL Gradient Estimators

Label Estimator Memory

r̂ ( a )
1

M
P M

m =1 Ĉ ( m )

� P K
k =1 w k

( m ) f ( z k
( m ) )

�

1
M

P M
m =1 Ĉ ( m )

O(MK )

r̂ ( b)
1

M
P M

m =1 Ĉ ( m ) f (~z ( m ) )
1

M
P M

m =1 Ĉ ( m )
O(M )

r̂ ( c) Ĉ ( M )

� P K
k =1 w k

( M ) f ( z k
( M )

�

1
M

P M
m =1 Ĉ ( m )

O(K )

In our amortized setting, because we have a collection
of data points D = f x1; : : : ; xn g, our method keeps
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track of the M di�erent LT-SMC runs for each point
x j 2 D . For any point x j 2 D , r̂ (a)

j ; r̂ (b)
j and r̂ (c)

j are
the three gradient estimators from Table 2 for a given
iteration of the training procedure. The SMC-Wake
procedure is detailed Algorithm 1, where we use the
generic gradient estimator r̂ : any of r̂ (a) , r̂ (b) , r̂ (c)

can be used. SMC-Wake interleaves stochastic gradient
descent steps that follow the gradient 1

n

P n
j =1 r̂ j with

LT-SMC runs (Algorithm 3). Here we average over
all n training observations, but a mini-batch will also
su�ce. Each r̂ j itself is an aggregate ofM samplers
for each point. Each additional run of LT-SMC com-
putes new particle approximations and normalizing
constant estimates for each pointx j 2 D . Each time
new particle approximations are computed for a given
point x j , the estimators r̂ (a)

j ; r̂ (b)
j or r̂ (c)

j are recom-
puted and the estimate of the normalizing constant
Cj = p(x j ) is re�ned. Algorithm 1 suggests rerunning
LT-SMC samplers for each point x j 2 D at each itera-
tion, but SMC-Wake can be made less computationally
demanding by distributing LT-SMC runs into batches.
In our experiments (Section 6), for example, we rerun
LT-SMC for only a single observation at each iteration.
It is also possible to decouple the process of running
LT-SMC with the process of optimization: perform
a large number of LT-SMC runs before optimization
begins, and then re-use these particles for every step
of the optimization.

Algorithm 1: SMC-Wake
Inputs: Data x1; : : : ; xn , encoderq� , likelihood

p(x j z), prior p(z), SGD step size� ,
number of particles K , temperatures � .

Initialize SMC j = ; , j = 1 ; : : : ; n
Repeat

for j = 1 ; : : : ; n /* (for each datapoint */
do

z1:K ; w1:K ; Ĉ  LT-SMC(x j ; p(x j
z); p(z); � )

SMCj = SMCj [ f [z1:K ; w1:K ; Ĉ]g
Compute r̂ j /* (See Table 2) */

end
�  � � � 1

n

P n
j =1 r̂ j

Until Convergence

Return q� .

4.3 Asymptotic analysis

We show that r̂ (a) ; r̂ (b) and r̂ (c) are asymptotically
unbiased and that the former two estimators are
strongly consistent. We begin with a well-known result:
the LT-SMC approximations to the posterior become

arbitrarily accurate as the number of particles K ! 1 .
The following proposition formalizes this result.

Proposition 2. For an observation x and a joint
model with prior p(z) and bounded likelihood density
p(xjz), let 0 = � 1 < � � � < � T = 1 denote a tem-
pering schedule. Let
 t (z) / p(z)p(x j z) � t denote
intermediate targets, and let M t (�; dzt ) be a sequence
of Markov transition kernels that leaves
 t � 1 invariant.
Let P̂ � Cat(w1:K

T ; z1:K
T ) be the particle distribution

produced by LT-SMC usingf � t ; 
 t ; M t gT
t =1 . Then, for

any measurable and bounded test functionf ,

lim
K !1

E
h�

EP̂ [f (z)] � Ep(zjx )) [f (z)]
� 2

i
= 0 :

A proof follows by applying Proposition 11.3 of Chopin
and Papaspiliopoulos (2020) with Gt (zt � 1; zt ) =
p(zt )p(xjzt ) � t � � t � 1 . Above, the outer expectation is
taken with respect to all variables generated by the
SMC algorithm. In our case, we are interested in the
test function f (z) = �r � logq� (z j x). Proposition 2
implies that gradient estimators based on a single LT-
SMC run are asymptotically consistent asK ! 1 . In
practice, however, �nite K must be used, resulting in
biased gradient estimators.

The estimators r̂ (a)
j ; r̂ (b)

j and r̂ (c)
j (Table 2) resolve

this bias. These estimators with �xed K are asymptoti-
cally unbiased as the number of LT-SMC runsM ! 1
and the former two are strongly consistent.

Proposition 3. For an observation x j , suppose that
f (z) = �r � logq� (z j x j ) is a bounded and measurable
function for any � 2 � . For m = 1 ; : : : ; M , let the
random variablesĈ(m ) , w1:K

(m ) , and z1:K
(m ) result from an

independent run of LT-SMC (Algorithm 3) with a �xed
temperature schedule. Then, the gradient estimators
r̂ (a)

j and r̂ (b)
j are strongly consistent for Ep(zjx j ) f (z)

in M and the estimator r̂ (c)
j is asymptotically unbiased

in M .

Appendix D provides a proof. Strongly consistent esti-
mators may be preferred, but are more costly: comput-
ing r̂ (a)

j and r̂ (b)
j require O(MK ) and O(M ) memory,

respectively, for each data pointx j . However, in our
experiments (Section 6), we �nd that SMC-Wake out-
performs wake-phase training even for relatively small
M , for which memory usage is not a limiting factor,
for example M = 100. Moreover, for any �xed number
of particles K , the estimator r̂ (c)

j is asymptotically
unbiased yet requires justO(K ) memory (regardless
of M ). This is advantageous compared to wake-phase
training, which uses biased gradient estimators and also
requires O(K ) memory. We further discuss these three
estimators and their memory usage in Appendix D.
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4.4 Extension to particle MCMC

Just as Markov chain Monte Carlo methodology can be
incorporated into SMC algorithms (e.g., the mutation
kernels in Algorithm 3), SMC samplers can be nested
within MCMC frameworks. Particle-Independent
Metropolis-Hastings (PIMH) (Andrieu, Doucet, and
Holenstein, 2010) is one method of constructing a
Markov chain that samples the posterior using multiple
runs of LT-SMC. Given a state z and a normalizing
constant estimate Ĉ, a proposed drawznew � P̂new

is accepted with probability � = min(1; Ĉnew

Ĉ
), where

P̂new ; Ĉnew are quantities from a new LT-SMC run.

For situations where memory is limiting, we propose
adding a PIMH outer loop to SMC-Wake to yield a
new algorithm: SMC-PIMH-Wake (Algorithm 2). Ac-
cepting or rejecting new particles within Metropolis-
Hastings steps takes the place of iterative aggregation.
For any data point x j , this procedure results in a conver-
gent Markov chain with p(z j x j ) as its stationary distri-
bution under mild conditions. SMC-PIMH-Wake yields
asymptotically unbiased estimates of the gradient of
the forward KL divergence as the number of Metropolis-
Hastings steps tends to in�nity with O(K ) memory,
similar to SMC-Wake with the gradient estimator r̂ (c) .
As the test function f (z) = �r � logq� (z j x j ) changes
with every gradient step, consistent estimates cannot
be obtained with �nite memory. In situations where
the variance of the gradient estimators computed by
LT-SMC is large, SMC-PIMH-Wake may provide lower-
variance gradient updates, e.g. by using the same SMC
sampler to estimate gradients for multiple gradient
steps consecutively.

Algorithm 2: SMC-PIMH-Wake

Initialize P̂j = Cat(z1:K ; w1:K ), Ĉj = Ĉ with
z1:K ; w1:K ; Ĉ  LT-SMC(x j ; p(x j z); p(z); � )

Repeat
for j = 1 ; : : : ; n do

z1:K
new ; w1:K

new ; Ĉnew  LT-SMC(x j ; p(x j
z); p(z); � )

Compute � = min
�

1; Ĉnew

Ĉ j

�

Set P̂j = Cat(z1:K
new ; w1:K

new ), Ĉj = Ĉnew w.p.
�

end

�  � � � 1
n

P n
j =1

�
� EP̂ j

r � logq� (z j x j )
�

Until Convergence

5 RELATED WORK

Variational Sequential Monte Carlo (VSMC) (Naesseth
et al., 2018), Filtering Variational Objectives (FIVO)
(Maddison et al., 2017), and Auto-Encoding Sequential
Monte Carlo (AESMC) (Le et al., 2018) are closely
related to each other; all use SMC to facilitate optimiza-
tion of bounds on the marginal evidence. In contrast
to SMC-Wake, these methods are tailored to sequential
data and optimize the reverse KL divergence. Optimiz-
ing the reverse KL divergence is particularly di�cult
within an SMC framework as computing gradients of
the reverse KL often relies on the reparameterization
trick; however, the resampling step of SMC is not easily
reparameterized. By minimizing the forward KL diver-
gence, we eliminate the need for reparameterization.

Markovian Score Climbing (MSC) (Naesseth, Lindsten,
and Blei, 2020) is also a method for optimizing the
forward KL. It uses an MCMC outer loop to achieve
asymptotic guarantees. In this way, MSC di�ers from
SMC-Wake (Algorithm 1), but is similar to SMC-PIMH-
Wake. MSC uses a conditional importance sampling
(CIS) transition kernel with q� as the proposal distri-
bution, rather than a Metropolis-Hastings kernel as
is used in SMC-PIMH-Wake. We show in Section 6.3
that our PIMH variant outperforms MSC, which mixes
slowly because initially q� is a poor proposal compared
to the particles generated by LT-SMC.

Neural Adaptive Sequential Monte Carlo (NASMC)
(Gu, Ghahramani, and Turner, 2015) is a non-
amortized method for sequential data (e.g., state-space
models) that adapts SMC mutation kernels to mini-
mize the forward KL divergence to the intermediate
targets. SMC-Wake di�ers from NASMC in its use
of Metropolis-Hastings kernels that do not depend
on q� , and in its gradient calculations that only use
particle approximations to the �nal target 
 T . Like
RWS, NASMC gradient estimators are also biased for
�nite K . Three related methods, namely, Annealed
Flow Transport (AFT) (Arbel, Matthews, and Doucet,
2021), Continual Repeated Annealed Flow Transport
(Matthews et al., 2022), and Nested Variational Infer-
ence (NVI) (Zimmermann et al., 2021), also sample
from a target distribution by �tting proposals to mini-
mize a sequence of divergences to intermediate targets.
These sampling methods can be incorporated into the
SMC-Wake framework: while we propose using LT-
SMC samplers, any SMC-based algorithm can be used.
The circular pathology is avoided as long as the param-
eters of the proposals are not shared with the amortized
encoderq� . Using methods such as these in place of
the LT-SMC subroutine in Algorithm 1 is a potential
direction for future research.
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6 EXPERIMENTS

6.1 Two moons

The �two moons� model has been extensively used in
the simulation-based inference literature to benchmark
existing algorithms (Greenberg, Nonnenmacher, and
Macke, 2019; Lueckmann et al., 2021). The generative
process for latent z 2 R2 and observedx 2 R2 �rst

draws z1; z2
iid� U(� 1; 1), and then draws two auxil-

iary variables a � U
�
� �

2 ; �
2

�
and r � N

�
0:1; 0:012

�
.

Finally, the observation

x> = p +
�
�

jz1 + z2j
p

2
;

� z1 + z2p
2

�
;

where p = [ r cos(a) + 0 :25; r sin(a)]. The posterior dis-
tribution on z given x takes the shape of two crescent
moons facing each other. Because these regions are
disconnected, separated by a zero density region of the
posterior, exploring the latent space is potentially di�-
cult and a highly �exible variational family is required
to approximate the posterior well. We use the neural
spline �ow (NSF) as the variational family, conditional
on a given observationx (Durkan et al., 2019).

Given 100 points x1; : : : ; x100 generated independently
from the two-moons model, we compare SMC-Wake
with estimator r̂ (a) , RWS (wake-phase training only),
and a defensive variant of RWS that performs impor-
tance sampling using the mixture 1

2 p(z) + 1
2 q� (z j x) as

a proposal. Defensive importance sampling has been
found to ameliorate the mass concentration problem
that can occur in wake-phase training whenq� is used
as the proposal (Le et al., 2019). Additionally, this
choice of proposal avoids a divide-by-zero error that
arises when the proposed particles all have zero as their
posterior densities.

Additional details of the training procedure and results
for r̂ (b) and r̂ (c) are in Appendix E. Figure 1 shows
the amortized variational posteriors q� (z j x16) as an
example. SMC-Wake is the only method that cap-
tures the shape of the posterior. Wake-phase training
severely concentrates mass into a single point-like re-
gion, exhibiting the degeneracy described in Section 3.
Appendix E shows that problematic mass concentra-
tion for RWS occurs quickly, within 1000 gradient steps.
While the defensive variant of RWS does better, it is
still far worse than the quality of the SMC-Wake ap-
proximations. Variational approximations for several
additional data points are shown in Appendix E.

6.2 Avoiding mode collapse in MNIST

We consider learning a model of MNIST digits to il-
lustrate that SMC-Wake, though an inference method,

Figure 1: Posterior approximations givenx16 by SMC-
Wake, Wake, and Defensive Wake. The bottom right
panel depicts the exact posterior distribution.

can nonetheless aid in model learning. Given 1000
normalized MNIST digits and labels f x i ; ` i g1000

i =1 , we
�t a conditional model p(x j `; z) to maximize the
importance-weighted bound (IWBO) (Appendix A)
while simultaneously �tting the encoder q� . This fol-
lows the reweighted wake-sleep (RWS) framework of
Bornschein and Bengio (2015). The model is based on
a sigmoid belief network (Saul, Jaakkola, and Jordan,
1996) and is given by

p (x j `; z) � N (�
�
W` z + b̀

�
; � 2I d); (6)

where � (�) denotes the sigmoid function,` 2 f 0; : : : ; 9g
denotes the label, and = f W0; : : : ; W9; b0; : : : ; b9g
denotes model parameters to be learned. The hyperpa-
rameter � = 0 :01 results in a highly peaked likelihood.
As the labels ` are �xed, this model �tting task is
equivalent to �tting a separate model for each digit
class. The amortized encoderq� (z j x; ` ) is �t jointly
with the model using both SMC-Wake and wake-phase
training, with alternating gradient updates for � and
 , respectively. We use the gradient estimatorr̂ (b) in
this example.

Additional details of the implementation are given in
Appendix F. Wake-phase gradient updates �t an en-
coder network that severely concentrates mass, learning
similar latent representations z for all digits in a given
class`. This results in mode collapse in the generative
model, visible by visualizing reconstructions (Figure 2).
Given di�erent instances of the zero digit class, for
example, the wake-phase reconstructions (middle) look
nearly identical. This occurs due to the pathological
concentration of q� (z j x; ` ) described in Section 3,
resulting in nearly identical latent representations for
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