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Abstract

Many machine learning tasks can be solved
by minimizing a convex function of an occu-
pancy measure over the policies that gener-
ate them. These include reinforcement learn-
ing, imitation learning, among others. This
more general paradigm is called the Con-
cave Utility Reinforcement Learning prob-
lem (CURL). Since CURL invalidates classi-
cal Bellman equations, it requires new algo-
rithms. We introduce MD-CURL, a new al-
gorithm for CURL in a finite horizon Markov
decision process. MD-CURL is inspired by
mirror descent and uses a non-standard reg-
ularization to achieve convergence guarantees
and a simple closed-form solution, eliminat-
ing the need for computationally expensive
projection steps typically found in mirror de-
scent approaches. We then extend CURL
to an online learning scenario and present
Greedy MD-CURL, a new method adapting
MD-CURL to an online, episode-based set-
ting with partially unknown dynamics. Like
MD-CURL, the online version Greedy MD-
CURL benefits from low computational com-
plexity, while guaranteeing sub-linear or even
logarithmic regret, depending on the level of
information available on the underlying dy-
namics.

1 INTRODUCTION

We consider the concave utility reinforcement learn-
ing (CURL) problem, which consists on minimizing a
convex function (or maximising a concave one) over
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state-action distributions induced by an agent’s pol-
icy:

N
: ™,pP — TP
Lmin {FGe) S fule R
Here, we consider an episodic Markov decision process
(MDP) with finite state space X, finite action space A,
episodes of length N, and probability transition ker-
nel p := (pn)ne[n) such that p, : X x A x X — [0,1].
For all s € N we denote [s] := {1,...,s}. Letting
Ags be the simplex over a finite set S, we denote
P = (urP)o<n<n € (Axxa)Y the state-action dis-
tributions over an episode induced by the policy 7 in
the MDP with dynamics p.

Many machine learning tasks are special cases of Prob-
lem (1). For instance, for the reinforcement learn-
ing (RL) task (Sutton and Barto, 2018), F(u™?) :=
—(u™P,r), i.e. the inner product between the state-
action distribution induced by 7w and a reward r.
For the imitation learning problem (Ghasemipour
et al., 2020), F(u™P) := Dg(u™?, u*), where Dy rep-
resents a Bregman divergence induced by a function f,
and p* represents a state-action distribution we want
to imitate. For some instances of the mean field
control (MFC) problem (Bensoussan et al., 2013),
F(u™P) := —(u™P, r(u™P)), where the reward func-
tion also depends on the agents’ state-action distribu-
tion. For mean field game (MFG) problems hav-
ing the gradient of F' as reward, finding a Nash Equi-
librium amounts to solving Problem (1) (Geist et al.,
2022; Lavigne and Pfeiffer, 2022).

Contribution 1: We present a new iterative algo-
rithm focusing on solving Problem (1) called MD-
CURL. It is inspired by the mirror descent algo-
rithm (Beck and Teboulle, 2003), and we prove a con-
vergence rate of order 1/v/K where K is the number
of iterations. Our main new ingredient is the use of a
non-standard regularization, which enables us to find
both a simple closed-form solution - meaning we avoid
the generally costly projection step that mirror descent
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algorithms undergo - and a convergence proof.

Until now, there have been few algorithms for solv-
ing the general framework of Problem (1). The first
two approaches were proposed, by Hazan et al. (2019)
on the basis of the Frank-Wolfe algorithm (Frank and
Wolfe, 1956), and Zhang et al. (2020) on the basis
of policy gradient methods, both of which have the-
oretical guarantees. In the mean field community,
Geist et al. (2022) prove that all algorithms for solv-
ing MFGs in discrete-time RL can be applied for solv-
ing CURL. Lauriere et al. (2022) survey existing algo-
rithms and perform numerical experiments, showing
that the adaptation of online mirror descent (OMD)
for MFGs presented by Pérolat et al. (2022) has the
best performance, outperforming the previously men-
tioned approaches. However, this method has no proof
of convergence for discrete iterations. Our proposed
algorithm, as we demonstrate with showcase experi-
ments, has the same performance as OMD for MFGs
while having theoretical guarantees of convergence.

Online extension of CURL: An interesting exten-
sion of Problem (1) is the online learning scenario, in
which we consider computing a sequence of policies
(7*)seqr) for T' episodes with the objective of minimiz-
ing a total loss

T
Ly =Y F'(u™ "), (2)
t=1

where we allow the objective function F? to change
arbitrarily over time (and only be revealed at the end
of each episode t).

Here, we consider dynamics such that (g, ao) ~ po(),
and for all steps n € [N],

Tn+1 = gn($naan7€n)7 (3)

where (&, )nen] is an independent sequence of external
noises with e, ~ h,(+) for h, a distribution.

Different variants of this problem can be considered,
depending on the prior information available on the
dynamics. Here, we consider the case where the agent
has prior knowledge of the dynamics (g,, is known), but
may be subject to unknown external interference (h,
is unknown). This includes scenarios such as: (i) An
energy central controlling the average consumption of
electrical appliances. The temperature evolution equa-
tion is known, but consumer behavior is unknown and
can interfere with the dynamics (Coffman et al., 2023;
Moreno et al., 2023). (ii) Controlling a fleet of drones
in a known environment, subject to external influ-
ences due to weather conditions or human interven-
tion. (iii) Controlling the state of charge of electric
vehicles so that their average consumption follows an
energy production target that changes every day and

is not known in advance. The dynamics of loading are
known, but the arrival and departure of users are not
(Séguret et al., 2021).

Contribution 2: We propose Greedy MD-CURL,
an online learning algorithm for CURL with dynamics
as in Equation (3) when g, is known but the noise dis-
tribution h,, is unknown. At each episode, we play a
policy 7¢, observe the agent’s behavior, update an es-
timate of the external noise, and use the estimated dy-
namics to compute the next policy using MD-CURL.
Greedy MD-CURL achieves state-of-the-art sub-linear
regrets with low complexity and simple closed-form so-
lutions. We further avoid the \/m term paid in upper
confidence reinforcement learning (UCRL) approaches
(see Section 2) by showing a weaker control on the
difference between the true and estimated probability
kernels, being an advantage for models with large state
spaces.

Balancing exploration and exploitation is challenging
when both g, and h, are unknown, which can be
computationally expensive. Greedy MD-CURL of-
fers a low-complexity algorithm that achieves sub-
linear regret, even without explicit exploration (see
Remark 5.3). Although its regret bound is not the
state of the art, Greedy MD-CURL is a good option
for scenarios where exploration is already induced by
the objective function or by noisy models.

2 RELATED WORK

Online MDPs have mostly been studied in specific
cases of CURL rather than in its general form, and
draw inspiration from online learning problems (Cesa-
Bianchi and Lugosi, 2006). In model-based RL Even-
Dar et al. (2009) were the first to propose a method
dealing with adversarial functions, supposing the tran-
sition kernel is fully known in advance. Neu et al.
(2012) extended this work to the case of unknown
transition kernels with adversarial rewards, using tech-
niques inspired by UCRL-2 (Jaksch et al., 2008). Re-
cently, UC-O-REPS was proposed by Rosenberg and
Mansour (2019), which extends Zimin and Neu (2013)
O-REPS algorithm to the case of unknown dynam-
ics and improves upon the regret bound of Neu et al.
(2012).

In the mean-field community, most approaches for un-
known dynamics consider model-free scenarios, such
as Angiuli et al. (2020, 2023); Carmona and Lauriere
(2022). M3-UCRL, proposed by Pasztor et al. (2021),
is the only model-based algorithm for mean-field con-
trol problems with unknown dynamics. It uses the
principle of optimism under uncertainty with UCRL-2
techniques, but only provides regret bounds for Gaus-
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sian process dynamics and does not consider online
adversarial objective functions.

We introduce the first algorithm for the online CURL
problem with theoretical guarantees. Unlike UCRL
and PSRL approaches (Osband et al., 2013), which are
generally computationally expensive, our algorithm is
nearly greedy and still achieves the same regret bounds
with lower computational complexity, depending on
the dynamics information available.

Two approaches are usually employed in tabular rein-
forcement learning with adversarial losses: occupancy-
measure frameworks (Zimin and Neu, 2013; Rosenberg
and Mansour, 2019) (computationally expensive due
to additional convex optimization problems) and pol-
icy optimization (Efroni et al., 2020; Cai et al., 2020)
(efficient but potentially sub-optimal). This work uses,
in Section 4, a non-standard Bregman divergence, ob-
taining an efficient closed-form solution in the frame-
work of occupancy-measure, potentially bridging the
gap between these methods and enabling more efficient
analysis in the future.

3 GENERAL PROBLEM

FORMULATION
Consider an episodic Markov decision process
(MDP) with finite state space X, finite ac-
tion space A, episodes of length N, and a se-

quence of transition probabilities p := (pn)ne[n] Where
P X X AX X —[0,1]. At time step n, an agent in
state x, choosing action a, transitions to state z,4;
with probability ppn41(Znt1|Tn,an). At the start of an
episode, the agent’s first state-action couple follows a
fixed distribution pg € Ayxx4. Actions are chosen by
means of a policy 7, : X — A4 at each time step. In
an episode, when an agent follows a sequence of strate-
gies 1= () ne[n], we define ™ := (ulP)o<n<n the
state-action distribution sequence induced by the pol-
icy m in the MDP with probability kernel p recursively
for all (z’,a’) € X x A and all n € [N]:

po" (@', d) o= po(a’, o) (4)

prP(x' a") = Z Z P (2, a)py (2|2, @), (a'|2).
TEX a€A

We let | - |i be the L; norm, and for all

v := (Un)nen], such that wv, € R¥*A we define
[v]lco,1 := supPg<, <y llvnll1- We define the objective
function F(u) := 25:1 fn(un) where f, : Axxa — R
are convex and ¢-Lipschitz functions with respect to
the norm || - [|1.

Offline optimization setting (Section 4) To
solve the CURL problem, we propose a learning pro-
tocol that comnsists in following an iterative method.

At each iteration k € [K], the learner computes a
new policy by solving an auxiliary optimization prob-
lem. This auxiliary optimization problem, that we
denote by §, depends on the previous policy 7% 1,
the model dynamics p, and the objective function F,
i.e. 78 .= F(7*~1 p, F). In Section 4, we show how to
construct § such that minge(x) F(u’rk’p) — F(p™ P) is
bounded by a term of order 1/\/7(, with K the number
of iterations, where 7* is an optimal policy.

Online learning setting (Section 5) In the online
extension of CURL, the objective function at episode
t € [T] is denoted as F' := 2" ft where T is the
total number of episodes, and f! : Ayy4 — R. We
assume that f! is convex and ¢-Lipschitz with respect
to the | - || norm. The functions F* are only revealed
to the learner at the end of episode t. The learner’s ob-
jective is to compute a sequence of strategies (wt)te[T]
minimizing their total loss defined in Equation (2),
and the learner’s performance is measured by compar-
ison to the best stationary policy, using the following
regret:

T T
Rp:=Y F'(u" ") - ﬂe(min S O FH ™). (5)
t=1 =1

AA)XXN -

We consider the dynamics of Equation (3) when g,
is known but h,, is unknown. In order to choose a
sequence of policies that minimize their total loss, the
learner must then both optimize the objective function
and learn the noise distribution through observations.
The learner’s online protocol is in Algorithm 1.

At each episode ¢, the learner chooses a policy w?,
send it to M independent agents, observes the exter-
nal noise (], ...,e%’) for each agent j € [M] over all
N steps (to retrieve the noises, it is enough to observe
the agent’s trajectory and for g,, to be invertible), com-
putes an estimate p'T! of the probability kernel using
the observations, observes the objective function F?,
and calculates the policy for the next episode by ap-
plying the auxiliary problem § on #t, F*, and ptt!.

To compute a strategy sequence with sub-linear regret
the learner faces two challenges: how to estimate p'
from the data and how to define the auxiliary opti-
mization problem §. In Section 5, we show that by
considering the same auxiliary optimization problem
§ as in the optimization of the offline CURL problem,
and by taking p**! as the empirical mean estimator, we
can build an algorithm that achieves sub-linear regret.
This result is studied in detail in Section 5. Observ-
ing M independent agents following the same policy is
relevant to many applications, such as controlling the
charging state of a set of electric vehicles. This allows
us to explicitly express the dependence on M. Note
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that if we set M = 1, we recover the standard case.

Algorithm 1 Learner’s Online Protocol

Input: initial state-action distribution pg, initial
strategy sequence L.
fort=1,...,T do
for j=1,...,M do
the j-th agent playing episode t starts at
(a3, @) ~ o)
forn=1,...,N do
environment draws new

pn( "rn 17a£7t 1)

learner observes agent’s j external noise e/t
agent j chooses an action alit ~ 7t (-|xl?)
end for
end for
learner computes, for all n € [N], new estimate
Pyt from data (e3°)se(n,je(m)
objective function F'* is exposed
learner computes 7't = F(xt, p'T1 F?) and send
to all agents
end for
return (7'),c[7)

state =zt~

4 CURL AS AN OPTIMISATION
PROBLEM

4.1 Reformulation of learner’s objective

The CURL problem as presented in Equation (1) is
problematic in that it is not convex in m, and calcu-
lating the gradient of F' with respect to the strategy
7w can be intractable. Therefore, we reformulate the
learner’s objective to obtain a convex problem. We
define

Mﬁ = {Me AXX.A

| ) (6)

a’€A

Z (2|2, a) pin—1(z,a) Vo' € X,Vn € [N]},

r€X,acA

as the set of state-action distribution sequences sat-
isfying the Bellman-flow in the MDP with transition
kernel p and initial state-action distribution pg. For
now, we assume that the probability kernel p is known
and, to minimize notations, we let u™ := p™P and
My, = M?P, . We also assume pg is always known.

For any p € M%, , there exists a strategy m such that
p™ = u. Tt suffices to take m,(alx) < p,(x,a) when
the normalization factor is non-zero, and arbitrarily
defined otherwise. This result is formally enunciated
and proved in Proposition A.1 in Appendix A (see also

Puterman (1994)). We therefore have the equivalence

min  F(p") =

WG(AA)XXN

min F
i (1)

Note that the optimization problem over p is convex.

4.2 The Algorithm

To build an algorithm solving the CURL problem, we
need to build the auxiliary optimization problem F
discussed in Section 3. Let M, = denote the subset of
M., where the corresponding policies 7 are such that
7 (alx) # 0 for all (z,a) € X x A, n € [N]. We define
a regularization function I' : M, x M7, = — R as

XN: E ey~ () {log (ZREZE;)} (7)

n=1 n

L(p™, p™) =

that is well defined thanks to the bijection be-
tween strategies and state-action distributions satis-
fying the Bellman flow (see Proposition A.1). We de-
fine the following iterative scheme with 7, > 0 and

(VE(uF), um) o= S0 (V fu (), )

. x 1 -
p"*! € argmin {<VF(u’“),u )+ =T (p ,u’“)}, (8)
BTEM Tk

where the idea is, at iteration k+1, to choose p™ mini-
mizing a linearization of the objective function around
p¥, the distribution sequence found at the previous it-
eration, and at the same time penalizing the distance
between policy 7 inducing 4™ and 7% inducing ;*. Our
first main result of this section is in Theorem 4.1. It
shows that, due to the choice of penalizing strategies,
the iterative scheme in Equation (8) can be solved
through dynamic programming (Bertsekas, 2005) by
building a Bellman recursion:

Theorem 4.1. Let k > 0. The solution of Prob-
lem (8) is pkt! = u”Hl, where for all n € [N], and
(z,a) € X x A,

k41 m (alz) exp (74 Qy; (2,a) )

™ (alz) = S oren wE(a’|2) exp(TeQE (x,a7))’ (9)
where Q is a reqularized Q-function satisfying the fol-
lowing recursion

Q];V(xﬂ a) = _VfN(/J'IIgV)(xva)
Qulwo)= max { =V ) (, )+
> poi(@]z,a) Zﬂnﬂ(a/h’/) (10)
1 () o
B g(ﬂzma )+t )]}
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Algorithm 2 MD-CURL

1: Input: number of iterations K, initial se-
quence of policies 70 € (A )N such that
ul = € M, . objective function F =
Zn 1 fns probablhty kernel p = (pn)nepni, ini-
tial state-action distribution pg, sequence of non-
negative learning rates (7g)r<k-

2: for k=0,..., K—1do
3 pF=p"" asin Equation (4)
£ O(5,a) = V(i) (@a), Y(z,a) € ¥ x A
5 forn=N,...,1do
6: V(z,a) € X x A:
) k+1 _ wh(alz) exp(mQk (z,0))
v (0l2) = S @ e (m@s @)
8: Q¥ _,(x,a) using the recursion in Equa-
tion (10)
9: end for
10: end for

11: return 7%

Proof. See Appendix B.1. O

It is not obvious at first sight, but we can show that I' is
a Bregman divergence, making the iterative scheme an
instance of mirror descent (Beck and Teboulle, 2003).
Therefore, we can state the convergence result of Algo-
rithm 2, MD-CURL, in Theorem 4.2, the second main
result of this section. Solving a mirror descent (MD)
instance usually includes a projection step that is gen-
erally computationally expensive. The low-complexity
methods existing in the literature can only offer ap-
proximate solutions (Dick et al., 2014; Rosenberg and
Mansour, 2019). We show that with the judicious
choice of divergence as in Equation (8), MD can be
solved accurately avoiding all costly projection steps.

Theorem 4.2. Let 7* be a minimizer of Problem (1).
Define L := ¢N where { is the Lipschitz constant of
fn with respect to || - || for all n € [N]. Applying
K iterations of MD-CURL to this problem, with, for
each1 <k < K, 7, := L7%/2T (u™", u°) /K, gives the
following convergence rate

g - 20 (pm", p1°)
)—Fp" )<L JE
Proof. For ease of notation, for any probability mea-
sure 7 € Apg, whatever the (finite) space E, we in-
troduce the neg-entropy function, with the convention
that 0log(0) =0, ¢(n) == >_,c 5 n(z) logn(z).

Proposition 4.3. Let u € M,, with marginal given
by p € (Ax)N. The divergence T is a Bregman diver-

gence induced by
N
Z (tin) Z $(pn)-

Also, 1 is 1- stmngly com}ex with respect to |- lloo,1-

min F(u™
0<k<K (n

The proof is in Appendix B.2 and consists in showing
that the I' divergence taking values on the sequence
of state-action distributions is in fact the KL diver-
gence on the joint distribution. Next, if f, is convex
and ¢-Lipschitz with respect to the norm || - ||; for all
n € [N], then F is also convex and Lipschitz with
constant L :=¢N with respect to the norm | - |loo1
(see Appendix B.2). Since the set M, is convex, all
convergence assumptions of MD (Beck and Teboulle,
2003) are satisfied, and the rate of convergence fol-
lows. O

5 ONLINE LEARNING
EXTENSION OF CURL

We consider here the online variant of Problem (1),
where the learner must compute a sequence of strate-
gies while facing unknown external noise and arbi-
trarily changing objective functions. We consider the
dynamics as in Equation (3), and assume that g, is
known but h,, is unknown. We introduce Greedy MD-
CURL, a new algorithm achieving sub-linear regret
with a simple closed-form solution for this framework.
At episode t, Greedy MD-CURL solves an optimiza-
tion problem in the MDP induced by the estimated
probability kernel p¢ using one iteration of MD-CURL.
We refer to p as the true probability kernel and p* as
the estimated one.

5.1 Learning the model

Since the learner does not know the noise dynamics,
it has to estimate it from its experience. To obtain a
sub-linear regret, the learner must learn p' in such a
way that its distance to the real probability kernel de-
creases with ¢ with high probability. Let us denote M}
the number of times the learner observes step n until
the start of episode ¢, and €}, the s-th noise observed at
step n. Recall that the dynamics follow Equation (3),
and that the learner observes the noise values from
the agent’s trajectory. Let ¢, be the Dirac distribu-
tion centered in z. We deﬁne

= Zagn(msb ). (11)

n s=1

Pl (|z,a)

For any function A : X — R, for all n € [N] and
(xz,a) € X x A we introduce the notation

(Pn = pn) (A) (2, 0)
= 3" (pula'|2,0) — B2/ |2, @) A(a).

z'eX
We have the following concentration result.

Lemma 5.1. Let v > 0. For any 0 < § < 1 and any
Junction A : X — R such that |A(z")] < \/7/2 for all
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e X,

.t y N|X|| AT
(Pn — ) (A) (2,0) < \/QM,Q log < ;
holds with probability at least 1 — & simultaneously for
all (z,a) € X x A, stepsn € [N], and episodes t € [T).

Proof. See Appendix C.1. O

In the literature (Jaksch et al., 2008; Rosenberg and
Mansour, 2019), it is common to bound the L; devia-
tion between p and p’ instead. However, this deterio-
rates the bound by an additional factor of /|X|, which
we can avoid here because of our dynamics hypothe-
sis. This means that in the final regret analysis, we
only pay the number of states in a term proportional
to 4/log(|X]), which is an advantage for problems with
large state spaces or even to discretize continuous state
space problems.

We further state Lemma 5.2, which is proven in Ap-
pendix C.2 and used later to prove the regret bound
of Greedy MD-CURL.

Lemma 5.2. For any vector v €
strategy m and for all0 < n < N,

RIXXIAL for any

At
<Ua :U’le - ’u/:l'l,p >

=33 W ) (e B (AT (),

i=1 yeX x A

where AL™™ : X — R is a function depending on v,i,n
and m defined in Equation (25). Also, if ||[v]lec =
SUP( ayexxa [U(T, @) SV, then [AG" oo < V.

5.2 Optimization problem

Recall that the learner follows the online protocol in
Algorithm 1. At each episode, the learner estimates
p! from the noise observations using Equation (11).
We denote by M'LO = /\/lffo the set induced by this
estimate (as in Equation (6)). At every episode the
learner solves

p e argmin{r(VF*(u"), u) + T(p, ")}, (12)
peEM !
where, p! = ™ P and it := P with
7= (1 - ay)n" + %, (13)
and oy € (0,1/2) is an exploration parameter.

In Theorem 4.1, we have already shown that the opti-
mization problem of Equation (12) with Bregman di-
vergence ' has the format of an exponential twist as
in Equation (9). Consequently, we can build Greedy
MD-CURL in Algorithm 3. Note that to compute the
policy for episode t + 1, we perform one iteration of

MD-CURL using 7t to compute ! as in line 3 of Algo-
rithm 2, 7 to compute the exponential twist in line 7
and to compute Q recursively in line 8, the objective
function F* and the estimated probability kernel pi+t.

Remark 5.3. We call our algorithm Greedy because
it solves the optimization problem (12) at each episode
using the empirically estimated dynamics (11) as if
they were the true ones, without confidence intervals or
exploration bonuses related to visit counts as usually is
the case (Jaksch et al., 2008; Rosenberg and Mansour,
2019; Azar et al., 2017).

Algorithm 3 Greedy MD-CURL

Input: number of episodes T, initial sequence
of policies 7! € (A 4)**Y, number of observations
per episode M, initial state-action distribution
Lo, learning rate 7 > 0, sequence of parameters
(at)te[T]'
Initialization: V(z,a), p'(-|z,a) = ﬁ
fort=1,...,7 do
for j=1,...,M do , 4
j-th agent starts at (x3°,a?") ~ po()
forn=1,...,N do
environment draws new state xl! @~
Jot Jit
A QEASNARY ]
learner observes agent j’s external noise &/;!
agent j chooses an action al;t ~ 7t (-|xs?)

end for
end for
update probability kernel estimate for all (z,a):
1 & t—1
ﬁfjl(‘zv a) = Mt Z 5g,L(:p,a,5¥;ft) + Tﬁ;(‘z7a)
j=1

compute policy for the next episode:
i+l .= MD-CURL(1, #'\#, F*, p'*1, 1o, 7)
compute 7t+! as in Equation (13)
end for
return (7'),c[7)

5.3 Regret analysis

In this section, we prove the regret bound of Greedy
MD-CURL. For that, we use the results from Subsec-
tion 5.1 and some results of OMD (Shalev-Shwartz,
2012), while also having to handle an online optimiza-
tion problem with varying constraint sets. We decom-
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pose the regret (5) into three terms,

T
=Y F ) = F ()
t=1
T t4+1
+ZFt(u Fi(um ")
+ ZFt

RMDP(( T™)erm) +

where 7* := argminﬁE(AA)xxN S FY(u™P).  The
terms RMDP(( 7)err)) and RY PP (7*) pay for the er-
ror due to not knowing the true probability kernel, and
the term R’}Olwy pays for calculating sub-optimal poli-
cies using MD-CURL with constraint sets varying with
each episode. Propositions 5.5 and 5.7 bound each of
these terms, yielding our main result:

Theorem 5.4. Consider an episodic MDP with finite
state space X, finite action space A, episodes of length
N, and probability kernel p := (pp)nein). Let F' =
ZnN:1 I convex with f ¢-Lipschitz with respect to the

a* t+1

— F (™)

bR RYPP (r),

norm || - |1 for alln € [N],t € [T]. Let
b= (Z?l [Noy + & 2 log(‘A|)+N2( —|—at)2]
+(Nlo(l4]))".

(14)

Then, with probability at least 1—0, Greedy MD-CURL
- _ b
obtains, for T = VT

Ry < 20NWT + 2@N2\/2A§ log (W)

)

In particular, choosing oy = T for all t € [T}, yields

Rr = O(VTlog(T)).
5.3.1 Bounding R}/PP

Here we show the bounds on RMDP(( )te[T]) and
RYMDP (%), Both indicate the difference between the
loss of playing a sequence of policies over T' episodes
in the actual MDP and the loss of playing the same
sequence of policies but in the estimated MDP. For the
first term, the sequence is that produced by Greedy
MD-CURL, i.e. (n")ye[r, and for the second term, it
is the best stationary policy over the horizon T, i.e.
*

7*. The results are presented in Proposition 5.5 and
use the lemmas from Subsection 5.1.

Proposition 5.5. Under the same hypothesis as in
Theorem 5.4, with probability at least 1 — 0, Greedy
MD-CURL obtains,

2T N|X||A|T
R ()eqr) < M 2 g (VAT

The ezact same result being also valid for RMPF (ﬂ'*)

Proof. See Appendix C.3. O

. olic
5.3.2 Bounding R7™"Y

The term R’}O”Cy pays for the loss associated with
the convergence of MD-CURL. Our main challenge is
to deal with the terms concerning variable constraint
sets M}, . They depend on a bound on the differ-
ence between the state-action distributions induced
by two consecutive probability kernel estimates, i.e.
[P — ,u”’ﬁtHHooJ stated in Lemma 5.6. We also
need a bound on ||V (p™?) || 00,1, the function inducing
the Bregman divergence, justifying our construction in
Equation (13). The result is stated in Proposition 5.7.

Lemma 5.6. For any policy sequence ™ € (A 4) Y <V,

the estimation of the probability kernel for two consec-
utive episodes done by Greedy MD-CURL satisfies, for
all episodes t € [T — 1], the following inequality

2N

aopttl Topt
L A O
t
Proposition 5.7. Under the same hypothesis as in
Theorem 5.4, let b be defined as in Equation (14).
Then, Greedy MD-CURL obtains, for T = L—\b/f,

RbYY < 2/NDVT.

Proof. See Appendix D.5. O

Remark 5.8. Appendixz E shows that Greedy MD-
CURL also has sub-linear regret in T when both g,
and h,, are unknown and the learner observes the tra-
jectory of state-action pairs that each agent follows.
Although its regret is not the best in the state of the
art, Greedy MD-CURL is a good option when explo-
ration is already induced by the environment.

6 SHOWCASE EXPERIMENTS

In this section, we evaluate the performance of MD-
CURL and Greedy MD-CURL on the entropy maximi-
sation and multi-objectives problems, both introduced
by Geist et al. (2022). To test Greedy MD-CURL’s
ability to learn the unknown dynamics, we consider a
version with fixed, non-adversarial objective functions
and the same probability kernel for all n € [N]. See
Appendix F for further experimental results on these
problems. Additionally, subsection F.3 presents re-
sults for a more challenging scenario with adversarial
objective functions.!

LAll the code to reproduce the empirical results
is available at: https://github.com/biancammoreno/
Efficient_MD_CURL


https://github.com/biancammoreno/Efficient_MD_CURL
https://github.com/biancammoreno/Efficient_MD_CURL
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Figure 1: [left] Initial agent distribution; [middle] Dis-
tribution induced by the uniform policy; [right] The
three targets.

6.1 Environments

We consider a model where the state spaceisa 11 x 11
four-room dimensional grid world with a single door
connecting adjacent rooms. At each step, the agent
can choose to stay still, go right, left, up or down,
provided that there are no walls in the way:

Tpi1 = Ty + Gp + En, (15)

with a, € {(0,0),(0,1),(1,0),(-1,0),(0,—1)}. The
external noise ,, represents a perturbation that pushes
the agent to a neighbor state with a certain probability.
We suppose the initial distribution is a Dirac at the
upper left corner of the grid as in Figure 1 [left].

Entropy maximisation At each step, f,(u>?) :=
(pn?,1og(pr ™)), where ppP(x) = 3, c 4 pn® (2, a).
Thus minimizing F' := 25:1 frn means maximizing
the entropy, so the optimal value is when the distri-
bution is uniform over the state space (obs.: contrary
to intuition, the uniform policy does not provide an
optimal solution, as can be seen in Figure 1, [middle]).

Multi-objectives The goal is for the distribution
to be concentrated on the three targets in Figure 1,
[right], by the final step N. We let f,(ur?) :=
*Ziﬁ(l — (prP, eF))?) where e € RI*| is a vector
with zero everywhere and 1 in the element correspond-
ing to a target state. Note that the target may not be
reachable by any policy.

6.2 Numerical experiments

For all experiments we consider N = 40, 7 = 0.01 and
oy = 1/T, where T is the number of iterations in the
online framework. Figures 2 and 3 show at left the
state distribution at N = 40 computed after 500 it-
erations of MD-CURL for each setting, and at right
its log regret per iteration compared to that of OMD
for MFG. The OMD algorithm for MFGs is the state-
of-the-art method for the problems addressed in this
paper, as shown by Lauriére et al. (2022), but have no
convergence results for discrete iterations. Therefore,
MD-CURL is a good alternative for achieving state-of-

o011

0010

0,009

0.008

105 4 — MD-CURL
— OMD MFG

0006 106

T T T
00 100 10! 107
Iteration

Figure 2: Entropy maximisation: [left] MD-CURL dis-
tribution at N = 40; [right] Log regret.

1005

030 1004

1093 4

— MD-CURL

o 1024 OMD MFG

T T T
000 10° 10t 10?
Iteration

Figure 3: Multi-objectives: [left] MD-CURL distribu-
tion at N = 40; [right] Log regret.

the-art performance, with the advantage of having the-
oretical results. Note that both algorithms converge
similarly, we leave the analysis of their differences for
future work.

We now examine Greedy MD-CURL for online CURL.
We add a noise ¢, that follows a categorical distri-
bution h,, with a 0.2 probability of going up and 0
for other directions. We suppose g, is known but h,,
is unknown, and we take M = 10. Figure 4 com-
pares the log regret per iteration for Greedy MD-
CURL (blue), MD-CURL with known noise dynam-
ics (green), and MD-CURL with unknown noise dy-
namics, where the learner never learns the noise dis-
tribution, i.e. pl,(:|z,a) = 8y, (3.0,0) for all (z,a) (red).
We see that Greedy MD-CURL quickly matches MD-
CURL with known noise dynamics, and that never
learning the noise is sub-optimal. We do not compare
Greedy MD-CURL to other algorithms in the litera-
ture as none is well-suited to our scenario, and the ones
that could be adapted use UCRL techniques making
them computationally expensive or intractable.

Entropy maximisation Multi-objectives

1005

1004 4

100

1002

3 — MD-CUF —— MD-CURL

T T T T T T
10° 10! 10% 10° 10! 10?
Iteration Tteration

Figure 4: Log regret per iteration, N = 40: [left] En-
tropy maximisation; [right] Multi-objectives.
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Finally, Greedy MD-CURL achieves sub-linear regret
even with unknown dynamics (see Appendix E). Fig-
ure 5 shows how it learns the full dynamics for both the
entropy maximization problem (right) and the multi-
objective problem with 0.2 probability of being per-
turbed in any reachable neighboring state (left). It
exploits the fact that maximizing entropy and pertur-
bations with high probability favors exploration.

Entropy maximisation Multi-objectives with central noise

—— Greedy MD-CURL
T~ — MD-CURL known

1004

1003 4

—— Greedy MD-CURL unknown g
—— MD-CURL known dynamics

100 1ot 02 100 it 02
Iteration Tteration
Figure 5: Log regret for Greedy MD-CURL with un-
known g, and h,,: [left] Entropy maximisation; [right]
Multi-objectives.

7 CONCLUSION AND FUTURE
WORKS

In this paper we analyzed two versions of the CURL
problem in episodic MDPs with finite state and action
spaces. For the offline optimization problem, where
the dynamics ¢, and h,, are known, we proposed an
algorithm based on mirror descent converging with
a rate of O(1/VK) for K iterations. For the online
learning extension with adversarial costs, we proposed
an algorithm with a simple closed-form solution, and
regret of O(\/T log(T)) when g, is known but h,, is un-
known. Also, we showed that for this specific dynamic,
we can improve the bounds of existing work and pay
the number of states only in a term proportional to

V9og(|X]).

A future direction is to investigate if we can achieve
optimal regrets for variants of Greedy MD-CURL un-
der more general assumptions about the available dy-
namics information. For example, by considering the
case where g, is a parametric function with unknown
parameters, rather than being completely known.
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1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes, Section 3 introduces the general formu-
lation of the problems considered, and Sec-
tions 4 and 5 detail the novel algorithms.]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes, in Section 3 we discuss the properties of
our algorithms.]

(¢) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [No]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes, all theorems and
lemmas relating to algorithm computation
and convergence are listed either in the main
article or in the Appendix.]

(b) Complete proofs of all theoretical results.
[Yes, all theorems and lemmas are proved in
the Appendix]
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(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes, the detailed Algorithms in 2
and 3 have all the necessary instructions to
be reproduced.]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes,
see Section 6]

(¢) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes, see Section 2]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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A EQUIVALENCE BETWEEN POLICIES AND DISTRIBUTIONS IN Muo
Proposition A.1. Let ug € Axxa. The application 7 — u™ is a bijection from (A4)**N to M-

Proof. Consider a fixed initial state-action distribution po € Axxa. Let p € M, and define p = (pp)o<n<n
such that for all x € X, p,(x) =), pn(z,a) (the associated state distribution). First, let us deal with the case
where p,(z) # 0. Deﬁne a policy sequence m € (A 4)**¥ such that 7, (alz) = TROR an) for all (z,a) € X x A. We
want to show that p™ = p for this policy 7. We reason by induction. For n = 0, puj = po by definition. Suppose
T = pin, thus for n + 1 and for all (2/,a’) € X x A

prga(2',a) =Y puga (@, @)y (2, ) (a']a)

T,a

(2!, a')
- S lnomin 052

,un+1(x a)
= 2 () T

ot (2, a’)
= pp1 () ———"=
A= @)

= Un+1 (IIT/, al)v

a

where the first equality comes from Equation (4), the second equality comes from the induction assumption and
the way we defined the strategy =, and the third comes from the assumption that € M,

In the case p,(z) = 0, we therefore have p, (x,a) = 0 for all a € A, so any choice of 7, (a|x) would work. Because
we want to make sure that there is a unique mapping from each = to u™ we agree to always set 7, (a|z) = ‘—1| in

this case, where |A| is the number of possible actions.

B PROOFS OF SECTION 4: ALGORITHM 2 SCHEME AND
CONVERGENCE RATE

By abuse of notation, for any probability measure n € Ag whatever the finite space E on which it is defined we
introduce the neg-entropy function, with the convention 0log(0) = 0,

$(n) ==Y _ n(x)logn(), (16)

zEFR

to which we associate the Bregman divergence D, also known as the KL divergence, such that for any pair
(nv V) 6 AE X AE,
D(n,v) := ¢(n) = ¢(v) = (Vé(v),n —v).

Let p, denote the marginal probability distribution on X associated with p,, i.e., for all x € X

2)i= 3 palwa)

acA

Observe that to any p = (pn)1<n<n € My, one can associate a unique probability mass function on Ay 4y~
denoted by p1.n such that py.n is generated by the strategy m = (71'”)7LE[N] associated with p which is determined
by
r,a
Tolalz) = Hn (2, a)

Pn( )

when p,,(z) # 0, otherwise we fix an arbitrary strategy m,(a|z) = |17|.

Before proving Theorems 4.1 and 4.2 we state and prove a lemma which is key to proving both theorems.
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Lemma B.1. For any u € M, and p' € M, . with associated probability mass functions p1.n, win € Axxa)N
generated by m, 7 respectively with the same initial state-action distribution, i.e. po = py, we have

Mz

N
D(,UI:N”UILN) Um“’n ZD(an);)) (17)
n=1

n=1

ahere () = S B [l (”“Ezzz%ﬂ |

Proof. For each n € [N], let us define a transition matrix P™ for all z,2’ € X and a,a’ € A,
P™ (' d|z,a) == pp(z'|x, a)m,(a|2").
Given Definition 4, for any randomized policy the state-action distributions evolve according to linear dynamics
pin(2',a') = (pn—1(), P™ (2, a'-)).
Any randomized policy 7 induces a probability mass function p1.y that is Markovian:

1N (F) = po(Yo) P™ (y1lyo) - - P™ (ynlyn—1), (18)

where 4/ represents the elements of (X x A)N*! such that y; = (24, a;) for all 0 < i < N. Note that j,(y,) is
the marginal probability mass function.

Consider p,n € M,, the state-action distribution sequences induced by m, 7’ respectively (i.e, p = p™ and
w = u”/). Thus, computing the relative entropy between the probability mass functions p1.n, . v gives

D(p:n, p.y) = Zﬂl (7 log (u/uv(y))

M1;N(?7)

- ¥ Ml:N(g)log<uo(yo)P“1(y1|yo)...P”z(leyN_1)>

Yoo YN 16(y0) P (y1yo) - - . P™ (yn|yn-1)
N
= P (yilyi—1)
= Z Ul:N(y)Zlog <P”'H )
Y0, YN i=1 7’(yz|yz—1)

Where
N N
P (yilyi— i i1, Qi il
Zlog( ,(y ly 1)>=Zlog<p( zilzio1, ai-1)mi(a |:c)>
— Pri(yilyi-) ) o pi(@ilwi—1, ai—1)mi(ailz;)
N
mi(ailzi)
= log< . )
; i (ailz;)
Thus,

D(p1.n, py.y) = Z/“ N Zlo (m a’x’§>

¥
N mi(a;|x;)
B prN 1 AT
Ey 'uo yo y1|y0) (yN|yN—1)Z 08 (W;(alfm))

izzummo( (o)),

i=1 zeX acA
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Where for the last equality we used that

> po(wo)P™ (yilyo) - - P™ (yilyi—1) Zuz Yi)

Yo, Yi—1

and for a fixed y;,
ST P (gialys) - P™ (v lyn-1) = 1.

Yi+1,--YN

This proves the first equality of the lemma. We now prove the second. For this, we recall that Proposition A.1
gives a unique relation between a state-action distribution sequence u € M, and the policy sequence 7 €
(A 4)**N inducing it by taking for all 1 <i < N, (z,a) € X x A,

alz pi(z, a)
e =T

where p is the marginal on the states of p. Using this relation, we have then that

D(p1.n, py.n) = ZZmealOg

which concludes the proof. O
B.1 Proof of Theorem 4.1: formulation of Algorithm 2
Theorem. Let k > 0. The solution of Problem (8) is p*+1 = ™ " where for all n € [N], and (z,a) € X X A,

¥ (a|z) exp (TkQﬁ(I7a))
> weaTh(a[z) exp (Tka(x a )) ’

it (a|x) =

where Q is a reqularized Q-function satisfying the following recursion
Q];V(xa a) = _va(MI;V)($> a)
i (z,a) =  max { — Vo (uF) (2, a)+

Tnr1E€(AA)F

an+1 '|z,a Zﬂnﬂ |2’ [ (W) +Q5L+1(Ilva/)} }

2! n+1

k+1

Proof. At each iteration we seek to find p a minimizer of

i (9P +fZE<WM<> log (242 1 (19)

n=1
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where recall that (VF(u*), u™) = ZnNzl(an(uZL wry. We further use that 7y, (@, an, tin) = =V fr,(tin) (Tn, an).

Now, we use the optimality principle to solve this optimization problem with an algorithm backwards in time. Re-
member that the initial distribution pg is always fixed. The equivalence between solving a minimization problem
on sequences of state-action distributions in M, and on sequences of policies in (A )TN (see Proposition A.1),
allows us to reformulate Problem (19) on M, into a problem on (A 4)**¥, thus

N
19) = (2 a0,
(19) ﬂe&lﬁ’i«m{zzun(w a)ry(x,a, w,))

n=0 xz,a
7 (a|2)
S ) X i e o (T
k=1 z,a z’,a’ "
Tnt1(a’|2”)
. anﬂ o, @) (@'l g (/,
o al 7Tn+1( ‘(E)
N—1
= max E:|rv(zN,an, k + T'n{Zn, An, Z
ﬂG(AA)XXN{ |: w{ow, ox, i) nE::O ( &
1 Tpa1(ad |2
- Z pn+1($/|$na an)ﬂn+1(a/|$/) log <k:+1(/|/)> } }
Tk o Ty (a'2”)

Let us define a regularized version of the state-action value function that we denote by QF, such that for all
i € [N], (z,a) € X x A,

N—
e B Z
Qi (:177 a) N 7ri+1:N€(IZ1i})(XX(N7i) B |:TN(IN7 e :U“N { Inv e 'un)
1 nE ED) 20)
- n ! ny Un)7Tn ! /1 Uas i iy dg) =
i & e o) (o) o R ) e = o)

where ;1.8 = {Tit1,.- -, TN}

First, note that E(; q)po(.) [QO (z,a)] = (19). Moreover, the optimality principle states that this regularized
state-action value function satisfies the following recursion

QN(J),CL) = TN(xva’MIJCV)
Qi(z,a) = max {m(m,a, )+

mit1€(AL)Y

sz‘+1($/|x7a)Zﬂiﬂ(a/w) l_lelog <W> +C~2i+1($/va/)] }

i+

Thus, to solve (19) we compute backwards in time, i.e. fori =N —1,...,0, for all z € X,

i Clo) € angma { (x(4e). Qfa.) - - D(rCle). a4 |

w(-|x)EA4 k

where D is the KL divergence.

The solution of this optimisation problem for each time step i can be found by writing the associated Lagrangian
function £. Let A be the Lagrangian multiplier associated with the simplex constraint. For simplicity, let
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Ty o= 7(-|x), 7% .= 7F | (|z) and Q% := Q¥ (x,-). Thus,

L(mz, A) = <7TxaQI;> - %D(Wmaﬁlaf) —A (Z Tz (a) — 1) :

acA

Taking the gradient of the Lagrangian with respect to 7, (a) for each a € A gives

OL(Te, A) 5k (g 7i0 m(a)) 1
O (a) = @:(0) Tkl g(ﬂk(a)> Th A

xT

and thus
OL(7z, )

omn(a) VT ma(a) = my(a) exp (Tk@’;(a) -1- Tk/\>.

Applying the simplex constraint, ) . 4 7(a) = 1, we find the value of the Lagrangian multipler A, and we get
foralla € A

7 (a) exp (77C QF (a))
S weami@)exp (nQh(a)),

7 (a) =

which proves the theorem.

B.2 Proof of Proposition 4.3

Proposition. Let u € M, with marginal given by p € (Ax)N. The divergence T is a Bregman divergence

induced by the function
N

N
)= Blun) — > blpn)

n=1

Also, 1 is 1-strongly convex with respect to the || - ||co1 nOTM.

Proof. Lemma B.1 states that for any p € M, and p/ € M, 100 induced by , 7' respectively as in Equation 4,
with the same initial state-action distribution, i.e. uo = uf, we have

N
= ZE(w,a)fvpn(- |:10g < /‘LL' ):| ZD p’n?ﬂ% - ZD(pIrwpn)'
n=1 n=1

Recall that ¢ is the negentropy and that D is the Bregman divergence induced by the negentropy. Define the
function ¥ : (Axx4)Y — R such that for any g € (Axxa)V

N N
p) =Y ) = > d(pn)

n=1
To show I is a Bregman divergence induced by 1 we need to show that for any u, ¢’ € (Axxa)™,
(p) = (') = (Vo ('), = ') = T, ).

For that, first recall that the marginal p is such that for each 1 < n < N, and for all x € X, p,(z) =
> aca bn(x,a). Thus,

MESY [Zun x,a) log(in (z, a) an ) log(pn (x ))]

n x,a

=X Lo (25 >>

n x,a

(21)
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Computing the first order partial derivative of ¢ with respect to p,(z,a) for any (z,a) € X x Aand 1 <n < N,
we get

9y Cog [ Hn(®0) 2, 8)— e — r) et s
(1) =1 g<za/ﬂn($aal)> + a2, )Mn(gj,a) %:'un( , )Za/ fin(,a’)

Dpin (, )
() (352)

Hence, as ¢(un) = (pin,10g(1n)) and ¢(pn) = (pn,log(pn)), and mn = fin/pn,

N
() = (') = (Vo) — 1) =D [blun) = Slon) — (S(1th) — 6(p},) = {pin — 11,108 (1) — log(pn)))]

n

Il
-

I
] =

[6(1in) — S(pn) — pn log ()]

3
Il
-

I
WE

[t (log () — log(}))]

3
Il
i

1, 1)

=3

Now we just need to show that ¢ is strongly convex. For that, we apply the following convexity property (Boyd
and Vandenberghe, 2004): 9 is 1-strongly convex with respect to a norm ||-|| if and only if for all u, p’ € (Axxa)

(Vip(u) = Vp(u'), o — ') > [lpe — p']?. Indeed,

(V000 = V0 = S5 s ) = 580 () = o)
o ) )i

(@
= > Dt 1) + Dty 1) = Dlpns ply) = D)y, pr)

n

O P, 1) + T, ), (22)

where (a) comes from the definition of the KL divergence D and (b) comes from the definition of T

It remains to find a norm that lower bound the right-hand side. By Lemma B.1,

N N

n=1
1
> 2|y = pen ity = Gl = pionl,

the last inequality being a consequence of Pinsker’s inequality. The norm || - ||ry stands for the total variation
norm. Let y represent an element of (X x A)N*! such that y; € X x A for all 0 <i < N. Observe that

lpa:n = phonlly = S lmn) — i)l
ye(X X A)N+1

> S (mn() = ()

Yn EXXA ' y;EX XA, s#n

Z |Mn<yn) _M{n(yn”a for all n € {07 7N}'
Yn EX XA

Y

Thus

7

ey —pinll > =1 lloon
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which implies that
1
D(u, i) = 5l = '3 0 (23)
Finally, plugging back into Equation (22) shows that ¢ is 1-strongly convex with respect to the norm || - ||co,1-
O

B.3 Complements of the proof of Theorem 4.2

Lemma B.2. Let f, : Axxa — R be convex and (-Lipschitz with respect to the norm || - |1 for all n € [N]. If
F: (Axxa)N — R is defined for all = (pin)nein) € (Dxxa)™ as F(p) := 25:1 fn(n), then F is also convex
and L-Lipschitz with respect to the norm || - || co,1 for L =¢N.

Proof. Convexity: F' is convex as the sum of convex functions.

Lipschitz: Let u,1’ € (Axxa)™. As f, is Lipschitz with respect to || - |1 with constant ¢, then |f,(un) —
Fa ()| < O pin, — pnllr for all 1 < n < N. Therefore,

|F (1) = F(u)] =

N
Z fn(,un) - fn(“gz)
n=1

N
< Z |fn(/f4n) - fn(.u;z”
n=1

N
<O lpn = il < N = 1 [loo.1-

n=1

C PROOFS OF SUBSECTION 5.1: CONCENTRATION RESULTS

C.1 Proof of Lemma 5.1

Lemma. Let v > 0. For any 0 < 6 < 1, and for any function A : X — R such that [A(z")| < /7/2 for all
e X,

N|X|A|T)

B0 <[ (M)

holds with probability 1 — § simultaneously for all (z,a) € X x A, steps n € [N], and episodes t € [T).

Proof. Let v > 0. Recall that, for all n € [N], and for all (z,a) € X x A, py(2'|z,a) := P(gn(z,a,6,) = @)
t

and p! (¢'|z,a) = 15 Zi\i"i 09, (x,a,e5) (@) where M} is the number of times we observe step n until the start of

episode t, and €% is the s-th noise observed at step n. Note that M} is not random. Therefore,

M,
(o= 5) (W) 0) = 3 (pue'la) — 40/ . ) A@") = Be o ) [A g (.0.20))] — 17 S A(ga(,0.2).
nos=1

' eX

From the hypothesis on the bound of A, we have that almost surely A(g,(z,a,e5)) € [—/7/2,/7/2] for all
s € M}, therefore, applying Hoeffding’s inequality to the sequence of random variables (A(gn(x7 a,ef)))
yields, for all £ > 0,

se[M}]

—2¢2M} )
—).

P - ) W)e0) 2 €) <o (24)

Applying the union bound we then get that simultaneously for all (x,a) € X x A, steps n € [N] and episodes

t e [T],
(pn — P4) (A)(z,a) < \/2]\74t log (NIX(LA|T>

n

holds with probability 1 — § for any 0 < § < 1. O
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C.2 Proof of Lemma 5.2

Lemma. For any vector v € RIXIXIAL for any strategy © and for all n € [N],

(o =iy =373 T () (p - 98 (A5 (),

i=1 yeXx A

where AY™™ © X — R is a function depending on v,i,n and © defined in Equation (25). Also, if ||v]|e :=
SUD (4, exx.a [0(T, @) <V, then [|AG" oo < V.

Proof. For y € X x A, we denote by v(y) the element y of vector v.
For all n € [N], for all y := (z,a) € X x Aand ¢/ := (2/,ad) € X x A, let

Kn(ya y/) = pn($|$/7 a/)ﬂn(a|x)7
Kfl(y,y’) = p (x|’ a’ ), (alx).

For n a vector over X x A, we define for all y € X x A and yy € X x A the following notations

nKin(y)i= > o Y 0o Ki(yo:y1) - Kn(y, yn1)

YoEX XA Yn—1EXXA

S D o) Ko v) - K (Y yn-1).

y1 €X' XA Yn—1€EXXA

n(Yo) K1:n(y) :

We can then rewrite the definition of a state-action distribution satisfying the Markovian dynamics and in-
< N

duced by a policy 7 stated in Equation (4) as pu®? = pugKi.,, and puT? = ugK{,,. With the convention that

K110 :=1d is the identity operator for all n, then

prn? = pn? = po K — oK1,
= (/J'OKlzn - /'LOK—{KQZTL) + (MOKfKQ:n - /’LOK{12K3:TL) + ...+ (IU’OK{:TL*IK’” - MOK{W‘)

= Z,U?Lﬁlt (Kz - Kf)KiH:m
i=1

Note that, for all y € X x A, and all i € {0,...,n},

1 (K K} Kisn( Z il (yim1) Z (Ki(yi-1,9i) — K} (yie1,9:)) Kis1n (y)

Yi—1
=" W (g Z (pi(wilyi-1) — P (ilyi=1)) > milailw:) Kivam(y).
Yi—1 T a;

Hence,
(v, u? = i ?') = Z Z”w KD Kiin(v)

= Z Z M;Tlﬁ;(yifl) Z (i (@ilyi—1) — Pi(xilyi-1)) Z mi(aq|z;) Z Kit1:n(y)v(y)

i=1y;_1EXXA T, eX a; €A YyEX XA
n
N ,
=300 w i) Y (pilwlyioa) — B (@alyia) ) AT ()
i=1y;_1EXXA r; €EX

=50 S W () (o — B (AT (i)

i=1y; 1EXXA
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where we define the function A%™7™ : X — R for any v € RY*A as

AL (1) = Z mi(alx) Z Kit1.n(y)v(y). (25)

acA YyEX XA
If ||v]|oo <V, then for all z € X,

AT (@) < Y mifale) Y Kivin(y)lo)]

acA Yy EXXA
<V Z m;(alz) Z Kit1:n(y)
a€A y'eXxA
=W
Therefore, ||AL™7 || < V. -

C.3 Proof of Proposition 5.5: upper bound on RMPF

Proposition. We consider an episodic MDP with finite state space X, finite action space A, episodes of length
N, and probability kernel p := (pp)necin). We let F* = 25:1 I convexr with fl, ¢-Lipschitz with respect to the
norm || - |1 for all n € [N],t € [T]. Then, with probability 1 — §, Greedy MD-CURL obtains,

RYPP((n)oeqzy) < EN?

2T (NX|IAIT
M8 s :

The exact same result being also valid for R%/IDP(W*).

Proof. The proof steps are the same for both terms, hence we show only the steps for RMDPF ((wt)tem). Using
the convexity of F** we obtain

T T N
RYPP (' )ierry) < D (VF (™), q™ 0 = ™ Py = 3N (VL) P = 7).
t=1

t=1n=1

To bound the inner product for each n, we first use the result of Lemma 5.2 to obtain that

to, wtp o, whpt in,T
<vfn(:u’ )nun Mo, Z Z /J’ )(AVft(/t"f p))(y)
i=1 yeXx A

As f! is ¢-Lipschitz with respect to the norm || - ||; for all n and ¢, then for all state-action distribution u,, €
Axxa, IVfi(pn)lloo = sup(y o) [V (1n)(x,a)] < €. Hence, from the second result of Lemma 5.2 we have
A y},ﬂ( ") H < /. Therefore, all the conditions of Lemma 5.1 are satisfied with v = 4¢2, meaning that

T N T N n-1

, P wt,pt ) i,n,m
szf lj"rl /'l’np /'an>_zz Z lui—l (y)(pl )(A’vft('lr p))( )
t=1n=1 t=1n=11i=1 yeXxA

T
2 N|X||AIT
2
<3N z\/tlog (5

N|X||AIT
0

2T
S N2£ Mlog (

holds with probability 1 — &, where we use that in Greedy MD-CURL, M} = M (t — 1) for all n € [N]. O
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D PROOFS OF THEOREM 5.4: UPPER BOUND ON Ry

D.1 Auxiliary result: L; bound between distributions induced by the same policy but different
probability kernels

The bound of Theorem 5.4 depends on the auxiliary lemma bellow stating that the L; deviation of two state-
action distributions induced by the same policies but different probability kernels is bounded by the L, difference
between the probability kernels.

Lemma D.1. For any strategy © € (A4)**N, for any two probability kernels p = (Pr)neiny and ¢ = (qn)ne[n
such that pn,qn : X x Ax X — [0,1], and for all n € [N],

[l =l < ZZN P2, a)pivi (e, a) = gipa (e, a)llr

1=0 z,a

Proof. From the definition of a state-action distribution sequence induced by a policy 7 in a probability kernel
p in Equation (4), we have that for all (z,a) € X x A and n € [N],

prP(x,a) =Y (@ a )pa(ela’,a’ ) (ale).

z’,a’
Thus,

lp? = iyl = Z\un’p z,a) — iy (z,a)|

—ZZM (', a")pn (]2’ ') — pp?y (o, a)gn (2], 0 | (al )

z,a z’,a’

= S I O pnale’ ) — i 0 el )|
xz x'a’

=Y > @ d)pa(ala’ a') — it (2 )Y gn (w2, )
x xz’,a’

+ i (@ g (@l d) = i (& Vg (el )|
< ST umP (@ d) a2 al) — guCla’ a) + 0 EP @ dl) — pl (@ )]

ac’,a’ 2j/7a/
=Y i@ a)lpa(la’,a) = gu(-l2’s @) |1 + leny — syl
z’,a’

Since for n =0, [|ug? — ug?|l1 = 0, by induction we get that

n—1
l? — il < 305w @ d) pe (e ') = g Gy a) L

=0 z’,a’

D.2 Auxiliary result: upper bound on —%

Lemma D.2 shows that the function —, where 1 is the function that induces the Bregman divergence I according
to Proposition 4.3, is upper bounded. The definition of 1 is recalled in the lemma.

Lemma D.2. Let ¢ be the neg-entropy function defined in Equation (16). Let 1 : (Axx4)™ — R such that for
all = (pin)nen) € (Dxxa)™, where we let p = (pn)nein) € (Ax)™N be the associated sequence of marginals,

N N
= Z B(pn) — Z é(pn)

Then, SUp,e(a, )~ —% (1) < Nlog(|Al).
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Proof. For € (Axxa)N and for Lagrangian multipliers )\, € R associated to the constraints
2 (w,ayexxA bn(z,a) =1 for all n € [N], consider the Lagrangian given by

L(p, ) = +Z>\ <1Zunxa>

For every n € [N], and (z,a) € X X A,

OL(p, A) :10g< fin (T, @) > Ca,

= 0’
O 0) S (@, @)

thus
pn (T, @)

2ar bin(, )

To satisfy the constraint for each n, we need

Zun(x,a) = Zexp (An) Z,un(x, a') = exp (M)Al = 1.

= exp()‘n)'

Using the decomposition of ¢ proved in Equation (21), we get

=5 % oy tog (=D))< 575 0, o 1A) = N o).

n x,a n x,a

D.3 Proof of Lemma 5.6

Lemma. For any policy sequence m, the estimation of the probability kernel for two consecutive episodes done
by Greedy MD-CURL satisfies, for all episodes t € [T — 1], the following inequality

~t+4+1 At 2N
[P =P oy < -

Proof. For all (z,a,2') € X x Ax X, and for all i € [N],

15 (e, @) = D5, a)ly = D 195 (2|, @) — B (2|, )]

r'eX
1 M
- j ! — D2 ot
1;\.» W<§5gi(w’avai">(x)+M(t 1)p;(z Iw,a)> pi(@|z,a)] (g6
M
L - 2
- Mt Z(Sgi(m,a,sg't)(xl) —p§($/|x,a) S ;
z'eX ' j=1

Therefore, using the result of Lemma D.1 with p¢ and p!*

At At At
(™ =™ o1 = St?p] ™ — |y
ne(N

< sup ZZM P (2, 0) [P (o, a) — L[, )]s

ne[N]’L 0 z,a
2N

<=

-t
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D.4 Auxiliary result: bound between distributions induced by 7’ and 7!

Lemma D.3. For all episodes t € [T], where ©* is the strategy calculated using Greedy MD-CURL, 7t =
(1 —ay)mt + I%\’ and pt, ptT1 are two consecutive estimates of the probability kernel by Greedy MD-CURL, we
have

t t+1

| —

n—1
looa < sup {35007 (w0t Ches) = 4ol + 20

ne(N] =1 x,a

Proof. Using similar arguments as in Lemma D.1, we get that for all n € [N],

t At ~t ~t+ ~t At+1
[T T Z!u P (@,a) = P (@, 0)|
<SON T @ )Pl (ala’ !yt (al )
z,a x’ a
Ft ottt 1
i i el ) (- arblalo) + e )]
~t At+1
<SOSR @ a)p (ale! al) — T (@ a )Pl (el o) |t (al)
z,a x’,a’
i, H'l t+1 /
o Y et k) -
T,a x’,a
t At t At
<N @ (el a!) = i (@0l ala o)
z z/,a’
S A G ) T A R T |' '| 2
un a)py (zlz’,a") — w2 ', a ) pn (z|a’ a") | + 20
~ t pt+l
<Z#n (@', a)Ip, (-2’ a') — P, ([’ af |1+Z|u — (@' d)] + 20
<ZM @) B4 (Ll al) = S Cla a) o+ i — i+ 200
z’,a’
< ZZM (z, a)[|p} 11 (|2, a) = L1 (|2, a)[l1 + 2na,
=0 z,a
where for the last inequality we use that ugt’ﬁt = ,ugt’i’tﬂ. To finish we just take the sup over n € [N]. O

D.5 Proof of Proposition 5.7: upper bound on R’mlwy

Proposition. Consider an episodic MDP with finite state space X, finite action space A, episodes of length

N, and probability kernel p := (pn)ne(n). Let F' = Zﬁlzl JL conver with fL (-Lipschitz with respect to the

norm || - |1 for all n € [N],t € [T]. Let b be defined as in Equation (14). Then, Greedy MD-CURL obtains, for
b

T = —
LVT’ )
RbYY < 2/NDVT.

Proof. Using the convexity of F?,
T
Rpollcy ZFt Ft Z ﬂ_*’ﬁt+1>
t=1

where I := VF! (™ ) to shorten notation, and we also use the notation introduced in the main paper y! := p™ #
and fit := ™" for all ¢ € [T]. We begin by examining Problem (12):

pttt € argmin{r(I*, ) + T, i)}
peM;L!
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Since F'* is a convex function and M'L‘gl is a convex set, the optimality conditions imply that for all v**! € Mﬁ;l,

(rl! + V(u+h) = V() v - ) 2 0.

Recall that ¢ is defined in Proposition 4.3 as the function inducing the Bregaman divergence I'. Re-arranging
the terms and using the three points inequality for Bregman divergences (Bubeck, 2015) we get that,

F, = ) < (V) = V), ot — g = D i) — D ) — D i)
This is in particular valid for v*! ;= ™ 2" Therefore, by adding and subtracting (I, u*) on the left-hand
side,

T<lt7ut t+1> + T<lt,u > _ T<l > < F( t+1,ﬂt) _ F<Vt+1”ut+1) _ F(Mt-‘rl,ﬂt)
Tl pt =) <ot — ) T Y = T ) = T (et ).

* at+1

Then, by summing over ¢ € [T], and by taking v**! := ™ »" | we obtain
., L I 1
R]:gpo icy < ; Z t t+1> F( t+1 ~t + ; t_zl t+1 ~t F(I/t+1,ut+1)] ) (27)
A B

The term A appears due to our lack of knowledge of F'* at the beginning of episode ¢ for all episodes. To remedy
this, we use Young’s inequality and the strong convexity of I'. Note that if we were to consider the case where
all F'* are known in advance, we would not have to deal with the A term. As for the term B, in the classic OMD
proof (Shalev-Shwartz, 2012) where the set of constraints is fixed the sum of the difference between the Bregman
divergences telescopes (as we would with a fixed v). However, since we are considering time-varying constraint
sets, this does not happen in our case. We now proceed to find an upper bound for each term.

Step 1: upper bound on B We begin by analyzing the second term of the sum in Equation (27). Recall
that ' := u™ " for all t € [T]. In order to make the Bregman divergence terms telescope we add and subtract
Lt pt) — T, it), obtaining

T T T

SCEG L) — Tt = ST ) - D0t ) + 3T 7 - D)

t=1 t=1 t=1

(4) (i1)

+ ZP(Vt’ ’ut) _ F(I/t+1,,ut+1) )

t=1

(i)

We now analyze each term. Using the definition of a Bregman divergence induced by 1 we get that

@) = () — (V') v = i) = () + (") + (Vo (), v — A"

Il
M=

(4)

o~
Il
N

w( t+1 _|_ZT: I/t _Vt+1>

t=1
vh) + Z V(i)
t=1

where in the last inequality we used that the first term telescopes and we apply Holder’s inequality to the second
term. Recall that for v := (vy),e(n] such that v, € RY*A, we defined |[v[|so,1 = sup,en) lvnlli. We now also
define [|C[|1,00 := sup,{[{¢, V)|, [[v]|co,1 <1} = sup,,¢(ny [|Call1 as the respective dual norm.

Il
[ =

~
I
A

V' o1,
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With our choice of Bregman divergence, and given the definition of 7 in Equation (13), for each n € [N], (z,a) €
X x A, VY (it)(n,z,a)| = |log(7t (alz))| < log(]A|/at). Plugging this result with the result of Lemma 5.6 into
the bound of (i) we obtain that

T
- ﬂ_*’At+1 |A| 1
= ZNbg( )|u P ||oo,1s—¢<u1>+2N2§Zlog<at>t'

As for the second term, using our definition of ', we obtain that

=3 T s (F5) - 28 s ()
35 e (T
e in(alz)
) inz i oo at):rrff:&l;)) )

T
<N (—log(l—ay)) < QNZat,

t=1 t=1
where the last inequality is valid if 0 < ay < 0.5.

It is easy to see that the third term telescopes, therefore, as —I'(vT 1 puT+1) < 0 as a Bregman divergence is
always positive,
(iii) <T@, ph).

Before adding back the three terms, note that, for ! initialized such that Vi (u') = 0, we have I'(vt, ut)—(v!) =
—1(pt). Furthermore, from Lemma D.2, —¢(u') < Nlog(].A|). Therefore,

L', p') = (vh) < Nlog(|Al). (28)
Summing over our bounds and using the Inequality (28), we get that B is upper bounded as

1

T T
72 VLAY — T Y] < = [(0) + (id) + (iid) gg (JA]) + Zl <|A> in ay. (29)

t=1

\}
3

Step 2: Upper bound on A It remains to delimit the first term of the bound in R’%O“Cy in Equation (27)
given by

1 T
A= Yt =) = e |, (30)

T
t=1

representing what we pay for not knowing the loss function in advance. For that we use Young’s inequality (Beck
and Teboulle, 2003).

Recall that Young’s inequality states that for any o > 0, for any dual norms,
1 o
by < —lall* + = b))%
(a,0) < 5l + Z 2

Therefore, for any o > 0 to be optimized later, and for each episode t € [T,

I a _
Tt = ) =D ) € == Sl = R - T ), (31)
where recall that for v := (vn)ne(n] such that v, € RY¥*A we defined ||v]|so = sup,en [vnlli, and we let

1< 00 = sup,{[{C, V)|, |V]loo1 <1} = SUP,¢[N] I¢all1 as the respective dual norm.
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From Lemma B.1 and inequality (23) stating the strong convexity of 1, we have that for all t € [T

- 1 #tprtt 1 Ftoptt

D™ i) = Dy, iy ) = Sl = p™ s (32)
where recall that p.y is the joint state-action distribution while that p := (pn)nepn] is the sequence of state-
action distributions.

Using that for any vectors a,b,c € R, and that for any norm || - ||, [la — b]|*> < 2(|la — ¢[|* + [|b — ¢||?), we then
have by Equation (32)

1 1 o
Al = e = T ) < gl = || e i <
1 ~t At+1 ~t ~t+1 1 t at+1
< §(|Iut — WP ey P = 2 ) — 2Hu” P pE (33)
1 t #t, t+1
= Sl =R

St sttl
I3

To bound ||ut — p™ P 1 we first use Lemma D.3 which gives

N
t pttl R R
" = TP oon < 30 k@, a)l|ph (|2, @) = B (e, @)1 + 2Nay.

n=1 z,a

Then, by Equation (26), ||p!,,(-|z,a) — pfﬂ( |z, a)|l1 <2/t for all ¢t € [T, therefore
e 2N 2
I (t + QNOét) :

Therefore, plugging into Equation (31) with o = 1/2 yields,

_ 2N ?
T<lt”ut _ Nt+1> — F(NtH,Mt) < 7—2Hlt||ioo + 3 (t + 2Nat> .

Summing over ¢ € [T, and [|I||1 o0 < L := [N as showed in Lemma B.2 then entails:

1 < (2N 2
2 §

t=1

Conclusion Finally, by replacing the final bounds of Equations (29) and (34), we obtain

: IN? L /1 2N aN? & 4] d
RV < A4 B < 7TL? + “— - —1 =N log
DUV S A B TTL T3 () = log(lAD + > g o, Z

T
t=1

Let . )
<2N2[Z( +at> +Zlog< > ]+2NZo¢t+N10g(|A|)>
t=1 =1
Optimising over 7 = %,
REYY < 2LbV/T = 2INBVT,
concluding the proof.

In particular, if a, = L for all ¢ € [T}, we have RE"'Y < V/T'log(T).
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E BOUNDS WITH UNKNOWN g

Now suppose that g, and h, in the model of Equation (3) are unknown. In this case, we have no information
about the probability kernel, and the exploration/exploitation dilemma arises.

In order to learn the complete probability kernel, we need to modify the learning model slightly. Let us suppose
that, at each episode ¢t the learner maintains the number of visit counts to each episode (x,a) at time step n,
denoted N/ (x,a), and the number of times this event is followed by a transition to a state 2/, denoted M! (z'|x, a),
that is

t
t( _
Mn(x |x,a) - E ]l{xfl+1=x’,xfl=x,a;=a}

s=1
Nt 513 a Z]]-{‘LS_‘,I;7(]‘5L:(’L}'

To ease notations, we take M = 1 in this section. We define p!, at each (x,a) and time step n + 1 by

MY (|, a)
~t / = n :
pn+1(x |$7a) - maX{l,Nﬁ(z7a)}.

(35)

The following lemma ensures the true probability kernel p lies at a certain distance from this estimation of p*
with high probability.

Lemma E.1 (Jaksch et al. (2008); Neu et al. (2012)). For any 0 <6 <1,

4] | og (1 XI4INT)
max {1, Nt (z,a)}

I (-2, @) = 9, (|, @) |1 <

holds, with a probability of at least 1 — 8, for simultaneously all (x,a) € X x A, all n € [N], and all episodes
te[T].

Recall that the regret Ry is decomposed as Ry := R¥ PP ((71),cpr)) + REY + RMPF (7*), and we treat each

term separately. The regret bound for R’}O”Cy follows the same procedure as in Proposition 5.7. However, the
bound on the terms of RMPF are different, as we must now ensure that we visit all necessary state-action pairs
(x,a) sufficiently often. Thls also means that the bound for RYPF ((7'),c(r))) is different from the bound of
RM bp ( ) For bounding both terms related to RM PP we use a similar approach as in UC-O-REPS (Rosenberg
and Mansour, 2019).

Lemma E.2. For0<d <1,

n—1

T
S Z Sou P (@, a)llpisa (e, @) — i (e, a)|h

fll 0 z,a

< (V2 +1)N|X|, /4| A|T log <TX|(|;4|N) +2N|X|y /2T log (Z)

with probability 1 — 24.

Proof. Using Lemma 19 from Jaksch et al. (2008), we have that
L }
Th=tin =0l (/3 4 1)y/NT

and by Jensen’s inequality,

ZZ ]l{zt =z,at —a} < f+1 Z /|X||A‘T (36)

z,a t=1
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Let (xf,, al,)neqn be the trajectory made by policy n* for all ¢ € [T]. Therefore,

n—1
SN 1 (@ a)llpisa (lr, @) — Ly (e, a)lh (37)

=0 z,a

< Z sz-&-l |xz7 z pz-‘rl 17 a; ||1 +ZZ l’l’z 717 x (1 ﬂ{zf:a,a;f:a})||pi+1('|x?a’)_ﬁ§+l("xaa)||1

=0 xz,a

By Lemma E.1, with probability at least 1 — 4, simultaneously for all 7 € [N] we have

v | 412 10g (w)
Z”pl+1 ‘.’E“ z pz+1 |(E“ a; ”1 Z max{l Nt( at, Z)}

T 4|X| log <T|X|6|AN>
ZZ]I{I =x,al=a} t
—~ max {1, N/ (z,a)}

< (Va+ 1>\/4|X|2|A|Tlog (T"”““'N) (38)

4]

where, for the last inequality, we use the result of Equation (36).

As for the second term, note that for all i € [N] and z € X,
7\'1’
(07700 = ttmraie))

forms a martingale difference with respect to the trajectory (zf, ag, ..., z%, a%)serr (the expectation of the term
conditional on the past trajectory is zero). Therefore, by Azuma-Hoeffding inequality,

T
n —2¢?
P[ZZ (1 7@, 0) = Liat=zat=a}) 2 6] = exp( T )

t=1 a

Taking the union bound over ¢ € [N], we get that with probability 1 — §, simultaneously for all ¢ € [N], and
considering that ||pi1(-|z,a) — pl ., (|z,a)[1 < 2,

T
t R N
50 (020~ L) I Clrsa) = s (o)l < 2121 2708 (5 ) (39)

t=1 x,a

Plugging the bounds on Equation (38) and (39) into Equation (37), we get that with probability 1 — 2,

T n—1

sup Y S0 1 Plpisa (e a) — By (lz,a)s

nE[N]t 1 ¢=0 z,a

< u Z [ (V2+41) \/4|X|2A|Tlog <T|X|5A|N> + 21| 2T log (1(\57)]

ne[N

< (V3 + 1)N|X|{ /4| AT log (TW';AN) +ON|X|, [2T log (g’)

The result of Lemma E.2 allows us to state the following proposition bounding the term R}P¥ ((ﬂ't)te[T]):
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Proposition E.3. We consider an episodic MDP with finite state space X, finite action space A, episodes of
length N, and probability kernel p := (pn)neiny. We let Ft.= ZnN:1 fL convex with fi ¢-Lipschitz with respect to
the norm || - |1 for all m € [N],t € [T]. We consider the probability estimation per iteration as in Equation (35).
Then, with probability 1 — §, Greedy MD-CURL obtains,

Proof. Recall that, given the convexity of F* and by applying Holder’s inequality using that if f! are ¢-Lipschitz
with respect to || - |1 then F'is L-Lipschitz with respect to || - ||co,1 for L = £N (see Lemma B.2), we obtain that

t

T
R’_ZMDP((Wt)tG[T]) < Z(th<M7r 7;0)7//671' N2 Mw D >
t=1

[M]=

t t t At
<N IVFH (™ P sup [luf P — pp P |l
n€[N]

~
Il
-

T

t t At
<Losup > |uf P —pn Py
n€[N] =1

The result then follows from the application of Lemma D.1 and Lemma E.2. O

To complete the bound on the regret Ry, we need to bound RMPF (’/T*) For this, we need Lemma E.4,
which states that the Greedy MD-CURL algorithm always computes policies that are lower bounded if
~Vfl(z,a)(u,) € 10,1] for all (z,a) € X x A, all p, € Axxa, n € [N] and ¢t € [T]. Proposition E.5 states the
bound for RYPF (7*).

Lemma E.4. Let (wt)tem be the sequence of policies obtained after computing T episodes of Greedy MD-CURL

with ay € (0,1/2) and objective functions F* = 27]:/:1 I such that —V £t (pn)(x,a) € [0,1]. Consequently, there
is £ € (0,1) such that for all (z,a) € X x A, for all n € [N], and for all episodes t € [T], 7! (a|z) > &.

Proof. At each episode t, we compute 7Tt := MD-CURL(1, #t\xt, F't, p' ™1, g, 7), where 7t = (1—at)7rt+at‘7¥|,
and the other parameters are defined in Algorithm 3.

From its definition, we can see that 7! (a|z) > “Xjfl. The closed form solution of one iteration of MD-CURL with

the given parameters gives

7t (alx) exp (T@%(ﬂ?, a))
S wreah(@]e) exp (TQ (z,a))’
where Q! (z, a) is defined in Equation (10) with —V f!(z, a)(u,) and 7" at the place of 7%. As —V fi(z,a)(ul,) €
[0,1], we have 1 < exp (7Q% (z,a’)) < exp(7(N —n)). Therefore, we have ;" (a|z) > Ao —nyy for all steps
n € [N] and (z, a).

T, (ale) =

Taking & := minser) ne[n] |A‘exp(‘1f(N_n)) = |A‘QX1)(TN) min,e[r) o, we then have for all (z,a) € & x A, for all

T

n € [N], and for all episodes t € [T], 7!, (a|z) > €. O

Proposition E.5. We consider an episodic MDP with finite state space X, finite action space A, episodes of
length N, and probability kernel p := (pn)neny. We let F' := 22;1 I convex with fi ¢-Lipschitz with respect
to the norm || - ||1 for all n € [N],t € [T]. We let & be the lower bound of 7! (a|z) for all n,t,(x,a) defined as
in Lemma E.4. We consider the probability estimation per iteration as in Equation (35). Then, with probability
1— 26, Greedy MD-CURL obtains,

R%/[DP(W*) < ;V[(\@+ I)ENQ‘X| 4| A|T log (W) +2€N2‘X| 2T log (J(;T)]
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Proof. Recall that, given the convexity of F'* and by applying Holder’s inequality using that if f! are ¢-Lipschitz
with respect to || - |1 then F' is L-Lipschitz with respect to || - ||oo,1 for L = ¢N (see Lemma B.2), we obtain that

T
RYPP (%) < S (VF! (™), 0" — )
t=1
T
<SS IVE () sup un - pn
=1 ne[N]

T
<Losup > lpm = pr |y
n€[N] ;5

As 7t (a|z) > € for all n € [N],t € [T] and (z,a) € X x A, we get %ﬁ’a; < 5". This can be demonstrated
bn T (x,a
recursively: suppose it’s true for n, then for n 4 1, by definition

t t
pnh (@ a) =Y up P a )i (x|’ a)my o (alz)
z’,a’
< S P (@ Y (!, ) (al)E
z’,a’
= 41 (x, a)¢m

Using Lemma D.1, and Proposition E.3, we get

T n—1
stm 0 s 33 YT e () ~ sl
ne[N] 5 1%=1 =0 z,a

T n—1

<wwzzgzmwwmmwwmmuwl

ne[Nl{ =1 ;=0

< sup Z [\[—i—l \/4|X|2|A|Tlog (T|X;A|N> +2|X|4 /2T log (Z(\;)}

n€[N] ;= 0

<o {(\M 1)\/4X|2|ATlog (W) +2/X],[2T log (J;[ﬂ

where the third inequality is obtained by following the same steps of the proof from Lemma E.2. O

Conclusion: bounding R We join the propositions E.3 and E.5 bounding RMPF ((ﬂ't)te[T]) and R%/IDP(W*)
when playing Greedy MD-CURL with g,, and h,, unknown, and Proposition 5.7 bounding R?Olwy which remains
general regardless of prior knowledge of g, and h,,.

Here, we show regret in terms of the number of episodes T' and do not worry about other constant terms. We
use < to denote an inequality up to constant or logarithmic terms independent of T. To simplify, we take
ap = a for all t € [T]. Therefore, a and 7 are the parameters to be optimized. We hypothesize that o < 1,
Ta > log ( ) log(T), and 7 < % We will later verify when the optimized « and 7 satisfy these conditions.

From Proposition E.3, we have
RMDP(( )te[T]) S VT log(T).

From Proposition 5.7,

; T 1 1 T T
RVMY < 7T 4 Za? + —log <) log(T) + —a ST+ —a.
T T a T T

From Proposition E.5, we have

RYIPP(n%) S ¢ N\/Tlog(T) S a N \/Tlog(T),
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where 5_1 = <|.Ae)f£)(7‘]\f)) 5 Oé_l.

Therefore,

olic * T _
Ry :R%/IDP((Wt)tE[T]) +R§1l Y4+ RYPE (7%) 5TT+;OZ+O£ N/Tlog(T).

We first optimize over 7. For 7 = a%, then
Ry < a?T + o Ny/Tlog(T).

. 1
Then, we optimize over a. For o« =T~ 28+1

A4N+1
Ry < TivEs,

If T > 1, then the conditions o < 1 and T'a > log (1) log(T) are satisfied. For T > N4N*2 then r < 1/N.

In a classic non-episodic online learning scenario, or in an episodic MDP with stationary probability kernels, we
would not incur the term on &V but only &. This would reduce the final regret bound to O(T ﬁ) for any T > 1.
That is for example the case of the showcase experiments in Section 6 and Appendix F.

F ADDITIONAL EXPERIMENTS

F.1 MD-CURL known probability kernel

We present the state distribution induced by the policies computed with MD-CURL in the offline optimization
scenario when both g, and h, are known for varying steps n and iterations k. The episode length is fixed
to N = 100 for all experiments. We illustrate the Entropy Maximization problem in Figure 6 and the Multi-
Objective problem in Figure 7, and show that MD-CURL achieves the main goal in both cases.
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Figure 6: State distribution of MD-CURL applied to Entropy Maximisation for steps n € {10,40,100} and
iterations k € {10, 50,500}.
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Figure 7: State distribution of MD-CURL applied to Multi-Objectives for steps n € {10,40, 100} and iterations
k € {10, 50, 500}.

F.2 Greedy MD-CURL with completely unknown probability kernel

In this section, we present the state distribution induced by the policies computed with Greedy MD-CURL in
the online learning scenario. We assume that both g, and h, are unknown, and we estimate the probability
kernel p! using Equation (35) at each episode. We vary the steps n and episodes ¢, and fix the episode length to
N =100 for all experiments.

We illustrate the Entropy Maximization problem in Figure 8 and the Multi-Objective problem in Figure 9 with a
central noise of a probability of 0.2. These results show that even when the full dynamics are unknown, Greedy
MD-CURL can still achieve the main goal.
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Figure 8: State distribution of Greedy MD-CURL applied to Entropy Maximisation for steps n € {10,40, 100}
and episodes t € {10, 50,500}.
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Figure 9: State distribution of Greedy MD-CURL applied to Multi-Objectives for steps n € {10,40,100} and
episodes t € {10,50,500}.

F.3 Greedy MD-CURL with adversarial objective functions

In this section, we test the Greedy MD-CURL model with adversarial objective functions. We would first
like to note that adversarial MDP experiments are difficult to implement in practice due to the challenge of
constructing optimal stationary policies across episodes. The existing literature lacks experimental validation. We
are not aware of any benchmark experiments for adversarial online CURL. Here we introduce a more demanding
experiment with adversarial functions where the objective randomly oscillates between reaching the upper right
and lower left squares of the grid in each episode. Let NV = 40. In Figure 10, we show the state-action distribution
for N =40 and t = 1000 [left], and the logarithm of the dynamic regret per episode over 1000 episodes [right].
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Figure 10: [left] Greedy MD-CURL state-action distribution at the final step; [right] Log dynamic regret per
iteration.
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