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Abstract

The proliferation of decentralised electronic
healthcare records (EHRs) across medical in-
stitutions requires innovative federated learn-
ing strategies for collaborative data anal-
ysis and global model training, prioritis-
ing data privacy. A prevalent issue dur-
ing decentralised model training is the data-
view discrepancies across medical institu-
tions that arises from differences or availabil-
ity of healthcare services, such as blood test
panels. The prevailing way to handle this is-
sue is to select a common subset of features
across institutions to make data-views con-
sistent. This approach, however, constrains
some institutions to shed some critical fea-
tures that may play a significant role in im-
proving the model performance. This pa-
per introduces a federated learning frame-
work that relies on augmented graph atten-
tion networks to address data-view hetero-
geneity. The proposed framework utilises
an alignment augmentation layer over self-
attention mechanisms to weigh the impor-
tance of neighbouring nodes when updating
a node’s embedding irrespective of the data-
views. Furthermore, our framework adeptly
addresses both the temporal nuances and
structural intricacies of EHR datasets. This
dual capability not only offers deeper insights
but also effectively encapsulates EHR graphs’
time-evolving nature. Using diverse real-
world datasets, we show that the proposed
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framework significantly outperforms conven-
tional FL methodology for dealing with het-
erogeneous data-views.

1 INTRODUCTION

Electronic Health Record (EHR) datasets can play a
pivotal role in advancing medical research and optimis-
ing patient care (Yang et al., 2023; Alpert et al., 2023).
However, they are often decentralised across various
medical institutions due to privacy, regulatory, and
commercial considerations (Thakur et al., 2021). This
decentralisation makes global data analysis as well as
model training impractical (Rieke et al., 2020; Wang
et al., 2023). Federated Learning (FL) offers a promis-
ing solution by enabling extraction of insights from
data located in multiple places, all while preserving
the privacy and autonomy of the original data hold-
ers. Instead of aggregating data centrally, FL allows
data to remain at its source, transmitting only model
updates. Such an approach not only ensures the safety
of sensitive data but also adheres to stringent privacy
regulations (Cho et al., 2022; McMahan et al., 2017;
Kairouz et al., 2021).

A significant challenge with FL in this context is in-
consistency of the data-views across different medical
institutions. This heterogeneity in data-views results
from differences in the availability of medical services.
Some institutions may offer a comprehensive range of
medical services, while others may have limited re-
sources or specialised focuses. For example, arterial
blood gas (ABG) test panels may not be available
or well documented for a particular cohort of interest
across all the National Health Service (NHS) trusts in
the UK. This behaviour is further amplified in low and
middle-income countries (LMICs) where medical ser-
vices availability changes dramatically with geographi-
cal locations. While current FL methods overcome this
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heterogeneity by selecting a subset of common features
across all institutions to harmonise data-views, this of-
ten forces the omission of crucial features at some insti-
tutions, risking the loss of invaluable insights (Nguyen
et al., 2022; Soltan et al., 2023; Rieke et al., 2020).

To address these challenges, this paper introduces the
Augmented Graph Attention Networks (AGAT) that
are based on similarity-wise graphs and can be incor-
porated in any FL framework to allow a more effec-
tive analysis of the EHR datasets across institutes or
clients. The proposed architecture introduces an in-
novative alignment augmentation layer into existing
self-attention mechanisms, which have been tailored
to underscore the relevance of neighbouring nodes in a
graph during the embedding update phase (Veličković
et al., 2018). A unique aspect of this alignment aug-
mentation layer is its adeptness in aligning feature di-
mensions, ensuring unbiased and consistent updates to
a graph node’s embedding across diverse data-views.
By doing so, we achieve a holistic representation that
captures the intrinsic relationships and dependencies
among graph nodes. This refined method promises
improved performance and adaptability across var-
ied data scenarios. Moreover, in the realm of feder-
ated learning, the traditional approach of model aggre-
gation as depicted in federated averaging (McMahan
et al., 2017) often doesn’t account for the varying sig-
nificance of contributions from individual clients. This
one-size-fits-all approach may lead to sub-optimal ag-
gregation outcomes. Consequently, we have developed
an innovative attention mechanism at the server level,
which skillfully weighs the significance of individual
client contributions during aggregation.

Furthermore, recognising the dynamic and temporal
characteristics of data from various institutions is vi-
tal. Each data point marks a distinct episode in a
patient’s health journey, with effective capture of this
temporal information being imperative. Such insights
can trigger early interventions and improve patient
outcomes by offering a deeper understanding into dis-
ease progression and treatment efficiency (Atif et al.,
2023; Mateos and Rajawat, 2013). With the goal of
creating more reliable and sophisticated healthcare so-
lutions, we have enhanced our architecture to mirror
the evolving nature of graphs across diverse clients. A
dynamic graph, evolving over time, can be depicted
using a series of static graphs or snapshots (Skard-
ing et al., 2021). Many dynamic graph representation
methods utilise Recurrent Neural Networks (RNNs)
(Manessi et al., 2020; Chen et al., 2019; Niknam et al.,
2023; Li et al., 2019), but RNNs require vast amounts
of training data and face scalability issues with increas-
ing time steps (Sankar et al., 2020). Here, we incor-
porate a time-sensitive embedding, enriching current

node features with a temporal dimension that reflects
data from the previous time step. This modification
ensures a dynamic representation of data transitions
over time. The key contributions we bring to this work
include:

• We unveil the Augmented Graph Attention Net-
works (AGAT) tailored for EHR dataset analysis in
federated learning settings, built on similarity-wise
graphs.

• Introduced within AGAT, the Alignment Augmen-
tation Layer aligns feature dimensions, ensuring
consistent embeddings across different data-views.

• We adopt an attention mechanism at the server
level, emphasising individual client contributions
during aggregation.

• Recognising EHR’s temporal nature, we embed a
time-sensitive layer, reflecting data transitions over
time.

2 EARLIER STUDIES

Federated learning across heterogeneous data-views is
a scarcely explored problem. As discussed above, ear-
lier studies have simply selected a subset of common
features across all clients to make data-views consis-
tent and enable federated training of a global model.
In a prominent example, Soltan et al. trained global
models for triaging COVID patients across four NHS
trusts, where two of the trusts lacked arterial blood
gas (ABG) test panels, by selecting common features
to align data-views (Soltan et al., 2023).

Apart from this, as discussed by Aviv et al. (Shamsian
et al., 2021), learning personalised or client-specific
federated models using hypernetworks also presents an
ideal solution for data heterogeneity. This FL frame-
work trains a global hypernetwork at the server that
outputs weights for personalised models at each client
where client’s model architectures is dictated by its re-
spective data-view. Despite its potential advantages,
hypernetworks are often difficult to train and informa-
tion sharing across clients is only passive or weak.

Comparison against the proposed framework:
As previously mentioned, the proposed framework
maintains all features across clients without the need
for cumbersome preprocessing associated with basic
feature alignment. Unlike hypernetwork-based FL, the
proposed framework can yield both global and person-
alised models as well as improved information sharing
among clients.
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Figure 1: Illustration of the proposed federated learning framework designed to handle heterogeneous data views
across multiple clients in a healthcare setting. A central server initialises global models graph attention networks
and coordinates the training process. Each client employs data augmentation mechanism to harmonise different
data-views and exploits Graph Attention Layers to perform effective local training as well as to generate gradient
updates for the global model. The server aggregates these gradients and updates the global model.

3 PROPOSED METHOD

The proposed framework integrates federated averag-
ing with AGAT and attention aggregation to process
EHR datasets. Figure 1 depicts a systematic illustra-
tion of the proposed framework. We also introduce a
dynamic variant of the proposed framework to capture
temporal dynamics of the EHR datasets with distinct
data-views.

3.1 Notation and Problem definition

The proposed FL framework considers K clients that
are assumed to participate in each training round.
Each client can have the EHR dataset with distinct
data-views. A centralised server initialises the global
model and coordinates the training process across
these clients.

The proposed framework can be applied in two set-
tings: static and dynamic. In static setting, the
EHRs are conceptualised as a static graph G = (P,E),
where P is the set of nodes representing individual
patients and E is the set of edges connecting them.

Each node has associated features, denoted as FPi
=

{f(1,Pi), f(2,Pi), . . . , f(M,Pi)}, that include a diverse ar-
ray of medical and demographic details such as age,
medical history, and current conditions. The dimen-
sions of these features could vary for different clients.
This static setting can be seen as analogous to working
with tabular data.

In dynamic setting, we introduce a dynamic graph Gd,
which is comprised of a series of static graph snap-
shots. Specifically, Gd = {G(1), G(2), . . . , G(T )} for T
time steps. At each time step t, the sets of nodes and
edges are represented by P (t) and E(t), respectively.
These sets are allowed to evolve over time to accom-
modate potential changes in either the node or edge
sets. Although the dimensionality of the features as-
sociated with each node may differ across clients, it is
assumed to remain constant across various snapshots
for each individual client.

3.2 Server-side Processing

The server decides the architecture of global aug-
mented graph attention (AGAT) network and ini-
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tialises the parameters θ. At this stage, it assumes
that each client has a fixed or consistent data-view
with n features. During each round of training, the
server invokes the ith client to perform local training
and provide gradients ∇θi

. The gradients provided
by each client are aggregated using attention scores to
update the global model θ as:

θ = θ − η

K∑
i=1

βi∇θi
, (1)

Here βi is the attention score for ith client and η is the
learning rate to update global model θ.

3.3 Client-side Training

During each round of training, the ith client receives
the global parameters from the server, and it initialises
its local model using these parameters i.e. θi = θ. The
client performs local training using the local dataset
for multiple epochs (irrespective of the data-view) to
obtain updated local model parameters θ′

i. Then, the
gradient update for global model can be computed as:

∇θi
= θi − θ′

i. (2)

This gradient update is sent to the server for updating
global model parameters.

3.3.1 Augmented Graph Attention Network

Augmentation Layer: We introduce a layer before
the attention layers (of graph attention networks) to
align the data-views or feature dimension across all
clients. To achieve this, we generate an “additional”
feature representation for each patient that is aug-
mented or concatenated with the original features to
obtain the cohesive n-dimensional representation as re-
quired by the design of the global model.

For a specific client Ck with an associated dataset Dk

having m-dimensional features, we estimate the pa-
rameters µ(k) and σ2

(k) for the normal distribution of

the features of nodes in Dk. New (n−m) features for
node Pi are then generated using the equation:

Snew
(Pi,k)

∼ N (µ(k), σ
2
(k)) (3)

Subsequently, we construct the new n-dimensional fea-
ture set for node Pi by concatenating these newly gen-
erated features with the existing ones, as formulated
below,

F new
(Pi,k)

= Snew
(Pi,k)

||F(Pi,k) (4)

Constructing Graph: As discussed earlier, each pa-
tient forms a node of the graph. We leverage the K-
Nearest Neighbour (K-NN) to identify the neighbour-
hood (N ) of each node where nodes are represented by

n-dimensional features (Dong et al., 2011). Euclidean
distance is used as a metric for identifying the nearest
neighbours. Two nodes Pi and Pj with feature repre-
sentations F new

Pi
and F new

Pj
are connected by an edge in

graph G = (P,E) if Pi ∈ NPj
(where NPj

represents
the neighbourhood of Pj) or vice-versa.

Attention Layers: After the augmentation layer,
AGAT network consists of attention layers. The in-
put comprises a graph with N nodes corresponding
to N patients where each node is represented by new
features {Fnew

P1
, Fnew

P2
, ..., Fnew

PN
}, Fnew

Pi
∈ Rn. Each at-

tention layer generates a new set of patient or node
features as its output H = {HP1

, HP2
, ...,HPN

}, HPi
∈

Rn′
, which then serves as the input for the subsequent

layer. The forward propagation for each patient or
node Pi in layer l is given by,

H(l+1)
pi

= Sigma

 ∑
u∈NPi

αPuW
(l)H(l)

u

 , (5)

where NPi
is the set of neighbours of Pi, W

(l) is the
weight matrix for layer l, Sigma is the activation func-
tion, and αPu is the attention score calculated as,

αPu
=

exp
(
LeakyReLU

(
a⃗⊤[WHPi

||WHu]
))∑

v∈NPi
exp (LeakyReLU (⃗a⊤[WHPi

||WHv]))

(6)

Here, the attention mechanism is a single-layer feed-
forward neural network, parameterised by a weight
vector a⃗ ∈ R2n, and applying the LeakyReLU non-
linearity. Where .⊤ represents transposition and || is
the concatenation operation. After attention layers,
the node or patient’s embedding is mapped to predict
outputs using fully-connected layers.

3.4 Dynamic Graph Learning

Graph attention mechanisms are often designed to
work in static settings where the graph structure is
fixed over time. When the graph is dynamic, time be-
comes another crucial aspect to consider (Veličković
et al., 2018; Oskarsson et al., 2023). In the context of
discrete dynamic graphs, changes can occur at specific
time steps t = {1, 2, . . . , T}, where edges and nodes
may be added or removed (Skarding et al., 2021; Zhang
et al., 2023). To adapt our framework for a discrete dy-
namic graph, we extend the architecture to take into
account the dynamic nature of the graph as shown
in Figure 2. To this end, we add a time-dependent
embedding to our modelling. A time-dependent vec-
tor is added to the existing node features, providing
a glimpse of what the graph looks like at the previ-
ous time step. The idea is to use node features at the
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Figure 2: Schematic representation of the Temporal Augmented Graph Attention Network (AGAT) within a
federated learning framework, emphasising the integration of dynamic graph learning, attention aggregation, and
the processing of Electronic Health Records (EHR) datasets.

previous time step to generate a temporal representa-
tion that can be added to the current node features.
For any ith node Pi, we create a temporal embedding
ePi(t) at time-step t by feeding the node’s features
FPi(t − 1) from the previous time step t − 1 through
a feed-forward network or multi-layer perceptron as
shown in Equation 7.

ePi
(t) = MLP(FPi

(t− 1)) (7)

The temporal embedding ePi
(t) is then added to the

existing node features FPi for the current time step t
to generate updated node features F ′(t).

F ′
Pi
(t) = FPi + ePi(t) (8)

Finally, we compute the attention scores using the up-
dated node features.

4 EXPERIMENTATION

4.1 Datasets Used

The proposed framework is evaluated on the following
healthcare datasets:

• CURIAL Datasets: The CURIAL datasets
(Soltan et al., 2021, 2022) consist of anonymised
electronic health record (EHR) data (including
demographic information, blood tests, and vital
signs) from emergency departments (EDs) across
four independent United Kingdom (UK) National

Health Service (NHS) Trusts i.e. Bedford, Ox-
ford, Portsmouth and Birmingham Trusts. These
datasets are used for the binary classification task of
diagnosing COVID-19. Among four trusts, Bedford
and Portsmouth do not contain blood gas panel tests
resulting in data-view heterogeneity. As a result, pa-
tients at Bedford and Portsmouth are represented by
21-dimensional feature vectors, while other Trusts
use 28-dimensional vectors to represent patients.

• PhysioNet 2012 Dataset (Silva et al., 2012): This
dataset deals with in-hospital mortality prediction
based on the first 48 hours of ICU stay. Each ICU
stay is represented by a time-series with 48 time
steps (separated by 1 hour). Each time-step is rep-
resented by a 44-dimensional feature representation.
This dataset contains 8000 time-series examples that
are randomly divided into 5 “hypothetical” clients
for enabling federated learning.

• eICU Collaborative Research Database: eICU
(Pollard et al., 2018; Tang et al., 2020) is a large
multi-centre dataset containing 164, 333 patients’
ICU stays as time-series samples. We use a pre-
processed version (Tang et al., 2020) of this dataset
for predicting shock in the next 4 hours. As a result,
each ICU stay is represented by a time-series con-
taining 4 time-steps where each time-step is repre-
sented by the 375-dimensional feature (mainly vital
signs and demographic features).

For federated settings, we select 15 centres or hospi-
tals containing the maximum number of examples.
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(a) Standard scenario

(b) Heterogeneous data-views

Figure 3: Performance of the proposed framework
against different baselines on CURIAL datasets.

4.2 Designed Experiments

We compare performance of the proposed feder-
ated learning framework against the standard Fe-
dAvg (McMahan et al., 2017), hypernetwork-based
FL (Shamsian et al., 2021) and standalone or client-
specific models (only trained on a client’s data). For
baselines, we use three-layered DNN for CURIAL and
LSTM-based binary classifiers for both PhysioNet and
eICU datasets. These models are deployed as stan-
dalone baselines as well as employed in FedAvg and
hypernet-based FL for federated baselines.

We design two different scenarios to evaluate the pro-
posed framework and baselines:

• Consistent data-views: This scenario is charac-
terised by consistent data-views across all clients. In
case of CURIAL, we manually aligned data-views
across NHS trusts by selecting common subset of
features across all trusts.

• Heterogeneous data-views: In these scenarios, the
data-views across clients are forced to be different.
In CURIAL, there is an inherent heterogeneity be-
tween data-views across different Trusts. For Phys-
ioNet and eICU, we randomly remove a significant
number of features from clients to induce hetero-
geneity.

As FedAvg can only work on consistent data-views,

(a) Standard scenario

(b) Heterogeneous data-views

Figure 4: Performance of the proposed framework
against different baselines on PhysioNet 2012 chal-
lenge datasets.

we manually aligned features to make data-views
consistent before FedAvg.

Train-test distribution & performance evalua-
tion: 60%, 15% and 25% of examples at each client
are used for training, validation and testing. The test-
ing is performed at each client after personalising the
global model (after clients’ local training). The area
under ROC curve (AUROC) is used as a performance
metric for all experiments.

The number of examples at each client, hyperparame-
ters and the details regarding the number of features
available to each clients (in heterogeneous scenario)
are provided in the supplementary document.

5 RESULTS & DISCUSSION

5.1 Performance on CURIAL Datasets

Figure 3 illustrates the performance of the proposed
framework and comparative baselines on four different
NHS clients. The analysis of this figure highlights the
following:

• In case of heterogeneous data-views, the proposed
framework is able to perform either better or compa-
rable to the standalone DNN and GAT. This shows
that the proposed framework is able to overcome dif-
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Figure 5: Average gradient of inputs with respect to trained model outputs at each client. The first 21 features
are same across all clients. Oxford and Birmingham have additional 7 features.

Table 1: Performance of different comparative method in consistent data-view scenario on the eICU dataset.

Client Methods

GAT-standalone LSTM-standalone FedAvg Hypernet Proposed

1 0.611±0.05 0.598±0.08 0.679±0.11 0.623±0.03 0.681±0.15
2 0.579±0.02 0.582±0.13 0.614±0.19 0.609±0.04 0.611±0.12
3 0.538±0.17 0.483±0.10 0.573±0.09 0.521±0.07 0.588±0.06
4 0.577±0.14 0.537±0.03 0.692±0.20 0.636±0.16 0.684±0.05
5 0.601±0.10 0.589±0.02 0.702±0.04 0.651±0.12 0.697±0.07
6 0.578±0.11 0.572±0.14 0.581±0.15 0.575±0.01 0.611±0.20
7 0.581±0.13 0.549±0.11 0.611±0.07 0.582±0.09 0.675±0.18
8 0.655±0.19 0.561±0.04 0.716±0.10 0.579±0.14 0.728±0.13
9 0.645±0.01 0.612±0.05 0.691±0.06 0.629±0.21 0.885±0.03
10 0.654±0.12 0.676±0.16 0.762±0.13 0.692±0.18 0.761±0.14
11 0.628±0.20 0.610±0.09 0.648±0.02 0.608±0.11 0.647±0.10
12 0.634±0.03 0.645±0.12 0.689±0.14 0.671±0.05 0.697±0.08
13 0.541±0.09 0.545±0.18 0.542±0.17 0.548±0.16 0.547±0.21
14 0.71±0.15 0.717±0.07 0.723±0.08 0.689±0.13 0.756±0.19
15 0.654±0.07 0.638±0.10 0.734±0.16 0.611±0.06 0.788±0.09

Average 0.613±0.109 0.595±0.093 0.670±0.109 0.620±0.097 0.707±0.115

ferences in data-views and induce information trans-
fer across clients. Moreover, a maximum relative
performance boost of 4.5% is observed at Bedford
(that has fewer number of training samples) over the
standalone-GAT highlighting the information trans-
fer from other clients to Bedford.

• The proposed framework exhibits a noticeable im-
provement over both federated baselines i.e. FedAvg
and Hypernet. The lesser performance of FedAvg
can be attributed to the loss of features at some
clients to align data-views. Moreover, better per-
formance of the proposed framework can further be
attributed to intrinsic graph structures resulting in
better modelling of patients relationship. The per-
formance of Hypernet is either comparable or lesser
than standalone model confirming the lesser infor-
mation transfer among clients.

• In standard or consistent data-view scenario, the
performance of the proposed framework is either
comparable or better that all baselines. This shows

that the proposed framework can work well with
both consistent and inconsistent data-views.

5.2 Performance on PhysioNet and eICU
Datasets

The efficacy of our method is unequivocally evident
when evaluated on the benchmark datasets of Phy-
sioNet and eICU, as depicted in Figure 4 and de-
tailed in Tables 1 and 2. The performance trends
on these datasets are also pretty similar to CURIAL.
Remarkably, the consistency in performance trends
across PhysioNet, eICU, and CURIAL datasets under-
scores our model’s robust adaptability and resilience
across diverse datasets. Beyond mere comparabil-
ity, our framework frequently demonstrates superiority
over other baselines across all five client evaluations.
This strength is further illuminated by the superior av-
erage AUROC across all 15 clients of the eICU dataset,
where our method surpasses both standalone and fed-
erated baselines in scenarios encompassing heteroge-



Federated Learning For Heterogeneous EHRs

Table 2: Performance of different comparative method in heterogeneous data-view scenario on the eICU dataset.

Client Methods

GAT-standalone LSTM-standalone FedAvg Hypernet Proposed

1 0.571±0.015 0.363±0.018 0.639±0.019 0.429±0.017 0.634±0.012
2 0.511±0.011 0.561±0.014 0.564±0.016 0.569±0.012 0.517±0.019
3 0.521±0.016 0.451±0.013 0.557±0.017 0.487±0.015 0.548±0.011
4 0.557±0.012 0.457±0.019 0.54±0.018 0.511±0.016 0.695±0.014
5 0.576±0.017 0.381±0.015 0.68±0.013 0.531±0.014 0.696±0.019
6 0.564±0.019 0.552±0.012 0.559±0.015 0.565±0.013 0.607±0.016
7 0.572±0.012 0.544±0.018 0.599±0.017 0.552±0.011 0.695±0.012
8 0.651±0.014 0.501±0.015 0.706±0.019 0.489±0.016 0.698±0.018
9 0.637±0.018 0.439±0.016 0.681±0.012 0.561±0.017 0.865±0.013
10 0.587±0.015 0.573±0.011 0.529±0.013 0.582±0.019 0.779±0.016
11 0.608±0.017 0.310±0.012 0.628±0.015 0.532±0.014 0.647±0.018
12 0.521±0.019 0.555±0.013 0.469±0.016 0.565±0.012 0.529±0.011
13 0.532±0.014 0.530±0.016 0.531±0.019 0.548±0.017 0.539±0.015
14 0.697±0.012 0.717±0.018 0.577±0.014 0.679±0.016 0.776±0.013
15 0.592±0.018 0.596±0.011 0.41±0.012 0.576±0.019 0.781±0.017

Average 0.579 ± 0.015 0.502 ± 0.015 0.587 ± 0.016 0.545 ± 0.015 0.685 ± 0.015

Figure 6: Impact of augmentation mechanism on the
performance of the proposed framework on CURIAL
datasets

neous and standard data views. Such results validate
the model’s adeptness at handling the intricate nu-
ances of heterogeneous time-series data, affirming its
capability to offer sophisticated and effective tempo-
ral modelling in the ever-evolving domain of Electronic
Health Records analytics.

5.3 Impact of Augmentation Mechanism in
Proposed Framework

The augmentation mechanism alleviates requirement
of feature alignment in cases where clients have het-
erogeneous data-views. Apart from minimising pre-
federated learning processing requirements, this mech-
anism also allows clients to fully utilise the avail-
able features. To analyse the impact of augmentation
mechanism on performance, we removed augmentation

layer from the proposed framework and aligned fea-
tures manually across four CURIAL clients. Figure
6 illustrates the relative drop in performance of the
proposed framework on removing augmentation layer.
Since the number of features (i.e. 21) at Bedford and
Portsmouth remain same after manual feature align-
ment, we do not witness any noticeable performance
drop. However, at Oxford and Birmingham, we needed
to drop some features (from 28 to 21) for data-view
alignment. As a result, we witness a significant per-
formance drop at both sites. This highlights that the
augmentation mechanism allows the proposed frame-
work to exploit all available features at clients resulting
in better performance.

To further prove this fact, we compute gradient-based
input feature importance (i.e. gradient of input with
respect to model outputs) in each personalised or
client-specific model. Figure 5 illustrates average
gradient-based feature importance in each model. The
first 21 features at each client are same, whereas Ox-
ford and Birmingham has 7 more features (indexed
between 21 and 28). The analysis of Figure 5 shows
that at Oxford and Birmingham, additional features
(that are absent at other clients) are more impor-
tant for COVID-19 prediction. Again, this shows that
rather than discarding additional features for data-
view alignment, the proposed framework can exploit
them for improving predictive modelling.

6 CONCLUSION

This paper introduced augmented temporal graph at-
tention networks for handling heterogeneous data-
views in federated learning within the context of



Molaei, Thakur, Niknam, Soltan, Zare and Clifton

healthcare informatics. An exhaustive comparative
analysis was conducted to show that the proposed
framework can overcome data-views heterogeneity
and exhibits either better or comparable performance
against centralised and federated baselines. The suc-
cessful evaluation of the proposed framework opens
up new avenues for federated learning in healthcare
that were earlier remained distant due to massive pre-
processing requirements for data-view alignment. Fu-
ture work will deal with extending the proposed frame-
work by exploiting integrative federated methodologies
to elevate performance further.

Code

The implementation of the proposed method is
available at http://github.com/AnshThakur/

FL4HeterogenousEHRs.
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Bengio. Graph attention networks. In International
Conference on Learning Representations, pages
1–18, 2018.

Wenshuo Wang, Xu Li, Xiuqin Qiu, Xiang Zhang, Jin-
dong Zhao, and Vladimir Brusic. A privacy pre-
serving framework for federated learning in smart
healthcare systems. Information Processing & Man-
agement, 60(1):103167, 2023.

Siyue Yang, Paul Varghese, Ellen Stephenson, Karen
Tu, and Jessica Gronsbell. Machine learning ap-
proaches for electronic health records phenotyping:
a methodical review. Journal of the American Med-
ical Informatics Association, 30(2):367–381, 2023.

Kaike Zhang, Qi Cao, Gaolin Fang, Bingbing Xu,
Hongjian Zou, Huawei Shen, and Xueqi Cheng.
Dyted: Disentangled representation learning for
discrete-time dynamic graph. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, pages 3309–3320, 2023.

CHECKLIST

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Not Applicable

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Not Applicable

(b) Complete proofs of all theoretical results.
Not Applicable

(c) Clear explanations of any assumptions. Not
Applicable

3. For all figures and tables that present empirical
results, check if you include:



Molaei, Thakur, Niknam, Soltan, Zare and Clifton

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Yes

(b) The license information of the assets, if ap-
plicable. Not Applicable

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not Applica-
ble

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Applica-
ble

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable



Federated Learning For Heterogeneous EHRs

A Dataset Details

Tables A1, A2 and A3 documents the number of examples at each client in CURIAL, PhysioNet and the eICU
dataset.

Table A1: Number of examples at each NHS trust in CURIAL dataset.

Bedford Oxford Portsmouth Birmingham

# Examples 1,865 161,955 38,717 95,236
# Positive Examples 210 2,791 2,005 790

# Features 21 28 21 28

Table A2: Number of examples at each “hypothetical” site in PhysioNet dataset.

Client 1 Client 2 Client 3 Client 4 Client 5

# Examples 800 800 800 800 800
# Positive Examples 105 102 129 106 112

# Features 20 44 32 44 40

Table A3: Hospital IDs used as clients and the number of examples at each client in the eICU dataset.

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10 Client 11 Client 12 Client 13 Client 14 Client 15

Hospital ID 388 301 280 390 272 152 244 226 310 79 154 318 146 444 252
# Examples 898 913 933 1012 1014 1028 1033 1057 1135 1149 1182 1191 1192 1197 2709

# Positive Examples 103 141 70 83 44 96 44 56 60 116 104 133 92 128 148
# Features 100 100 100 216 216 216 375 375 375 375 100 100 100 375 375

B Model Architectures

DNN Baseline For CURIAL:

Dense layer with 128 nodes → ReLU Activation → Dropout with 0.25 rate

→ Dense layer with 1 node → Sigmoid Activation

LSTM Baseline For PhysioNet and eICU:

LSTM with 128 nodes → ReLU Activation → Dropout with 0.25 rate →

Dense layer with 1 node → Sigmoid Activation

Graph Attention Network (GAT):

GATConv (128 nodes, 1 attention head) → ReLU Activation → Dropout with 0.25 rate →

GATConv (1 node, 1 attention head) → Sigmoid Activation

Here GATConv stands for graph attention convolutional layer.

Temporal Augmented Graph Attention Network (Dynamic GAT) For Time-series: The framework
architecture used for Dynamic GAT is illustrated in Figure A1.

Hypernetwork for Hypernet-based FL Baseline:

Hypernetwork is fully-connected DNN that is used to generated weights for DNN and LSTM models. Hypernet
used by Shamsian et al. (2021) is also used in this work. Their implementation is available at https://github.
com/AvivSham/pFedHN.

https://github.com/AvivSham/pFedHN
https://github.com/AvivSham/pFedHN
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Figure A1: Illustration of dynamic GAT architecture used for time-series modelling. GAT architecture described
earlier is also used here. Temporal modelling module is shared across all time-steps.

The input embedding of 32 dimensions, 2 shared hidden layers with 128 nodes and spectral norm on initialised
weights is used across all datasets. The dense layers mapping hidden embedding (output of shared hidden layers)
to output weights vary depending on whether weights are to be generated for DNN or LSTM.

C Parameter Setting

Centralised Baselines: Across both DNN/LSTM and GAT-based standalone baselines, we used the Adam
optimiser with a fixed learning rate of 0.001. The models were trained for 300 epochs with early stopping to
store best performing model configuration on validation examples. A batch-size of 64 examples is used across all
datasets.

Federated Baselines and the Proposed Framework: Similar to standalone baselines, we use batch-size of
64 across all datasets. We train all federated frameworks for 300 rounds of training (client-server communication
rounds). In each round, the local training is done for 2 epochs using Adam optimiser with learning rate of 0.001.
For updating global model (at the server), a learning of 0.001 is used across both FedAvg and the proposed
framework. In hypernet-FL, global hypernetwork is also trained using a learning rate of 0.001.

All the results are obtained with 5 different seeds, and mean along with standard deviation are presented in the
main manuscript.
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Figure A2: An illustration depicting how graph attention layers assign different attention scores to features in
augmented data-views. Augmented features are expected to be given lesser attention scores than the original
features.

D Navigating Data-view Heterogeneity using GAT

In federated learning with heterogeneous data-views, clients have differing dataset dimensions. For example, one
client has features A and B, whereas another one has features A, B and C. To align the data-views across both
these clients for enabling federated learning or global model training, we augment additional feature C ′ to the
first client’s data-view.

In this scenario, the GAT or graph attention mechanism has inherent capabilities to handle these additional
features. GAT’s attention mechanism is uniquely positioned to assign weights based on a feature’s relevance.
Specifically, it can recognise that C ′, being derived or related to A and B, may not hold the same intrinsic value
as the original features, and thus, assign it a lower weight. This capability ensures that GAT can manage nuanced
relationships between genuine and synthesised features across clients. Figure A2 graphically demonstrates this
behaviour.

Similarly, Dynamic GAT is adept at modelling temporal changes in data relationships across clients with het-
erogeneous data-views. Graph structures, determined by nodes (like patients) and edges (similarities between
them), might evolve over time with new data or changing relationships. Dynamic GAT’s ability to handle these
structural changes without needing complete retraining is a testament to its flexibility. As relationships (edges)
between nodes change, the attention weights adjust accordingly, focusing on the most current and relevant in-
formation. This adaptability to shifting data relationships solidifies Dynamic GAT’s position as a potent tool
for federated learning scenarios, where data structures and relationships across clients might shift over time.
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