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Abstract

The synthetic control (SC) method is
popular for estimating causal effects from
observational panel data. It rests on a crucial
assumption that we can write the treated
unit as a linear combination of the untreated
units. In practice, this assumption may
not hold, and when violated, the resulting
SC estimates are incorrect. This paper
examines two questions: (1) How large can
the misspecification error be? (2) How can
we minimize it? First, we provide theoretical
bounds to quantify the misspecification
error. The bounds are comforting: small
misspecifications induce small errors. With
these bounds in hand, we develop new SC
estimators specially designed to minimize
misspecification error. The estimators are
based on additional data about each unit.
(E.g., if the units are countries, it might be
demographic information about each.) We
study our estimators on synthetic data; we
find they produce more accurate causal esti-
mates than standard SC. We then re-analyze
the California tobacco program data of the
original SC paper, now including additional
data from the US census about per-state
demographics. Our estimators show that the
observations in the pre-treatment period lie
within the bounds of misspecification error
and that observations post-treatment lie out-
side of those bounds. This is evidence that
our SC methods have uncovered a true effect.

1 Introduction

The synthetic control (SC) method is a popular
method for estimating causal effects from panel data
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(Abadie, 2021). SC has been widely applied in sciences
(Pieters et al., 2016), social sciences (Heersink et al.,
2017), and for evaluating public policies (Pinotti, 2015;
Allegretto et al., 2017; Donohue et al., 2019). The typ-
ical SC setup involves measurements of an outcome
variable over time. One unit, called the target, re-
ceived an intervention at a certain time. The other
units, called the donors, never received an interven-
tion. The goal of SC is to estimate the target’s coun-
terfactual outcomes. What would have happened had
it not received the intervention?

Example. In 1988, California implemented a policy
that increased the tobacco tax by 25 cents. How much
would Californians have smoked had the policy not
been implemented? The panel data in Fig. 1 (left)
contains cigarette sales across states and time. Here,
California is the target; the other states are the donors.

The idea behind SC is to approximate the target’s con-
trol outcomes—the cigarette sales in California with-
out its policy—with a weighted combination of the
donor’s outcomes. In the example, SC uses data from
the pre-policy periods to fit California’s pre-policy
cigarette sales as a weighted combination of the other
states’ cigarette sales. It then uses its fitted weights
to estimate the counterfactual cigarette sales in Cali-
fornia after 1988, had the policy not been introduced.
These estimates, along with California’s post-policy
rates, help assess the causal effect of the policy.

What justifies this procedure? In its original for-
mulation, Abadie et al. (2010) shows that SC is
justified if the control outcomes follow a linear factor
model, in which a per-period factor linearly combines
with a per-unit factor, and where the target unit’s
factor is a linear combination of the donor units’
factors. Alternatively, SC can be justified as a matrix
completion method where the outcomes form a low-
rank matrix where rows (representing the units) are
linearly dependent (Athey et al., 2021). But whether
as a factor model or a matrix completion method,
both justifications point to the same requirement:
that the target needs to be expressed as a linear
combination of the donors. What if this requirement
is not satisfied? What if California is not a linear



combination of the other states? This paper studies
the situation where the linear assumption of synthetic
control is misspecified. We study how to quantify this
misspecification error and how to minimize it.

To understand where the misspecification error may
come from and how to bound it, we build on recent
work from Shi et al. (2022), which justifies SC and
explains why and how a factor model could emerge.
When each unit is constituted of multiple individuals
(e.g., people within each state), each with individual-
level outcomes (e.g., whether they smoke) and with
individual traits (e.g., demographics), then the unit-
level outcomes (per-capita cigarette sales) follow a fac-
tor model. In this model, the per-unit factors have a
meaning: they correspond to the probability of indi-
viduals’ traits in each unit’s population. And the lin-
ear assumption implies that SC weights can create a
synthetic mixture of the donors’ population distribu-
tions to match the target’s population distribution.

Using the formulation of Shi et al. (2022), we frame
the misspecification as a mismatch between the target
and its synthetic population distributions. We then
derive two bounds on the SC error, the M bound and
the James Bound. Both bounds confines the misspec-
ification error by quantifying the mismatch between
the target distribution and its synthetic distribution.

We then consider a situation where we additionally
observe external data about the unit’s population dis-
tribution, such as demographic information about each
state. We show how to use such data to estimate the
misspecification error for a fixed set of SC weights,
and we develop two new algorithms for estimating SC
weights that explicitly minimize the amount of error.
(One algorithm assumes we have access to the full pop-
ulation distribution; the other does not make that as-
sumption but provides wider misspecification bounds.)

Thus this paper provides a new form of SC analysis,
one where we analyze panel data and demographic
data together to estimate the target counterfactual
and assess its robustness to misspecification. Fig. 2 il-
lustrates this analysis on the California tobacco data,
now also using additional data from the U.S. Census
about per-state demographics. Our estimators show
that the observed outcomes pre-policy lie within the
bounds of misspecification error and that the observed
outcomes post-policy lie outside those bounds.

1.1 Related Work

This paper contributes to the growing literature on
synthetic controls (Abadie, 2021; Abadie et al., 2010;
Abadie and Gardeazabal, 2003). The M-bound and
James-bound estimators of § 3 and 4 contribute to
research on novel SC estimators (Athey et al., 2021;
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Figure 1: Representation of the data used by our esti-
mators. In addition to panel data of annual per-capita
cigarette sales (in packs), our estimators leverage ex-
ternal demographic information about each state.

Abadie and Imbens, 2011; Abadie et al., 2015; Doud-
chenko and Imbens, 2016; Xu, 2017; Amjad et al.,
2018, 2019; Li, 2020; Imbens et al., 2021). Notably,
several estimators penalize the optimization objective
(Abadie and L’Hour, 2021) or adjust the weights (Kel-
logg et al., 2021) to select donors with outcomes similar
to the target. Including covariates in the estimator is
recommended in Abadie and Gardeazabal (2003) but
not mathematically justified. Our bounds justify why
selecting similar donors is important for estimation.

This paper closely relates to existing works that build
robust SC estimators. Some operate under a factor
model setup, (Athey et al., 2021; Amjad et al., 2018;
Ben-Michael et al., 2021; Powell, 2018; Ferman and
Pinto, 2021), while other propose and assume nonlin-
ear models, (Arbour et al., 2021; Chen et al., 2023).
However, instead of making additional assumptions,
we use external data to quantify the errors empirically.

This paper also contributes to the growing literature
that draws connections between other fields and SC.
Bottmer et al. (2021) takes an experiment design per-
spective on SC. Chen (2023) draws a connection be-
tween online learning and synthetic control. Shi et al.
(2021) formalizes identification and inference for syn-
thetic control through a proximal causal inference per-
spective. Shi et al. (2022); Zeitler et al. (2023) develops
identification results for SC by drawing connections to
invariance. We extend these lines of work by draw-
ing connections between available external survey data
and bounds on the misspecification error.

2 Model Misspecification in SC

In this section, we first review the classic synthetic
control setup and the fine-grained model in Shi et al.
(2022). We then state the assumptions of our work



Figure 2: Comparison of California’s observed
outcomes (solid), our SC estimates (dotted), and
the misspecification intervals (shaded), as calculated
by the M-bound and James-bound estimators. The
outcomes lie within the intervals prior to the inter-
vention, but escape after. This suggests that the
tobacco program had a causal effect despite possible
misspecification of SC.

and formally define the misspecification error.

Observed Data. Consider a panel dataset, contain-
ing outcome measurements yjt for units j ∈ J0, JK over
time periods t ∈ J0, T K. Unit j = 0 is the target. It re-
ceived an intervention at T0 that may have influenced
its outcomes y0t for t ≥ T0. The remaining units are
donors. They did not receive an intervention.

2.1 Background

For each unit and time, define a pair of potential out-
comes (Yjt, Ỹjt), where Ỹjt is the potential outcome in
the world where j received intervention at T0, while
Yjt is the potential outcome in a world with no inter-
vention. For j = 0 and t ≥ T0, we observe the treated
potential outcomes (yjt = Ỹjt); otherwise, we observe
the control potential outcomes (yjt = Yjt).

A typical assumption in SC is that the control random
variable Yjt follows from a linear factor model,

Yjt = µ⊤
j λt + ϵjt, (1)

where µj is a unit-specific latent factor, λt is a time-
dependent factor, and ϵjt is independent noise.

A further assumption is that the target’s latent factor
is a convex combination of the donors’ latent factors1.
Write ∆J as the simplex over J coordinates, we have,

∃w ∈ ∆J , µ0 =
∑

j wjµj . (2)

SC methods estimate the counterfactual outcomes of
the target with a weighted combination of the out-
comes of the donors. They use the pre-intervention

1To be precise, Abadie et al. (2010) assumes that A :=∑
t<T0

λ⊤
t λt is nonsingular. If Y0t =

∑
j wjYjt for t < T0,

then the invertability of A implies µ0 =
∑

j wjµj .

data to fit the weights,

w = argmin
w∈∆J

T0−1∑
t=0

(
y0t −

∑
j

wjyjt

)2
. (3)

The original SC estimator (Abadie et al., 2010) as-
sumes the weights w to be on the simplex. Other in-
novations have been proposed to fit w, such as adding
regularization (Doudchenko and Imbens, 2016).

2.2 Problem Setup

We consider the setting where the target factor cannot
be written as a weighted combination of the donor fac-
tors, i.e., Eq. (2) does not hold. This misspecification
of Eq. (2) will introduce errors in the SC estimate. To
meaningfully bound it, we need to understand where
the error could come from. To achieve that, we adopt
the fine-grained model in Shi et al. (2022) as a gener-
alization of the linear model Eq. (1).

2.2.1 A Fine-grained Model for SC

Shi et al. (2022) explores the question of when the lin-
ear factor model in Eq. (1) hold. The authors notice
that SC often considers large units composed of multi-
ple individuals (states, countries) and aggregated out-
comes that are averages of individual-level outcomes
(per-capita cigarette consumption). Therefore, they
propose a “fine-grained” model of synthetic controls,
which introduces individual-level variables.

The variable (Yijt, Ỹijt) denotes the potential out-
comes of individual i’s outcome in unit j at time t. Shi
et al. (2022) assumes each unit’s observed outcomes,
yjt, is the mean of the individual outcomes in the unit
at time t. We write this assumption as A1.

A1. Fine-grained Population Means. The ob-
served outcomes are the population-level expectations,

yjt =

{
E
[
Ỹijt

]
, if j = 0 and t ≥ T0

E [Yijt] , otherwise.

Given A1, Shi et al. (2022) articulates a set of sufficient
assumptions to identify causal effects with SCs. It
posits the idea of invariant causes, denoted xijt. The
invariant causes xijt are individual-level variables with
two invariance assumptions. (1) When conditioned on
the invariant causes, the individual-level outcomes do
not depend on which unit the individual is from. This
way, x 7→ E [Yijt|xijt = x] is the same function for all
i and j; we write it Et [Y |x]. (2) The distribution of
the invariant causes in each unit can change from unit
to unit but remain the same across time. It is de-
noted pj(x), without dependence on t. The invariance
assumptions lead to a fine-grained factor model.



A2. Fine-grained Factor Model. There exist a
set of invariant causes X, such that,

E [Yjt] =

∫
x

Et [Y | x] pj(x) dx. (4)

Shi et al. (2022) points out that if the causes x are
discrete, then Eq. (4) recovers the linear model,

E [Yjt] =
∑
xk

Et [Y | xk]︸ ︷︷ ︸
(λt)k

pj(xk)︸ ︷︷ ︸
(µj)k

= λ⊤
t µj . (5)

The formulation of Eq. (5) reveals that the time-
dependent factors λt encode the evolution of the ex-
pected outcomes conditional on the causes x, while
the unit-specific latent factors µj represent informa-
tion about the population distributions pj of the causes
in each unit. Similarly, the convex assumption on the
latent factors µj in Eq. (2) translates into a distribu-
tion matching assumption on the distributions pj . We
write it Assumption A3.

A3. Convex Combination. The target population
is a weighted combination of the donor populations,

∃w ∈ ∆J , p0 =
∑
j

wjpj . (6)

Hence, the formulation of Shi et al. (2022) with A1
and A2 recovers the standard factor model Eq. (1)
and contextualizes its factors. Using continuous dis-
tributions in A2 instead of discrete distributions, the
fine-grained model is even more general than the fac-
tor model. In addition, the key linear combination
assumption Eq. (2) of the factor model formulation
is now contextualized as A3, a convex combination
assumption over the population distributions of each
unit. With this SC formulation, we are ready to study
misspecification in SC.

2.2.2 Misspecification in SC.

In this paper, we assume the outcomes follow the
fine-grained model from Shi et al. (2022), formalized
in assumptions A1 and A2. We do not assume A3.
We instead study when A3 is violated, in which
case the target is not a convex combination of the
donors; the synthetic control is misspecified. This
leads to errors in the estimation of causal effects. The
misspecification error is: |E [Y0t]−

∑J
j=1 wjE [Yjt] |.

Remark 2.1. By assuming A1, we do not assume the
observations are noisy, which can differ from other SC
analyses. While noise can also impact the SC estima-
tion, we focus instead on the error due to misspecifica-
tion. As explained in Shi et al. (2022), the individual-
level outcomes are indeed random, but as we increase

the number of individuals in each unit, the noise from
individual-level outcomes disappears at the unit level.

3 The M Bound and its Estimator

In this section, we derive an exact bound that quanti-
fies errors induced by the violation of A3. Using this
bound, we develop an estimator minimizing A3 mis-
specification errors.

3.1 The M Bound

Let p̂0 be the synthetic distribution, defined as
p̂0(w) =

∑
j wjpj . We examine the difference between

the distribution of the target unit p0 and the synthetic
distribution p̂0. If p0 ̸= p̂0 but p̂0 remains “close” to
p0, we expect the synthetic control estimate to remain
approximately correct, E [Y0t] ≈

∑J
j=1 wjE [Yjt] . We

formalize this intuition by bounding the errors result-
ing from the misspecification of A3.

Bound 1 (M bound). For any t, assume that x 7→
Et [Y |x] is ℓ-Lipschitz. Then for any w in the simplex,
we have the Misspecification error bound (M-bound):∣∣∣E [Y0t]−

J∑
j=1

wjE [Yjt]
∣∣∣ ≤ ℓ ·W1 (p0, p̂0) , (7)

where p̂0 =
∑

j wjpj .

The proof is in Appendix A.

The Wasserstein distance W1 is a distance between
probability distributions (Villani, 2009). It quantifies
the differences between the true population distribu-
tion p0 and the synthetic population distribution p̂0.

For any set of weights w, the M bound (Bound 1)
confines the error of the SC estimate with a function
of the weights, the population distributions pj of each
unit, and the sensitivity of the outcome variables to
the variation of the causes (the Lipschitz constant ℓ).

If p0 = p̂0, then the Wasserstein distance W1(p0, p̂0)
between the true and the synthetic distribution is zero.
The M bound recovers that the SC estimate is correct.
When p0 ̸= p̂0, the M bound shows that the estimation
error is proportional to the distance W1(p0, p̂0).

The intuition behind Eq. (7) is that when a misspec-
ification occurs, a portion of the population p0 is ap-
proximated with an incorrect portion of the synthetic
population p̂0. It is unpredictable how these popula-
tions will behave. In the worst case, their outcomes
can differ by at most the distance between them (cap-
tured by W1) and the maximum possible variation of
the conditional outcome (captured by ℓ). Hence, the
M bound proves (theoretically) that a small misspeci-
fication induces a small estimation error.



Algorithm 1 Minimization of the M bound

Input: Distributions p0, ..., pJ ; learning rate α;
number of epochs E.
Output: (wj) minimizing the M bound.
(w1, ..., wJ)← ( 1

J , ...,
1
J )

for e = 1 to E do
p̂0 ←

∑
wjpj

grad← ∇wW1(p0, p̂0)
w ← project simplex(w − α · grad)

end for
return w

3.2 The M-bound Estimator

We established the M bound, which quantifies the
misspecification error for any set of weights. To
find weights with minimal misspecification error, we
develop the M-bound estimator. See Algorithm 1.

The M-bound estimator takes population distribution
data pj for each unit as input and returns a set of
weights that minimizes the M bound. The weights are
learned using projected gradient descent with the fol-
lowing objective, (w1, ...wJ) 7→ W1(p0,

∑
jwjpj). No-

tice that it computes SC weights using only the distri-
butions pj . It does not use outcome data.

After obtaining a set of weights from Algorithm 1, we
can use Eq. (7) with an estimated constant ℓ to create
a misspecification interval around the SC estimate,

E [Y0t] ∈ [ŷ0t −M, ŷ0t +M ] ∀t, (8)

where ŷ0t :=
∑J

j=1 wjyjt, M := ℓ ·W1(p0, p̂0). The M
bound, with its associated estimator and misspecifica-
tion interval, can be used to discover causal effects.

In § 5.2, we revisit the California tobacco example.
We use demographic data of each US state to form
the invariant causes distributions pj and fit the
M-bound estimator with these pj . Like standard
SC, the weights returned by the estimator are used
to form the synthetic outcomes. In addition, the M
bound provides misspecification intervals accounting
for the A3 misspecification error. Fig. 2 illustrates the
synthetic control estimate with its misspecification
interval generated by the M-bound estimator. We
see that California’s observed outcomes lie within
the interval before intervention and escape it after
the intervention. This suggests that a causal effect is
present, even in case of misspecification.

4 The James Bound and its Estimator

In § 3, we derived a theoretical bound on misspec-
ification error and showed how to use the M-bound

estimator to detect a causal effect. In theory, the true
outcome is guaranteed to lie within the M bound. In
practice, the misspecification interval produced by the
M bound is only valid if it is computed with the distri-
bution of all invariant causes pj . Observing all invari-
ant causes is a strong assumption that may not hold.

Here, we consider the setting where the invariant
causes are only partially observed. We first derive
a new error bound, the James bound, that can be
estimated with only partially observed causes, such
that it can be used in practice. The bound leverages
the pre-intervention outcome data to estimate the
influence of the unobserved causes on the outcome
variable. To find the weights that minimize the
James bound, we develop the James-bound estimator.
Finally, we discuss when it is appropriate to use the
M bound or the James bound.

4.1 The James Bound

So far, we have used x to denote all the invariant
causes. With a redefinition of notation, we now re-
fer to the observed causes as x, and the unobserved
causes as z. Such that Eq. (4) becomes E [Yjt] =∫
(x,z)

pj(x, z)Et [Y |x, z] dxdz.

We cannot generally bound the effect of unobserved
variables without further assumptions. Here, we as-
sume that the unobserved causes and observed causes
are independent and that their respective effect on the
outcome can be decomposed into two distinct terms,
this is A4. We note that standard the linear model
Eq. (1), which we generalize with the fine-grained
model Eq. (4), is still more restrictive than A4.

A4. Independence of Observed & Unobserved.
For each unit, x and z are independent, and there
exist functions gt and ht such that:

pj(x, z) = pj(x)pj(z), and Et [Y |x, z] = gt(x)+ht(z).

We note that the distributions of the observed causes
pj(x) and the unobserved causes pj(z) remain arbi-
trary, and so are gt and ht. With A4, we have “just
another misspecification error” (James) bound.

Bound 2 (James bound). For t ≥ T0, assume that
x 7→ Et [Y |x] is ℓ-Lipschitz. Then for any w ∈ ∆J ,

∣∣∣E [Y0t]−
∑J

j=1 wjE [Yjt]
∣∣∣ ≤ ℓ ·W1(p0(x), p̂0(x)) (9)

+maxu<T0

∣∣∣E [Y0u]−
∑J

j=1 wjE [Yju]
∣∣∣ (10)

+ inf
α∈∆T0

∣∣∣∣∣
∫
z

(
p0(z)−p̂0(z)

)(
Et[Y |z]−

∑
u<T0

αuEu[Y |z]
)
dz

∣∣∣∣∣. (11)



The proof is in Appendix A.

The first term (9) mirrors the M bound. It quantifies
the similarity between the target and synthetic distri-
butions of observed causes, p0(x) and p̂0(x).

The second term (10) measures the fit of the pre-
intervention outcomes. It indirectly estimates the sim-
ilarity between the target and the synthetic distribu-
tions of unobserved causes, pj(z) and p̂j(z).

The last term (11) contains the remaining error terms.
We cannot compute this term directly because it con-
tains unobserved quantities. In Appendix A, we ar-
gue that this term is small, and we may ignore it in
practice. For instance, we show that it is zero in the
standard SC factor model and in two other models.

4.2 The James-bound Estimator

Building on the James bound, we derive the James-
bound estimator. The estimator identifies the weights
that minimize the following objective,

w 7→ max
t<T0

∣∣∣y0t− J∑
j=1

wjyjt

∣∣∣+λ·W1

(
p0,
∑

j wjpj

)
, (12)

where λ is a hyperparameter. We update Algorithm 1
to minimize this objective in Appendix A.

If hyperparameter λ is set to ℓ, and if term (11) is
effectively negligible, then Eq. (12) is precisely the
James bound. Otherwise, it can be viewed as the
pre-intervention errors (first term), regularized by
the Wasserstein distance over external data (second
term). With this perspective, the estimator finds
weights that minimize pre-intervention errors while
favoring donors that are similar to the target.

4.3 Choosing between M and James Bound

We introduced two bounds, along with associated es-
timators and misspecification intervals. M bounds are
tighter but require data about all invariant causes.
James bounds are wider but require less data.

As a practical guide, we recommend using the James-
bound estimator first. It is indeed more prudent to
assume that some invariant causes might be unob-
served. If the post-intervention target outcomes fall
outside the misspecification interval, we have discov-
ered a causal effect robust to A3 misspecification (see
Fig. 2). If the post-intervention misspecification inter-
val is too wide to detect a causal effect, then it could
be that there is no causal effect. But it could also be
that there is too much misspecification to use SC or
that the James bound is too loose. We cannot con-
clude in favor of a causal effect in the first two cases.

To check if the James bound is too loose and find a
tighter bound, we can use the M bound.

The M bound can be computed only if all invariant
causes are observed. Since the M estimator does
not use outcome data, the target’s pre-intervention
outcomes can be used as a validation set. If the
observed pre-intervention outcomes fall outside the
predicted misspecification interval, not all invariant
causes were observed, and we cannot apply the M
bound. Otherwise, we may use the M bound.

5 Empirical Studies

We examine the M-bound and James-bound estima-
tors using synthetic and tobacco consumption data.
With synthetic data, we demonstrate that the M-
bound and James-bound estimators produce better
estimates in case of misspecification, and show that
their misspecification intervals contain the counterfac-
tual outcomes correctly. Using the tobacco consump-
tion case study, we demonstrate how to collect external
data and how to choose between M-bound and James-
bound estimators. We find that the post-intervention
California outcomes escape the misspecification error
bound, suggesting that there is an actual causal effect.
We provide implementation details in Appendix B.1.
We provide code at this address: https://github.

com/blei-lab/synthetic_controls.

5.1 Experiments with Synthetic Data

Data Description. We generate synthetic data by
defining the conditional distribution Et [Y |x] = f(x, t)
and the causes distributions pj(x). We create six dif-
ferent units (called g20, g45, g50, g60, g65, g70), and
consider that a single cause x ∈ R impacts the outcome
Y . The units can be thought of as different groups of
people (e.g. cities), and the cause x as the age of each
individual in these groups. The six units have differ-
ent distributions of age (group gX has an average age
of X). The target group is g45, the panel duration is
T = 50, and the intervention time is T0 = 15.

The closed form equations of (t, x) 7→ Et [Y |x] and
(j, x) 7→ pj(x) are in Appendix B.2 while Fig. 3 shows
the evolution of x 7→ Et [Y |x] over time t and the dis-
tributions pj(x) for each unit j. The expected outcome
Et [Y |x] varies over time, in different ways for each x.

We input the distributions pj to Algorithm 1 and ob-
tain the weights that minimize the M bound. As a
comparison, we calculate the weights obtained from
the standard SC in Eq. (3). We report the weights
and the induced synthetic outcomes in Fig. 4. Fur-
thermore, we compute ℓ = 4.0 from x 7→ Et [Y | x]
(valid for all t). This way, we obtain the exact value

https://github.com/blei-lab/synthetic_controls
https://github.com/blei-lab/synthetic_controls


Figure 3: Visualization of the synthetic data gener-
ating process. (top) Each line represents the expected
conditional outcome Et [Y |x] for a different time t, as
a function of the cause x. As time progresses (from
darker to lighter), the expected conditional outcomes
increase for all values of x, but with different rate of
increase over time. (bottom) Distributions densities of
the causes x 7→ pj(x) for each unit j. The target unit
is g45, which overlaps mostly with unit g50.

of the M-bound and we can form the misspecification
interval of Eq. (8), shaded on Fig. 4.

Analysis. As shown in Fig. 4, the standard SC
places a large weight on donor g20, which is a unit
whose individuals are very different from g45 but with
similar pre-treatment outcomes. When time increases,
the individuals in g20 and g45 evolve differently and
the synthetic outcome of the standard SC weights de-
viates away from the true outcome. In contrast, the
M-bound estimator places most of the weight mass on
the donor g50, which contains individuals with simi-
lar x as the target g45. By doing so, the synthetic
outcomes might not exactly match the g45 outcomes,
but they generalize better over time. We also verify
that the true outcome is always contained in the mis-
specification interval (Eq. (8)). We report the same
conclusions in Appendix B with the James bound.

Fig. 4 further includes two more baselines: the penal-
ized ElasticNet SC (Doudchenko and Imbens, 2016)
and the matrix completion SC method (Athey et al.,
2021). Both methods form incorrect SCs that are sim-
ilar to the standard SC. It is not surprising since both
methods assume the treated unit is a linear combina-
tion of the untreated units.

With external data, we estimated the misspecification
error and limited it using the M-bound and James-
bound estimators. Without external data, standard
SC made incorrect predictions, so as did more robust
SC methods assuming a linear factor model.

Figure 4: Comparison of the M-bound estimator and
the standard SC estimator on synthetic data. (left)
Weights returned by each estimator. The M-bound
estimator selects donors (g20 and g50) that are most
similar to the target (g45). (right) Synthetic outcomes
of each estimator, compared to the true outcome. Un-
der misspecification, the M-bound estimator provides
more accurate estimates than the standard SC, despite
a poorer pre-intervention fit.

5.2 A Case Study on Real Data

We revisit the tobacco study from Abadie et al. (2010)
to illustrate how to collect external data, apply the
estimators, and calculate misspecification intervals.

Prop 99. A tobacco control program was passed
in California in 1988. It increased tobacco taxes by 25
cents and funded anti-tobacco campaigns. Our goal
is to estimate the causal effect of the tobacco control
program on California’s tobacco consumption.

The tobacco panel dataset (Fig. 1) is from the Centers
for Disease Control and Prevention (2019), which pro-
vides the per capita tobacco consumption for 50 states
from 1970 to 2019. The intervention of interest is the
tobacco program, Prop 99. The observed outcomes for
California after 1988 are under intervention. All the
other observed outcomes in the dataset are assumed
to be under no intervention.

External Data Collection. First, we identify the
potential causes of smoking. According to Turner et al.
(2004), smoking is heavily influenced by societal and
cultural factors. While these factors are difficult to
measure directly, they are often correlated with de-
mographics. Several studies have found that cigarette
consumption varies significantly by age, gender, race,
and ethnicity (Sakuma et al., 2016; Cornelius et al.,
2022). As a result, we use age, sex, and ethnicity/race
as proxies for the causes of smoking.

We use the American Community Survey (ACS) to
formulate a distribution of causes for each unit. The



ACS is a demographics survey program conducted
continuously by the U.S. Census Bureau (Census
Bureau, 2020). It reports population demographics
at different geographical scales, from city boroughs
to states. We accessed the ACS data with the Census
Reporter API (Census Reporter, 2020). For each
state, the ACS provides the joint distribution of the
variables age, race, sex. Each variable is discretized
into multiple bins: age into 14 bins (e.g. 15 to 17, 20
to 24 years old), race takes 8 values (Asian, Black, Na-
tive American, Pacific Islander, White non-Hispanic,
White Hispanic, Mix, and Other), and sex takes 2
values (Male, Female). The joints x 7→ pj(x) over
these variables are defined for each state on these
14× 8× 2 = 224 demographics combinations (atoms).

We estimate ℓ using additional survey data from the
Tobacco Use Supplement to the Current Population
Survey. This independent study collects individual de-
mographic information along with tobacco consump-
tion. We form the expected tobacco consumption
given each invariant cause and compute the induced
ℓ. More details about the computation of Lipschitz
constant can be found in Appendix B.

The M-bound Estimator. The M-bound estimator
uses our newly formed p0, ..., pJ to compute a set of SC
weights. We report the weights in Appendix B.5 and
the SC outcomes with the misspecification interval in
Fig. 2. Among the set of 50 potential donors, five ob-
tained non-zero weights: New Mexico, Nevada, D.C,
Hawaii and Texas. As expected, the M-bound estima-
tor selected states that are similar to California. New
Mexico and Nevada are geographically close and have
similar demographics. Both D.C. and California have
a relatively young active population. And, California
is the number one destination for Hawaiians moving
to the US mainland (from US census).

In Fig. 2, the solid and dotted lines denote the ob-
served and synthetic California outcomes. The shaded
areas are the misspecification intervals. California pre-
intervention outcomes fall within the estimated M-
bound interval, but synthetic California is not a perfect
fit; there is misspecification. Despite the misspecifica-
tion, Fig. 2 shows the post-intervention outcomes are
outside of the bounds, suggesting a causal effect.

The James-bound Estimator. As discussed in
§ 4.3, the M-bound misspecification interval is only
valid if we observe all the invariant causes. According
to Fig. 2, California’s pre-intervention outcomes fall
within the M-bound intervals. We find, however, that
when some other states are considered as the target
unit, their observed outcomes before the intervention
are not always within the interval.

We perform placebo tests (Abadie et al., 2010) where

Figure 5: Placebo study of the M-bound estimator
(left) and the James-bound estimator (right), on Col-
orado, Massachusetts, and New Mexico. The M-bound
synthetic outcomes are outside of the misspecification
interval before the intervention. This suggests that not
all invariant causes are observed and that the James
bound should be used. The James-bound estimator
accounts for the missing causes, with wider misspeci-
fication intervals.

each donor is considered to be the target and a syn-
thetic control is constructed using the other donors.
Because the donors did not receive the intervention,
we expect synthetic outcomes to match observed out-
comes. In Fig. 5, we illustrate the comparisons for
three states, Colorado, Massachusetts, New Mexico.
For comparisons on all states, see Appendix B.

Fig. 5 (left) shows the synthetic outcome estimates
by the M-bound estimator. Both Colorado and Mas-
sachusetts’s pre-intervention outcomes are outside of
the misspecification interval. This suggests that not
all invariant causes are observed. While New Mexico’s
pre-intervention outcomes lie within the misspecifica-
tion interval of the synthetic New Mexico, the error
bound is too large to use SC.

Fig. 5 (right) shows the synthetic outcome estimates
using the James-bound estimator. We observe the pre-
intervention outcomes across states now all fall within
the James-bound misspecification intervals, which are
also wider than the M-bound intervals. After the in-
tervention, the observed tobacco consumption in Col-
orado remains in the James-bound misspecification
interval, suggesting the intervention had no effect.
This is expected as Colorado did not implement anti-
tobacco programs like California. For Massachusetts,
the James-bound interval is narrow enough to detect
a decrease in tobacco consumption that is not due to
misspecification. In fact, this is consistent with the



policies taken by this state in 1993 to raise taxes and
increase its Massachusetts Tobacco Control Program.

The placebo test provides further evidence that the to-
bacco program in California had a true causal effect on
tobacco consumption. In states without tobacco pro-
grams, their outcomes fall within the misspecification
interval, whereas California’s outcome does not.

Conclusion of the case-study. With the James-
bond estimator, we confirm the conclusions of Abadie
et al. (2010) but now, they come with one extra impor-
tant guarantee: the discovered causal effect is robust
to linear misspecification.
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Alberto Abadie and Jérémy L’Hour. A penalized
synthetic control estimator for disaggregated data.
Journal of the American Statistical Association,
116:1817–1834, 2021.

Maxwell Kellogg, Magne Mogstad, Guillaume A
Pouliot, and Alexander Torgovitsky. Combining
matching and synthetic control to tradeoff biases
from extrapolation and interpolation. Journal of the
American Statistical Association, 2021.

Eli Ben-Michael, Avi Feller, and Jesse Rothstein.
The augmented synthetic control method. Journal
of the American Statistical Association, 116:1789–
1803, 2021.

David Powell. Imperfect synthetic controls: Did the
massachusetts health care reform save lives? Avail-
able at SSRN 3192710, 2018.

Bruno Ferman and Cristine Pinto. Synthetic controls
with imperfect pretreatment fit. Quantitative Eco-
nomics, 12:1197–1221, 2021.



David Arbour, Eli Ben-Michael, Avi Feller, Alex
Franks, and Steven Raphael. Using multitask
gaussian processes to estimate the effect of a tar-
geted effort to remove firearms. arXiv preprint
arXiv:2110.07006, 2021.

Yehu Chen, Annamaria Prati, Jacob Montgomery, and
Roman Garnett. A multi-task gaussian process
model for inferring time-varying treatment effects in
panel data. In Artificial Intelligence and Statistics,
pages 4068–4088. PMLR, 2023.

Lea Bottmer, Guido Imbens, Jann Spiess, and Merrill
Warnick. A design-based perspective on synthetic
control methods. arXiv:2101.09398, 2021.

Jiafeng Chen. Synthetic control as online linear regres-
sion. Econometrica, 91(2):465–491, 2023.

Xu Shi, Wang Miao, Mengtong Hu, and Eric Tchet-
gen Tchetgen. On proximal causal inference with
synthetic controls. arXiv:2108.13935, 2021.

Jakob Zeitler, Athanasios Vlontzos, and Ciarán Mark
Gilligan-Lee. Non-parametric identifiability and
sensitivity analysis of synthetic control models. In
Causal Learning and Reasoning, pages 850–865.
PMLR, 2023.

Cédric Villani. Optimal Transport: Old and New, vol-
ume 338. Springer, 2009.

Centers for Disease Control and Prevention.
The tax burden on tobacco, 1970-2019, 2019.
URL https://chronicdata.cdc.gov/Policy/

The-Tax-Burden-on-Tobacco-1970-2018/

7nwe-3aj9.

Lindsey Turner, Robin Mermelstein, and Brian Flay.
Individual and contextual influences on adolescent
smoking. Annals of the New York Academy of Sci-
ences, 2004.

Kari-Lyn K Sakuma, Jamie Quibol Felicitas-Perkins,
Lyzette Blanco, Pebbles Fagan, Eliseo J Pérez-
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A Technical Details

A.1 Lipschitz function

A function f : Rn → R is said to be ℓ-Lipschitz if

∀(x, y) ∈ (Rn)2, |f(x)− f(y)|≤ ℓ · ∥x− y∥1 (13)

More precisely, the function f can be from and to any metric spaces, with their associated distance. Here we
use the L1 norm to measure the distance between x and y in Rn, and we use the absolute value to measure the
distance between f(x) and f(y) in R.

A Lipschitz function is limited in how fast it can change. In the context of synthetic control, if ℓ is small, it
implies that a change in the causes induces a small change in the outcomes. Having a small ℓ suggests that
misspecification of the causes will have a limited impact on the outcome.

A.2 Proof of the M Bound

Bound 1 (M bound). For any t, let assume that x 7→ Et [Y |x] is ℓ-Lipschitz, then for any weights in the simplex
w, we have the Misspecification error bound (M-bound):∣∣∣∣∣∣E [Y0t]−

J∑
j=1

wjE [Yjt]

∣∣∣∣∣∣ ≤ ℓ ·W1 (p0, p̂0) , (14)

where p̂0 =
∑

j wjpj and W1 is a ℓ1-Wasserstein distance.

Proof. Notice that for any unit j ∈ J0, JK, the expected outcome writes E [Yjt] =
∫
x
Et [Y |X = x] pj(x)dx.

Fix some weights w1:J ∈ ∆J and then by the linearity of the integral,

E [Y0t]−
J∑

j=1

wjE [Yjt] =

∫
x

Et [Y |x]
(
p0(x)−

∑
j wjpj(x)

)
dx

=

∫
x

Et [Y |x] (p0(x)− p̂0(x)) dx

≤W1(p0, p̂0) · ℓ

where the inequality comes from Kantorovich duality (Theorem 5.10, Villani (2009)) about Wasserstein distances.

A.3 Proof of the James Bound

Bound 2 (James bound). For t ≥ T0, let assume that x 7→ Et [Y |x] is ℓ-Lipschitz, then for any weights in the
simplex w ∈ ∆J , we have Just Another Misspecification Errors bound (James bound) :

∣∣∣∣∣∣E [Y0t]−
J∑

j=1

wjE [Yjt]

∣∣∣∣∣∣ ≤ ℓ ·W1(p0(x), p̂0(x)) + max
u<T0

∣∣∣∣∣∣E [Y0u]−
J∑

j=1

wjE [Yju]

∣∣∣∣∣∣
+ inf

α∈∆T0

∣∣∣∣∣
∫
z

(
p0(z)− p̂0(z)

)(
Et [Y |z]−

∑
u<T0

αuEu [Y |z]
)
dz

∣∣∣∣∣.
Before proving the James bound, we need one lemma which follows from assumption A3.

Lemma A.1. Suppose the distributions of causes (x, z) 7→ pj(x, z) and the expected outcomes (x, z) 7→ Et [Y |x, z]
satisfy assumption A3, then Et [Y |x] = gt(x) + constant and Et [Y |z] = ht(z) + constant where the constant
terms are independent of x and z (they can depend on t).



Proof. Fix t and j, and define the function f by ft(x, z) = Et [Y | x, z]. We suppose A3, that is pj(x, z) =
pj(x)pj(z) and that there exist two functions gt and ht such that

∀(x, z), ft(x, z) = gt(x) + ht(z).

Then

Et [Y |x] = Epj(z|x) [Et [Y | x, z] | x]

=

∫
z

(gt(x) + ht(z)) pj(z)dz

= gt(x) +

∫
z

ht(z)pj(z)dz.

We notice that
∫
z
ht(z)pj(z)dz is a constant independent of x or z. (It is the expectation of z 7→ ht(z) with

respect to z 7→ pj(z).)

We obtain a similar result for Et [Y |z], ht(z) and the constant
∫
z
gt(x)pj(x)dx.

We can now prove the James bound.

Proof. Fix some weights w ∈ ∆J , weights α ∈ ∆T0 then,

E [Y0t]−
J∑

j=1

wjE [Yjt] =

∫
(x,z)

Et [Y |x, z]
(
p0(x, z)−

∑
j wjpj(x, z)

)
dxdz

=

∫
(x,z)

(gt(x) + ht(z))
(
p0(x)p0(z)−

∑
j wjpj(x)pj(z)

)
dxdz

=

∫
x

gt(x)
(
p0(x)−

∑
j wjpj(x)

)
dx︸ ︷︷ ︸

A

+

∫
z

ht(z)
(
p0(z)−

∑
j wjpj(z)

)
dz︸ ︷︷ ︸

B

.

We have gt(x) = Et [Y |x] + constant, the constant cancels out in A and we obtain:

|A|=
∣∣∣∣∫

x

Et [Y |x]
(
p0(x)−

∑
j wjpj(x)

)
dx

∣∣∣∣ ≤ ℓ ·W1(p0(x), p̂0(x)).

We have ht(z) = Et [Y |z] + constant, the constant cancels in B and we obtain:

B =

∫
z

Et [Y |z] (p0(z)− p̂0(z)) dz

For any α ∈ ∆T0 we have:

B =

∫
z

( ∑
u<T0

αuEu [Y |z]
)
(p0(z)− p̂0(z)) dz +

∫
z

(
Et [Y |z]−

∑
u<T0

αuEu [Y |z]
)
(p0(z)− p̂0(z)) dz

=
∑
u<T0

αu

∫
z

(
Eu [Y |z] p0(z)−

∑
jwjEu [Y |z] pj(z)

)
dz +

∫
z

(
Et [Y |z]−

∑
u<T0

αuEu [Y |z]
)
(p0(z)− p̂0(z)) dz

=
∑
u<T0

αu

(
E [Y0u]−

∑
jwjE [Yju]

)
dz +

∫
z

(
Et [Y |z]−

∑
u<T0

αuEu [Y |z]
)
(p0(z)− p̂0(z)) dz.



So,

|B| ≤
∑
u<T0

αu

∣∣∣E [Y0u]−
∑

jwjE [Yju]
∣∣∣dz + ∣∣∣∣∣

∫
z

(
Et [Y |z]−

∑
u<T0

αuEu [Y |z]
)
(p0(z)− p̂0(z)) dz

∣∣∣∣∣
≤

(∑
u<T0

αu

)
max
u<T0

∣∣∣E [Y0u]−
∑

jwjE [Yju]
∣∣∣dz + ∣∣∣∣∣

∫
z

(
Et [Y |z]−

∑
u<T0

αuEu [Y |z]
)
(p0(z)− p̂0(z)) dz

∣∣∣∣∣
= max

u<T0

∣∣∣E [Y0u]−
∑

jwjE [Yju]
∣∣∣dz + ∣∣∣∣∣

∫
z

(
Et [Y |z]−

∑
u<T0

αuEu [Y |z]
)
(p0(z)− p̂0(z)) dz

∣∣∣∣∣ .
Because the previous inequality hold for any α ∈ ∆T0 , we can “take” the inf on the right term.

We obtain,

|B| ≤ max
u<T0

∣∣∣E [Y0u]−
∑

jwjE [Yju]
∣∣∣dz + inf

α∈∆T0

∣∣∣∣∣
∫
z

(
Et [Y |z]−

∑
u<T0

αuEu [Y |z]
)
(p0(z)− p̂0(z)) dz

∣∣∣∣∣ .
This proves the James bound.

A.4 Interpretation of Eq. (11)

In the James bound, we can compute the following terms:

• ℓ ·W1(p0(x), p̂0(x)) is estimated with the external data on the subset of observed causes.

• max
u<T0

∣∣∣E [Y0u]−
∑

jwjE [Yju]
∣∣∣dz is estimated from the outcome data.

The last term: inf
α∈∆T0

∣∣∣∣∣
∫
z

(
p0(z)−

∑
j

wjpj(z)
)(

Et [Y |z]−
∑

u<T0

αuEu [Y |z]
)
dz

∣∣∣∣∣ cannot be estimated from observed

data. Hence, we defined the James-bound estimator without this term. and showed that it was minimizing the
James bound only if this last term is negligible.

We give justification as to why this last term might be negligible, at least in comparison to the two other terms.
If any of the two following conditions holds, the last term is 0:

1. If p0 =
∑

j wjpj .

2. If there exists α ∈ ∆T0 such that Et [Y |z]−
∑

u<T0

αuEu [Y |z] = constant.

Naturally, we are not expecting the first condition to hold, but at least we can hope that p0(z)−
∑

j wjpj(z) is
of the same order of magnitude as p0(x)−

∑
j wjpj(x) (and so of W1(p0(x), p̂0(x)), the first term). If in addition

Et [Y |z] −
∑

u<T0

αuEu [Y |z] is small, then the last term (which is a product of two small terms) is negligible

compared to the other terms of the James bound.

With this intuition, it seems possible to finding a α that makes the full integral close to zero should be possible.

More concretely, we give two examples of models for which the term (11) is null.

Standard SC setting In the standard SC setting, assumption A2 is made. The practitioner assumes that there
exists a set of weights (wj) such that p0 =

∑
j wjpj (with the notations of factor models, each pj is a point mass

located at the latent factor µj , such that µ0 =
∑

j wjµj). In particular, it implies that
(
p0(z)−

∑
j

wjpj(z)
)
= 0

and so (11) = 0.



Arbitrary model with linear conditional expectation. We now assume arbitrary distributions pj . They
can be point mass on linear factors as in standard SC or arbitrary continuous distributions. A2 does not need to
hold, it may be impossible to write the target as a linear combination of the donors. However, we assume that
the response functions (z 7→ Et [Y | z])t are of the form Et [Y | z] = β⊤

t z, with βt being able to change arbitrarily
over time. Actually, we even requires the βt to change enough such that there exists α ∈ ∆T0 such that they are
linearly independent and there exists βt =

∑
u<T0

αuβu. In that case again, (11) = 0.

A.5 The James-bound Estimator

We adapt the M-bound estimator algorithm from Algorithm 1 into Algorithm 2.

Algorithm 2 Minimization of the James-bound

Input: Distributions p0, ..., pJ ; Pre-intervention measurements {(y0t, ..., yjt)t=0,...,T0−1}; learning rate α; num-
ber of epochs E, James parameter λ.
Output: (wj) minimizing the James-bound.
(w1, ..., wJ)← ( 1

J , ...,
1
J )

for e = 1 to E do
p̂0 ←

∑
wjpj

grad← ∇w

(
max
t<T0

|y0t −
J∑

j=1

wjmjt|+ λ ·W1(p0, p̂0)
)

w ← w − α · grad
w ← project simplex(w)

end for
return w

B Experiment Details

B.1 Implementation Details.

To implement the algorithms we need to manipulate probability distributions and calculate Wasserstein distances
with their gradients. Our implementation expects the input pj to be non-parametric distributions represented
by a collection of atoms and associated probabilities: pj =

∑
x∈X δx · pj(x), where X is the set of atoms and δx

is a point mass at x. If pj is discrete, such as a histogram, then the atoms are the possible values of the causes,
and pj(x) their associated probabilities. If pj is continuous, then the atoms are samples of pj , and pj(x) is the
normalized density at x. For all experiments, we compute the gradients of (w1, ..., wJ) 7→ W1(p0,

∑
j wjpj),

using the Python Optimal Transport library (Flamary et al., 2021) coupled with PyTorch (Paszke et al., 2019).
We use gradient descent with a learning rate α = 5 · 10−6 and 200, 000 epochs.

B.2 Simulation Details

For the synthetic experiment, we generate the outcomes under no intervention by defining the conditional ex-
pected outcomes f : (x, t) 7→ Et [Y |x] and the unit specific causes distributions x 7→ pj(x). In this experiment, x
is a single scalar variable.

The function f we choose is represented in Fig. 3 (top). It enjoys a closed-form expression:

f(x, t) = − 13t2x4

2100000000
+

71t2x3

78750000
− 10141t2x2

252000000
+

12521t2x

12600000
+ t+ 4.07142857142857

· 10−6x4 log
(
e

t
3−

20
3 + 1

)
− 43x4

13300000
− 0.000731428571428571x3 log

(
e

t
3−

20
3 + 1

)
+

1313x3

1496250
+ 0.0380053571428571x2 log

(
e

t
3−

20
3 + 1

)
− 359953x2

4788000

− 0.500107142857143x log
(
e

t
3−

20
3 + 1

)
+

401813x

239400
+ 40 .



It was generated by combining Lagrange polynomials in x with time varying coefficients.

For each group gXX (g20, g45, g50, g60, g65, g70), their associated distribution of causes is given by a normal
distribution centered at XX (e.g. at 20 for g20), and with scale 5 (variance 25). Each distribution is represented
in Fig. 3 (bottom).

Because our implementations of the M-bound estimator and James-bound estimator use non-parametric dis-
tributions represented by a collection of atoms and associated probabilities, each pj is more precisely defined
as

pj ∝
∑
x∈X

δx · N (x;µj , 5
2)

where µj = XX for each group gXX, and the set of atoms X is X = {90 · k/199 | k ∈ J0, 199K}.

B.3 Evaluation of the James-bound Estimator on Synthetic Data

Fig. 6 reports the estimates and weights produced by the M-bound, James-bound, and standard SC estimators.
Both M-bound and James-bound estimators select donor units that are more similar to the target. The M-bound
estimator favors donor g50, a unit with individuals most similar to the target. Using the standard SC estimator,
donor g20 is preferred, as it has similar outcomes, but different individuals, before the intervention. The James-
bound estimator chooses mainly donor g50 with a small selection of donor g20 as it trades off between selecting
donors with similar outcomes and similar individuals.

Both the M-bound and James-bound estimators produce misspecification intervals that cover the true outcomes.
As expected, the James bound estimator produces a wider misspecification interval than the M bound. The
James-bound estimator also produces a better fit for the observed data than the M-bound estimator. This is
expected since the M-bound estimator does not consider the pre-intervention outcomes, whereas the James-bound
estimator does.

(a) M-bound estimator. (b) James-bound estimator.

Figure 6: Comparison of the M-bound estimator, the James-bound estimator and the standard SC estimator
on the synthetic data. Both the James-bound and M-bound estimators produce more accurate counterfactual
estimates than the standard SC, despite a poorer pre-intervention fit. The M-bound estimator favors donor g50
(which is the unit with individuals most similar to the target). The standard SC estimator favors donor g20,
which has similar outcomes before the intervention but have different individuals. The James-bound estimator
trades off and selects mostly g50 with a little of g20. Both the M-bound and James-bound misspecification
intervals contain the true outcomes.

B.4 Using Survey Data to Estimate the Lipschitz Constant

To compute ℓ for the tobacco case study, we leverage external survey data. The (smallest) Lipschitz constant of
a function f : Rn → R is by definition,

inf
x̸=x′

|f(x)− f(x′)|
∥x− x′∥1

.

(We use the L1 norm over Rn).



For the M and James bounds, we need to compute the Lipschitz constant of x 7→ Et [Y |x], that is, of the expected
tobacco consumption given the causes x. We use additional survey data from the Tobacco Use Supplement to
the Current Population Survey (TUS-CPS). This study collects individual demographic information along with
tobacco consumption. We estimate the expected tobacco consumption given the invariant causes x and compute
the induced ℓ with the formula above by computing the pairwise differences, normalized by the differences of
causes x.

Handling categorical causes. For both the Wasserstein distance and the Lipschitz constant, we take L1

norms over the causes x. Some causes might be categorical. We represent a categorical variable C which can
take k values c1, ..., ck as a one-half-hot encoding with k different binary variables x1, ..., xk with values 0 and 1

2 ,
such that C = cr is represented by (x1, ...xk) = (0.5 · 1(i = r))1≤i≤k. The 0.5 is so that the L1 distance between
two different encoding is either 1 or 0.



B.5 California M-estimator Weights

D.C Hawaii Nevada New Mexico Texas

0.106 0.166 0.195 0.209 0.324

Table 1: Non-zero weights returned by the M-bound estimator for the synthetic California of Fig. 2.

B.6 Placebo tests

In Figs. 7a to 7c, we report the full placebo study with all the states.

Estimation error for ℓ. We discuss practical consequences of estimation error for ℓ. If ℓ has estimation
errors, then the misspecification intervals, which are functions of ℓ, might have errors too. Nevertheless, we can
understand and limit this error.

First, the M-and-James bounds/intervals are always defined and they hold for any set of weights, no matter how
the weights were obtained (see Bound 2). That is, each set of weights has a valid, theoretical, misspecification
interval; defined with the true ℓ. For e.g., if the set of weights was obtained by optimizing the James bound with
an incorrect ℓ, then those weights will have a true misspecification interval, simply not the tightest one.

However, computing that interval will incur an error due to ℓ. Fortunately, the estimators are “robust” in the
sense that this error is controlled: 5% error on ℓ will give at most 5% error on the interval (see Bound 2). An
overestimated ℓ will provide a looser bound, and the interval might be too wide to conclude a causal effect. But
the conclusion would remain correct: there is too much misspecification/estimation error, which prevents us from
finding a possible causal effect.

To prevent for an under-estimated ℓ, we recommend favoring overestimation of ℓ over understimation.



Figure 7a: Placebo study, part 1, of the M-bound estimator (left) and the James-bound estimator (right). The
y-axis represents the per capita cigarette sales (in packs). The y-axis usually spans from 0 to 180 and is colored
in red otherwise.



Figure 7b: Placebo study, part 2, of the M-bound estimator (left) and the James-bound estimator (right). The
y-axis represents the per capita cigarette sales (in packs). The y-axis usually spans from 0 to 180 and is colored
in red otherwise.



Figure 7c: Placebo study, part 3, of the M-bound estimator (left) and the James-bound estimator (right). The
y-axis represents the per capita cigarette sales (in packs). The y-axis usually spans from 0 to 180 and is colored
in red otherwise.



The James bound’s objective function J(w;λ) requires a hyperparameter λ. To choose the hyperparameter λ,
we recommend using survey data to compute the Lipschitz constant ℓ (as described in Appendix B.3) and then
set λ← ℓ. This is necessary to compute the James bound, which involves J(w;λ) with λ = ℓ. If external survey
data is unavailable for evaluating ℓ, we suggest the following cross-validation method based on the placebo test.

First, notice that for any λ ≥ ℓ, we have J(w;λ) ≥ J(w; ℓ), so the James bound (Bound 2) is also valid for any
λ ≥ ℓ:

|E[Y0t]− ŷ0t| ≤ J(w;λ),

where ŷ0t =
∑J

j=1 wjE[Yjt] are the synthetic outcomes.

Hence, once one uses λ ≥ ℓ, the untreated potential outcomes E[Y0t] for t > T0 must fall inside the misspecification
interval [ŷ0t−J(w;λ), ŷ0t+J(w;λ)]. But note that if λ is too large, the misspecification interval might become too
wide to detect any causal effect for the target. On the other hand, if λ < ℓ , the James bound is not guaranteed
to hold and might just be incorrectly too narrow. This can be checked by placebo analysis (i.e. cross-validation).
Since we observe the untreated outcomes of the donors, we can find a λ that is just large enough so that all the
donors have their observed outcomes inside the bounds. We then use such a λ for our target unit and check for
a causal effect.

In practice, we stop when at least a proportion α (e.g., 0.95) of all the donor outcomes is contained in the bounds.
If the target is then outside its bound, we can conclude in favor of a causal effect.

Algorithm 3 Cross validation for selecting λ.

Input: Set Λ of possible λ in increasing order, threshold α (e.g. α = 0.95).
Output: Whether a causal effect is detected.
for each donor j > 0 do
for λ ∈ Λ do

Compute w∗ = argminw J(w;λ) where the target is j.
Compute synthetic outcomes: ŷj,t =

∑
k w

∗
kykt.

Compute bλ,j,t ← 1(ykt ∈ [ŷkt − J(w∗, λ), ŷkt + J(w∗, λ)])
end for
if mean({bλ,j,t | t > T0, j ∈ {1..J}}) ≥ α then

return λ
end if

end for
return You should consider larger λ.
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