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Abstract

Minimax optimization problems have at-
tracted a lot of attention over the past
few years, with applications ranging from
economics to machine learning. While ad-
vanced optimization methods exist for such
problems, characterizing their dynamics in
stochastic scenarios remains notably chal-
lenging. In this paper, we pioneer the use
of stochastic differential equations (SDEs)
to analyze and compare Minimax optimiz-
ers. Our SDE models for Stochastic Gradi-
ent Descent-Ascent, Stochastic Extragradient,
and Stochastic Hamiltonian Gradient Descent
are provable approximations of their algorith-
mic counterparts, clearly showcasing the inter-
play between hyperparameters, implicit reg-
ularization, and implicit curvature-induced
noise. This perspective also allows for a uni-
fied and simplified analysis strategy based on
the principles of Itô calculus. Finally, our
approach facilitates the derivation of conver-
gence conditions and closed-form solutions for
the dynamics in simplified settings, unveiling
further insights into the behavior of different
optimizers.

1 INTRODUCTION

Minimax optimization plays a fundamental role in deci-
sion theory, game theory, and machine learning (Good-

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

fellow et al., 2016). The problem it addresses is finding
the solution of the following optimization problem:

min
x∈X

max
y∈Y

[
f(x, y) :=

1

N

N∑
i=1

fi(x, y)

]
, (1)

where f, fi : X × Y → R for i = 1, . . . , N . In machine
learning, f is an empirical risk function where fi is the
contribution of the i-th data point of the training data.
In this notation, (x, y) ∈ X ×Y is a vector of trainable
parameters and N is the size of the dataset. The goal
is to find optimal saddle points (x∗, y∗) such that

f (x∗, y) ≤ f (x∗, y∗) ≤ f (x, y∗) ∀x ∈ X , ∀y ∈ Y.

The most intuitive algorithm to solve Eq. (1) is Gradi-
ent Descent Ascent (GDA). However, its updates are
computationally expensive for large datasets. There-
fore, a common choice is to use mini-batches to ap-
proximate the gradients, which gives rise to Stochastic
Gradient Descent Ascent (SGDA). Unfortunately, it is
known that both GDA and SGDA do not converge on
relatively simple landscapes such as f(x, y) = xy for
(x, y) ∈ R. This led to the design of alternative opti-
mizers such as Extragradient (EG) (Korpelevich, 1976)
and Hamiltonian GD (Balduzzi et al., 2018). While
these methods exhibit more favorable convergence guar-
antees compared to SGDA, they are relatively complex
to study and some of their properties are still not well
understood, especially in a stochastic setting.

In this paper, we leverage continuous-time models in
the form of stochastic differential equations (SDEs) to
study these minimax optimizers. SDEs have recently
become popular in the minimization community: They
provide a unified and simplified analysis strategy rooted
in Itô calculus which facilitates the derivation of novel
insights about the discrete algorithms, see e.g. (Su et al.,
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2014; Li et al., 2017). It is worth mentioning that the
interest in applying SDEs to minimax problems has
been a topic of prior research discussions (Chavdarova
et al., 2022). Following the framework of Li et al. (2017)
for minimization, our work provides the first formal
derivation — rooted in the theory of weak approxima-
tion (Mil’shtein, 1986) — of the SDEs of SGDA,

zk+1 = zk − ηFγk
(zk), (2)

SEG,

zk+1 = zk − ηFγ1
k
(zk − ρFγ2

k
(zk)), (3)

and SHGD

zk+1 = zk − η∇Hγ1
k,γ

2
k
(zk), (4)

where F is the drift field and H the Hamiltonian:

Fγ(z) = Fγ(x, y) := (∇xfγ(x, y),−∇yfγ(x, y)), (5)

Hγ1,γ2(z) :=
F⊤
γ1(z)Fγ2(z)

2
. (6)

Above, η ∈ R>0 is the stepsize and ρ ∈ R is the ex-
tra stepsize of SEG1. The mini-batches {γj

k} are mod-
elled as i.i.d. random variables uniformly distributed
on {1, · · · , N}, and of size B ≥ 1.

Formally, these continuous-time models are weak ap-
proximations, i.e. approximations in distribution, of
their respective discrete-time algorithms. We will ex-
ploit these models to derive novel insights into the
convergence behavior, the effect of the noise and the cur-
vature of the landscape, or the role of hyper-parameters
such as the extra stepsize ρ appearing in SEG.

Contributions.

• We provide the first formal derivation of the SDE
models of popular minimax optimizers. Then, we use
them to make the following additional contributions:

1. Moderate Exploration regime. If ρ = O(η),
we show that SEG essentially behaves like SGDA;

2. Aggressive Exploration regime (Hsieh et al.,
2020). For ρ = O(

√
η), the dynamics of SEG can

be interpreted as that of SGDA on an implicitly
regularized vector field with additional implicit
curvature-induced noise;

3. SHGD uses explicit curvature-based information.
Thus, it has an explicit curvature-induced noise;

4. We characterize the evolution of the Hamiltonian
under the dynamics of SEG and SHGD;

5. We use the latter to derive convergence conditions
for SEG and SHGD on a wide class of functions.

1We also support the cases where the stepsizes and extra
steps depend on time, e.g. ηk and ρk, as well as depend on
the coordinates, e.g. η = (η1, · · · , ηd).

• For Bilinear Games with different noise structures:

1. We explicitly solve the differential equation of
the Hamiltonian, thus elucidating the interplay
of all hyperparameters in determining the speed
of convergence (or divergence) of these methods;

2. We provide necessary and sufficient conditions for
stepsize schedulers to recover convergence.

• We explicitly solve the SDEs for some Quadratic
Games, meaning that we derive the first closed-form
formula for the dynamics of SEG and SHGD on these
landscapes. This allows for a 1-to-1 comparison of
the two optimizers, particularly of their first and sec-
ond moments. One key takeaway of this comparison
is that selecting ρ is a matter of trade-off between
the speed of convergence and asymptotic optimality:
Our formulas show how a suitable choice of ρ allows
SEG to match (or outperform) SHGD w.r.t. con-
vergence speed but negatively impacts its optimality
(the iterates converge to a larger neighborhood of the
optimum). Interestingly, the curvature determines
whether SEG or SHGD is faster at converging as well
as more suboptimal. Importantly, we provide the
first experimental and theoretical evidence that neg-
ative ρ might be advisable for certain landscapes.

• Finally, we present extensive experiments on various
relevant minimax problems: these are meant to verify
that each formula derived from our SDEs correctly
describes the behavior of the respective discrete-time
algorithms. Figure 1 offers a preliminary glimpse at
the accuracy of the SDEs approximations.

2 RELATED WORKS
We start by discussing existing continuous-time analy-
sis for minimax optimization and related applications.
For related works regarding SGDA, SEG, SHGD, and
bilinear games, we refer the reader to Appendix A.

ODE Approximations and Applications. Several
works use continuous-time models to describe the dy-
namics of minimax optimizers. First, Ryu et al. (2019)
informally derived ODEs to study Stochastic Gradi-
ent Methods with Optimism and Anchoring. Then,
Lu (2022) formally showed that different saddle-point
optimizers yield the same ODE and derived High-
Resolution (Ordinary) Differential Equations (HRDEs)
to provide convergence conditions on a wide class of
problems. Similarly, Chavdarova et al. (2023) derived
HRDEs as well and established the convergence of cer-
tain methods in continuous time on bilinear games.
Finally, Hsieh et al. (2021) modeled a wide class of
zeroth- and first-order minimax algorithms with ODEs
and proved that they may be subject to inescapable
convergence failures, meaning that they could get at-
tracted by spurious attractors. Unfortunately, their
approach based on Robbins–Monro templates cannot
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Figure 1: Empirical validation of Theorem 3.4 and 3.6:
The trajectories of the simulated SDEs match those of
the respective algorithms averaged over 5 runs - That
of SGDA gets trapped in limit cycles as well (Top Left);
That of SHGD converges to the optimum of a highly
nonlinear landscape (Bottom Left); The SDE of SGDA
would not be a good model for SEG (Top Right); The
SDEs and the optimizers move along the trajectory at
the same speed (Bottom Right). For a description of
the landscapes and of the simulation settings for the
SDEs, see Appendix G.

handle ergodic averages, second-order methods, adap-
tive methods, and constant stepsizes.

SDE Approximations and Applications. (Li
et al., 2017) first proposed a formal theoretical frame-
work to derive SDEs to appropriately capture the intrin-
sic stochasticity of stochastic optimizers. These SDEs
can be understood as weak approximations of stochastic
gradient algorithms (See Definition 3.2). SDEs open to
a variety of concrete applications that include stochas-
tic optimal control to select the stepsize (Li et al., 2017,
2019) or the batch size (Zhao et al., 2022) and scaling
rules (Malladi et al., 2022) to adjust the optimization
hyperparameters w.r.t. the batch size. Additionally,
SDEs give access to the fine-grained structure of the
interaction between stochasticity and curvature. For
example, the study of escape times of SGD from min-
ima of different sharpness (Xie et al., 2021), the factors
influencing the minima found by SGD Jastrzebski et al.
(2018), the convergence bounds for mini-batch SGD and
SVRG derived in Orvieto and Lucchi (2019), and the
fundamental interplay between noise and curvature of
the landscape for SAM (Compagnoni et al., 2023). For
more references, see (Kushner and Yin, 2003; Ljung
et al., 2012; Chen et al., 2015; Mandt et al., 2015;
Chaudhari and Soatto, 2018; Zhu et al., 2019; He et al.,
2018; An et al., 2020). A gentle introduction to SDEs

is provided in Appendix B.2

3 RESULTS & INSIGHTS: THE SDEs

This section provides the general formulations of the
SDEs of SGDA (Theorem 3.3), SEG (Theorem 3.4),
and SHGD (Theorem 3.6). Due to the technical nature
of the analysis, we refer the reader to the appendix for
the complete formal statements and proofs.

Assumption 3.1. We assume that

1. ∇f,∇fi satisfy a Lipschitz condition: ∃L > 0
s.t. |∇f(u)−∇f(v)|+

∑N
i=1 |∇fi(u)−∇fi(v)| ≤

L|u− v|;

2. f, fi and their partial derivatives up to order 7
have polynomial growth;

3. ∇f,∇fi satisfy a linear growth condition: ∃M > 0
s.t. |∇f(z)|+

∑N
i=1 |∇fi(z)| ≤ M(1 + |z|).

Definition 3.2 (Weak Approximation). A continuous-
time stochastic process {Zt}t∈[0,T ] is an order α
weak approximation (or α-order SDE) of a dis-

crete stochastic process {zk}⌊T/η⌋
k=0 if for every polyno-

mial growth function g, there exists a positive con-
stant C, independent of the stepsize η, such that
maxk=0,...,⌊T/η⌋ |Eg (zk)− Eg (Zkη)| ≤ Cηα.

This definition comes from the field of numerical anal-
ysis of SDEs, see Mil’shtein (1986). When g(z) = ∥z∥j ,
the bound restricts the disparity between the j-th mo-
ments of the discrete and the continuous process.

3.1 SGDA SDE

Theorem 3.3 (SGDA SDE - Informal Statement of
Theorem C.5). Under sufficient regularity conditions,
the solution of the following SDE is an order 1 weak
approximation of the discrete update of SGDA (2):

dZt = −F (Zt) dt+
√
ηΣ (Zt)dWt, (7)

where Σ(z) is the noise covariance

Σ(z) = E[ξγ(z)ξγ(z)⊤], (8)

and ξγ(z) := F (z)−Fγ (z) the noise in the sample Fγ .

3.2 SEG SDE

A notable characteristic of SEG is the inclusion of the
variable ρ that controls the magnitude of the extra step.
This variable plays an important role in the derivation
of the SDE of SEG and one has to differentiate between
two different regimes:
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1. When ρ ∼ η, the SDE of SEG is the same as
SGDA, which is consistent with the literature on
ODEs (Chavdarova et al., 2023; Lu, 2022). The
formal proof is given in Theorem C.12.

2. However, if the extra stepsize ρ is sizeably larger
than η (Hsieh et al., 2020) (i.e. ρ = O(

√
η)),

SEG enters a more exploratory regime, for which
the SDE becomes distinct from the first regime.

Before presenting our main result, we introduce some
notation. Let γ := (γ1, γ2), F̄γ(z) := ∇Fγ1(z)Fγ2(z),
and F̄ (z) := E[F̄γ(z)] be its expectation. We denote
the noise in F̄ as ξ̄γ(z) := F̄γ(z)− F̄ (z) and consider
the mixed (non-symmetric) covariance matrix Σ̄(z) =
E[ξγ1(z)ξ̄γ(z)

⊤].

Theorem 3.4 (Informal Statement of Theorem C.8).
Let

F SEG(z) := F (z)− ρF̄ (z), (9)

ΣSEG(z) := Σ(z) + ρ
[
Σ̄(z) + Σ̄(z)⊤

]
. (10)

Under sufficient regularity conditions and ρ = O(
√
η),

the solution of the following SDE is the order 1 weak
approximation of the discrete update of SEG

dZt = −F SEG (Zt) dt+
√
ηΣSEG (Zt)dWt. (11)

Proof. To prove that the SDE is a weak approximation
of SEG as per Definition 3.2, we prove that the first and
second moments of its discretization match those of
SEG up to an error of order η and η2, respectively.

For didactic reasons, we now present Corollary 3.5, a
consequence of Theorem 3.4 that provides a more inter-
pretable SDE for SEG which we will use to establish a
comparison with SGDA (Eq.(7)) and SHGD (Eq.(16)).

Corollary 3.5 (Informal Statement of Corollary C.10).
Under the assumptions of Theorem 3.4, that γ1 = γ2 =
γ, and that the stochastic gradients are ∇xfγ(z) =
∇xf(z)+Ux and ∇yfγ(z) = ∇yf(z)+Uy such that Ux

and Uy are independent noises that do not depend on
z, the following SDE provides a 1 weak approximation
of the discrete update of SEG

dZt =− (F (Zt)− ρ∇F (Zt)F (Zt)) dt (12)

+ (I2d − ρ∇F (Zt))
√
ηΣdWt.

If instead (under the same assumptions) γ1 and γ2 are
uncorrelated, the SDE has a drift regularization term
but no variance regularization:

dZt = − (F (Zt)− ρ∇F (Zt)F (Zt)) dt+
√

ηΣdWt.
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Figure 2: Graphical representation of the implicit reg-
ularization of the vector field of SEG for f(x, y) = xy:
−F spins the dynamics in a circle (Top Left); +∇FF
pulls it towards 0 (Top Right); If ρ is small, −F+ρ∇FF
combines the two fields and spirals towards the origin
(Bottom Left); If ρ is large, −F + ρ∇FF is a chaotic
field that makes the dynamics diverge (Bottom Right).

Proof. The noise assumption implies ∇Fγ1(z) =
∇F (z). Therefore F̄ (z) := ∇F (z)F (z). Next, note
that ξ̄γ(z) := ∇F (z)ξγ2(z) and therefore Σ̄(z) =
E[ξγ1(z)ξ⊤γ2(z)∇F (z)⊤] = Σ∇F (z)⊤ if γ1 = γ2 and

is zero otherwise. Next, note that ΣSEG(z) := Σ +
ρΣ∇F (z)⊤ + ρ∇F (z)Σ = (I2d + ρ∇F (z))Σ(I2d +
ρ∇F (z)⊤) + O(ρ2). Since terms of order ρ2 have a
vanishing influence, this proves the result.

3.3 SHGD SDE

Theorem 3.6 (SHGD SDE - Informal Statement of
Theorem C.14). Let Hγ := Hγ1,γ2 and let us define

F SHGD(z) := ∇E [Hγ (z)] , (13)

ΣSHGD(z) := E
[
ξ̂γ(z)ξ̂γ(z)

⊤
]
, (14)

where ξ̂γ(z) = F SHGD(z) − ∇Hγ (z). Under sufficient
regularity conditions, the solution of the following SDE
is the order 1 weak approximation of the discrete update
of SHGD (4):

dZt = −F SHGD (Zt) dt+
√

ηΣSHGD (Zt)dWt. (15)

Once again, we provide a more interpretable SDE under
additional assumptions:

Corollary 3.7 (Informal Statement of Corollary C.16).
Under the assumptions of Theorem 3.6, that γ1 = γ2 =
γ, and that the stochastic gradients are ∇xfγ(z) =
∇xf(z) + Ux and ∇yfγ(z) = ∇yf(z) + Uy such that
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Ux and Uy are independent noises that do not depend
on z, the SDE is

dZt = −∇H (Zt) dt+
√
η∇2f (Zt)

√
ΣdWt. (16)

If instead γ1 and γ2 are uncorrelated, the SDE is the
same but with less variance:

dZt = −∇H (Zt) dt+

√
η

2
∇2f (Zt)

√
ΣdWt. (17)

Empirical Validation Figure 1 shows the empiri-
cal validation of Theorem 3.4 and Theorem 3.6: The
top left shows that the SDE of SGDA matches the
algorithm and is also attracted to a limit cycle. The
bottom left shows that the SDE of SHGD matches the
empirical optimization of a highly nonlinear landscape.
The top right shows that the SDE of SEG matches its
discrete-time counterpart for different values of ρ. Also,
the SDE of SGDA is not a good model to describe the
dynamics of SEG. The bottom right shows the evolu-
tion of the norm of the iterates in time: We understand
that the SDE Zkη and optimizer zk move at the ex-
act same speed along the trajectory — This justifies
their use as investigation tools. Figure 9 shows that
if ρ = O(η) or smaller, the SDE of SGDA models the
dynamics of SEG accurately. However, if ρ = O(

√
η)

or larger, the SDE of SGDA no longer does so while
the SDE of SEG does. All experiments are averaged
over 5 runs and additional details are in Appendix G.

3.4 Comparisons

There are three notable observations we immediately
derive from the SDEs presented above:

1. Let us use ∇̃ := (∇x,−∇y). Then, one can see

that the drift term F is simply equal to F = ∇̃f
for SGDA, while SEG implicitly introduces an
additional regularizer such that

F SEG = ∇̃
[
f +

ρ

2

[
∥∇yf∥22 − ∥∇xf∥22

]]
.

Therefore, the dynamics of SEG is equivalent to
that of SGDA on an implicitly regularized vec-
tor field. Figure 2 illustrates this phenomenon.

2. The presence of ρ∇F in the diffusion term of
SEG shows that the extra step implicitly adds
(on top of that of SGDA) a noise component that
depends on the curvature of the landscape.

3. SHGD is a second-order method that explicitly
optimizes the Hamiltonian which by definition
uses curvature-based information. The SDE in
Eq.(16) shows how this results in ∇2f directly
affecting its noise structure.

4 CONVERGENCE CONDITIONS

In this section, we derive the ODE that characterizes
the evolution of the expected Hamiltonian Ht along the
dynamics of SEG and SHGD. We use it to derive con-
vergence conditions on a wide class of functions. Then,
we focus on Bilinear Games where we can explicitly
solve the ODE which allows us to single out the role of
each ingredient of the dynamics. Finally, we provide
sufficient conditions to craft stepsize schedulers that
induce convergence.

4.1 SHGD

We begin by introducing an auxiliary result that elu-
cidates the evolution of the Hamiltonian. Here we
denote by Zt the stochastic process that defines the
evolution of SHGD. We also define Ht := Eγ [Hγ(Zt)]
and ΣSHGD

t := ΣSHGD(Zt). Then,

E
[
Ḣt

]
= −E

[
∥∇Ht∥2

]
+

η

2
Tr
(
E
[
ΣSHGD

t ∇2Ht

])
.

We observe that:

1. −E
[
∥∇Ht∥2

]
comes from the drift of the SDE

and is pulling the dynamics towards regions with
zero energy;

2. η
2Tr

(
E
[
ΣSHGD

t ∇2Ht

])
is induced by the diffusion

term and has an adversarial effect;

3. Convergence can only be achieved if the pulling
force is stronger than the repulsive one, even at
vanishing energies.

We formalize this in Theorem 4.1 and Corollary 4.2.

Theorem 4.1 (SHGD General Convergence). Con-
sider the solution Zt of the SHGD SDE with γ1 ̸= γ2.
Let vt := E

[
Eγ

[
∥∇Ht (Zt)−∇Hγ (Zt)∥22

]]
measure

the error in ∇H, in expectation over the whole random-
ness up to time t. Suppose that:

1. The smallest eigenvalue (in absolute value) µ of
∇2f(z) is non-zero;

2. ∥∇2H(z)∥op < LT , for all z ∈ R2d.

Then,

E [Ht] ≤ e−2µ2t

[
H0 +

ηLT

2

∫ t

0

vse
2µ2sds

]
. (18)

Proof. We derive the SDE of Ht via Itô’s Lemma and
take its expectation to obtain the ODE of E [Ht]. Then,
we use the assumptions to derive a bound on it.
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Corollary 4.2. Under the assumptions of Theorem
4.1, if for LV > 0

vt ≤ LVE [Ht] , (19)

the solution is more explicit:

E [Ht] ≤ H0e
(−2µ2+ηLVLT )t. (20)

If instead

vt ≤ LV , (21)

we have

E [Ht] ≤ H0e
−2µ2t +

(
1− e−2µ2t

) ηLVLT

2µ2
. (22)

Discussion about Assumptions Note that:

1. (Loizou et al., 2020) which first proposed SHGD
assumed independent mini-batches;

2. Lipschitzianity on ∇Hγ1,γ2 and Error Bound on
F imply Eq. (19);

3. Bounded variance on ∇Hγ1,γ2 implies Eq. (21).

Concrete Examples We analyze Bilinear Games for
which we can provide explicit formulas for the results
presented above. We focus on: f(x, y) = x⊤Eξ [Λξ] y
and f(x, y) = x⊤Λy where Λ and Λξ are square, diag-
onal, and positive semidefinite matrices.

Proposition 4.3. For f(x, y) = x⊤Eξ [Λξ] y, Eq. (19)
holds and we have

E
[
∥Zt∥2

]
2

=

d∑
i=1

∥Zi
0∥2

2
e−(2λ

2
i−ησ2

i (2λ
2
i+σ2

i ))t. (23)

In particular,
E[∥Zt∥2]

2

t→∞
= 0 if η <

2λ2
i

σ2
i (2λ2

1+σ2
i )
, ∀i.

In this case, the noise structure is such that vt scales
like E [Ht]. Thus, E [Ht] exponentially decays to 0.

Proposition 4.4. For f(x, y) = x⊤Λy and covariance
noise Σ := diag(σ1, · · · , σd), Eq. 21 holds and

E
[
∥Zt∥2

]
2

=

d∑
i=1

∥Zi
0∥2

2
e−2λ2

i t +
ησ2

i

2

(
1− e−2λ2

i t
)
,

(24)

which implies that
E[∥Zt∥2]

2

t→∞
= η

2

∑d
i=1 σ

2
i > 0.

In this case, vt is bounded, meaning that E [Ht] reaches
an asymptotic suboptimality exponentially fast.

Now we provide sufficient and necessary conditions to
craft stepsize schedulers that recover convergence.

Proposition 4.5. Under the assumptions of Prop. 4.4,

for any stepsize scheduler ηt,
E[∥Zt∥2]

2 is equal to

d∑
i=1

e−2λ2
i

∫ t
0
ηsds

(
∥Zi

0∥2

2
+ ησ2

i λ
2
i

∫ t

0

e2λ
2
i

∫ s
0
ηrdrη2sds

)
.

Therefore,

E
[
∥Zt∥2

]
2

t→∞→ 0 ⇐⇒
∫ ∞

0

ηsds = ∞ and lim
t→∞

ηt = 0.

(25)
Among other possible choices of ηt,

ηt =
1

(t+ 1)γ
=⇒

E
[
∥Zt∥2

]
2

→ 0, for γ ∈ {0.5, 1}.

4.2 SEG

Let Zt be the solution of the SEG SDE, ΣSEG
t =

ΣSEG(Zt), Ht = Eγ [Hγ(Zt)], and F SEG
t = F SEG(Zt).

Then,

E
[
Ḣt

]
= −E

[
∇H⊤

t F SEG
t

]
+

η

2
Tr
(
E
[
ΣSEG

t ∇2Ht

])
.

Once again, we have to study how the pulling and
repulsive forces balance each other in order to dissect
the convergence behavior of SEG.

Theorem 4.6 (SEG General Convergence). Consider
the solution Zt of the SEG SDE with γ1 ̸= γ2. Let
vt := E

[
Eγ

[
∥F SEG (Zt)− F SEG

γ (Zt)∥22
]]

measure the
error in F SEG, in expectation over the whole randomness
up to time t. Suppose that:

1. The smallest eigenvalue (in absolute value) µρ of
M is non-zero, where M = diag(M1,1,M2,2), with
M1,1 := ∇2fxx + ρ

(
∇2fxy∇2fT

xy −∇2f2
xx

)
, and

M2,2 := −∇2fyy + ρ
(
∇2fxy∇2fT

xy −∇2f2
yy

)
;

2. ∥∇2H(z)∥op < LT , for all z ∈ R2d.

Then,

E [Ht] ≤ e−2µ2
ρt

[
H0 +

ηLT

2

∫ t

0

vse
2µ2

ρsds

]
. (26)

Corollary 4.7. The very same result as Corollary 4.2
holds where we substitute µ with µρ.

Discussion about Assumptions Note that:

1. Independent mini-batches are used in Indep.-
Sample SEG (Du et al., 2022; Gorbunov et al.,
2022), and are not a necessary condition;

2. κ1-Lipschitzianity on Fγ1 , κ2-Lipschitzianity on
∇Fγ1Fγ2 , and β-Error Bound on F , imply vt ≤
β2(κ2

1 + ρ2κ2
2)E [Ht];

3. σ1-Bounded variance on Fγ1 and σ2-Bounded
variance on ∇Fγ1Fγ2 , imply vt ≤ σ2

1 + ρ2σ2
2 .
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Figure 3: Empirical validation of Prop. 4.4 and Prop. 4.5 (Left); Prop. 4.9 and Prop. 4.10 (Right): The dynamics
of E

[
∥Zt∥2

]
averaged across 5 runs perfectly matches that prescribed by our results for all schedulers. Both for

SEG and SHGD, η = 0.01, while ρ = 1.

Interestingly, we notice that increasing ρ might be
detrimental as it could possibly lead to divergence.

Concrete Examples

Proposition 4.8. For f(x, y) = x⊤Eξ [Λξ] y, we have

E
[
∥Zt∥2

]
2

=

d∑
i=1

∥Zi
0∥2

2
e−(2ρλ

2
i−ησ2

i (1+ρ2(2λ2
i+σ2

i )))t.

(27)

In particular,
E[∥Zt∥2]

2

t→∞
= 0 if ,∀i ∈ {i, · · · , d}

2ρλ2
i − ησ2

i

(
1 + ρ2

(
2λ2

i + σ2
i

))
> 0. (28)

Proposition 4.9. For f(x, y) = x⊤Λy and covariance

noise Σ := diag(σ1, · · · , σd),
E[∥Zt∥2]

2 is equal to

d∑
i=1

∥Zi
0∥2

2
e−2ρλ2

i t+
ησ2

i

2

1 + ρ2λ2
i

ρλ2
i

(
1− e−2ρλ2

i t
)
, (29)

which implies that

E
[
∥Zt∥2

]
2

t→∞
=

η

2

d∑
i=1

σ2
i

1 + ρ2λ2
i

ρλ2
i

> 0. (30)

We derive necessary and sufficient conditions for step-
size schedulers to remediate the convergence deficiency.

Proposition 4.10. Under the assumptions of Prop.

4.9, for any stepsize scheduler ηt and ρt,
E[∥Zt∥2]

2 is
equal to

d∑
i=1

e−2λ2
iρ

∫ t
0
ηsρsds

(
∥Zi

0∥2

2
(31)

+ησ2
i

∫ t

0

e2λ
2
iρ

∫ s
0
ηrρrdrη2s(1 + λ2

i ρ
2ρ2s)ds

)
.

Therefore,
E[∥Zt∥2]

2

t→∞→ 0 if and only if∫ ∞

0

ηsρsds = ∞ and lim
t→∞

ηtρt = lim
t→∞

ηt
ρt

= 0. (32)

In particular, when ρt = 1,

ηt =
1

(t+ 1)γ
=⇒

E
[
∥Zt∥2

]
2

→ 0, for γ ∈ {0.5, 1}.

The left of Figure 3 shows the empirical validation of
Prop. 4.4 and Prop. 4.5 while its right side shows that
of Prop. 4.9 and Prop. 4.10. Figure 7 shows the same
for Prop. 4.3 and Prop. 4.8. More details are available
in Appendix G.

Conclusion:

1. If the uncertainty vt is well behaved as in Prop.
4.3 and Prop. 4.8, the Hamiltonian decays expo-
nentially to 0;

2. When vt is constant as in Prop. 4.4 and Prop.
4.9, both algorithms exponentially reach a level
of suboptimality that depends on the curvature
of the landscape (and on ρ for SEG);

3. Prop. 4.5 and Prop. 4.10 provide a recipe to
craft schedulers that recover convergence. We
provide examples of such necessary and sufficient
conditions;

4. Eq. (27) and Eq. (29) clearly show that large ρ
speeds up the convergence. However, this might
violate Eq. (28) and increase the suboptimality
in Eq. (30).
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5 QUADRATIC GAMES: EXACT
DYNAMICS EXPRESSION

In this section, we derive the exact solution to the
SDEs of SEG and SHGD for the Quadratic Games

f(x, y) = x⊤Ax
2 + x⊤Λy − y⊤Ay

2 where Λ and A are
square, diagonal and positive semidefinite matrices. We
notice that if A = 0, these are classic Bilinear Games.

5.1 Exact Dynamics - SEG

Theorem 5.1 (Exact Dynamics of SEG). Under the
assumptions of Corollary 3.5, we take the covariance
of the noise on the gradients to be σ2Id and have that

Zt = Ẽ(t)R̃(t)

(
z +

√
ησ

∫ t

0

Ẽ(−s)R̃(−s)MdWs

)
,

(33)

Ẽ(t) =

[
E(t) 0d

0d E(t)

]
, R̃(t) =

[
C(t) −S(t)
S(t) C(t)

]
,

and M =

[
Id − ρA −ρΛ
ρΛ Id − ρA

]
, where

E(t) := diag
(
eρ(a

2
1−λ2

1)t−a1t, · · · , eρ(a
2
d−λ2

d)t−adt
)
,

(34)

C(t) := diag
(
cos (λ̂1t), · · · , cos (λ̂dt)

)
, (35)

S(t) := diag
(
sin (λ̂1t), · · · , sin (λ̂dt)

)
, (36)

and λ̂i := λi(1− 2ρai). If ρ
(
a2i − λ2

i

)
− ai < 0:

1. E [Zt] = Ẽ(t)R̃(t)z
t→∞
= 0;

2. The covariance matrix of Zt is equal to

ησ2

2

[
Id −E(2t) 0d

0d Id −E(2t)

]
Σ̄

t→∞
=

ησ2

2
Σ̄

(37)
where Σ̄ := diag(B,B) and B is defined as

diag

(
(1− ρa1)

2 + ρ2λ2
1

a1 + ρ(λ2
1 − a21)

, · · · , (1− ρad)
2 + ρ2λ2

d

ad + ρ(λ2
d − a2d)

)
.

(38)

Proof. Since the SDE is linear, the closed-form formula
of the solution Zt is known. We use the martingale
property of Brownian motion to calculate E [Zt] while
that of the second moment uses the Itô Isometry.

We verify Eq. (38) in Figure 8 in Appendix.

On the sign of ρ and its magnitude:

If one can chose ρi for each coordinate:

1. Eq. (34) implies that SEG converges only if
ρi
(
a2i − λ2

i

)
− ai < 0, and that ρi

(
a2i − λ2

i

)
< 0

is necessary to be faster than SGDA, meaning
that negative ρi might be convenient if ai > λi;

2. If ρi has the correct sign, a larger absolute value
implies faster convergence;

3. Eq. (38) implies that the asymptotic variance
along the i-th coordinate Bi,i(ρi) explodes if
|ρi| is too large or if ρi → −ai

λ2
i−a2

i
;

4. Bi,i(ρi) is a convex function of ρi whose mini-
mum is realized at ρVi = 1

ai+λi
; However, if ρVi

is small, it slows down the convergence.

If one has to choose a single value of ρ:

1. One has to select it as it will (de)accelerate dif-
ferent coordinates based on its sign;

2. The trace of B is a convex function of ρ, meaning
that there is an optimal ρ∗ that minimizes it.

5.2 Exact Dynamics - SHGD

Theorem 5.2 (Exact Dynamics of SHGD). Under the
assumptions of Corollary 3.7, we take the covariance
of the noise on the gradients to be equal to σ2Id and
have

Zt = Ẽ(t)

(
z +

√
ησ

∫ t

0

Ẽ(−s)MdWs

)
, (39)

Ẽ(t) =

[
E(t) 0d

0d E(t)

]
, M =

[
A Λ
Λ −A

]
, where

E(t) := diag
(
e−(λ

2
1+a2

1)t, · · · , e−(λ
2
d+a2

d)t
)
. (40)

In particular, we have that

1. E [Zt] = Ẽ(t)z
t→∞
= 0;

2. The covariance matrix of Zt is equal to

η
σ2

2

[
Id −E(2t) 0d

0d Id −E(2t)

]
Σ̄

t→∞
=

ησ2

2
Σ̄,

(41)
where Σ̄ := diag(Id, Id).
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Figure 4: Comparison between SEG and SHGD on Quadratic Games: (Left), ρV and ρH meet the designated
goals, sometimes negative ρ is desirable as positive ones slow down the convergence. Large |ρ| induces faster
convergence which in turn results in larger suboptimality. (Right), negative ρ escapes the bad saddle faster than
SGDA, positive ones induce convergence, and ρH matches the decay of SHGD. In both experiments, η = 0.01.

SEG vs SHGD: Insights

1. The curvature influences the convergence speed
of SHGD, but differently than for SEG, it does
not affect the asymptotic covariance matrix;

2. If (λ2
i −a2i )ρ

H
i > a2i +λ2

i −ai, SEG exponentially
decays faster than SHGD. However, this means
that SEG has a larger asymptotic variance;

3. If ρVi = 1
λi+ai

, SEG attains its lowest asymptotic

variance ησ2λi

2(ai+λi)2
, which is smaller than ησ2

2

reached by SHGD only if a2i + λ2
i − λi > 0;

4. If λ2
i + a2i ∼ 0, SHGD is essentially stuck and

SEG is intrinsically faster;

5. If ai < 0, Z = 0 is a bad saddle. While SEG can
escape it, SHGD is pulled towards it.

Conclusion Our results allowed us to carry out a
1-to-1 comparison of the two methods, shedding light
on the role of ρ in influencing the behavior of SEG w.r.t.
SHGD. The interaction between the curvature and the
noise implies that selecting ρi is a trade-off between
the speed of convergence and the asymptotic variance.
There is no clear winner between SEG and SHGD, as
they are preferable for different landscapes. Figure 4
shows experiments that support the latter claim.

6 CONCLUSIONS
We have presented and analyzed the first formal SDE
models for SGDA, SEG, and SHGD. We have shown
the implicit regularization in SEG in contrast with the
explicit use of curvature-based information in SHGD,

which leads to different noise structures and asymptotic
suboptimality.

Furthermore, we have used these SDEs to fully char-
acterize the evolution of the Hamiltonian under the
dynamics of these algorithms in useful scenarios. We
derived convergence bounds and established conditions
under which stepsize schedulers guarantee convergence.

Finally, our comparative analysis of SEG and SHGD for
Quadratic Games sheds light on the role of ρ, revealing
a trade-off between convergence speed and subopti-
mality. We also presented the first theoretical and
experimental evidence that, depending on the curva-
ture of the loss, the optimal ρ might be negative.

Outlook. Our framework offers a unified and struc-
tured analytical approach rooted in Itô calculus to
study minimax optimizers. Our approach not only
facilitates the derivation of novel insights but also en-
ables straightforward comparisons between discrete
algorithms. We believe our findings provide a founda-
tion for future research, which may include the analysis
of momentum, adaptive methods, derivation of scaling
laws, and the design of new optimizers.

Limitations. Modeling discrete-time algorithms us-
ing SDEs hinges on Assumption 3.1. As documented
(Li et al., 2021), large values of the stepsize η or the
absence of specific conditions on ∇f and the noise
covariance matrix can result in an approximation fail-
ure. While these shortcomings can be mitigated by
increasing the order of the weak approximation, our
perspective aligns with the idea that SDEs should pri-
marily serve as simplification tools — to solidify our
intuition — and might not gain substantial benefits
from additional complexity.
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APPENDIX

A ADDITIONAL RELATED WORKS

SGDA is one of the most popular algorithms for solving min-max optimization problems that arise in machine
learning. Since it does not converge even on simple landscapes (Chen and Rockafellar, 1997; Noor, 2003; Gidel
et al., 2019; Loizou et al., 2021), researchers have derived several advanced extensions such as the Extragradient
method (Korpelevich, 1976) and variants with arbitrary sampling and variance (Gorbunov et al., 2022), as well as
alternative optimizers such as (Stochastic) Hamiltonian Gradient Descent (Balduzzi et al., 2018; Loizou et al.,
2020).

Stochastic ExtraGradient (SEG) is a prominent extension of SGDA that has been studied extensively in recent
years. Indeed, many versions have been proposed and studied: (Nemirovski et al., 2009; Juditsky et al., 2011)
studied Independent-Samples SEG, while Mishchenko et al. (2020) and Li et al. (2022) showed that the average
iterate of Same-Sample SEG converges to a neighbor of the optimum. While (Chavdarova et al., 2019) showed
that same-stepsize SEG diverges in the unconstrained monotone case, Mishchenko et al. (2020); Hsieh et al. (2020)
focused on two-scale SEG, showcasing how this design choice is crucial by deriving schedulers that guarantee
convergence. Hsieh et al. (2019) studies the convergence of variations of SEG engineered to mitigate the cost of
the extra gradient. Finally, Gorbunov et al. (2022) provides a rich analysis that encompasses several variants of
SEG with different choices of stepsizes and sampling techniques, and ends up designing new promising methods.
The latter endeavor is key for future research: As highlighted by (Hsieh et al., 2019), existing min-max algorithms
may be subject to inescapable convergence failures in important cases.

Among other works, we refer the reader interested in previous analyses of bilinear and quadratic games to (Hsieh
et al., 2021; Li et al., 2022; Xu et al., 2022; Chavdarova et al., 2023): These give a detailed presentation of the
behavior of GDA, EG and HGD, and their stochastic versions on such tasks.

We highlight that some convergence conditions and some of the convergence bounds derived in the literature for
SEG (see among others (Hsieh et al., 2020; Mishchenko et al., 2020; Hsieh et al., 2019; Gorbunov et al., 2022; Lu,
2022; Li et al., 2022)) and SHGD (see (Loizou et al., 2020, 2021)) are somehow related to those we present in this
paper.

B STOCHASTIC CALCULUS

In this section, we summarize some important results in the analysis of Stochastic Differential Equations Mao
(2007); Øksendal (1990). The notation and the results in this section will be used extensively in all proofs in this
paper. We assume the reader to have some familiarity with Brownian motion and with the definition of stochastic
integral (Ch. 1.4 and 1.5 in Mao (2007)).

B.1 Itô’s Lemma

We start with some notation: Let (Ω,F , {Ft}t≥0,P) be a filtered probability space. We say that an event E ∈ F
holds almost surely (a.s.) in this space if P(E) = 1. We call Lp([a, b],Rd), with p > 0, the family of Rd-valued
Ft-adapted processes {ft}a≤t≤b such that ∫ b

a

∥ft∥pdt ≤ ∞.

Moreover, we denote by Mp([a, b],Rd), with p > 0, the family of Rd-valued processes {ft}a≤t≤b in L([a, b],Rd)

such that E
[∫ b

a
∥ft∥pdt

]
≤ ∞. We will write h ∈ Lp

(
R+,Rd

)
, with p > 0, if h ∈ Lp

(
[0, T ],Rd

)
for every T > 0.

Similar definitions hold for matrix-valued functions using the Frobenius norm ∥A∥ :=
√∑

ij |Aij |2.

Let W = {Wt}t≥0 be a one-dimensional Brownian motion defined on our probability space and let X = {Xt}t≥0

be an Ft-adapted process taking values on Rd.

Definition B.1. Let the drift be b ∈ L1
(
R+,Rd

)
and the diffusion term be σ ∈ L2

(
R+,Rd×m

)
. Xt is an Itô

process if it takes the form
Xt = x0 +

∫ t

0

bsds+

∫ t

0

σsdWs.
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We shall say that Xt has the stochastic differential

dXt = btdt+ σtdWt. (42)

Theorem B.2 (Itô’s Lemma). Let Xt be an Itô process with stochastic differential dXt = btdt + σtdWt. Let
f (x, t) be twice continuously differentiable in x and continuously differentiable in t, taking values in R. Then
f(Xt, t) is again an Itô process with stochastic differential

df(Xt, t) = ∂tf(Xt, t))dt+ ⟨∇f(Xt, t), bt⟩dt+
1

2
Tr
(
σtσ

⊤
t ∇2f(Xt, t)

)
dt+ ⟨∇f(Xt, t), σt⟩dWt. (43)

B.2 Stochastic Differential Equations

Stochastic Differential Equations (SDEs) are equations of the form

dXt = b(Xt, t)dt+ σ(Xt, t)dWt.

First of all, we need to define what it means for a stochastic process X = {Xt}t≥0 with values in Rd to solve an
SDE.

Definition B.3. Let Xt be as above with deterministic initial condition X0 = x0. Assume b : Rd × [0, T ] → Rd

and σ : Rd × [0, T ] → Rd×m are Borel measurable; Xt is called a solution to the corresponding SDE if

1. Xt is continuous and Ft-adapted;

2. b ∈ L1
(
[0, T ],Rd

)
;

3. σ ∈ L2
(
[0, T ],Rd×m

)
;

4. For every t ∈ [0, T ]

Xt = x0 +

∫ t

0

b(Xs, s)ds+

∫ t

0

σ(Xs, s)dW (s) a.s.

Moreover, the solution Xt is said to be unique if any other solution X⋆
t is such that

P {Xt = X⋆
t , for all 0 ≤ t ≤ T} = 1.

Notice that since the solution to an SDE is an Itô process, we can use Itô’s Lemma. The following theorem gives
a sufficient condition on b and σ for the existence of a solution to the corresponding SDE.

Theorem B.4. Assume that there exist two positive constants K̄ and K such that

1. (Global Lipschitz condition) for all x, y ∈ Rd and t ∈ [0, T ]

max{∥b(x, t)− b(y, t)∥2, ∥σ(x, t)− σ(y, t)∥2} ≤ K̄∥x− y∥2;

2. (Linear growth condition) for all x ∈ Rd and t ∈ [0, T ]

max{∥b(x, t)∥2, ∥σ(x, t)∥2} ≤ K(1 + ∥x∥2).

Then, there exists a unique solution Xt to the corresponding SDE, and Xt ∈ M2([0, T ],Rd).

Numerical approximation. Often, SDEs are solved numerically. The simplest algorithm to provide a sample
path (x̂k)k≥0 for Xt, so that Xk∆t ≊ x̂k for some small ∆t and for all k∆t ≤ M is called Euler-Maruyama
(Algorithm 1). For more details on this integration method and its approximation properties, the reader can
check Mao (2007).
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Algorithm 1 Euler-Maruyama Integration Method for SDEs

input The drift b, the volatility σ, and the initial condition x0.
Fix a stepsize ∆t;
Initialize x̂0 = x0;
k = 0;
while k ≤

⌊
T
∆t

⌋
do

Sample some d-dimensional Gaussian noise Zk ∼ N (0, Id);
Compute x̂k+1 = x̂k +∆t b(x̂k, k∆t) +

√
∆t σ(x̂k, k∆t)Zk;

k = k + 1;
end while

output The approximated sample path (x̂k)0≤k≤⌊ T
∆t⌋.

C THEORETICAL FRAMEWORK - WEAK APPROXIMATION

In this section, we introduce the theoretical framework used in the paper, together with its assumptions and
notations.

First of all, many proofs will use Taylor expansions in powers of η. For ease of notation, we introduce the
shorthand that whenever we write O (ηα), we mean that there exists a function K(z) ∈ G such that the error
terms are bounded by K(z)ηα. For example, we write

b(z + η) = b0(z) + ηb1(z) +O
(
η2
)

to mean: there exists K ∈ G such that

|b(z + η)− b0(z)− ηb1(z)| ≤ K(z)η2.

Additionally, we introduce the following shorthand:

• A multi-index is α = (α1, α2, . . . , αn) such that αj ∈ {0, 1, 2, . . .};

• |α| := α1 + α2 + · · ·+ αn;

• α! := α1!α2! · · ·αn!;

• For z = (z1, z2, . . . , zn) ∈ Rn, we define zα := zα1
1 zα2

2 · · · zαn
n ;

• For a multi-index β, ∂
|β|
β f(z) := ∂|β|

∂
β1
z1

∂
β2
z2

···∂βn
zn

f(z);

• We also denote the partial derivative with respect to zi by ∂ei .

Definition C.1 (G Set). Let G denote the set of continuous functions R2d → R of at most polynomial growth,
i.e. g ∈ G if there exists positive integers ν1, ν2 > 0 such that |g(z)| ≤ ν1

(
1 + |z|2ν2

)
, for all z ∈ R2d.

The next results are inspired by Theorem 1 of Li et al. (2017) and are derived under some regularity assumption
on the function f .
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Assumption C.2. Assume that the following conditions on f, fi, and their gradients are satisfied:

• ∇f,∇fi satisfy a Lipschitz condition: There exists L > 0 such that

|∇f(u)−∇f(v)|+
N∑
i=1

|∇fi(u)−∇fi(v)| ≤ L|u− v|;

• f, fi and its partial derivatives up to order 7 belong to G;

• ∇f,∇fi satisfy a growth condition: There exists M > 0 such that

|∇f(z)|+
N∑
i=1

|∇fi(z)| ≤ M(1 + |z|).

Lemma C.3 (Lemma 1 Li et al. (2017)). Let 0 < η < 1. Consider a stochastic process Zt, t ≥ 0 satisfying
the SDE

dZt = b (Zt) dt+
√
ησ (Zt) dWt

with Z0 = z ∈ R2d and b, σ together with their derivatives belong to G. Define the one-step difference
∆ = Zη − z, and indicate the i-th component of ∆ with ∆i. Then we have

1. E∆i = biη + 1
2

[∑d
j=1 bj∂ej bi

]
η2 +O

(
η3
)

∀i = 1, . . . , 2d;

2. E∆i∆j =
[
bibj + σσT

(ij)

]
η2 +O

(
η3
)

∀i, j = 1, . . . , 2d;

3. E
∏s

j=1 ∆(ij) = O
(
η3
)
for all s ≥ 3, ij = 1, . . . , 2d.

All functions above are evaluated at z.

Theorem C.4 (Theorem 2 and Lemma 5, Mil’shtein (1986)). Let Assumption C.2 hold and let us define
∆̄ = z1 − z to be the increment in the discrete-time algorithm, and indicate the i-th component of ∆̄ with
∆̄i. If in addition there exists K1,K2,K3,K4 ∈ G so that

1.
∣∣E∆i − E∆̄i

∣∣ ≤ K1(z)η
2, ∀i = 1, . . . , 2d;

2.
∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(z)η
2, ∀i, j = 1, . . . , 2d;

3.
∣∣∣E∏s

j=1 ∆ij − E
∏s

j=1 ∆̄ij

∣∣∣ ≤ K3(z)η
2, ∀s ≥ 3, ∀ij ∈ {1, . . . , 2d};

4. E
∏3

j=1

∣∣∆̄ij

∣∣ ≤ K4(z)η
2, ∀ij ∈ {1, . . . , 2d}.

Then, there exists a constant C so that for all k = 0, 1, . . . , N we have

|Eg (Zkη)− Eg (zk)| ≤ Cη.

C.1 Formal Derivation - SGDA

In this subsection, we provide the first formal derivation of an SDE model for SGDA. Let us consider the stochastic
process Zt ∈ R2d defined as the solution of

dZt = −ηt ◦ F (Zt) dt+
√
η(ηt1

⊤) ◦
√
Σ (Zt)dWt, (44)
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where

Σ(z) := E
[
(F (z)− Fγ (z)) (F (z)− Fγ (z))

⊤
]
, (45)

and the ◦ symbol represents the Hadamard product. The following theorem guarantees that such a process is a
1-order SDE of the discrete-time algorithm of SGDA

zk+1 = zk − ηηk ◦ Fγk
(zk) (46)

with z0 := z = (x, y) ∈ Rd × Rd, which is an extension of 2.

Theorem C.5 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let
zk ∈ R2d, 0 ≤ k ≤ N denote a sequence of SGDA iterations defined by Eq. (46). Consider the stochastic
process Zt defined in Eq. (44) and fix some test function g ∈ G and suppose that g and its partial derivatives
up to order 6 belong to G.
Then, under Assumption C.2, there exists a constant C > 0 independent of η such that for all k =
0, 1, . . . , N , we have

|Eg (Zkη)− Eg (zk)| ≤ Cη.

That is, the SDE (44) is an order 1 weak approximation of the SGDA iterations (46).

Lemma C.6. Under the assumptions of Theorem C.5, let 0 < η < 1 and consider zk, k ≥ 0 satisfying the
SGDA iterations

zk+1 = zk − ηηk ◦ Fγk
(zk)

with z0 := z = (x, y) ∈ Rd × Rd. From the definition the one-step difference ∆̄ = z1 − z, then we have

1. E∆̄i = −ηi0Fiη ∀i = 1, . . . , 2d;

2. E∆̄i∆̄j = ηi0η
j
0FiFjη

2 + ηi0η
j
0Σ(ij)η

2 ∀i, j = 1, . . . , 2d;

3. E
∏s

j=1 ∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , 2d}.

All the functions above are evaluated at z.

Proof of Lemma C.6. First of all, we have that by definition

E [z1 − z] = −ηη0 ◦ F (z), (47)

which implies

E∆̄i = −ηi0Fi (z) η ∀i = 1, . . . , 2d. (48)

Second, we have that by definition

E
[
(z1 − z) (z1 − z)

⊤
]
= η2η0 ◦ F (z)F (z)⊤ ◦ η⊤0 + η2E

[
η0 ◦ (F (z)− Fγ(z)) (F (z)− Fγ(z))

⊤ ◦ η⊤0
]

= η2η0 ◦ F (z)F (z)⊤ ◦ η⊤0 + η2(η01
⊤) ◦ Σ(z) ◦ (η01⊤)⊤, (49)

which implies that

E∆̄i∆̄j = ηi0η
j
0Fi (z)Fj (z) η

2 + ηi0η
j
0Σ(ij) (z) η

2 ∀i, j = 1, . . . , 2d. (50)

Finally, by definition
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E
s∏

j=1

∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , 2d}, (51)

which concludes our proof.

Proof of Theorem C.5. To prove this result, all we need to do is check the conditions in Theorem C.4. As we
apply Lemma C.3, we make the following choices:

• b(z) = −ηt ◦ F (z);

• σ(z) = (ηt1
⊤) ◦

√
Σ(z).

First of all, we notice that ∀i = 1, . . . , 2d, it holds that

• E∆̄i
1. Lemma C.6

= −ηi0Fi (z) η;

• E∆i
1. Lemma C.3

= −ηi0Fi (z) η +O
(
η2
)
.

Therefore, we have that for some K1(z) ∈ G,∣∣E∆i − E∆̄i

∣∣ ≤ K1(z)η
2, ∀i = 1, . . . , 2d. (52)

Additionally, we notice that ∀i, j = 1, . . . , d, it holds that

• E∆̄i∆̄j
2. Lemma C.6

= ηi0η
j
0Fi (z)Fj (z) η

2 + ηi0η
j
0Σ(ij) (z) η

2;

• E∆i∆j
2. Lemma C.3

= ηi0η
j
0Fi (z)Fj (z) η

2 + ηi0η
j
0Σ(ij) (z) η

2 +O
(
η3
)
.

Therefore, we have that for some K2(z) ∈ G,∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(z)η
2, ∀i, j = 1, . . . , 2d. (53)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , 2d}, it holds that

• E
∏s

j=1 ∆̄ij
3. Lemma C.6

= O
(
η3
)
;

• E
∏s

j=1 ∆ij
3. Lemma C.3

= O
(
η3
)
.

Therefore, we have that for some K3(z) ∈ G,∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(z)η
2. (54)

Additionally, for some K4(z) ∈ G, ∀ij ∈ {1, . . . , d},

E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma C.6
≤ K4(z)η

2. (55)

To conclude, Eq. (52), Eq. (53), Eq. (54), and Eq. (55) allow us to conclude the proof.
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Corollary C.7. Let us take the same assumptions of Theorem C.5. Additionally, let us assume that
stochastic gradients can be written as ∇xfγ(z) = ∇xf(z) + Ux and ∇yfγ(z) = ∇yf(z) + Uy such that Ux

and Uy are independent noises that do not depend on z, whose expectation is 0, and whose covariance
matrix is Σ. For ηt = 1, the SDE (44) becomes

dXt = −∇xf (Zt) dt+
√
ηΣdW x

t , (56)

dYt = +∇yf (Zt) dt+
√

ηΣdW y
t .

Proof of Corollary C.7. It follows directly by the independence of the noise, the definition of the scheduler, and
the definition of the covariance matrix.

C.2 Formal Derivation - SEG

In this subsection, we provide the first formal derivation of an SDE model for SEG. Before presenting the proof,
we introduce some notation. Let γ := (γ1, γ2), F̄γ(z) := ∇Fγ1(z)Fγ2(z), and F̄ (z) := E[F̄γ(z)] be its expectation.
We denote the noise in F̄ as ξ̄γ(z) := F̄γ(z)− F̄ (z).

Let us consider the stochastic process Zt ∈ R2d defined as the solution of

dZt = −F SEG (Zt) dt+
√
ηΣSEG (Zt)dWt, (57)

with

F SEG(z) := F (z)− ρF̄ (z), (58)

ΣSEG(z) := Σ(z) + ρ
[
Σ̄(z) + Σ̄(z)⊤

]
, (59)

where Σ̄(z) is defined as

E
[
ξγ1(z)ξ̄γ(z)

⊤] = E
[(
F (z)− Fγ1 (z)

) (
E
[
∇Fγ1(z)Fγ2(z)

]
−∇Fγ1(z)Fγ2(z)

)⊤]
. (60)

Theorem C.8 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let
zk ∈ R2d, 0 ≤ k ≤ N denote a sequence of SEG iterations defined by Eq. (3). Additionally, let us take

ρ = O (
√
η) . (61)

Consider the stochastic process Zt defined in Eq. (57) and fix some test function g ∈ G and suppose that g
and its partial derivatives up to order 6 belong to G.
Then, under Assumption C.2, there exists a constant C > 0 independent of η such that for all k =
0, 1, . . . , N , we have

|Eg (Zkη)− Eg (zk)| ≤ Cη.

That is, the SDE (57) is an order 1 weak approximation of the SEG iterations (3).
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Lemma C.9. Under the assumptions of Theorem C.8, let 0 < η < 1 and consider zk, k ≥ 0 satisfying the
SEG iterations (3)

[
xk+1

yk+1

]
=

[
xk

yk

]
− η

 +∇xfγ1
k

(
xk − ρ∇xfγ2

k
(xk, yk) , yk + ρ∇yfγ2

k
(xk, yk)

)
−∇yfγ1

k

(
xk − ρ∇xfγ2

k
(xk, yk) , yk + ρ∇yfγ2

k
(xk, yk)

)  (62)

with z0 := z = (x, y) ∈ Rd × Rd. From the definition the one-step difference ∆̄ = z1 − z, then we have

1. E∆̄i = −F SEG
i η +O

(
η2
)

∀i = 1, . . . , 2d;

2. E∆̄i∆̄j = F SEG
i F SEG

j η2 +ΣSEG
(ij)η

2 +O
(
η3
)

∀i, j = 1, . . . , 2d;

3. E
∏s

j=1 ∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , 2d}.

All the functions above are evaluated at z.

Proof of Lemma C.9. First of all, we have that by definition and using a Taylor expansion,

xk+1 = xk − η∇xfγ1
k

(
xk − ρ∇xfγ2

k
(xk, yk) , yk + ρ∇yfγ2

k
(xk, yk)

)
(63)

= xk − η∇xfγ1
k
(xk, yk) + ηρ∇2

xxfγ1
k
(xk, yk)∇xfγ2

k
(xk, yk)− ηρ∇2

xyfγ1
k
(xk, yk)∇yfγ2

k
(xk, yk) +O

(
ηρ2
)
,

and

yk+1 = yk + η∇yfγ1
k

(
xk − ρ∇xfγ2

k
(xk, yk) , yk + ρ∇yfγ2

k
(xk, yk)

)
(64)

= yk + η∇yfγ1
k
(xk, yk)− ηρ∇2

xyfγ2
k
(xk, yk)∇xfγ2

k
(xk, yk) + ηρ∇2

yyfγk
(xk, yk)∇yfγk

(xk, yk) +O
(
ηρ2
)
.

Therefore

z1 = z − ηFγ1(z) + ηρ∇Fγ1(z)Fγ2(z) +O
(
η2
)
, (65)

which implies that

E [z1 − z] = −ηF (z) + ηρE
[
∇Fγ1(z)Fγ2(z)

]
+O

(
η2
)

= z − ηF SEG (z) +O
(
η2
)
, (66)

where F SEG (z) := F (z)− ρE
[
∇Fγ1(z)Fγ2(z)

]
, which in turn implies that

E∆̄i = −F SEG
i (z) η +O

(
η2
)

∀i = 1, . . . , 2d. (67)

Second, we have that

E
[
(z1 − z) (z1 − z)

⊤
]
= η2

[(
F SEG(z)

) (
F SEG(z)

)⊤]
+ η2E

[(
F (z)− Fγ1(z)

) (
F (z)− Fγ1(z)

)⊤]
+ η2ρ

(
E
[(
F (z)− Fγ1 (z)

) (
E
[
∇Fγ1(z)Fγ2(z)

]
−∇Fγ1(z)Fγ2(z)

)⊤])
+ η2ρ

(
E
[(
F (z)− Fγ1 (z)

) (
E
[
∇Fγ1(z)Fγ2(z)

]
−∇Fγ1(z)Fγ2(z)

)⊤])⊤
+O

(
η3
)

= η2
[(
F SEG(z)

) (
F SEG(z)

)⊤]
+ η2ΣSEG(z) +O

(
η3
)
, (68)

which implies that
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E∆̄i∆̄j = F SEG
i (z)F SEG

j (z) η2 +ΣSEG
(ij) (z) η

2 +O
(
η3
)

∀i, j = 1, . . . , 2d. (69)

Finally, by definition

E
s∏

j=1

∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , 2d}, (70)

which concludes our proof.

Proof of Theorem C.8. To prove this result, all we need to do is check the conditions in Theorem C.4. As we
apply Lemma C.3, we make the following choices:

• b(z) = −F SEG(z);

• σ(z) = ΣSEG(z)
1
2 .

First of all, we notice that ∀i = 1, . . . , 2d, it holds that

• E∆̄i
1. Lemma C.9

= −F SEG
i (z) η +O

(
η2
)
;

• E∆i
1. Lemma C.3

= −F SEG
i (z) η +O

(
η2
)
.

Therefore, we have that for some K1(z) ∈ G,∣∣E∆i − E∆̄i

∣∣ ≤ K1(z)η
2, ∀i = 1, . . . , 2d. (71)

Additionally, we notice that ∀i, j = 1, . . . , d, it holds that

• E∆̄i∆̄j
2. Lemma C.9

= F SEG
i (z)F SEG

j (z) η2 +ΣSEG
(ij) (z) η

2 +O
(
η3
)
;

• E∆i∆j
2. Lemma C.3

= F SEG
i (z)F SEG

j (z) η2 +ΣSEG
(ij) (z) η

2 +O
(
η3
)
.

Therefore, we have that for some K2(z) ∈ G,∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(z)η
2, ∀i, j = 1, . . . , 2d. (72)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , 2d}, it holds that

• E
∏s

j=1 ∆̄ij
3. Lemma C.9

= O
(
η3
)
;

• E
∏s

j=1 ∆ij
3. Lemma C.3

= O
(
η3
)
.

Therefore, we have that for some K3(z) ∈ G,∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(z)η
2. (73)

Additionally, for some K4(z) ∈ G, ∀ij ∈ {1, . . . , d},

E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma C.9
≤ K4(z)η

2. (74)

Finally, Eq. (71), Eq. (72), Eq. (73), and Eq. (74) allow us to conclude the proof.
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Corollary C.10. Let us take the same assumptions of Theorem C.8. Additionally, let us assume that
γ1 = γ2 = γ, the stochastic gradients can be written as ∇xfγ(z) = ∇xf(z)+Ux and ∇yfγ(z) = ∇yf(z)+Uy

such that Ux and Uy are independent noises that do not depend on z, whose expectation is 0, and whose
covariance matrix is Σ. Therefore, the SDE (57) is

dZt = −F (Zt) + ρ∇F (Zt)F (Zt)dt+
√
η (I2d − ρ∇F (Zt))

√
ΣdWt. (75)

Proof of Corollary C.10. First of all, we notice that

F (z)− ρE [∇Fγ(z)Fγ(z)] = F (z)− ρE [∇F (z)Fγ(z)]

= F (z)− ρ∇F (z)F (z). (76)

Second, based on our assumption of the noise structure, we can rewrite Eq. (60) of the matrix ΣSEG as

ΣSEG = η2E
[
(F (z)− Fγ(z)) (F (z)− Fγ(z))

⊤
]

+ η2ρ
(
E
[
(F (z)− Fγ (z)) (E [∇Fγ(z)Fγ(z)]−∇Fγ(z)Fγ(z))

⊤
])

+ η2ρ
(
E
[
(F (z)− Fγ (z)) (E [∇Fγ(z)Fγ(z)]−∇Fγ(z)Fγ(z))

⊤
])⊤

+O
(
η3
)

= η2E
[
(F (z)− Fγ(z)) (F (z)− Fγ(z))

⊤
]

+ η2ρ
(
E
[
(F (z)− Fγ (z)) (E [∇F (z)Fγ(z)]−∇F (z)Fγ(z))

⊤
])

+ η2ρ
(
E
[
(F (z)− Fγ (z)) (E [∇F (z)Fγ(z)]−∇F (z)Fγ(z))

⊤
])⊤

+O
(
η3
)

= η2
(
Σ+ ρΣ∇F (z)

⊤
+ ρ∇F (z) Σ

)
+O

(
η3
)
. (77)

By observing that (I2d − ρ∇F (z))
√
Σ
√
Σ(I2d − ρ∇F (z)

⊤
) = Σ + ρΣ∇F (z)

⊤
+ ρ∇F (z) Σ +O (η), we conclude

the proof.

Corollary C.11. Let us take the same assumptions of Theorem C.8. Additionally, let us assume that
γ1 and γ2, are independent and the stochastic gradients can be written as ∇xfγi(z) = ∇xf(z) + U i

x and
∇yfγi(z) = ∇yf(z) + U i

y such that U i
x and U i

y are independent noises that do not depend on z, whose
expectation is 0, and whose covariance matrix is Σ. Therefore, the SDE (57) is

dZt = −F (Zt) + ρ∇F (Zt)F (Zt)dt+
√

ηΣdWt. (78)

Proof of Corollary C.11. First of all, we notice that

F (z)− ρE
[
∇Fγ1(z)Fγ2(z)

]
= F (z)− ρ∇F (z)F (z). (79)

Second, based on our assumption of the noise structure, we can rewrite Eq. (60) of the matrix ΣSEG as

ΣSEG = η2E
[(
F (z)− Fγ1(z)

) (
F (z)− Fγ1(z)

)⊤]
+ η2ρ

(
E
[(
F (z)− Fγ1 (z)

) (
∇F (z)F (z)−∇Fγ1(z)Fγ2(z)

)⊤])
+ η2ρ

(
E
[(
F (z)− Fγ1 (z)

) (
∇F (z)F (z)−∇Fγ1(z)Fγ2(z)

)⊤])⊤
+O

(
η3
)

= η2E
[(
F (z)− Fγ1(z)

) (
F (z)− Fγ1(z)

)⊤]
+ η2ρ

(
E
[(
F (z)− Fγ1 (z)

) (
∇F (z)F (z)−∇F (z)Fγ2(z)

)⊤])
+ η2ρ

(
E
[(
F (z)− Fγ1 (z)

) (
∇F (z)F (z)−∇F (z)Fγ2(z)

)⊤])⊤
+O

(
η3
)

= η2Σ+O
(
η3
)
, (80)
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which concludes the proof.

C.2.1 Continuous-time SEG is equivalent to SGDA if ρ = O(η)

In this subsection, we provide a formal proof that if ρ = O(η), the first-order weak approximation of SEG is the
same as that of SGDA. This is consistent with the ODE literature on ODEs for these models (Chavdarova et al.,
2023; Lu, 2022).

We will consider the stochastic process Zt ∈ R2d defined as the solution of

dZt = −F (Zt) dt+
√

ηΣdWt. (81)

Theorem C.12 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let
zk ∈ R2d, 0 ≤ k ≤ N denote a sequence of SEG iterations defined by Eq. (3). Additionally, let us take

ρ = O (η) . (82)

Consider the stochastic process Zt defined in Eq. (81) and fix some test function g ∈ G and suppose that g
and its partial derivatives up to order 6 belong to G.
Then, under Assumption C.2, there exists a constant C > 0 independent of η such that for all k =
0, 1, . . . , N , we have

|Eg (Zkη)− Eg (zk)| ≤ Cη.

That is, the SDE (81) is an order 1 weak approximation of the SEG iterations (3).

Lemma C.13. Under the assumptions of Theorem C.12, let 0 < η < 1 and consider zk, k ≥ 0 satisfying
the SEG iterations (3)

[
xk+1

yk+1

]
=

[
xk

yk

]
− η

 +∇xfγ1
k

(
xk − ρ∇xfγ2

k
(xk, yk) , yk + ρ∇yfγ2

k
(xk, yk)

)
−∇yfγ1

k

(
xk − ρ∇xfγ2

k
(xk, yk) , yk + ρ∇yfγ2

k
(xk, yk)

)  (83)

with z0 := z = (x, y) ∈ Rd × Rd. From the definition the one-step difference ∆̄ = z1 − z, then we have

1. E∆̄i = −Fi (z) η +O
(
η2
)

∀i = 1, . . . , 2d;

2. E∆̄i∆̄j = Fi (z)Fj (z) η
2 +Σ(ij) (z) η

2 +O
(
η3
)

∀i, j = 1, . . . , 2d;

3. E
∏s

j=1 ∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , 2d}.

All the functions above are evaluated at z.

Proof of Lemma C.13. First of all, we have that by definition and using a Taylor expansion,

xk+1 = xk − η∇xfγ1
k

(
xk − ρ∇xfγ2

k
(xk, yk) , yk + ρ∇yfγ2

k
(xk, yk)

)
(84)

= xk − η∇xfγ1
k
(xk, yk) + ηρ∇2

xxfγ1
k
(xk, yk)∇xfγ2

k
(xk, yk)− ηρ∇2

xyfγ1
k
(xk, yk)∇yfγ2

k
(xk, yk) +O

(
ηρ2
)
,

and

yk+1 = yk + η∇yfγ1
k

(
xk − ρ∇xfγ2

k
(xk, yk) , yk + ρ∇yfγ2

k
(xk, yk)

)
(85)

= yk + η∇yfγ1
k
(xk, yk)− ηρ∇2

xyfγ2
k
(xk, yk)∇xfγ2

k
(xk, yk) + ηρ∇2

yyfγk
(xk, yk)∇yfγk

(xk, yk) +O
(
ηρ2
)
.
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Therefore

z1 = z − ηFγ1(z) +O
(
η2
)
, (86)

which implies that

E [zk+1 − zk] = −ηF (zk) +O
(
η2
)
, (87)

which in turn implies that
E∆̄i = −Fi (z) η +O

(
η2
)

∀i = 1, . . . , 2d. (88)

Second, we have that

E
[
(z1 − z) (z1 − z)

⊤
]
= η2

[
(F (z)) (F (z))

⊤
]
+ η2Σ(z) +O

(
η3
)
, (89)

which implies that

E∆̄i∆̄j = Fi (z)Fj (z) η
2 +Σ(ij) (z) η

2 +O
(
η3
)

∀i, j = 1, . . . , 2d. (90)

Finally, by definition,

E
s∏

j=1

∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , 2d}, (91)

which concludes our proof.

Proof of Theorem C.12. To prove this result, all we need to do is check the conditions in Theorem C.4. As we
apply Lemma C.3, we make the following choices:

• b(z) = −F (z);

• σ(z) = Σ(z)
1
2 .

First of all, we notice that ∀i = 1, . . . , 2d, it holds that

• E∆̄i
1. Lemma C.13

= −Fi (z) η +O
(
η2
)
;

• E∆i
1. Lemma C.3

= −Fi (z) η +O
(
η2
)
.

Therefore, we have that for some K1(z) ∈ G,∣∣E∆i − E∆̄i

∣∣ ≤ K1(z)η
2, ∀i = 1, . . . , 2d. (92)

Additionally, we notice that ∀i, j = 1, . . . , d, it holds that

• E∆̄i∆̄j
2. Lemma C.13

= Fi (z)Fj (z) η
2 +Σ(ij) (z) η

2 +O
(
η3
)
;

• E∆i∆j
2. Lemma C.3

= Fi (z)Fj (z) η
2 +Σ(ij) (z) η

2 +O
(
η3
)
.

Therefore, we have that for some K2(z) ∈ G,∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(z)η
2, ∀i, j = 1, . . . , 2d. (93)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , 2d}, it holds that

• E
∏s

j=1 ∆̄ij
3. Lemma C.13

= O
(
η3
)
;

• E
∏s

j=1 ∆ij
3. Lemma C.3

= O
(
η3
)
.
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Therefore, we have that for some K3(z) ∈ G

∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(z)η
2. (94)

Additionally, for some K4(z) ∈ G, ∀ij ∈ {1, . . . , d}

E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma C.13
≤ K4(z)η

2. (95)

Finally, Eq. (92), Eq. (93), Eq. (94), and Eq. (95) allow us to conclude the proof.

C.3 Formal Derivation - SHGD

In this subsection, we present the first formal derivation of an SDE model for SHGD. We will consider the
stochastic process Zt ∈ Rd defined as the solution of

dZt = −F SHGD (Zt) dt+
√
ηΣSHGD (Zt)dWt. (96)

with

F SHGD(z) := ∇E [Hγ (z)] , (97)

ΣSHGD(z) := E
[
ξ̂γ(z)ξ̂γ(z)

⊤
]
, (98)

ξ̂γ(z) = F SHGD(z)−∇Hγ (z) . (99)

We remind the following equalities that will come in handy in the subsequent proofs:

ΣSHGD(z) = E
[(
∇E

[
Hγ1,γ2 (z)

]
−∇Hγ1,γ2 (z)

) (
∇E

[
Hγ1,γ2 (z)

]
−∇Hγ1,γ2 (z)

)⊤]
, (100)

E
[
Hγ1,γ2 (z)

]
= E

[
F⊤
γ1 (z)Fγ2 (z)

2

]
, and E

[
∇Hγ1,γ2 (z)

]
= E

[
F⊤
γ1 (z)∇Fγ2 (z) + F⊤

γ2 (z)∇Fγ1 (z)

2

]
.

(101)

Theorem C.14 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let
zk ∈ R2d, 0 ≤ k ≤ N denote a sequence of SHGD iterations defined by Eq. (4). Consider the stochastic
process Zt defined in Eq. (96) and fix some test function g ∈ G and suppose that g and its partial derivatives
up to order 6 belong to G.
Then, under Assumption C.2, there exists a constant C > 0 independent of η such that for all k =
0, 1, . . . , N , we have

|Eg (Zkη)− Eg (zk)| ≤ Cη.

That is, the SDE (96) is an order 1 weak approximation of the SHGD iterations (4).
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Lemma C.15. Under the assumptions of Theorem C.14, let 0 < η < 1 and consider zk, k ≥ 0 satisfying
the SHGD iterations (4)

zk+1 = zk − η∇Hγ1
kγ

2
k
(zk)

with z0 := z = (x, y) ∈ Rd × Rd. From the definition the one-step difference ∆̄ = z1 − z, then we have

1. E∆̄i = −∂eiE
[
Hγ1,γ2

]
η ∀i = 1, . . . , 2d;

2. E∆̄i∆̄j = ∂eiE
[
Hγ1,γ2

]
∂ejE

[
Hγ1,γ2

]
η2 +ΣSHGD

(ij) η2 ∀i, j = 1, . . . , 2d;

3. E
∏s

j=1 ∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , 2d}.

All the functions above are evaluated at z.

Proof of Lemma C.15. First of all, we have that by definition

E [z1 − z] = −η∇E
[
Hγ1,γ2 (z)

]
, (102)

which implies
E∆̄i = −∂eiE

[
Hγ1,γ2 (z)

]
η ∀i = 1, . . . , 2d. (103)

Second, we have that by definition

E
[
(z1 − z) (z1 − z)

⊤
]
= η2

[
∇E

[
Hγ1,γ2 (z)

]
∇E

[
Hγ1,γ2 (z)

]⊤]
+ η2E

[(
∇E

[
Hγ1,γ2 (z)

]
−∇Hγ1,γ2 (z)

) (
∇E

[
Hγ1,γ2 (z)

]
−∇Hγ1,γ2 (z)

)⊤]
= η2

[
∇E

[
Hγ1,γ2 (z)

]
∇E

[
Hγ1,γ2 (z)

]⊤]
+ η2ΣSHGD(z), (104)

which implies that

E∆̄i∆̄j = ∂eiE
[
Hγ1,γ2 (z)

]
∂ejE

[
Hγ1,γ2 (z)

]
η2 +ΣSHGD

(ij) (z) η2 ∀i, j = 1, . . . , 2d. (105)

Finally, by definition

E
s∏

j=1

∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , 2d}, (106)

which concludes our proof.

Proof of Theorem C.14. To prove this result, all we need to do is check the conditions in Theorem C.4. As we
apply Lemma C.3, we make the following choices:

• b(z) = −∇E
[
Hγ1,γ2 (z)

]
;

• σ(z) = ΣSHGD(z)
1
2 .

First of all, we notice that ∀i = 1, . . . , 2d, it holds that

• E∆̄i
1. Lemma C.15

= −∂eiE
[
Hγ1,γ2 (z)

]
η;

• E∆i
1. Lemma C.3

= −∂eiE
[
Hγ1,γ2 (z)

]
η +O

(
η2
)
.

Therefore, we have that for some K1(z) ∈ G,∣∣E∆i − E∆̄i

∣∣ ≤ K1(z)η
2, ∀i = 1, . . . , 2d. (107)

Additionally, we notice that ∀i, j = 1, . . . , d, it holds that
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• E∆̄i∆̄j
2. Lemma C.15

= ∂eiE
[
Hγ1,γ2 (z)

]
∂ejE

[
Hγ1,γ2 (z)

]
η2 +ΣSHGD

(ij) (z) η2;

• E∆i∆j
2. Lemma C.3

= ∂eiE
[
Hγ1,γ2 (z)

]
∂ejE

[
Hγ1,γ2 (z)

]
η2 +ΣSHGD

(ij) (z) η2 +O
(
η3
)
.

Therefore, we have that for some K2(z) ∈ G,∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(z)η
2, ∀i, j = 1, . . . , 2d. (108)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , 2d}, it holds that

• E
∏s

j=1 ∆̄ij
3. Lemma C.15

= O
(
η3
)
;

• E
∏s

j=1 ∆ij
3. Lemma C.3

= O
(
η3
)
.

Therefore, we have that for some K3(z) ∈ G,∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(z)η
2. (109)

Additionally, for some K4(z) ∈ G, ∀ij ∈ {1, . . . , d},

E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma C.15
≤ K4(z)η

2. (110)

Finally, Eq. (107), Eq. (108), Eq. (109), and Eq. (110) allow us to conclude the proof.

Corollary C.16. Under the assumptions of Theorem C.14. Additionally, let us assume that γ1 = γ2 = γ,
the stochastic gradients are ∇xfγ(z) = ∇xf(z) + Ux and ∇yfγ(z) = ∇yf(z) + Uy such that Ux and Uy

are independent noises that do not depend on z, whose expectation is 0, and whose covariance matrix is Σ.
Therefore, the SDE is:

dZt = −∇H (Zt) dt+
√
η∇2f (Zt)

√
ΣdWt. (111)

Proof of Corollary C.16. First of all, we notice that

E [Hγ (Zt)] = E
[
∥∇xfγ (Zt)∥22 + ∥∇yfγ (Zt)∥22

2

]
= E

[
∥∇xf (Zt)∥22 + ∥∇yf (Zt)∥22

2

]
+

E
[
(Ux)(Ux)⊤

]
+ E

[
(Uy)(Uy)⊤

]
2

= H (Zt) +
E
[
(Ux)(Ux)⊤

]
+ E

[
(Uy)(Uy)⊤

]
2

. (112)

Since
E[(Ux)(Ux)⊤]+E[(Uy)(Uy)⊤]

2 is independent on z, we ignore it as its gradient is 0.

Second, based on our assumption of the noise structure, we can rewrite Eq. (100) of the matrix ΣSHGD (z) as

E

(F⊤ (z)∇F (z)−
F⊤
γ1 (z) + F⊤

γ2 (z)

2
∇F (z)

)(
F⊤ (z)∇F (z)−

F⊤
γ1 (z) + F⊤

γ2 (z)

2
∇F (z)

)⊤
 . (113)

Since γ1 = γ2 = γ, and noticing that F⊤ (z)∇F (z) = ∇2f (z)∇f (z), we have

ΣSHGD (z) = ∇2f (z) Σ∇2f (z) , (114)

which implies that
dZt = −∇H (Zt) dt+

√
η∇2f (Zt)

√
ΣdWt. (115)
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Corollary C.17. Under the assumptions of Theorem C.14. Additionally, let us assume that γ1 and γ2,
are independent and the stochastic gradients can be written as ∇xfγi(z) = ∇xf(z) + U i

x and ∇yfγi(z) =
∇yf(z) +U i

y such that U i
x and U i

y are independent noises that do not depend on z. Therefore, the SDE is:

dZt = −∇H (Zt) dt+

√
η

2
∇2f (Zt)

√
ΣdWt. (116)

Proof of Corollary C.17. First of all, we notice that

E
[
∇Hγ1,γ2 (z)

]
:= E

[
F⊤
γ1 (z)∇Fγ2 (z) + F⊤

γ2 (z)∇Fγ1 (z)

2

]
= F⊤ (z)∇F (z) = ∇H (z) . (117)

Second, based on our assumption of the noise structure, we can rewrite Eq. (100) of the matrix ΣSHGD (z) as

E

(F⊤ (z)∇F (z)−
F⊤
γ1 (z) + F⊤

γ2 (z)

2
∇F (z)

)(
F⊤ (z)∇F (z)−

F⊤
γ1 (z) + F⊤

γ2 (z)

2
∇F (z)

)⊤
 . (118)

Since γ1 and γ2 are independent, and noticing that F⊤ (z)∇F (z) = ∇2f (z)∇f (z), we have

ΣSHGD (z) =
1

2
∇2f (z) Σ∇2f (z) , (119)

which implies that

dZt = −∇H (Zt) dt+

√
η

2
∇2f (Zt)

√
ΣdWt. (120)

D BILINEAR GAMES - INSIGHTS

In this section, we study Bilinear Games of the form f(x, y) = x⊤Λy, where Λ is a square, diagonal, and positive
semidefinite matrix.

D.1 SEG

Theorem D.1 (Exact Dynamics of SEG). Under the assumptions of Corollary C.10, for f(x, y) = x⊤Λy and
noise covariance matrices equal to σId, we have that

Zt = Ẽ(t)R̃(t)

(
z +

√
ησ

∫ t

0

Ẽ(−s)R̃(−s)MdWs

)
, (121)

with Ẽ(t) =

[
E(t) 0d

0d E(t)

]
, R̃(t) =

[
C(t) −S(t)
S(t) C(t)

]
, and M =

[
Id −ρΛ
ρΛ Id

]
, where

E(t) := diag
(
e−ρλ2

1t, · · · , e−ρλ2
dt
)
, (122)

C(t) := diag (cos (λ1t), · · · , cos (λdt)), (123)

and
S(t) := diag (sin (λ1t), · · · , sin (λdt)). (124)

In particular, we have that

1. E [Zt] = Ẽ(t)R̃(t)z
t→∞
= 0;
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2. The covariance matrix of is equal to

ησ2

[
Id −E(2t) 0d

0d Id −E(2t)

]
Σ̄

t→∞
= ησ2Σ̄, (125)

where

Σ̄ :=

[
B 0d

0d B

]
, (126)

and B := diag
(

1+ρ2λ2
1

2ρλ2
1

, · · · , 1+ρ2λ2
d

2ρλ2
d

)
;

3. If ρ = 0, SGDA would indeed diverge.

Proof. The SDEs of SEG are:

dXt = −ΛYtdt− ρΛ2Xtdt+
√
ηIdσdW

x
t −√

ησρΛdW y
t (127)

and

dYt = +ΛXtdt− ρΛ2Y tdt+
√
ησIdW

y
t +

√
ησρΛdW x

t , (128)

which can be rewritten as

dZt = AZtdt+
√
ησBdWt, (129)

where

A =

[
−ρΛ2 −Λ
Λ −ρΛ2

]
and B =

[
Id −ρΛ
ρΛ Id

]
. (130)

Therefore, the solution is

Zt = eAt

(
z +

√
ησ

∫ t

0

e−AsBdWs

)
. (131)

We observe that A = A1 +A2 s.t.

A1 =

[
−ρΛ2 0d

0d −ρΛ2

]
and A2 =

[
0d −Λ
Λ 0d

]
, (132)

and that since these two matrix commute, eAt = eA1teA2t. Clearly, we have that

Ẽ(t) := eA1t = diag
(
e−ρλ2

1t, · · · , e−ρλ2
dt, e−ρλ2

1t, · · · , e−ρλ2
dt
)
=

[
E(t) 0d

0d E(t)

]
, (133)

where E(t) := diag
(
e−ρλ2

1t, · · · , e−ρλ2
dt
)
.

Regarding A2, we observe that

(A2t)
2k = diag

(
(λ1t)

2k(−1)k, · · · , (λdt)
2k(−1)k, (λ1t)

2k(−1)k, · · · , (λdt)
2k(−1)k

)
(134)

and that

(A2t)
2k+1 =

[
0d P
Q 0d

]
, (135)

where

P := diag
(
(λ1t)

2k+1(−1)k+1, · · · , (λdt)
2k+1(−1)k+1

)
(136)

and

Q := diag
(
(λ1t)

2k+1(−1)k, · · · , (λdt)
2k+1(−1)k

)
. (137)
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Therefore,

R̃(t) := eA2t =

∞∑
k=0

(A2t)
2k

(2k)!
+

∞∑
k=0

(A2t)
2k+1

(2k + 1)!

=

[
C(t) 0d

0d C(t)

]
+

[
0d −S(t)
S(t) 0d

]
=

[
C(t) −S(t)
S(t) C(t)

]
, (138)

where

C(t) := diag (cos (λ1t), · · · , cos (λdt)) (139)

and

S(t) := diag (sin (λ1t), · · · , sin (λdt)). (140)

Automatically, we get that

e−A1s =

[
E(−s) 0d

0d E(−s)

]
(141)

and

e−A2s =

[
C(s) S(s)
−S(s) C(s)

]
, (142)

which imply that

Zt =

[
E(t) 0d

0d E(t)

] [
C(t) −S(t)
S(t) C(t)

](
z

+
√
ησ

∫ t

0

[
E(−s) 0d

0d E(−s)

] [
C(s) S(s)
−S(s) C(s)

] [
Id −ρΛ
ρΛ Id

] [
dW x

s

dW y
s

])
. (143)

To conclude, we have that

Zt = Ẽ(t)R̃(t)

(
z +

√
ησ

∫ t

0

Ẽ(−s)R̃(−s)MdWs

)
, (144)

where M =

[
Id −ρΛ
ρΛ Id

]
.

We observe that since the expected value of the noise terms is 0, we have that

E[Zt] =

[
E(t) 0d

0d E(t)

] [
C(t) −S(t)
S(t) C(t)

]
z. (145)

Therefore, the expectation of Zt converges to 0 exponentially fast, while spiraling around the origin. We observe
that larger values of ρ encourage a faster convergence of E[Zt] to 0.

Let us now have a look at the covariance matrix of this process:

V ar(Zt) = ησ2

[
E(2t) 0d

0d E(2t)

]
R̃(t)V ar(Vt)R̃(t)⊤, where
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Vt :=

∫ t

0

[
E(−s) 0d

0d E(−s)

] [
C(s) S(s)
−S(s) C(s)

] [
Id −ρΛ
ρΛ Id

] [
dW x

s

dW y
s

]
=

∫ t

0

[
E(−s)(C(s) + ρΛS(s)) E(−s)(S(s)− ρΛC(s))
E(−s)(ρΛC(s)− S(s)) E(−s)(C(s) + ρΛS(s))

] [
dW x

s

dW y
s

]

=



∫ t

0
eρλ

2
1s(cos (λ1s) + ρλ sin (λ1s))dW

x1
s +

∫ t

0
eρλ

2
1s(sin (λ1s)− ρλ1 cos (λ1s))dW

y1
s

...∫ t

0
eρλ

2
ds(cos (λds) + ρλ sin (λds))dW

xd
s +

∫ t

0
eρλ

2
ds(sin (λds)− ρλd cos (λds))dW

yd
s∫ t

0
eρλ

2
1s(− sin (λ1s) + ρλ cos (λ1s))dW

x1
s +

∫ t

0
eρλ

2
1s(cos (λ1s) + ρλ1 sin (λ1s))dW

y1
s

...∫ t

0
eρλ

2
ds(− sin (λds) + ρλ cos (λds))dW

xd
s +

∫ t

0
eρλ

2
ds(cos (λds) + ρλd sin (λds))dW

yd
s



=:



ax1
1 (t) + ay1

2 (t)
...
axd
1 (t) + ayd

2 (t)
ax1
3 (t) + ay1

4 (t)
...
axd
3 (t) + ayd

4 (t)


. (146)

Therefore,

V ar(Vt) =

[
V1,2(t) C1,2,3,4(t)
C1,2,3,4(t) V3,4(t)

]
, (147)

such that

V1,2
i,i (t) = V ar(axi

1 (t)) + V ar(ayi

2 (t)), ∀i ∈ {1, · · · , d}, (148)

V3,4
i,i (t) = V ar(axi

3 (t)) + V ar(ayi

4 (t)), ∀i ∈ {1, · · · , d}, (149)

and

C1,2,3,4
i,i (t) = Cov(axi

1 (t), axi
3 (t)) + Cov(ayi

1 (t), ayi

3 (t)), ∀i ∈ {1, · · · , d}. (150)

Using the well-known Itô Isometry:

E

[(∫ t

0

HsdWs

)2
]
= E

[∫ t

0

H2
sds

]
,

we get that

V ar(axi
1 (t)) + V ar(ayi

2 (t)) =

∫ t

0

e2ρλ
2
i s(cos (λis) + ρλi sin (λis))

2ds+

∫ t

0

e2ρλ
2
i s(sin (λis)− ρλi cos (λis))

2ds

=

∫ t

0

e2ρλ
2
i s
[
(cos (λis) + ρλi sin (λis))

2 + (sin (λis)− ρλi cos (λis))
2
]
ds

=

∫ t

0

e2ρλ
2
i s
[
1 + ρ2λ2

i

]
ds

=
1 + ρ2λ2

i

2ρλ2
i

(
e2ρλ

2
i t − 1

)
. (151)

We observe that if ρ = 0, this quantity is equal to t.
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Then, we do a similar calculation:

V ar(axi
3 (t)) + V ar(ayi

4 (t)) =

∫ t

0

e2ρλ
2
i s(− sin (λis) + ρλi cos (λis))

2ds+

∫ t

0

e2ρλ
2
i s(cos (λis) + ρλi sin (λis))

2ds

=

∫ t

0

e2ρλ
2
i s
[
(− sin (λis) + ρλi cos (λis))

2 + (cos (λis) + ρλi sin (λis))
2
]
ds

=

∫ t

0

e2ρλ
2
i s
[
1 + ρ2λ2

i

]
ds

=
1 + ρ2λ2

i

2ρλ2
i

(
e2ρλ

2
i t − 1

)
. (152)

We observe that if ρ = 0, also this quantity is equal to t.

Remembering now that

E
[(∫ t

0

XsdWs

)(∫ t

0

YsdWs

)]
= E

[∫ t

0

XsYsds

]
,

we have that

Cov(axi
1 (t), axi

3 (t)) + Cov(ayi

2 (t), ayi

4 (t)) =

∫ t

0

e2ρλ
2
i s(cos (λis) + ρλi sin (λis))(− sin (λis) + ρλi cos (λis))ds

+

∫ t

0

e2ρλ
2
i s(sin (λis)− ρλi cos (λis))(cos (λis) + ρλi sin (λis))ds = 0.

(153)

To conclude, the covariance matrix of Zt is

V ar(Zt) = ησ2

[
Id −E(2t) 0d

0d Id −E(2t)

]
Σ̄

t→∞
= ησ2Σ̄, (154)

where

Σ̄ :=

[
B 0d

0d B

]
(155)

and B := diag
(

1+ρ2λ2
1

2ρλ2
1

, · · · , 1+ρ2λ2
d

2ρλ2
d

)
.

Of course, if ρ = 0 the covariance matrix is actually ησ2tId, meaning that the variance of SGDA diverges.

Lemma D.2. Let us define the variance Bi,i(ρ) =
1+ρ2λ2

i

2ρλ2
i

and consider it as a function of ρ. The following hold:

1. limρ→0 Bi,i(ρ) = ∞;

2. limρ→∞ Bi,i(ρ) = ∞;

3. Bi,i(ρ) is convex in ρ;

4. ρ = 1
λi

realizes the minimum and Bi,i

(
1
λi

)
= 1

λi
;

5. The trace of Σ̄ is minimized by ρ =

√∑
1

λ2
i

d .

Proof. The first four points are obvious while we spell out the last one. We observe that the trace of B is convex
as the sum of convex functions and its derivative w.r.t. ρ is

d

dρ

(
d∑

i=1

1 + ρ2λ2
i

2ρλ2
i

)
=

d∑
i=1

1

2
− 1

2ρ2λ2
i

, (156)

which implies that the optimal ρ is indeed ρ =

√∑
1

λ2
i

d .
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Insights - The trade-off in selecting ρ The curvature of the landscape influences the speed of convergence.
Indeed, larger values of λi, which correspond to stronger interaction, speed up the exponential decay in the
expected value of the iterates. Additionally, ρ impacts the convergence speed in expectation as larger values
boost such a decay. However, the peculiar way in which the noise and the landscape interact implies that larger
values of ρ might actually result in larger asymptotic variance. One observes that both ρ → 0 and ρ → ∞ result
in infinite asymptotic variance. On the bright side, ρi =

1
λi

is the optimal choice to reduce the variance along the
i-th dimension. Unfortunately, this could possibly be very small and thus slow down the convergence. Finally, if
one can only select a single ρ across all parameters, then one might want to minimize the trace of the covariance

matrix using ρ =

√∑
1

λ2
i

d .

D.2 SHGD

Theorem D.3 (Exact Dynamics of SHGD). Under the assumptions of Corollary C.16, for f(x, y) = x⊤Λy and
noise covariance matrices equal to σId, we have that

Zt = Ẽ(t)

(
z +

√
ησ

∫ t

0

Ẽ(−s)MdWs

)
, (157)

Ẽ(t) =

[
E(t) 0d

0d E(t)

]
, M =

[
0d Λ
Λ 0d

]
, where

E(t) := diag
(
e−λ2

1t, · · · , e−λ2
dt
)
. (158)

In particular, we have that

1. E [Zt] = Ẽ(t)z
t→∞
= 0;

2. The covariance matrix of Zt is equal to

η
σ2

2

[
Id −E(2t) 0d

0d Id −E(2t)

]
Σ̄

t→∞
= ησ2Σ̄, (159)

where

Σ̄ :=

[
Id 0d

0d Id

]
. (160)

Proof. The SDEs of SHGD are:

dXt = −Λ2Xtdt+
√
ησΛdW y

t (161)

and

dYt = −Λ2Y tdt+
√
ησΛdW x

t , (162)

which can be rewritten as

dZt = AZtdt+
√
ησBdWt, (163)

where

A =

[
−Λ2 0d

0d −Λ2

]
and B =

[
0d Λ
Λ 0d

]
. (164)

Therefore, the solution is

Zt = eAt

(
z +

√
ησ

∫ t

0

e−AsBdWs

)
. (165)

Clearly, we have that

Ẽ(t) := eAt = diag
(
e−λ2

1t, · · · , e−λ2
dt, e−λ2

1t, · · · , e−λ2
dt
)
=

[
E(t) 0d

0d E(t)

]
, (166)
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where E(t) := diag
(
e−λ2

1t, · · · , e−λ2
dt
)
. Automatically, we get that

e−A1s =

[
E(−s) 0d

0d E(−s)

]
, (167)

which implies that

Zt =

[
E(t) 0d

0d E(t)

](
z +

√
ησ

∫ t

0

[
E(−s) 0d

0d E(−s)

] [
0d Λ
Λ 0d

] [
dW x

s

dW y
s

])
. (168)

To conclude, we have that

Zt = Ẽ(t)

(
z +

√
ησ

∫ t

0

Ẽ(−s)MdWs

)
, (169)

where M =

[
0d Λ
Λ 0d

]
. We observe that

E[Zt] =

[
E(t) 0d

0d E(t)

]
z (170)

because the parts dependent on dW are martingales. Therefore, E[Zt] converges to 0 exponentially fast.

Let us now have a look at the covariance matrix of this process:

V ar(Zt) = ησ2

[
E(2t) 0d

0d E(2t)

]
V ar(Vt), where

Vt :=

∫ t

0

[
E(−s) 0d

0d E(−s)

] [
0d Λ
Λ 0d

] [
dW x

s

dW y
s

]

=



∫ t

0
λ1e

λ2
1sdW y1

s
...∫ t

0
λde

λ2
dsdW yd

s∫ t

0
λ1e

λ2
1sdW x1

s
...∫ t

0
λde

λ2
dsdW xd

s


=:



ay1(t)
...
ayd(t)
ax1(t)
...
axd(t)


. (171)

Therefore,

V ar(Vt) =

[
V1,y(t) 0d

0d V1,x(t)

]
, (172)

such that
V1,y

i,i (t) = V ar(ayi(t)), ∀i ∈ {1, · · · , d}, (173)

and
V1,x

i,i (t) = V ar(axi(t)), ∀i ∈ {1, · · · , d}. (174)

Using the well-known Itô Isometry

E

[(∫ t

0

HsdWs

)2
]
= E

[∫ t

0

H2
sds

]
,

we get that

V ar(ayi(t)) =

∫ t

0

e2λ
2
i sλ2

i ds =
1

2

(
e2λ

2
i t − 1

)
. (175)

Similarly, we get that

V ar(axi(t)) =

∫ t

0

e2λ
2
i sλ2

i ds =
1

2

(
e2λ

2
i t − 1

)
. (176)
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Therefore, we conclude that the covariance matrix of Zt is

V ar(Zt) = ησ2

[
Id −E(2t) 0d

0d Id −E(2t)

]
Σ̄

t→∞
=

ησ2

2
Σ̄, (177)

where

Σ̄ :=

[
Id 0d

0d Id

]
. (178)

Insights Just like for SEG, the curvature influences the speed of convergence of the algorithm. On the other,
the asymptotic variance is independent of the curvature.

SEG vs SHGD We notice that if ρ = 1, the exponential decay of SEG and SHGD is the same. However, in

such a case, the asymptotic variance of SEG along the i-th dimension is ησ2
(

1
2 + 1

2λi

)
which is larger than that

of SHGD which attains ησ2

2 . Differently, one can select ρVi = 1
λi
, which realizes the minimum variance of SEG

along the i-th dimension. Thus, the resulting variance is ησ2

2λi
which is smaller than ησ2

2 if and only if λi > 1. In

such a case, SEG can be more optimal than SHGD, but since ρi =
1
λi

< 1, it will converge more slowly than
SHGD.

Therefore, selecting the size of ρ or ρi leads to a trade-off between the speed of convergence and the asymptotic
variance. To conclude, there is no clear winner between the two methods as their performance depends on the
curvature of the landscape.

E QUADRATIC GAMES - INSIGHTS

In this section, we study Quadratic Games of the form f(x, y) = x⊤Ax
2 + x⊤Λy − y⊤Ay

2 , where Λ and A are
square, diagonal and positive semidefinite matrices. We notice that if A = 0, these are classic Bilinear Games.

E.1 SEG

Theorem E.1 (Exact Dynamics of SEG). Under the assumptions of Corollary C.10, for f(x, y) = x⊤Ax
2 +

x⊤Λy − y⊤Ay
2 and noise covariance matrices equal to σId, we have that

Zt = Ẽ(t)R̃(t)

(
z +

√
ησ

∫ t

0

Ẽ(−s)R̃(−s)MdWs

)
, (179)

Ẽ(t) =

[
E(t) 0d

0d E(t)

]
, R̃(t) =

[
C(t) −S(t)
S(t) C(t)

]
, and M =

[
Id − ρA −ρΛ
ρΛ Id − ρA

]
, where

E(t) := diag
(
eρ(a

2
1−λ2

1)t−a1t, · · · , eρ(a
2
d−λ2

d)t−adt
)
, (180)

C(t) := diag
(
cos (λ̂1t), · · · , cos (λ̂dt)

)
, (181)

S(t) := diag
(
sin (λ̂dt), · · · , sin (λ̂dt)

)
, (182)

and λ̂i := λi(1− 2ρai). In particular, if ρ
(
a2i − λ2

1

)
− ai < 0:

1. E [Zt] = Ẽ(t)R̃(t)z
t→∞
= 0;

2. The covariance matrix of Zt is equal to

ησ2

[
Id −E(2t) 0d

0d Id −E(2t)

]
Σ̄

t→∞
= ησ2Σ̄, (183)
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where

Σ̄ :=

[
B 0d

0d B

]
, (184)

and B := diag
(

(1−ρa1)
2+ρ2λ2

1

2(a1+ρ(λ2
1−a2

1))
, · · · , (1−ρad)

2+ρ2λ2
d

2(ad+ρ(λ2
d−a2

d))

)
;

3. If ρ = 0, SGDA would indeed always converge.

Proof. The SDE is

dZt = DZtdt+
√
ησBdWt, (185)

where

D =

[
ρ(A2 −Λ2)−A −Λ(Id − 2ρA)
Λ(Id − 2ρA) ρ(A2 −Λ2)−A

]
and B =

[
Id − ρA −ρΛ
ρΛ Id − ρA

]
. (186)

Therefore, the solution is

Zt = eDt

(
z +

√
ησ

∫ t

0

e−DsBdWs

)
. (187)

We observe that D = D1 +D2 s.t.

D1 =

[
ρ(A2 −Λ2)−A 0d

0d ρ(A2 −Λ2)−A

]
and D2 =

[
0d −Λ(Id − 2ρA)
Λ(Id − 2ρA) 0d

]
(188)

and that since these two matrix commute, eDt = eD1teD2t. Clearly, we have that

Ẽ(t) := eD1t =

[
E(t) 0d

0d E(t)

]
, (189)

where E(t) := diag
(
eρ(a

2
1−λ2

1)t−a1t, · · · , eρ(a2
d−λ2

1)t−adt
)
.

Regarding D2, we observe that (D2t)
2k is equal to

diag
(
(λ1(1− 2ρa1)t)

2k(−1)k, · · · , (λd(1− 2ρad)t)
2k(−1)k, (λ1(1− 2ρa1)t)

2k(−1)k, · · · , (λd(1− 2ρad)t)
2k(−1)k

)
(190)

and

(D2t)
2k+1 =

[
0d P
Q 0d

]
, (191)

with
P := diag

(
(λ1(1− 2ρa1)t)

2k+1(−1)k+1, · · · , (λd(1− 2ρad)t)
2k+1(−1)k+1

)
(192)

and
Q := diag

(
(λ1(1− 2ρa1)t)

2k+1(−1)k, · · · , (λd(1− 2ρad)t)
2k+1(−1)k

)
. (193)

Therefore,

R̃(t) := eD2t =

∞∑
k=0

(D2t)
2k

(2k)!
+

∞∑
k=0

(D2t)
2k+1

(2k + 1)!

=

[
C(t) 0d

0d C(t)

]
+

[
0d −S(t)
S(t) 0d

]
=

[
C(t) −S(t)
S(t) C(t)

]
, (194)

where
C(t) := diag (cos (λ1(1− 2ρa1)t), · · · , cos (λd(1− 2ρad)t)), (195)

and
S(t) := diag (sin (λ1(1− 2ρa1)t), · · · , sin (λd(1− 2ρad)t)). (196)
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Automatically, we get that

e−D1s =

[
E(−s) 0d

0d E(−s)

]
(197)

and

e−D2s =

[
C(s) S(s)
−S(s) C(s)

]
, (198)

which implies that

Zt =

[
E(t) 0d

0d E(t)

] [
C(t) −S(t)
S(t) C(t)

](
z

+
√
ησ

∫ t

0

[
E(−s) 0d

0d E(−s)

] [
C(s) S(s)
−S(s) C(s)

] [
Id − ρA −ρΛ
ρΛ Id − ρA

] [
dW x

s

dW y
s

])
. (199)

We observe that since the expected value of the noise terms is 0, we have

E[Zt] =

[
E(t) 0d

0d E(t)

] [
C(t) −S(t)
S(t) C(t)

]
z. (200)

Therefore if ρ(a2i − λ2
i )− ai < 0, E[Zt] converges to 0 exponentially fast, while spiraling around the origin.

Let us now have a look at the variance of this process:

V ar(Zt) = ησ2

[
E(2t) 0d

0d E(2t)

]
R̃(t)V ar(Vt)R̃(t)⊤, where

Vt :=

∫ t

0

[
E(−s) 0d

0d E(−s)

] [
C(s) S(s)
−S(s) C(s)

] [
Id − ρA −ρΛ
ρΛ Id − ρA

] [
dW x

s

dW y
s

]
=

∫ t

0

[
E(−s)(C(s)(Id − ρA) + ρΛS(s)) E(−s)(S(s)(Id − ρA)− ρΛC(s))
E(−s)(ρΛC(s)− S(s)(Id − ρA)) E(−s)(C(s)(Id − ρA) + ρΛS(s))

] [
dW x

s

dW y
s

]

=



∫ t
0
ea1s−ρ(a2

1−λ2
1)s(cos (λ̂1s)(1 − ρa1) + ρλ1 sin (λ̂1s))dW

x1
s +

∫ t
0
ea1s−ρ(a2

1−λ2
1)s(sin (λ̂1s)(1 − ρa1) − ρλ1 cos (λ̂1s))dW

y1
s

.

.

.∫ t
0
eads−ρ(a2

d−λ2
d)s(cos (λ̂ds)(1 − ρad) + ρλd sin (λ̂ds))dW

xd
s +

∫ t
0
eads−ρ(a2

d−λ2
d)s(sin (λ̂ds)(1 − ρad) − ρλd cos (λ̂ds))dW

yd
s∫ t

0
ea1s−ρ(a2

1−λ2
1)s(ρλ1 cos (λ̂1s) − sin (λ̂1s)(1 − ρa1))dW

x1
s +

∫ t
0
ea1s−ρ(a2

1−λ2
1)s(cos (λ̂1s)(1 − ρa1) + ρλ1 sin (λ̂1s))dW

y1
s

.

.

.∫ t
0
eads−ρ(a2

d−λ2
1)s(ρλd cos (λ̂ds) − sin (λ̂ds)(1 − ρad))dW

xd
s +

∫ t
0
eads−ρ(a2

d−λ2
1)s(cos (λ̂ds)(1 − ρad) + ρλd sin (λ̂ds))dW

yd
s



=:



ax1
1 (t) + ay1

2 (t)
...
axd
1 (t) + ayd

2 (t)
ax1
3 (t) + ay1

4 (t)
...
axd
3 (t) + ayd

4 (t)


and λ̂i := λi(1− 2ρai). (201)

Therefore,

V ar(Vt) =

[
V1,2(t) C1,2,3,4(t)
C1,2,3,4(t) V3,4(t)

]
, (202)

such that

V1,2
i,i (t) = V ar(axi

1 (t)) + V ar(ayi

2 (t)), ∀i ∈ {1, · · · , d}, (203)

V3,4
i,i (t) = V ar(axi

3 (t)) + V ar(ayi

4 (t)), ∀i ∈ {1, · · · , d}, (204)

and

C1,2,3,4
i,i (t) = Cov(axi

1 (t), axi
3 (t)) + Cov(ayi

1 (t), ayi

3 (t)), ∀i ∈ {1, · · · , d}. (205)
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Using the well-known Itô Isometry,

E

[(∫ t

0

HsdWs

)2
]
= E

[∫ t

0

H2
sds

]
,

we get that

V ar(axi
1 (t)) + V ar(ayi

2 (t)) =

∫ t

0

e2(ai−ρ(a2
i−λ2

i ))s(cos (λ̂is)(1− ρai) + ρλi sin (λ̂is))
2ds

+

∫ t

0

e2(ai−ρ(a2
i−λ2

i ))s(sin (λ̂is)(1− ρai)− ρλi cos (λ̂is))
2ds

=

∫ t

0

e2(ai−ρ(a2
i−λ2

i ))s
[
(1− ρai)

2 + ρ2λ2
i

]
ds

=
(1− ρai)

2 + ρ2λ2
i

2(ai + ρ(λ2
i − a2i ))

(
e2(ai+ρ(λ2

i−a2
i ))t − 1

)
. (206)

Then, we do a similar calculation and find that

V ar(axi
3 (t)) + V ar(ayi

4 (t)) =
(1− ρai)

2 + ρ2λ2
i

2(ai + ρ(λ2
i − a2i ))

(
e2(ai+ρ(λ2

i−a2
i ))t − 1

)
. (207)

Remembering now that

E
[(∫ t

0

XsdWs

)(∫ t

0

YsdWs

)]
= E

[∫ t

0

XsYsds

]
,

we have that

Cov(axi
1 (t), axi

3 (t)) + Cov(ayi

2 (t), ayi

4 (t)) =

∫ t

0

e2ρλ
2
i s(cos (λis) + ρλi sin (λis))(− sin (λis) + ρλi cos (λis))ds

+

∫ t

0

e2ρλ
2
i s(sin (λis)− ρλi cos (λis))(cos (λis) + ρλi sin (λis))ds = 0.

(208)

Therefore, we conclude that the covariance matrix of Zt is

V ar(Zt) = ησ2

[
Id −E(2t) 0d

0d Id −E(2t)

]
Σ̄

t→∞
= ησ2Σ̄, (209)

with

Σ̄ :=

[
B 0d

0d B

]
, (210)

where

B := diag

(
(1− ρa1)

2 + ρ2λ2
1

2(a1 + ρ(λ2
1 − a21))

, · · · , (1− ρad)
2 + ρ2λ2

d

2(ad + ρ(λ2
d − a2d))

)
. (211)

Empirical validation of Eq. (211) is provided in Figure 8.

Lemma E.2. Let us define the variance Bi,i(ρ) =
(1−ρai)

2+ρ2λ2
i

2(ai+ρ(λ2
i−a2

i ))
and consider it as a function of ρ. The following

hold:

1. ρi
(
a2i − λ2

i

)
< 0 is necessary to converge faster than SGDA;

2. If λi > ai and limρ→∞ Bi,i(ρ) = ∞;

3. If λi < ai and limρ→−∞ Bi,i(ρ) = ∞;

4. lim
ρ→ −ai

λ2
i
−a2

i

Bi,i(ρ) = ∞;
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5. ρ = 1
λi+ai

realizes the minimum of Bi,i and Bi,i

(
1

λi+ai

)
= ησ2

2
λi

(ai+λi)2
;

6. The trace of B is is strictly convex in ρ, meaning that there is a unique minimizer.

Proof. All points above can be proven easily and are left an exercise for the reader.

Insights - The trade-off in selecting ρ The curvature of the landscape influences the speed of convergence.
Indeed, larger values of ai, which correspond to stronger convexity/concavity, speed up the exponential decay in
the expected value of the iterates. Differently, the relative size of λi and ai influences the convergence depending
on the sign of ρ. First of all, if ρi

(
a2i − λ2

i

)
> 0, SEG is slower than SGDA at converging and ρi

(
a2i − λ2

i

)
< 0 is

necessary to converge faster than SGDA. This means that negative ρi might be convenient if ai > λi. Therefore,
if ρi has the correct sign, a larger absolute value implies faster convergence. However, we also have that the
asymptotic variance along the i-th coordinate Bi,i(ρi) explodes if |ρi| is too large or if ρi → −ai

λ2
i−a2

i
. On the

bright side, Bi,i(ρi) is a convex function of ρi whose minimum is realized at ρVi = 1
ai+λi

. However, if ρVi is small,
it slows down the convergence. Finally, if one has to choose a single value of ρ, one has to carefully select it as
it will (de)accelerate different coordinates based on its sign. Fortunately, the trace of B is a convex function of ρ,
meaning that there is an optimal ρ∗ that minimizes it.

E.2 SHGD

Theorem E.3 (Exact Dynamics of SHGD). Under the assumptions of Corollary C.16, for f(x, y) = x⊤Ax
2 +

x⊤Λy − y⊤Ay
2 and noise covariance matrices equal to σId, we have that

Zt = Ẽ(t)

(
z +

√
ησ

∫ t

0

Ẽ(−s)MdWs

)
, (212)

with Ẽ(t) =

[
E(t) 0d

0d E(t)

]
, M =

[
A Λ
Λ −A

]
, where

E(t) := diag
(
e−(λ

2
1+a2

1)t, · · · , e−(λ
2
d+a2

d)t
)
. (213)

In particular, we have that

1. E [Zt] = Ẽ(t)z
t→∞
= 0;

2. The covariance matrix of Zt is equal to

η
σ2

2

[
Id −E(2t) 0d

0d Id −E(2t)

]
Σ̄

t→∞
= ησ2Σ̄, (214)

where

Σ̄ :=

[
Id 0d

0d Id

]
. (215)

Proof. The SDE is

dZt = DZtdt+
√
ησBdWt, (216)

where

D =

[
−(Λ2 +A2) 0d

0d −(Λ2 +A2)

]
and B =

[
A Λ
Λ −A

]
. (217)

Therefore, the solution is

Zt = eDt

(
z +

√
ησ

∫ t

0

e−DsBdWs

)
. (218)
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Clearly, we have that

Ẽ(t) := eDt = diag
(
e−(λ2

1+a2
1)t, · · · , e−(λ2

d+a2
d)t, e−(λ2

1+a2
1)t, · · · , e−(λ2

d+a2
d)t
)
=

[
E(t) 0d

0d E(t)

]
, (219)

where E(t) := diag
(
e−(λ2

1+a2
1)t, · · · , e−(λ2

d+a2
d)t
)
. Automatically, we get that

e−Ds =

[
E(−s) 0d

0d E(−s)

]
, (220)

which implies that

Zt =

[
E(t) 0d

0d E(t)

](
z +

√
ησ

∫ t

0

[
E(−s) 0d

0d E(−s)

] [
A Λ
Λ −A

] [
dW x

s

dW y
s

])
. (221)

To conclude, we have that

Zt = Ẽ(t)

(
z +

√
ησ

∫ t

0

Ẽ(−s)MdWs

)
, (222)

where M =

[
A Λ
Λ −A

]
.

We observe that since the expected value of the noise is 0,

E[Zt] =

[
E(t) 0d

0d E(t)

]
z. (223)

Therefore, it converges to 0 exponentially fast.

Let us now have a look at the covariance matrix of this process:

V ar(Zt) = ησ2

[
E(2t) 0d

0d E(2t)

]
V ar(Vt), where,

Vt :=

∫ t

0

[
E(−s) 0d

0d E(−s)

] [
A Λ
Λ −A

] [
dW x

s

dW y
s

]

=



∫ t

0
λ1e

(λ2
1+a2

1)sdW y1
s +

∫ t

0
a1e

(λ2
1+a2

1)sdW x1
s

...∫ t

0
λde

(λ2
d+a2

d)sdW yd
s +

∫ t

0
ade

(λ2
d+a2

d)sdW xd
s∫ t

0
λ1e

(λ2
1+a2

1)sdW x1
s +

∫ t

0
a1e

(λ2
1+a2

1)sdW y1
s

...∫ t

0
λde

(λ2
d+a2

d)sdW xd
s +

∫ t

0
ade

(λ2
d+a2

d)sdW yd
s


=:



ax1
1 (t) + ay1

2 (t)
...
axd
1 (t) + ayd

2 (t)
ax1
3 (t) + ay1

4 (t)
...
axd
3 (t) + ayd

4 (t)


. (224)

Therefore,

V ar(Vt) =

[
V1,2(t) 0d

0d V3,4(t)

]
, (225)

such that

V1,2
i,i (t) = V ar(axi

1 (t)) + V ar(ayi

2 (t)), ∀i ∈ {1, · · · , d}, (226)

and

V3,4
i,i (t) = V ar(axi

3 (t)) + V ar(ayi

4 (t)), ∀i ∈ {1, · · · , d}. (227)

Using the well-known Itô Isometry

E

[(∫ t

0

HsdWs

)2
]
= E

[∫ t

0

H2
sds

]
,
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we get that

V ar(axi
1 (t)) + V ar(ayi

2 (t)) =

∫ t

0

e2(λ
2
i+a2

i )sλ2
i ds+

∫ t

0

e2(λ
2
i+a2

i )sa2i ds =
1

2

(
e2(λ

2
i+a2

i )t − 1
)
. (228)

Similarly, we get that

V ar(axi
3 (t)) + V ar(ayi

4 (t)) =
1

2

(
e2(λ

2
i+a2

i )t − 1
)
. (229)

Therefore, we conclude that the covariance matrix of Zt is

V ar(Zt) = ησ2

[
Id −E(2t) 0d

0d Id −E(2t)

]
Σ̄

t→∞
=

ησ2

2
Σ̄, (230)

where

Σ̄ :=

[
Id 0d

0d Id

]
. (231)

SEG vs SHGD Interestingly, for both algorithms, the curvature of the landscape influences the speed of
convergence. However, the asymptotic covariance matrix of SHGD is not influenced by it. Much differently, the
speed of convergence of the expected value of Zt is strongly influenced by the values of ai, λi, and for SEG also
by the sign and magnitude of ρ. For example, if (λ2

i − a2i )ρ
H
i > a2i + λ2

i − ai, SEG exponentially decays faster
than SHGD. However, this results in SEG having a larger asymptotic variance. Another interesting choice is to
reduce the asymptotic variance of SEG by selecting ρVi = 1

λi+ai
. In this case, SEG attains its lowest asymptotic

variance ησ2λi

2(ai+λi)2
, which is smaller than ησ2

2 reached by SHGD only if a2i + λ2
i − λi > 0. Finally, if ai < 0, Z = 0

is a bad saddle that one wishes to escape. While SEG can escape it, SHGD is pulled towards it.

Therefore, selecting the size of ρ or ρi leads to a trade-off between the speed of convergence and the asymptotic
variance. To conclude, there is no clear winner between the two methods as the entire dynamics depend on the
curvature of the landscape.

F CONVERGENCE GUARANTEES

In this section, we provide a complete and precise characterization of the dynamics of the Hamiltonian under
the dynamics of SEG and SHGD. We then use the latter to derive convergence bounds and establish conditions
under which stepsize schedulers guarantee asymptotic convergence. For simplicity, we write O(Noise) for the
terms that depend on dWt as they vanish once we take an expectation.

In this section, we will often make use of the following shorthand:

1. Ht = Eγ [Hγ(Zt)] = Eγ1,γ2

[
Hγ1,γ2(Zt)

]
= Eγ

[
F⊤

γ1 (Zt)Fγ2 (Zt)

2

]
;

2. ΣSHGD
t := ΣSHGD(Zt) and ΣSEG

t := ΣSEG(Zt);

3. Ft = F (Zt), ∇Ft = ∇F (Zt), ∇ft = ∇f(Zt), and ∇2ft = ∇2f(Zt).

F.1 SHGD

Lemma F.1 (Dynamics of Hamiltonian). Let Zt be the solution of the SDE of SHGD. Then,

E
[
Ḣt

]
= −E

[
∥∇Ht∥2

]
+

η

2
Tr
(
E
[
ΣSHGD

t ∇2Ht

])
.

Proof. The SDE for SHGD is:

dZt = −∇Eγ [Hγ (Zt)] dt+
√
η
√
ΣSHGD

t dWt. (232)
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Therefore, by Itô’s Lemma we have

dEγ [Hγ(Zt)] =− ∥∇Eγ [Hγ(Zt)]∥22dt+
η

2
Tr
(√

ΣSHGD
t ∇2Eγ [Hγ(Zt)]

√
ΣSHGD

t

)
dt+O(Noise). (233)

Therefore,

dE [Eγ [Hγ(Zt)]] =− E
[
∥∇Eγ [Hγ(Zt)]∥22

]
dt+

η

2
Tr
(
E
[√

ΣSHGD
t ∇2Eγ [Hγ(Zt)]

√
ΣSHGD

t

])
dt, (234)

which implies that

E
[
Ḣt

]
= −E

[
∥∇Ht∥2

]
+

η

2
Tr
(
E
[
ΣSHGD

t ∇2Ht

])
. (235)

Theorem F.2 (SHGD General Convergence). Consider the solution Zt of the SHGD SDE with γ1 ̸= γ2. Let
vt := E

[
Eγ

[
∥∇H (Zt)−∇Hγ (Zt)∥22

]]
measure the error in ∇H, in expectation over the whole randomness up

to time t. Suppose that:

1. The smallest eigenvalue (in absolute value) µ of ∇2f(z) is non-zero;

2. ∥∇2H(z)∥op < LT , for all z ∈ R2d.

Then,

E [Ht] ≤ e−2µ2t

[
H0 +

ηLT

2

∫ t

0

vse
2µ2sds

]
. (236)

Proof. Under these assumptions,

dHt =− ∥∇Ht∥2dt+
η

2
Tr
(
∇2HtΣ

SHGD
t

)
dt+O(Noise)

=− ∥F⊤
t ∇Ft∥2dt+

η

2
Tr
(
∇2HtΣ

SHGD
t

)
dt+O(Noise)

=− ∥∇2ft∇ft∥2dt+
η

2
Tr
(
∇2HtΣ

SHGD
t

)
dt+O(Noise)

≤− µ2∥∇ft∥2dt+
η

2
∥∇2Ht∥opTr

(
ΣSHGD

t

)
dt+O(Noise)

≤− µ2∥∇ft∥2dt+
η

2
LT Tr

(
ΣSHGD

t

)
dt+O(Noise), (237)

where we used that Tr(AB) ≤ Tr(A)∥B∥op if A is a real positive semi-definite matrix and B is of the same size.
Then, we observe that

E
[
Tr
(
ΣSHGD

t

)]
= E

[
Eγ

[
∥∇H (Zt)−∇Hγ (Zt)∥22

]]
= vt, (238)

which implies that

dE [Ht] ≤ −µ2E
[
∥∇ft∥2

]
dt+

η

2
LT vtdt

= −2µ2E [Ht] dt+
η

2
LT vtdt, (239)

which in turn implies that

E [Ht] ≤ e−2µ2t

[
H0 +

ηLT

2

∫ t

0

vse
2µ2sds

]
. (240)

Corollary F.3. Under the assumptions of Theorem F.2, if for LV > 0

vt ≤ LVE [Ht] , (241)
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the solution is
E [Ht] ≤ H0e

(−2µ2+ηLVLT )t. (242)

If instead
vt ≤ LV , (243)

we have

E [Ht] ≤ H0e
−2µ2t +

(
1− e−2µ2t

) ηLVLT

2µ2
. (244)

In more generality, if
vt ≤ LVE [Ht]

α
, α ∈ [0, 1) ∪ (1,∞), (245)

the solution is even more interesting as:

1. If α > 1, E [Ht] → 0 as e−2µ2t;

2. If α < 1, E [Ht] →
(

ηLT LV
2µ2

) 1
1−α

.

Proof. Let us first consider the case where, for some LV > 0,

vt ≤ LVE [Ht] . (246)

This implies that

dE [Ht] ≤ −2µ2E [Ht] dt+
η

2
LT LVE [Ht] dt. (247)

By renaming rt := E [Ht], we have
drt ≤ −2µ2rtdt+ ηLT LVrtdt, (248)

which results in
E [Ht] ≤ H0e

(−2µ2+ηLVLT )t. (249)

If instead
vt ≤ LV , (250)

we automatically have

E [H(Zt)] ≤ H(Z0)e
−2µ2t +

(
1− e−2µ2t

) ηLVLT

2µ2
. (251)

More in general, if we assume that for some LV > 0,

vt ≤ LVE [Ht]
α
, (252)

we have
drt ≤ −2µ2rtdt+ ηLT LVr

α
t dt, (253)

which implies that for α ̸= 1:

rt ≤ 1−α

√
r−α
0 e(α−1)2µ2t (r02µ2 − ηLT LVrα0 ) + ηLT LV

2µ2
=: bt (254)

In these cases, we have that the bound bt converges or diverges depending on the magnitude of α:

1. If α > 1, bt → 0 as e−2µ2t;

2. If α < 1, bt →
(

ηLT LV
2µ2

) 1
1−α

.

Corollary F.4. β-Error Bound on F and L-Lipschitzianity on ∇Hγ1,γ2 and ∇H, implies that vt ≤ 8L2β2E [Ht].
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Proof.

vt =E
[
Eγ [∥∇Hγ (Zt)−∇H (Zt)∥22]

]
= E

[
Eγ [∥∇Hγ (Zt)−Hγ (Z∗) +∇H (Z∗)−∇H (Zt)∥22]

]
≤2E

[
Eγ [∥∇Hγ (Zt)−Hγ (Z∗)∥22]

]
+ 2E

[
Eγ [∥∇H (Z∗)−∇H (Zt)∥22]

]
≤ 4L2E

[
∥Zt − Z∗∥22

]
≤4β2L2E

[
∥F (Zt)∥22

]
= 8L2β2E [Ht] . (255)

The following corollary exemplifies the case where vt is bounded and we achieve convergence only up to a certain
ball.

Corollary F.5. Under the assumptions of Theorem D.3, for f(x, y) := x⊤Λy, we have:

E
[
∥Zt∥2

]
2

t→∞
=

η

2

d∑
i=1

σ2
i > 0. (256)

Proof. It is easy to see that

∥Zt∥2

2
=

d∑
i=1

∥Zi
t∥2

2
, (257)

where Zi := (Xi, Y i), and that

d

(
∥Zi

t∥2

2

)
= −2λ2

i

∥Zi
t∥2

2
dt+ ησ2

i λ
2
i dt+O(Noise). (258)

This implies that

d

(
E
[
∥Zi

t∥2
]

2

)
= −2λ2

i

E
[
∥Zi

t∥2
]

2
dt+ ησ2

i λ
2
i dt, (259)

which implies that
E
[
∥Zi

t∥2
]

2
=

∥Zi
0∥2

2
e−2λ2

i t + (1− e−2λ2
i t)

ησ2
i

2

t→∞→ ησ2
i

2
. (260)

Interestingly, one can recover convergence by allowing stepsize schedulers. In the following result, we derive a
necessary and sufficient condition to craft such schedulers. Then, we provide two concrete examples.

Corollary F.6 (SHGD Insights). Under the assumptions of Theorem D.3, for f(x, y) := x⊤Λy, for any positive
scheduler ηt we have

E
[
∥Zt∥2

]
2

=

d∑
i=1

e−2λ2
i

∫ t
0
ηsds

(
∥Zi

0∥2

2
+ ησ2

i λ
2
i

∫ t

0

e2λ
2
i

∫ s
0
ηrdrη2sds

)
. (261)

Therefore,
E
[
∥Zt∥2

]
2

t→∞→ 0 ⇐⇒
∫ ∞

0

ηsds = ∞ and lim
t→∞

ηt = 0. (262)

In particular,

1. ηt = 1 implies that

E
[
∥Zt∥2

]
2

t→∞
=

η

2

d∑
i=1

σ2
i > 0; (263)

2. ηt =
1

(t+1)γ for γ ∈ {0.5, 1}, E[∥Zt∥2]
2 → 0;
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3. ηt =
1

(t+1)2 ,
E[∥Zt∥2]

2 ↛ 0.

Proof. For f(x, y) := x⊤Λy, with the noise on gradient assumption, the SDE when we include a scheduler ηt is

dZt = AZtηtdt+
√
ηηtσBdWt, (264)

where

A =

[
−Λ2 0d

0d −Λ2

]
and B =

[
0d Λ
Λ 0d

]
. (265)

Therefore,

d

(
∥Zi

t∥2

2

)
= −2λ2

i ηt
∥Zi

t∥2

2
dt+ ησ2

i λ
2
i η

2
t dt+O(Noise), (266)

which implies that

d

(
E
[
∥Zi

t∥2
]

2

)
= −2λ2

i

E
[
∥Zi

t∥2
]

2
ηtdt+ ησ2

i λ
2
i η

2
t dt, (267)

which ultimately implies that

E
[
∥Zi

t∥2
]

2
= e−2λ2

i

∫ t
0
ηsds

(
∥Zi

0∥2

2
+ ησ2

i λ
2
i

∫ t

0

e2λ
2
i

∫ s
0
ηrdrη2sds

)
. (268)

Let us write out the necessary conditions for this quantity to go to 0:

1. For the first part, e−2λ2
i

∫ t
0
ηsds ∥Zi

0∥
2

2 goes to 0, if and only if
∫∞
0

ηsds = ∞;

2. For the second part, we need ησ2
i λ

2
i e

−2λ2
i

∫ t
0
ηsds

∫ t

0
e2λ

2
i

∫ s
0
ηrdrη2sds to go to 0 as well.

Let us rewrite the second condition in a more convenient way:

ησ2
i λ

2
i e

−2λ2
i

∫ t
0
ηsds

∫ t

0

e2λ
2
i

∫ s
0
ηrdrη2sds = ησ2

i λ
2
i

∫ t

0
e2λ

2
i

∫ s
0
ηrdrη2sds

e2λ
2
i

∫ t
0
ηsds

. (269)

Since
∫∞
0

ηsds = ∞, both the numerator and denominator diverge. Therefore, we can use L’Hôpital’s rule:

lim
t→∞

ησ2
i λ

2
i

∫ t

0
e2λ

2
i

∫ s
0
ηrdrη2sds

e2λ
2
i

∫ t
0
ηsds

= lim
t→∞

ησ2
i λ

2
i

e2λ
2
i

∫ t
0
ηsdsη2t

e2λ
2
i

∫ t
0
ηsds2λ2

i ηt
= lim

t→∞

ησ2
i

2
ηt, (270)

which converges to 0, if and only if limt→∞ ηt = 0.

Note that, if the first condition is violated, the first component does not go to 0. If the second condition is not
satisfied, the second component does not go to 0.

In particular,

1. ηt =
1

t+1 and 2λ2
i ̸= 1 =⇒ E[∥Zi

t∥
2]

2 =
(t+1)−2λ2

i−1

(
∥Zi

0∥2

2 (2λ2
i−1)(t+1)+ησ2

i λ
2
i

(
(t+1)2λ

2
i −t−1

))
2λ2

i−1

t→∞→ 0;

2. ηt =
1

t+1 and 2λ2
i = 1 =⇒ E[∥Zi

t∥
2]

2 =
∥Zi

0∥2

2 +ησ2
i λ

2
i log(t+1)

t+1

t→∞→ 0;

3. ηt =
1√
t+1

=⇒ E[∥Zi
t∥

2]
2 = e−4λ2

i

√
t+1
(

∥Zi
0∥

2

2 e4λ
2
i + 2ησ2

i λ
2
i

(
Ei(4λ2

i

√
t+ 1)− Ei(4λ2

i )
)) t→∞→ 0;

4. ηt =
1

(t+1)2 =⇒ E[∥Zi
t∥

2]
2 =

∥Zi
0∥

2

2 e−
2λ2

i t

t+1 − ησ2
i λ

2
i

 (4λ4
i+4λ2

i+2)e−
2λ2

i t

t+1

8λ6
i

+
(4λ4

i+4λ2
i (t+1)+2(t+1)2)
8λ6

i (t+1)2

 t↛∞→ 0.
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Now we study a case where the noise structure itself is enough to guarantee the convergence. In this case, vt
scales with E[Ht].

Corollary F.7 (Noise on Data). For f(x, y) = x⊤Eξ [Λξ] y such that Λξ is diagonal, we have

1. E [Zt] = Ẽ(t)z
t→∞
= 0;

2.
E[∥Zt∥2]

2 =
∑d

i=1
∥Zi

0∥
2

2 e−(2λ
2
i−ησ2

i (2λ
2
1+σ2

i ))t.

In particular,
E[∥Zt∥2]

2 → 0 if η <
2λ2

i

σ2
i (2λ2

1+σ2
i )
, ∀i.

Proof. The derivation of the SDE is straightforward and the formula is

dZt = AZtdt+
√
ηBdWt, (271)

where

A =

[
−Λ2 0d

0d −Λ2

]
and BB⊤ =

[
2Λ2 ◦ Σ2 +Σ4 2Λ2 ◦ Σ2 +Σ4

2Λ2 ◦ Σ2 +Σ4 2Λ2 ◦ Σ2 +Σ4

]
◦
[

diag(Xt ◦Xt) diag(Xt ◦ Yt)
diag(Xt ◦ Yt) diag(Yt ◦ Yt)

]
.

(272)
It is easy to see that

∥Zt∥2

2
=

d∑
i=1

∥Zi
t∥2

2
, (273)

where Zi := (Xi, Y i), and that

d

(
E
[
∥Zi

t∥2
]

2

)
= −2λ2

i

E
[
∥Zi

t∥2
]

2
dt+ ησ2

i (2λ
2
i + σ2

i )
E
[
∥Zi

t∥2
]

2
dt, (274)

which ultimately implies that
E
[
∥Zi

t∥2
]

2
=

∥Zi
0∥2

2
e−(2λ

2
i−ησ2

i (2λ
2
1+σ2

i ))t. (275)

Empirical validation of this result is provided in Figure 7.

F.2 SEG

Lemma F.8 (Dynamics of Hamiltonian). Let Zt be the solution of the SEG SDE. Then,

E
[
Ḣt

]
= −E

[
∇H⊤

t F SEG
t

]
+

η

2
Tr
(
E
[
ΣSEG

t ∇2Ht

])
. (276)

Under the additional assumption that Eγ [∇Fγ(Zt)Fγ(Zt)] = ∇F (Zt)F (Zt), the formula simplifies and is

dE [Ht] =− E
[
F⊤
t (∇Ft − ρ(∇Ft)

2)Ft

]
dt+

η

2
Tr
(
E
[
ΣSEG

t ∇2Ht

])
dt. (277)

Proof. The SDE for SEG is

dZt = −F SEG (Zt) dt+
√
η
√
ΣSEG

t dWt. (278)

Therefore, by Itô’s Lemma we have

dEγ [Hγ (Zt)] =−∇Eγ [Hγ (Zt)]
⊤
F SEGdt+

η

2
Tr
(√

ΣSEG
t ∇2Eγ [Hγ (Zt)]

√
ΣSEG

t

)
dt+O(Noise). (279)

Therefore,

E
[
Ḣt

]
= −E

[
∇H⊤

t F SEG
t

]
+

η

2
Tr
(
E
[
ΣSEG

t ∇2Ht

])
. (280)
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Theorem F.9 (SEG General Convergence). Consider the solution Zt of the SEG SDE with γ1 ≠ γ2. Let
vt := E

[
Eγ

[
∥F SEG (Zt)− F SEG

γ (Zt)∥22
]]

measure the error in F SEG, in expectation over the whole randomness up
to time t. Suppose that:

1. The smallest eigenvalue (in absolute value) µρ of M(z) is non-zero, where M(z) = diag(M1,1(z),M2,2(z)),
with M1,1(z) := ∇2fxx(z) + ρ

(
∇2fxy(z)∇2fxy(z)

T − (∇2fxx(z))
2
)
, and M2,2(z) := −∇2fyy(z) +

ρ
(
∇2fxy(z)∇2fxy(z)

T − (∇2fyy(z))
2
)
;

2. ∥∇2H(z)∥op < LT , for all z ∈ R2d.

Then,

E [Ht] ≤ e−2µ2
ρt

[
H0 +

ηLT

2

∫ t

0

vse
2µ2

ρsds

]
. (281)

Proof. From the previous theorem, we have that

dE [Ht] =− E
[
F⊤
t (∇Ft − ρ(∇Ft)

2)Ft

]
dt+

η

2
Tr
(
E
[
ΣSEG

t ∇2Ht

])
dt. (282)

After observing that
F⊤(z)(∇F (z)− ρ(∇F (z))2)F (z) = F (z)⊤M(z)F (z). (283)

We have that

dE [Ht] =− E
[
F⊤
t (∇Ft − ρ(∇Ft)

2)Ft

]
dt+

η

2
Tr
(
E
[
ΣSEG

t ∇2Ht

])
dt

=− E
[
F⊤
t MtFt

]
dt+

η

2
Tr
(
E
[
ΣSEG

t ∇2Ht

])
dt

≤− µ2
ρE
[
∥Ft∥22

]
dt+

η

2
E
[
∥∇2Ht∥opTr

(
ΣSEG

t

)]
dt

≤− µ2
ρE
[
∥Ft∥22

]
dt+

ηLT

2
E
[
Tr
(
ΣSEG

t

)]
dt, (284)

where we used that Tr(AB) ≤ Tr(A)∥B∥op if A is a real positive semi-definite matrix and B is of the same size.
Then, we observe that

E
[
Tr
(
ΣSEG

t

)]
= E

[
Eγ

[
∥(F (Zt)− Fγ1(Zt)− ρ

(
∇F (Zt)F (Zt)−∇Fγ1(Zt)Fγ2(Zt)

)
)∥2
]]

= vt, (285)

which implies that

dE [Ht] ≤ −µ2
ρE
[
∥Ft∥2

]
dt+

η

2
LT vtdt

= −2µ2
ρE [Ht] dt+

η

2
LT vtdt, (286)

which in turn implies that

E [Ht] ≤ e−2µ2
ρt

[
H0 +

ηLT

2

∫ t

0

vse
2µ2

ρsds

]
. (287)

Corollary F.10. Under the assumptions of Theorem F.9, if for LV > 0

vt ≤ LVE [Ht] , (288)

the solution is
E [Ht] ≤ H0e

(−2µ2
ρ+ηLVLT )t. (289)

If instead
vt ≤ LV , (290)

we have

E [Ht] ≤ H0e
−2µ2

ρt +
(
1− e−2µ2

ρt
) ηLVLT

2µ2
ρ

. (291)
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More in general, if

vt ≤ LVE [Ht]
α
, LV > 0, α ∈ [0, 1) ∪ (1,∞). (292)

The solution is even more interesting:

1. If α > 1, E [Ht] → 0 as e−2µ2
ρt;

2. If α < 1, E [Ht] →
(

ηLT LV
2µ2

ρ

) 1
1−α

.

Proof. The proof is the same as Corollary F.3 where we substitute µ with µρ.

Corollary F.11. κ1-Lipschitzianity on Fγ1 , κ2-Lipschitzianity on ∇Fγ1Fγ2 , and β-Error Bound on F , implies
that vt ≤ 16β2(κ2

1 + ρ2κ2
2)E [Ht].

Proof.

vt = E
[
Eγ

[
∥F (Zt)− Fγ1 (Zt)− ρ

(
∇F (Zt)F (Zt)−∇Fγ1 (Zt)Fγ2 (Zt)

)
∥2
]]

≤ 2E
[
Eγ1

[
∥F (Zt)− Fγ1 (Zt)∥2

]]
+ 2ρ2E

[
Eγ

[
∥∇F (Zt)F (Zt)−∇Fγ1 (Zt)Fγ2 (Zt)∥2

]]
≤ 8(κ2

1 + ρ2κ2
2)E[∥Zt − Z∗∥22] ≤ 8β2(κ2

1 + ρ2κ2
2)E[∥F (Zt)∥22] = 16β2(κ2

1 + ρ2κ2
2)E [Ht] . (293)

The following corollary exemplifies the case where vt is bounded and we achieve convergence only up to a certain
ball, and that selecting a proper ρ has a crucial role: If it is too large, it might increase the suboptimality of the
algorithm.

Corollary F.12. Under the assumptions of Theorem D.1, for f(x, y) := x⊤Λy, we have:

E
[
∥Zt∥2

]
2

t→∞
= η

d∑
i=1

σ2
i

1 + ρ2λ2
i

2ρλ2
i

> 0. (294)

Proof. It is easy to see that:

∥Zt∥2

2
=

d∑
i=1

∥Zi
t∥2

2
, (295)

where Zi := (Xi, Y i), and that

d

(
∥Zi

t∥2

2

)
= −2ρλ2

i

∥Zi
t∥2

2
dt+ ησ2

i (1 + ρ2λ2
i )dt+O(Noise). (296)

This implies that

d

(
E
[
∥Zi

t∥2
]

2

)
= −2ρλ2

i

E
[
∥Zi

t∥2
]

2
dt+ ησ2

i (1 + ρ2λ2
i )dt. (297)

Which implies that

E
[
∥Zi

t∥2
]

2
=

∥Zi
0∥2

2
e−2ρλ2

i t + (1− e−2λ2
i t)

ησ2
i

2

(1 + ρ2λ2
i )

ρλ2
i

t→∞→ ησ2
i

(1 + ρ2λ2
i )

2ρλ2
i

. (298)

Interestingly, one can recover convergence by allowing stepsize schedulers. In the following result, we derive a
necessary and sufficient condition to craft such schedulers. Then, we provide two concrete examples.
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Corollary F.13 (SEG Insights). Under the assumptions of Theorem D.1, for f(x, y) := x⊤Λy, for any positive
schedulers ηt and ρt we have

E
[
∥Zt∥2

]
2

=

d∑
i=1

e−2λ2
iρ

∫ t
0
ηsρsds

(
∥Zi

0∥2

2
+ ησ2

i

∫ t

0

e2λ
2
iρ

∫ s
0
ηrρrdrη2s(1 + λ2

i ρ
2ρ2s)ds

)
. (299)

Therefore,
E
[
∥Zt∥2

]
2

t→∞→ 0 ⇐⇒
∫ ∞

0

ηsρsds = ∞ and lim
t→∞

ηtρt = lim
t→∞

ηt
ρt

= 0. (300)

In particular, consistently with (Hsieh et al., 2020),

1. ηt = ρt = 1 implies that

E
[
∥Zt∥2

]
2

t→∞
= η

d∑
i=1

σ2
i

1 + ρ2λ2
i

2ρλ2
i

> 0; (301)

2. ηt =
1

(t+1)γ and ρt = 1, γ ∈ {0.5, 1}, E[∥Zt∥2]
2 → 0;

3. ηt =
1

(t+1)2 and ρt = 1,
E[∥Zt∥2]

2 ↛ 0.

Proof. In this case, the SDE when we include the schedulers ηt and ρt is

dZt = AZtηtdt+
√
ηηtσBdWt (302)

where

A =

[
−ρρtΛ

2 −Λ
Λ −ρρtΛ

2

]
and B =

[
Id −ρρtΛ
ρρtΛ Id

]
. (303)

Therefore,

d

(
∥Zi

t∥2

2

)
= −2ρλ2

i ρtηt
∥Zi

t∥2

2
dt+ ησ2

i

(
1 + λ2

i ρ
2ρ2t
)
η2t dt+O(Noise), (304)

which implies that

d

(
E
[
∥Zi

t∥2
]

2

)
= −2ρλ2

i ρtηt
E
[
∥Zi

t∥2
]

2
dt+ ησ2

i

(
1 + λ2

i ρ
2ρ2t
)
η2t dt, (305)

which implies that

E
[
∥Zi

t∥2
]

2
= e−2λ2

iρ
∫ t
0
ηsρsds

(
∥Zi

0∥2

2
+ ησ2

i

∫ t

0

e2λ
2
iρ

∫ s
0
ηrρrdrη2s(1 + λ2

i ρ
2ρ2s)ds

)
. (306)

With arguments similar to Corollary F.6, the necessary and sufficient conditions for convergence are the following:

1. For the first part e−2λ2
i

∫ t
0
ρsηsds ∥Zi

0∥
2

2 to go to 0, we need
∫∞
0

ηsρsds = ∞;

2. For the second part to go to 0, we need both ηt

ρt
and ηtρt to go to 0.

For the schedulers above, the proofs of their convergence or divergence are the same as Corollary F.6 with different
constants.

Now we study a case where the noise structure itself is enough to guarantee the convergence. In this case, vt
scales with Ht.

Corollary F.14 (SEG Insights). For f(x, y) = x⊤Eξ [Λξ] y such that Λξ is diagonal, we have

1. E [Zt] = Ẽ(t)R̃(t)z
t→∞
= 0;
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2.
E[∥Zt∥2]

2 =
∑d

i=1
∥Zi

0∥
2

2 e−(2ρλ
2
i−ησ2

i (1+ρ2(2λ2
1+σ2

i )))t.

In particular,
E[∥Zt∥2]

2 → 0 if 2ρλ2
i − ησ2

i

(
1 + ρ2

(
2λ2

1 + σ2
i

))
> 0,∀i.

Proof. The derivation of the SDE is straightforward and is

dZt = AZtdt+
√
ηBdWt, (307)

where

A =

[
−ρΛ2 −Λ
Λ −ρΛ2

]
and BB⊤ =

[
Σ2 Σ2

Σ2 Σ2

]
◦
[

D1,1 D1,2

D2,1 D2,2

]
, (308)

where

D1,1 := diag((Yt + ρΛXt) ◦ (Yt + ρΛXt) + ρ2Σ2 ◦ (Λ2 +Σ2) ◦ Yt ◦ Yt), (309)

D2,2 := diag((Xt − ρΛYt) ◦ (Xt − ρΛYt) + ρ2Σ2 ◦ (Λ2 +Σ2) ◦Xt ◦Xt), (310)

and D1,2 and D2,1 do not matter for this calculation.

It is easy to see that

∥Zt∥2

2
=

d∑
i=1

∥Zi
t∥2

2
, (311)

where Zi := (Xi, Y i), and that

d

(
E
[
∥Zi

t∥2
]

2

)
= −2ρλ2

i

E
[
∥Zi

t∥2
]

2
dt+ ησ2

i (1 + ρ(2λ2
i + σ2

i ))
E
[
∥Zi

t∥2
]

2
dt, (312)

which ultimately implies that

E
[
∥Zi

t∥2
]

2
=

∥Zi
0∥2

2
e−(2ρλ

2
i−ησ2

i (1+ρ2(2λ2
1+σ2

i )))t. (313)

Empirical validation of this result is provided in Figure 7.

G EXPERIMENTS

In this section, we provide the details of the experiments we carried out to validate the theoretical results derived
in the paper. We highlight that since we always use diagonal matrices, it is enough to validate our results in two
dimensions. In the following, the choice of the initialization points does not have a special reason. When there is
one, it is explained in the respective paragraphs.

Computational Infrastructure All experiments have been performed on Google Colaboratory without any
premium subscription. The code to replicate the experiments is available at https://github.com/eneamc/

MinimaxSDEs

G.1 SDE Validation: Figure 1

In this subsection, we provide the details to replicate the experiments shown in Figure 1. The objective is to
provide empirical validation to Theorem 3.4 and 3.6: The trajectories of the simulated SDEs match that of the
respective algorithms averaged over 5 runs.

https://github.com/eneamc/MinimaxSDEs
https://github.com/eneamc/MinimaxSDEs
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SGDA This paragraph refers to the top left of Figure 1. Inspired by Example 5.2 in (Hsieh et al., 2019), we
study Nonbilinear Game # 1 f(x, y) := x(y − 0.45) + ϕ(x) − ϕ(y) where ϕ(z) := 1

4z
2 − 1

2z
4 + 1

6z
6. In the

figure, we show the comparison between the average of 5 realizations of the trajectories of SGDA with the average
of 5 simulations of the trajectories of the SDE of SGDA.

For each of the 5 trajectories of SGDA, we initialize each trajectory at (x0, y0) = (2.0, 2.0) because this point
is outside of the limit cycle that surrounds the optimal saddle point. We use a stepsize η = 0.01, and run the
optimizer for N = 10000 iterations. The noise used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 1.0. Each
trajectory is run with a different random seed.

For each of the 5 trajectories of the SDE of SGDA, we initialize each trajectory at (x0, y0) = (2.0, 2.0), use a
discretization step dt = η

10 = 0.001 for the Euler–Maruyama method, and integrate the system for N = 100000
iterations. The noise used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 1.0. Each trajectory is run with a
different random seed.

SHGD This paragraph refers to the bottom left of Figure 1. As a variation on Example 5.1 and Example
5.2 in (Hsieh et al., 2019), we study Nonbilinear Game # 3 f(x, y) := xy + ϕ(x) − ϕ(y) where ϕ(z) :=
1
2z

2 − 1
4z

4 + 1
6z

6 − 1
8z

8. In the figure, we show the comparison between the average of 5 realizations of the
trajectories of SHGD with the average of 5 simulations of the trajectories of the SDE of SHGD.

For each of the 5 trajectories of SHGD, we initialize each trajectory at (x0, y0) = (0.7, 0.7). Given the extreme
nonlinearity of this landscape, this initial point allows the use of sizeable stepsizes: we use a stepsize η = 0.0001.
Going further away from (0, 0) would require extremely smaller stepsizes to avoid numerical instabilities. We run
the optimizer for N = 100000 iterations. The noise used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 1.0.
Each trajectory is run with a different random seed.

For each of the 5 trajectories of the SDE of SHGD, we initialize each trajectory at (x0, y0) = (0.7, 0.7), use a
discretization step dt = η

10 = 0.00001 for the Euler–Maruyama method, and integrate the system for N = 1000000
iterations. The noise used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 1.0. Each trajectory is run with a
different random seed.

SEG This paragraph refers to the top right and bottom right of Figure 1. Inspired by Example 5.1 in (Hsieh
et al., 2019), we study Nonbilinear Game # 2 f(x, y) := xy− ϵϕ(y) where ϕ(z) := 1

2z
2− 1

4z
4 and ϵ = 0.01. For

two different values of ρ, we show the comparison between the average of 5 realizations of the trajectories of SEG
with the average of 5 simulations of the trajectories of the SDE of SEG. Additionally, we show the comparison
with the average of 5 simulations of the trajectories of the SDE of SGDA.

For each ρ ∈ {0.1, 1}, we repeat the following procedure: For each of the 5 trajectories of SEG, we initialize each
trajectory at (x0, y0) = (1.0, 1.0), use a stepsize η = 0.01, and run the optimizer for N = 10000 iterations. The
noise used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 1.0. Each trajectory is run with a different random
seed.

For each ρ ∈ {0.1, 1}, we repeat the following procedure: For each of the 5 trajectories of the SDE of SEG, we
initialize each trajectory at (x0, y0) = (1.0, 1.0), use a discretization step dt = η

10 = 0.001 for the Euler–Maruyama
method, and integrate the system for N = 100000 iterations. The noise used to perturb the gradients is
Z ∼ N (0, σ2I2) and σ = 1.0. Each trajectory is run with a different random seed.

For each of the 5 trajectories of the SDE of SGDA, we initialize each trajectory at (x0, y0) = (1.0, 1.0), use a
discretization step dt = η

10 = 0.001 for the Euler–Maruyama method, and integrate the system for N = 100000
iterations. The noise used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 1.0. Each trajectory is run with a
different random seed.

For the top right figure, we plot the average of the trajectories. For the bottom right figure, we plot the average
norm of the iterates E

[
∥xk∥2 + ∥yk∥2

]
for the SEG and E

[
∥Xηk∥2 + ∥Yηk∥2

]
for the SDEs. We did not report

the average norm of the SDE of SGDA as it diverges and would spoil the informativeness of the figure.

G.2 Schedulers Validation: Figure 3

In this subsection, we provide the details to replicate the experiments shown in Figure 3. The objective is to
provide empirical validation to Prop. 4.4, Prop. 4.5, Prop. 4.9, and Prop. 4.10. Consistently with the assumptions



SDEs for Minimax Optimization

0 250 500 750 10001250150017502000
Iterate k

10 7

10 6

10 5

10 4

10 3

10 2

[||
Z k

||2 ]
Norm of Iterates - SHGD

Exper. = 0
Exper. = 0.5
Exper. = 1
Theor. = 0
Theor. = 0.5
Theor. = 1

0 250 500 750 10001250150017502000
Iterate k

10 7

10 6

10 5

10 4

10 3

10 2

[||
Z k

||2 ]

Norm of Iterates - SEG
Exper. = 0
Exper. = 0.5
Exper. = 1
Theor. = 0
Theor. = 0.5
Theor. = 1

Figure 5: Empirical validation of Prop. 4.4 and Prop. 4.5 (Left); Prop. 4.9 and Prop. 4.10 (Right): The dynamics
of E

[
∥Zt∥2

]
averaged across 5 runs perfectly matches that prescribed by our results for all schedulers. Both for

SEG and SHGD, η = 0.01, while ρ = 2.

of these theorems, the landscape is that of the Bilinear Game f(x, y) = 2xy.

SHGD This paragraph refers to the left of Figure 3. As we use the stepsize scheduler ηt := 1
(t+1)γ , for

γ ∈ {0, 0.5, 1.0}, we compare the average norm of the iterates across 5 realizations of the trajectories of SHGD
with the exact dynamics of such a quantity prescribed in Prop. 4.4 and Prop. 4.5. For each of the 5 trajectories
of SHGD, we initialize each trajectory at (x0, y0) = (0.1, 0.1), use a stepsize η = 0.01, and run the optimizer for
N = 2000 iterations. The noise used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 0.001. Each trajectory
is run with a different random seed.

The left of Figure 5 reports an additional experiment with the same setup apart from f(x, y) = xy, σ = 0.01, and
ρ = 2.

SEG This paragraph refers to the right of Figure 3. As we use the stepsize scheduler ηt := 1
(t+1)γ , for

γ ∈ {0, 0.5, 1.0}, we compare the average norm of the iterates across 5 realizations of the trajectories of SEG with
the exact dynamics of such a quantity prescribed in Prop. 4.4 and Prop. 4.5. For each of the 5 trajectories of
SEG, we initialize each trajectory at (x0, y0) = (0.1, 0.1), use a stepsize η = 0.01, extra stepsize ρ = 1.0, and run
the optimizer for N = 2000 iterations. The noise used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 0.001.
Each trajectory is run with a different random seed.

The right of Figure 5 reports an additional experiment with the same setup apart from f(x, y) = xy, σ = 0.01,
and ρ = 2.

G.3 Role of ρ: Left of Figure 4

In this subsection, we provide the details to replicate the experiments shown on the left of Figure 4. The objective
is to provide empirical validation to the insights derived in Paragraph E.1 and Paragraph E.2. Consistently with
the assumptions, the landscape is that of the Quadratic Game f(x, y) = 3

2x
2 + xy − 3

2y
2.

Let us remember that ρH is meant to replicate the speed of the exponential decay of SHGD while ρV is meant to
achieve the lowest possible asymptotic variance of SEG. Finally, this is a case where negative ρ converges to
the optimum faster than SGDA and than any positive ρ. Of course, this particular choice confirms that large
(absolute) values of ρ result in larger suboptimality. It is key to notice that we indeed verify all these insights
clearly in this Figure.

The left of Figure 6 reports an additional experiment with the same setting but f(x, y) = x2 + 3xy − y2. In these
cases, positive ρ are the ones inducing fast convergence.
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Figure 6: Empirical validation of the comparison between SEG and SHGD on Quadratic Games: (Left), ρV

and ρH clearly meet the designated goals. Large |ρ| induces faster convergence which in turn results in larger
suboptimality. (Right), positive ρ escapes the bad saddle faster than SGDA, negative ones induce convergence,
and ρH even matches the decay of SHGD. In both experiments, η = 0.01.

SHGD We plot the average norm of the iterates across 5 realizations of the trajectories of SHGD. For each of
the 5 trajectories of SHGD, we initialize each trajectory at (x0, y0) = (1.0, 1.0), use a stepsize η = 0.01, and run
the optimizer for N = 1000 iterations. The noise used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 0.1.
Each trajectory is run with a different random seed.

SEG For different values of ρ, we repeat the following procedure: We plot the average norm of the iterates
across 5 realizations of the trajectories of SEG. For each of the 5 trajectories of SEG, we initialize each trajectory
at (x0, y0) = (1.0, 1.0), use a stepsize η = 0.01, and run the optimizer for N = 1000 iterations. The noise used to
perturb the gradients is Z ∼ N (0, σ2I2) and σ = 0.1. Each trajectory is run with a different random seed. The

values of ρ we used are ρ = −5, ρH = a2+λ2−a
λ2−a2 = −0.875, ρV = 1

a+λ = 1
4 , and ρ = 0 which corresponds to SGDA

in the Figure.

G.4 Escape from Bad Saddles: Right of Figure 4

In this subsection, we provide the details to replicate the experiments shown on the right of Figure 4. The
objective is to provide empirical validation to the insights derived in Paragraph E.1 and Paragraph E.2, with a
special focus on the ability of SEG to escape bad saddles compared to SHGD that gets trapped. Consistently
with the assumptions, the landscape is that of the Quadratic Game f(x, y) = − 1

2x
2 + 2xy + 1

2y
2. We indeed

observe that consistently with the theory, SHGD is attracted by such undesirable saddle points while suitable
choices of ρ allow SEG to escape the saddle. Interestingly, unfortunate choices of ρ replicate the regrettable
behavior of SHGD.

The right of Figure 6 reports an additional experiment with the same setting but f(x, y) = −3x2 + 2xy + 3y2. In
these cases, positive ρ are the ones inducing fast divergence while negative ones induce (undesirable) convergence
to the saddle.

SHGD We plot the average norm of the iterates across 5 realizations of the trajectories of SHGD. For each of
the 5 trajectories of SHGD, we initialize each trajectory at (x0, y0) = (1.0, 1.0), use a stepsize η = 0.001, and run
the optimizer for N = 2000 iterations. The noise used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 0.1.
Each trajectory is run with a different random seed.

SEG For different values of ρ, we repeat the following procedure: We plot the average norm of the iterates
across 5 realizations of the trajectories of SEG. For each of the 5 trajectories of SEG, we initialize each trajectory
at (x0, y0) = (1.0, 1.0), use a stepsize η = 0.001, and run the optimizer for N = 2000 iterations. The noise used to
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Figure 7: Empirical validation: Corollary F.7 and Corollary F.14 (Left) and detail of SEG vs SHGD when their
convergence speed matches (Right).

perturb the gradients is Z ∼ N (0, σ2I2) and σ = 0.1. Each trajectory is run with a different random seed. The

values of ρ we used are ρ = −1, ρH = a2+λ2−a
λ2−a2 = 2, ρV = 1

a+λ = 1, and ρ = 0 which corresponds to SGDA in the
Figure.

G.5 Empirical Validation of Figure 7

In this subsection, we provide the details to replicate the experiments shown in Figure 7. The objective is
to provide empirical validation to Corollary F.7 and Corollary F.14. Consistently with the assumptions, the
landscape is that of the Stochastic Bilinear Game f(x, y) = x⊤Eξ [Λξ] y such that Λξ, where Λ = 2I2 and
ξ ∼ N (0, σ2I2), and σ = 1.0. We indeed observe that the average behavior of the norm of the iterates of SEG
and SHGD matches that prescribed by Corollary F.7 and Corollary F.14.

SHGD We compare the average norm of the iterates across 5 realizations of the trajectories of SHGD with the
exact dynamics prescribed by Corollary F.7. For each of the 5 trajectories of SHGD, we initialize each trajectory
at (x0, y0) = (0.1, 0.1), use a stepsize η = 0.01, and run the optimizer for N = 200 iterations. Each trajectory is
run with a different random seed.

SEG We compare the average norm of the iterates across 5 realizations of the trajectories of SEG with the
exact dynamics prescribed by Corollary F.7. For each of the 5 trajectories of SHGD, we initialize each trajectory
at (x0, y0) = (0.1, 0.1), use a stepsize η = 0.01, extra stepsize ρ ∈ {0.5, 1, 2}, and run the optimizer for N = 200
iterations. Each trajectory is run with a different random seed.

G.6 Empirical Validation of Figure 8: The asymptotic variance of SEG is influenced by ρ

In this subsection, we provide the details to replicate the experiments shown in Figure 8. The objective is to
provide empirical validation to Eq. 211. Consistently with the assumptions, the landscape is that of the Quadratic
Game f(x, y) = x2 + xy − y2. We indeed observe that the experimental average asymptotic variance of SEG
matches the one prescribed by Eq. 211.

For different values of ρ, we repeat the following procedure: We compare the average asymptotic variance of the
iterates across 5 realizations of the trajectories of SEG with the exact formula prescribed by Eq. 211. For each of
the 5 trajectories of SEG, we initialize each trajectory at (x0, y0) = (0.01, 0.01), use a stepsize η = 0.01, and run
the optimizer for N = 200000 iterations. Each trajectory is run with a different random seed. The values of ρ
used are ρ ∈

{
− 1

6 , 0,
1
6 ,

1
3 ,

2
5 ,

1
2

}
.
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Figure 8: Empirical validation of Equation (211).
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Figure 9: Comparison in terms of E
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with respect to ρ - Nonbilinear Game # 1 (Left); Nonbilinear Game

# 2 (Center Left); Nonbilinear Game # 3 (Center Right); Quadratic Game (Right).

G.7 Empirical Validation of SDEs: Figure 9

In this subsection, we provide the details to replicate the experiments shown in Figure 9. The objective is to
show that if ρ = O(η) or even smaller, the SDE of SGDA models the dynamics of SEG accurately. However, once
ρ = O(

√
η) or even larger, the SDE of SGDA no longer models the dynamics of SEG correctly while the SDE of

SEG does so. To simulate the SDEs, we use Algorithm 1.

Nonbilinear Game # 1 In this paragraph, we provide the details of the Nonbilinear Game # 1 experiment.
We optimize the loss function f(x, y) := x(y − 0.45) + ϕ(x)− ϕ(y) where ϕ(z) := 1

4z
2 − 1

2z
4 + 1

6z
6. The noise

used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 1.00. We use η = 0.001, ρ ∈ {0.0001, 0.001, 0.0316, 0.1}.
The results are averaged over 5 experiments.

Nonbilinear Game # 2 In this paragraph, we provide the details of the Nonbilinear Game # 2 experiment.
We optimize the loss function f(x, y) := xy − ϵϕ(y) where ϕ(z) := 1

2z
2 − 1

4z
4 and ϵ = 0.01. The noise used to

perturb the gradients is Z ∼ N (0, σ2I2) and σ = 1.00. We use η = 0.01, ρ ∈ {0.001, 0.01, 0.01, 0.3}. The results
are averaged over 5 experiments.

Nonbilinear Game # 3 In this paragraph, we provide the details of the Nonbilinear Game # 3 experiment.
We optimize the loss function f(x, y) := xy + ϕ(x)− ϕ(y) where ϕ(z) := 1

2z
2 − 1

4z
4 + 1

6z
6 − 1

8z
8. The noise used

to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 1.00. We use η = 0.0001, ρ ∈ {0.00001, 0.0001, 0.01, 0.1}. The
results are averaged over 5 experiments.

Quadratic Game In this paragraph, we provide the details of the Quadratic Game experiment. We optimize
the loss function f(x, y) := x2+2xy−y2. The noise used to perturb the gradients is Z ∼ N (0, σ2I2) and σ = 1.00.
We use η = 0.01, ρ ∈ {0.001, 0.01, 0.1, 0.5}. The results are averaged over 5 experiments.
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