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Abstract

Machine learning models are widely applied
in various fields. Stakeholders often use post-
hoc feature importance methods to better un-
derstand the input features’ contribution to
the models’ predictions. The interpretation
of the importance values provided by these
methods is frequently based on the relative
order of the features (their ranking) rather
than the importance values themselves. Since
the order may be unstable, we present a
framework for quantifying the uncertainty in
global importance values. We propose a novel
method for the post-hoc interpretation of fea-
ture importance values that is based on the
framework and pairwise comparisons of the
feature importance values. This method pro-
duces simultaneous confidence intervals for
the features’ ranks, which include the “true”
(infinite sample) ranks with high probability,
and enables the selection of the set of the
top-k important features.

1 INTRODUCTION

Complex nonlinear prediction models are widely used
to augment or even replace human judgement in fields
such as healthcare (Bhardwaj et al., 2017), finance
(Rundo et al., 2019), and science (Deiana et al., 2022;
Li et al., 2022). Regulators, users, and developers
of such models are interested in understanding the
relative contribution of the different inputs, i.e., fea-
tures, to the model’s predictions (Preece et al., 2018;
Goodman and Flaxman, 2017). Feature importance
(FI) methods such as permutation feature importance
(PFI) (Breiman, 2001) and SHapley Additive exPla-
nations (SHAP) (Lundberg and Lee, 2017; Lundberg
et al., 2019) measure the contribution of features by
estimating the effect of removing, perturbing, or per-
muting the feature on the predicted value or prediction
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loss. The specifics of this manipulation vary depend-
ing on the method and implementation (Merrick and
Taly, 2020; Covert et al., 2020a). These FI methods
are employed to explain the predictions of models after
they have been trained, and therefore they are called
post-hoc FI methods. This paper focuses on global
FI methods that explain the average model behavior
rather than local FI methods that explain individual
predictions.

Recently, studies have demonstrated that post-hoc FI
methods can be unstable (Molnar et al., 2020; Marx
et al., 2023) due to uncertainty stemming from the
size and sampling of the data used to calculate the FI
values (explanation set); randomness in the perturba-
tions, permutations (Lakkaraju et al., 2020; Agarwal
et al., 2022), or approximations (Merrick and Taly,
2020); hyperparameter selection (Slack et al., 2021;
Ahn et al., 2023); and more. We focus on uncertainty
in sampling the explanation set, which affects the sta-
bility of the FI values. Most methods for quantifying
this type of uncertainty produce per-feature spread es-
timates (or confidence intervals) in the FI method’s
output units (Ishwaran and Lu, 2019; Covert et al.,
2020b; Merrick and Taly, 2020; Slack et al., 2021; Ahn
et al., 2023; Molnar et al., 2021).

Existing uncertainty measures are insufficient, because
stakeholders often rely on the rank of the FI value,
rather than the value itself, in their decisions. Feature
rankings are unit-independent and are therefore easy
to interpret and compare across FI methods (Jaxa-
Rozen and Trutnevyte, 2021; Heldt et al., 2021). In-
stability in the global FI values can lead to instabil-
ity in their ranking (Rising, 2021) (an example is pro-
vided in Figure 1). A simple ranking of the features
based on the FI values cannot reflect this uncertainty.
Moreover, due to the ranking’s discrete nature, exist-
ing methods for quantifying uncertainty in FI values
cannot easily be modified to work for ranking uncer-
tainty. For example, we show that confidence inter-
vals (CIs) produced by a naive bootstrapping method
based on the estimation of the ranking distribution do
not cover the true ranks. The previously mentioned
challenges point to the need for a framework for defin-
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ing, estimating, and reporting ranking uncertainty. To
properly model ranking uncertainty, we first model the
uncertainty of the global FI values and then infer the
effect of this uncertainty on the rankings.
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Figure 1: Bar plots of SHAP values for two samples
of n = 50 observations from the bike sharing dataset
using an XGBoost model. The ranking of the features
is unstable for this sample size: ranking of the Work-
ingday and Month features varies, depending on the
sample. The chances of observing each of the rankings
(69.4% and 29.1%) is estimated based on 1,000 inde-
pendent samples of size n = 50.

In this paper, we present a base-to-global framework to
quantify the uncertainty of global FI values. We de-
fine a two-level hierarchy of importance values, namely
the base and global FI values, where the global FI
values are the average of independent base FI values.
Based on this framework, we propose a novel method
for confidently ranking features. We define the true
rank as a feature’s ranking, obtained based on an in-
finite sample, for both a trained prediction model and
an FI method. Our ranking method reports simulta-
neous CIs, ensuring, with high probability, that each
feature’s true rank is covered by the appropriate inter-
val. We construct the intervals by examining all pairs
of features, testing hypotheses regarding differences in
means, and counting the number of rejections for each
feature. The examination process tackles the multiple
tests problem, which might result in the false discovery
of a feature as relevant. The validity of our proposed
method is demonstrated in a comprehensive evaluation
on both synthetic and real-world datasets. Our find-
ings confirm our method’s effectiveness and highlight
its potential in quantifying and enhancing ranking sta-
bility. Our base-to-global framework can be viewed as
a generalization of the formulate, approximate, explain
(FAE) (Merrick and Taly, 2020) framework for gener-
ating and interpreting Shapley-value-based FI meth-
ods. We extend the FAE concept in two respects: first,
we generalize it to other post-hoc FI methods by defin-
ing the base values in a general way; and second, we
address the uncertainty in the ranking of the global FI
values.

Our main contributions in this paper are as follows:
(1) We propose a novel ranking method for FI values.
(2) We quantify the uncertainty of the ranking by pro-

viding simultaneous CIs for the features’ ranks.1 (3)
We suggest an improved means of interpreting global
FI values. We generalize confident ranking methods
to accommodate correlations and potential departures
from normality, which are common in FI values. To
the best of our knowledge, our ranking method is the
first to formally incorporate uncertainty control in the
ranking of FI values.

2 QUANTIFYING UNCERTAINTY
IN GLOBAL FI VALUES

2.1 Terminology

Consider the supervised learning task of predicting a
real-value outcome Y ∈ Y from a vector of p features
X = (X1, . . . , Xp) ∈ X . A prediction model f : X →
Y is trained on a training set Dtrain = {(xi, yi)}Mi=1

and fits the data well according to standard metrics
(e.g., MSE or accuracy on external test sets). Stake-
holders are then interested in the extent to which a
feature contributes to the model’s performance or pre-
dictions – the FI value.

2.2 Base-to-Global Framework

Post-hoc global FI methods describe the average be-
havior of the model. These methods produce an im-
portance value for each feature, Φ̂1, Φ̂2, . . . , Φ̂p ∈ R,
based on a trained model f and a sample Dexplain =
{(xi, yi)}Ni=1, preferably independent of Dtrain. In
most methods, the assumption is that a higher value
of Φ̂j indicates greater importance. Generally, the fea-
tures are ranked according to their FI values, and only
the top-k features are considered.

In many cases, the FI values are calculated by aver-
aging many independent runs. For example, in SHAP
(Lundberg and Lee, 2017), the global FI value is an
average of the absolute values assigned to each obser-
vation (the local SHAP values). Variability in the ex-
planation set Dexplain introduces uncertainty into the
global FI values.2 In PFI (Breiman, 2001), the global
FI value is the average obtained over multiple permu-
tations. In this case, both variability in the explana-
tion set and the randomized permutations introduce
uncertainty into the global FI values.

In considering how these examples could be addressed
in a single framework, we make the following obser-
vation: there is a two-level FI hierarchy in which the
observed global FI value is an average of independent
base FI values; in the first example (SHAP), the base
FI values correspond to the local SHAP values, and in

1The paper’s code is publicly available at: https://
github.com/BityaNeuhof/confident_feature_ranking.

2This paper only considers the exact computation of
SHAP values without approximation.

https://github.com/BityaNeuhof/confident_feature_ranking
https://github.com/BityaNeuhof/confident_feature_ranking
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the second example (PFI), the base FI values corre-
spond to the PFI values calculated for a single permu-
tation on the full explanation set.

We set the following notations: matrix vn×p is defined
as the matrix of base FI values, with rows v1, . . . , vn ∈
Rp representing the FI value for each feature.3 vj

are the columns of the matrix referring to the base FI
values for the j’th feature. The observed global FI
value for the j’th feature is Φ̂j =

1
n

∑
vij .

SHAP Example For a single observation (x, y), the
local SHAP value of a feature j is:

ϕj =
∑

S⊆[p]\{j}

|S|!(p− |S| − 1)!

p!
×

(
E[f(X)|XS∪{j} = xS∪{j}]− E[f(X)|XS = xS ]

)
where [p] is the set of all features, and S is a subset of
features. The base FI value is:

vSHAP
j = |ϕj |, (1)

and the global FI value is: Φ̂SHAP
j = 1

n

∑n
i=1 v

SHAP
j .

PFI Example Let L be a loss function; the global
PFI value of a feature j is:

Φ̂PFI
j =

1

B

B∑
b=1

L(f(Xb
[j]), Y )− L(f(X), Y ),

where X[j] is a replication of X with a permuted ver-
sion of the j’th feature, and B is the number of per-
mutations. The base FI value can be defined either
as a single permutation of the j’th feature: vPFI

j =
L(f(X[j]), Y ) − L(f(X), Y ) (here the number of base
FI values is the number of permutations (n = B)) or
as the average of permutations for an observation:

vPFI
j =

1

B

B∑
b=1

L(f(xb
[j]), y)− L(f(x), y), (2)

where x[j] is a replication of observation x with a per-
muted version of the j’th feature. Here, the number of
base FI values is the number of observations (n = N).
A detailed analysis of the sources of uncertainty in PFI
is provided in Appendix A.

2.3 Uncertainty in Feature Ranking

Global FI values are often interpreted as a ranking
used to highlight or select the most relevant features.
Since different FI methods produce FI values of vary-
ing scales, the ranking of the features is often used

3If the base FI values are the local values, n = N is the
size of Dexplain.

to compare the methods’ output. The observed ranks
r̂ = (r̂1, . . . , r̂p), r̂j ∈ {1, ..., p} are typically derived
directly from the observed global FI values, with the
rank p assigned to the highest global FI value, and
rank 1 assigned to the lowest.

The sampling of the base FI values introduces uncer-
tainty into the global FI values. The global FI values
are then ranked, propagating the uncertainty into the
observed ranks. This process is summarized in Figure
2 which presents the framework’s pipeline for quanti-
fying the uncertainty in the observed ranks.

Base
FI Values

Observed Global
FI Values

Sampler

𝑣!

𝑣"

𝑣#

Observed Ranks

!Φ! !Φ$⋯

#r! #r$⋯
3 5 6 1 9 7 2 4 8

Figure 2: Base FI values are sampled as vectors, intro-
ducing uncertainty. The vectors are averaged to form
the observed global FI values. Finally, the global FI
values are ranked to produce the observed ranks.

Note that the definitions of the base and global FI lev-
els specify the source of the uncertainty to be reflected
in the CIs for the ranks; two options for base FI value
definition for PFI are presented above.

3 STATISTICAL MODEL AND
INFERENCE GOAL

In this section, we describe our statistical model for
estimating ranking uncertainty. First, we define a fea-
ture’s rank-set as a rank that considers information
about ties. Then we define our inference goal – to pro-
vide simultaneous CIs for the rank-sets. Finally, we
discuss the advantages of simultaneous CIs and pro-
vide an example in which the top-k features are high-
lighted.

3.1 True Global FI Values and Rank-Sets

Recall that in Section 2 we introduced the base FI val-
ues matrix v, with rows vi ∈ Rp. Here, we model the
rows vi as independent samples from distribution Fv

with mean vector E[vi] = (Φ1, . . . ,Φp); these are the
true global FI values. Each observed global FI value
Φ̂j is an unbiased but noisy version of Φj . We are in-
terested in understanding the effects of this variability
on the possible feature rankings.

In contrast to the observed noisy ranks, the true
ranks r1, ..., rp are based on the true global FI values
Φ1, ...,Φp. Whereas in the observed global FI values
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exact ties are unlikely, for the true global FI values
we can imagine ties between equivalent features, or we
may want to allow an indifference level. We follow
Al Mohamad et al. (2022) in redefining the true ranks
to account for ties:

Definition 1 (Rank-Set) Define the lower rank of Φj

as lj = 1 + #{k : Φj > Φk, j ̸= k} and the upper
rank of Φj as uj = p − #{k : Φj < Φk, j ̸= k}.
Then the rank-set of Φj is the set of natural numbers
{lj , lj+1, . . . , uj} denoted as [lj , uj ].

If there are no ties, the lower and upper ranks are
identical and equal to the standard definition. In the
remainder of the paper, the term ‘true rank’ will refer
to the rank-set.

3.2 CIs for True Ranks

We propose quantifying the rankings’ uncertainty us-
ing simultaneous CIs for the true ranks. Here, we de-
fine marginal and simultaneous CIs, and in Section 4
we propose a method for constructing valid simultane-
ous CIs for the true ranks.

Definition 2 (CI for a True Rank) The ranks interval
[Lj , Uj ] is an (1 − α)-level CI for a true rank of the
j’th feature if PFv

([lj , uj ] ⊆ [Lj , Uj ]) ≥ 1 − α for any
possible Fv.

Lj , Uj are functions of v, the matrix of observed base
FI values. We note that different sets of observed base
FI values will produce different CIs.

The set of intervals [L1, U1], . . . , [Lp, Up] has marginal
coverage if each interval is a valid CI of the correspond-
ing true rank. For ranking and selection of features,
marginal coverage is not sufficient, because it does not
support selection after ranking (Benjamini and Yeku-
tieli, 2005). Therefore, our ranking method constructs
simultaneous CIs for the true ranks.

Definition 3 (Simultaneous Coverage) The set of in-
tervals [L1, U1], . . . , [Lp, Up] ⊆ [1, p] has simultaneous
coverage at level 1− α if

PFv
([lj , uj ] ⊆ [Lj , Uj ], ∀j ∈ {1, . . . , p}) ≥ 1− α.

In 1− α simultaneous CIs, the probability that all in-
tervals cover the true ranks is at least 1−α. Simulta-
neous CIs remain valid for any form of selection after
ranking (for example, selection of the most important
features). We note that simultaneous coverage is con-
servative and can result in relatively large intervals.

3.3 Top-K Set

Here we present an application of simultaneous CIs
for the selection of the most important features (top-
k) with a guarantee of coverage. Since the ranking is

based on the observed FI values, the size of the set of
possible top-k features might be greater than k.

Denote Tk ⊆ [p] as the set of features whose true FI
value is ranked in the top-k Tk = {j : uk ≥ p−k+1}. A
simple selection method is to select features for which
the upper bound of the CI is greater than p−k. With
simultaneous coverage, the probability of an error for
this selection is controlled (Hsu, 1996). Furthermore,
the CIs for the features currently ranked among the
top-k still have marginal coverage. These two proper-
ties are not guaranteed without simultaneous coverage
(Ein-Dor et al., 2006).

Lemma 1 Let {[L1, U1], . . . , [Lp, Up]} be 1−α simul-
taneous CIs for the true ranks. Define the top-k set
T̂k = {j : Uj ≥ p − k + 1}. This set includes
all features with an upper bound in the top-k ranks
(p, p− 1, . . . , p− k + 1). Then P(Tk ⊆ T̂k) ≥ 1− α.

To prove this, consider a case in which Tk ⊆ T̂k does
not hold; then it must follow that there is some j ∈ Tk
that is not in T̂k. This means that the estimated upper
bound Uj is less than the true upper rank uj , so the CI
[Lj , Uj ] does not cover [lj , uj ]. Based on the definition
of 1−α simultaneous CIs, the probability of any such
event is at most α.

4 CONFIDENT SIMULTANEOUS
FEATURE RANKING

In this section, we introduce our ranking method which
is designed to rank FI values while taking into ac-
count the uncertainty associated with the post-hoc FI
method and the sampling process. Using our base-
to-global framework, we are able to quantify the un-
certainty by calculating simultaneous CIs for the true
ranks.

4.1 Feature Ranking

Our method uses pairwise hypothesis tests to estimate
lower and upper bounds for the true rank of each fea-
ture. For each feature pair j, k, we perform two one-
sided hypothesis tests:

(a) A test of H1
jk : Φj < Φk versus H0

jk : Φj ≥ Φk;

(b) A test of H1
kj : Φk < Φj versus H0

kj : Φk ≥ Φj .

Each test is composed of a p-value pjk =
pairCompare(vj ,vk) and a significance level α ∈
(0, 0.5]; the test rejects H0

jk if pjk < α. The test is cali-
brated if: P(pjk ≤ α) ≤ α for any Φj ≥ Φk, meaning
that the probability of rejecting H0

jk when H1
jk is cor-

rect is bounded by α. For the tests to be calibrated,
they need to account for the possible dependence be-
tween vj and vk. In our implementation, we use the
paired-sample t-test (see Section 4.4).
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There is a natural relation between the results of
the one-sided hypothesis tests and the ranking of
the global FI values. The rejection of a hypothesis
H0

jk : Φj ≥ Φk, implies acceptance of a partial rank-
ing of the global FI values, namely Φj < Φk. This
partial ranking limits the global ranking: the feature j
cannot be ranked highest (uj < p), and the feature k
cannot be ranked lowest (lk > 1). We combine many
partial ranking statements to improve the bounds on
the ranks.

Combining many probabilistic decisions comes at a
price. Setting the tests’ rejection threshold to α limits
the marginal probability of making an error in each
partial ranking to α. However, when combined, the
probability of making at least one error increases with
the number of tests, and without proper adjustments
it may greatly exceed α. In the next subsection, we ad-
just the p-values to control this probability over mul-
tiple tests.

4.2 Controlling Partial Ranking Error

We defineD as the set of partial rankings from all pair-
wise tests D = {(j, k) : H0

jk was rejected}. A partial
ranking error is a pair (j′, k′) ∈ D for which Φj′ ≥ Φk′ .
For simultaneous CIs, we want to control the proba-
bility of error over all the partial rankings.

Definition 4 (Family-Wise Error Rate) The family-
wise error rate (FWER) is controlled at probability
level α on the set of partial rankings D if the prob-
ability of making any partial ranking error is less than
α: P(∃(j′, k′) ∈ D : Φj′ ≥ Φk′) ≤ α.

To control the FWER, we replace the original p-
values with a set of adjusted p-values padj =
FWERAdjust(v, pairCompare). After adjustment,

the partial rankings are obtained by comparing padjjk

and padjkj to the required FWER level α .4 Some exam-
ples of adjustment procedures in which the FWER is
controlled are provided in Section 4.4.

4.3 Confident Simultaneous Feature Ranking

When the FWER is controlled for the partial rank-
ings set, we can use the partial rankings set to derive
simultaneous CIs for the true ranks:

Theorem 1 (Al Mohamad et al., 2022) Let D be the
set of partial rankings with FWER control at level α.
For j = 1, ..., p, define:

Lj = 1 +#{k : (k, j) ∈ D},
Uj = p−#{k : (j, k) ∈ D}.

4In practice, when both tests use the same data and
the threshold α is less than 0.5, none or just one of the
null hypotheses will be rejected (there will not be a case in
which both of the null hypotheses are rejected).

Then the sets {[Lj , Uj ] for j ∈ [p]} are (1− α) simul-
taneous CIs for the true ranks.

The construction naturally extends the definition of
rank-set provided in Definition 1. The idea of the
proof is that a coverage failure means that the set
of true (one-sided) differences is smaller than the set
of observed (one-sided) differences. This means that
at least one partial ranking in D is false. Therefore
the FWER upper bounds the probability of an error
in the CIs (see proof in Appendix B.1). Our rank-
ing method is based on ICRanks (Al Mohamad et al.,
2022); the way in which the proposed method differs
from ICRanks is discussed in Section 4.4.

Algorithm 1 summarizes our method for constructing
simultaneous CIs for the true ranks. The algorithm
works directly on the base FI matrix without requir-
ing access to the trained model, the FI method, or
the explanation set. The main assumption is that our
paired test is calibrated for the possible distributions
of base FI values.

Algorithm 1 Simultaneous CIs for Ranks

Require:
v: base FI matrix;
1− α > 0: level of confidence;
pairCompare: suitable paired test;
FWERAdjust: FWER adjustment procedure.
for j, k ∈ [p], j ̸= k do
pjk ← pairCompare(vj ,vk).

end for
padj =← FWERAdjust(v, pairCompare)

D ← {(j, k) : padjjk ≤ α}
for j ∈ [p] do
Lj ← 1 + #{k : (k, j) ∈ D}
Uj ← p−#{k : (j, k) ∈ D}

end for
return [L1, U1], . . . , [Lp, Up].

4.4 Ranking Method Implementation

Paired Test We use a parametric paired t-test to
compute p-values for the pairs of base FI values. Set
d = vj−vk to be the vector of differences, and denote
d̄ as the sample average and sd as the sample standard
deviation. Then the one-sided α level test rejects the
null hypothesis if d̄/(sd/

√
n) > Tn−1(1 − α), where

Tn−1(1−α) denotes the 1−α quantile of student-t (n−
1 df). The paired t-test is fairly robust to departures
from a normal distribution (Posten, 1979).

Adjustment for Multiple Tests We implement
two sequential procedures to adjust (increase) the p-
values:

• Holm’s procedure (Holm, 1979). Assuming that
the base FI values are normally distributed, the
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paired t-test is calibrated with this procedure. We
implement Holm’s procedure on the one-sided hy-
pothesis tests, although for approximately normal
data, the two-sided Holm would likely work well
also. See Shaffer (1980, 1995) on using Holm’s
procedure for pairwise tests.

• Min-P (Westfall and Young, 1993). This proce-
dure is based on bootstrapping. Therefore, no
further assumptions are required.

The adjusted p-values are then compared to the pre-
defined threshold of α (details on the procedures are
provided in Appendix B.2). With these procedures,
if the p-values are calibrated, then the FWER for the
rejected tests is controlled at the α level, regardless of
the dependence.

Comparison to ICRanks Similar to Algorithm
1, ICRanks (Al Mohamad et al., 2022) is based on
Tukey’s correction (Tukey, 1953) in order to control
the differences between ranks simultaneously. Tukey’s
correction is designed for normal and independent
data, which are distributional assumptions that would
usually not hold for FI values. In contrast, our algo-
rithm applies a test to each feature pair separately,
and the Holm’s or the Min-P procedure is performed
on the resulting p-values; therefore, it can be utilized
with robust or nonparametric tests (Wilcox, 2011).

5 EVALUATION

In this section, we evaluate our base-to-global frame-
work and ranking method. We use synthetic data to
assess our method’s validity (simultaneous coverage)
and efficiency. We analyze our ranking method by gen-
erating base FI values directly (Section 5.1). We note
that feature ranking is an interpretability step at the
end of an ML task, as shown in Figure 3; therefore, we
simulate the entire process of training and explaining a
model with simulated data (Section 5.2) and real data
(Section 5.3).

Data ML Model FI 
Method

Ranking 
Method

Predictions FI Values Ranks Section 5.1 Section 5.2
Section 5.3

Figure 3: Feature ranking and evaluation process.

Metrics We use the metrics (ranking measures) sug-
gested by Al Mohamad et al. (2022) to define simulta-
neous coverage and efficiency:

• Simultaneous coverage – the proportion
of experiments where all true ranks are
covered by their CIs: one if all {Φj ∈
[Lj , Uj ]}, andzero otherwise.

• Efficiency – the average relative size of the CIs:
1

p·(p−1)

∑p
j=1(Uj − Lj).

Higher coverage and lower efficiency are better.

5.1 Ranking Method Comparison

Ranking Methods We compare the ranking mea-
sures of four ranking methods: a naive ranking method
based on empirical quantiles of bootstrap samples as
a baseline (details are provided in Appendix D.1.1),
ICRanks,5 our ranking method with Holm’s proce-
dure, and our ranking method with the Min-P adjust-
ment procedure.

We sample the base FI values from a multivariate-
normal distribution Np(µ,Σ) with predetermined vec-
tor of means µ and a covariance matrix Σ. The true
global FI values are the means, and we control the cor-
relation structure between the base FI values via the
definition of the covariance matrix.

Vector of Means The structure of the vector µ

is (1µ-exponent, 2µ-exponent, . . . , (p+ 1)µ-exponent)
T
, with

µ-exponent ∈ [0.1, 0.25, 0.5]. A lower value of µ-
exponent results in a more dense vector of means. Ties
between the means are allowed.

Covariance Matrix The covariance matrix struc-
ture is composed of a vector σ2 of the variances of the
base FI values sampled from the re-scaled chi-squared
distribution (χ2

(5)/5). The correlation matrix struc-

ture can be one of three structures: identity (no cor-
relations), block-wise pairs, or equal correlations with
ρ ∈ [0.1, 0.5, 0.9]. In addition, we vary the level of
noise in the base FI values by scaling the vector σ by
σ-factor ∈ [0.2, 1, 5].

We analyze the ranking measures for multiple condi-
tions of the vector of means (µ) and the correlation
matrix (Σ) (a total of 486 conditions). The number of
features p is one of: [10, 30, 50], and the number of base
FI values n is one of: [100, 300, 1000]. We sample 100
independent explanation sets for each configuration
and report the average ranking measures across the
repetitions. Below, we present the results for p = 30,
µ-exponent=0.25, and equal correlations. Additional
results are presented in Appendix D.1.

Simultaneous Coverage In the naive ranking
method, simultaneous coverage is not maintained in
all conditions. All other methods maintain simultane-
ous coverage levels of almost 100%; this indicates that
they are overly conservative compared to the nominal
required simultaneous coverage of 90%.

Efficiency Without correlations, efficiency degrades
as the σ-factor increases, with almost no difference ob-

5ICRanks package

https://cran.r-project.org/web/packages/ICRanks/ICRanks.pdf
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served between the methods (Figure 4). With correla-
tions, as ρ increases our method becomes more efficient
than ICRanks, with the Min-P adjustment seen to be
slightly more efficient than Holm’s procedure. The
gap between the methods increases as the σ-factor in-
creases (Figure 5).
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Figure 4: Ranking efficiency as a function of n for
multiple σ-factors and three ranking methods. Low
values mean smaller sets and are therefore better. The
methods’ efficiency is similar.
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Figure 5: Ranking efficiency with low (a) and high
(b) σ-factors, as a function of n for multiple levels of
correlations (ρ) and three ranking methods.

5.2 SHAP Ranking Measures

Here, we simulate the entire ML process as described
in Figure 3 with simulated data. We analyze the rank-
ing measures and runtime of our ranking method with
Min-P and Holm’s procedures compared to ICRanks.

Data Generating Process (DGP) We follow the
DGP of Ishwaran and Lu (2019). We sample a data
matrix X with independent uniformly distributed fea-
tures and calculate Y as a function of X with noise.
We define two functions:

(A) y = 10 sin (πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ϵ;

{xj} ∼ U(0, 1); ϵ ∼ N(0, 1).

(B) y = (x2
1 + [x2x3 − (x2x4)

−1]2)0.5 + ϵ;

x1 ∼ U(0, 10), x2 ∼ U(π, 2π), x4 ∼ U(1, 5),

all other features {xj} ∼ U(0, 1); ϵ ∼ N(0, 1).

The definitions of (X,Y ) are for p = 10 features. We
simulate a larger number of features by defining the
functions for cycles of 10 features. For example, in
function (a), X11 ∼ U(0, 10) and is added to Y as
X2

11.

For this simulation, we sample a large data matrix
XM×p (M = 500k), calculate Y as a function of X
with noise, and train a prediction model on Dtrain =
(X,Y ). We calculate the global FI values Φ̂1, . . . Φ̂p

based on a sufficiently large sample (n = 1M), making
it a low variance estimator of Φ1, . . .Φp (Slack et al.,
2021). We generate multiple simulated datasets, vary-
ing the number of features (p) and base FI values (n),
the DGP, and the prediction models. We sample 100
independent explanation sets for each evaluation con-
figuration to measure the ranking efficiency, simulta-
neous coverage, and runtime.

Below we present the results for the DGP-A with
a random forest (RF) model (Breiman, 2001) and
DGP-B with an XGBoost (XGB) model (Chen and
Guestrin, 2016) (see Appendix D.2 for the complete
results). We use TreeSHAP (Lundberg et al., 2019)
to compute the base FI values, relying on the defini-
tion of base and global FI values presented in Section
2 (Equation 1). To calculate the ranking measures, we
repeatedly sample Dexplain independent of Dtrain.

Simultaneous Coverage All of the examined
methods maintain simultaneous coverage levels of al-
most 100% in all simulated conditions. However when
the base FI values have an extremely long tail, simul-
taneous coverage is not guaranteed (an example is pro-
vided in Appendix D.2.3).

Efficiency We can see that ICRanks is comparable
to our ranking method. The ranking efficiency im-
proves as n increases (Figure 6). For the XGB model,
we see that the efficiency of our method with the Min-
P procedure is worse than that of our method with
Holm’s procedure for low n values; the Min-P pro-
cedure recalibrates the p-values based on resampled
data, which is an inefficient process when n is low.

Runtime We analyze the runtime of TreeSHAP
(computation of base FI values) and the ranking times
(ICRanks, Holm’s procedure, and the Min-P proce-
dure). The runtime of ICRanks and Holm’s procedure
is ten times faster than the runtime of TreeSHAP.
The Min-P procedure requires B repetitions (boot-



Confident Feature Ranking

strap samples) of the pairwise tests, so the runtime
increases with B. Details are provided in Appendix
D.2.2.
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Figure 6: Ranking efficiency as a function of n for
different numbers of features (p) and ranking methods.
The efficiency improves as n increases.

5.3 Real Data Experiments

5.3.1 Ranking Stability

We demonstrate the use of our ranking method and
present the simultaneous CIs produced with the bike
sharing dataset (Fanaee-T and Gama, 2014), the Tree-
SHAP FI method, and Holm’s procedure. We create
60/40 train/test splits, fit an XGB regression model
(default hyperparameters) to the training set (R2 =
0.98), and evaluate the performance on the test set
(R2 = 0.94). Then, we calculate the base FI values for
n = 50 and n = 1000 by sampling from the test set.
Presenting the CIs for the ranks enables us to compare
the stability for different sizes of n (see Figure 7). The
triangles within the CIs are the observed global FI val-
ues. The process of constructing the CIs for n = 50
base FI values is described in Appendix C.

5.3.2 Training Stability

Our base-to-global framework can also be used to
quantify the uncertainty in training stemming from
the sampling of the training set. Here, we use the
COMPAS dataset (Angwin et al., 2016), an RF clas-
sification model (default hyperparameters), the PFI
method, and the Min-P procedure. We define the base
FI values as global PFI values. Each trained model
produces a base FI vector vi; the global FI values are
obtained by resampling and training multiple equiva-
lent models (with the same hyperparameters and size
of Dtrain (M = 3K) and similar training accuracy
(0.883 ± 0.005)). We use the same explanation set
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Figure 7: Global SHAP values (left) and CIs for the
true ranks (right) for the bike sharing dataset. The
importance values were obtained from 50 (top) and
1,000 (bottom) observations. The CIs point out un-
certain feature rankings for a small sample size.

(N = 600) to calculate the importance values. Figure
8 presents the true ranks’ CIs for two values of n. The
observed uncertainty in the ranking for n = 10 indi-
cates that the randomness in sampling can influence
the learned mapping between the features and the tar-
get variable.
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Figure 8: CIs for the true ranks for n = 10 (left) and
n = 40 (right) trained models. The CIs present uncer-
tainty in training a model based on M = 3K training
observations.

5.3.3 High-Dimensional Data

In previous sections (Sections 5.1 and 5.2), we ana-
lyzed the validity of our ranking method in multiple
settings, including with moderately high-dimensional
data (p = 50), and showed that our method main-
tains simultaneous coverage. Now we demonstrate the
use of our ranking method with high-dimensional data,
utilizing the Nomao dataset (Candillier and Lemaire,
2012), which consists of 118 input features and a
binary target variable. We create 60/40 train/test
splits, fit an XGB classification model (with the de-
fault hyperparameters) to the training set (accuracy =
0.99), and evaluate the performance on the test set
(accuracy = 0.97). Then, we calculate the base FI
values with TreeSHAP; the distribution of the global
FI values is shown on the left side of Figure 9. Thirty-
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one features have importance values of zero.

We use our ranking method to rank all the features
from the least important (1) to the most important
(118); the full ranking is presented in Appendix D.3
(Figure 18). As 31 features have the same importance
value of zero, the CI of each feature is [1, 31]. In such a
case, if we measure the efficiency of the ranking across
all features, the long CIs of the irrelevant features will
affect it. The skewness of the CI length is presented
on the right of Figure 9. A model will likely use some
features, and the unused features will get a low im-
portance value (or a value of zero); a filtering step is
required to improve the ranking process by comparing
only the relevant features.
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Figure 9: Global SHAP FI value distribution (left) and
length of the CIs for the ranks (right) for the Nomao
dataset features. The FI value of many features is zero,
and the ranking is accordingly inefficient.

6 RELATED WORK

6.1 Uncertainty in Feature Ranking

Ordering features in terms of their importance to the
model’s prediction is referred to as feature ranking. It
is often infeasible to determine the “right” order or
perfect subset of features, because it requires the ex-
amination of all possible feature subsets (Prati, 2012).
Many studies suggested overcoming this limitation and
obtaining a more stable ranking by applying a two-step
procedure in which multiple rankings are generated
and the outputs are combined into a single ranking
(Saeys et al., 2008). Each of the rankings generated
in the first step is obtained by ordering the global FI
values, which are produced using different FI methods
(Schulz et al., 2021) or by resampling the data and
ranking the output FI values using a single FI method
(Vettoretti and Di Camillo, 2021; Alaiz-Rodriguez and
Parnell, 2020; Salman et al., 2022). The process of
combining all of the rankings into a single ranking is
sometimes based on voting (Vettoretti and Di Camillo,
2021; Schulz et al., 2021), pairwise comparisons of the
rankings (Prati, 2012; Salman et al., 2022), or other
techniques (Alaiz-Rodriguez and Parnell, 2020). In all
of the techniques mentioned above, more stable rank-
ing is achieved by aggregating multiple global scores or
rankings, a process that is computationally expensive
and requires many explanation sets or FI methods. In

contrast, our ranking method produces a stable rank-
ing based on a single FI method and explanation set.

6.2 Ranking and Selection

The problem of ranking and selection (R & S) of items
has been well studied by researchers in the field of
statistics, and various solutions have been suggested
(Gupta, 1965; Boesel et al., 2003). Some studies fo-
cused on ranking items based on noisy data and pair-
wise comparisons (Wright et al., 2014; Valdeira and
Soares, 2022). Other studies proposed methods that
look for the best item (Eckman et al., 2020), select the
set of top- or lowest-ranked items, or, most similar to
our work, methods that rank all items based on the
observed means (Zhang et al., 2014; Klein et al., 2020;
Wright et al., 2014). After ranking all of the items, a
subset of items might be selected. (Al Mohamad et al.,
2022; Rising, 2021). Other researchers have proposed
methods like ours that deal with the effect of multi-
ple tests and examine how to control the FWER and
increase the probability that the correct items are se-
lected (Garcia and Herrera, 2008; Holm, 2013).

7 CONCLUSIONS

We propose a base-to-global framework and a method
for constructing CIs for the true ranks of the global
FI values. Because rankings are frequently used to
summarize FI methods’ output, it is crucial to consider
the rankings’ stability. Our method can be used with
robust and nonparametric paired-tests to support non-
standard FI distributions.

We present a rigorous criterion for quantifying uncer-
tainty that can be explicitly modeled (e.g., the expla-
nation set size). We view the proposed method as a
step toward producing new forms of stability assess-
ments for explainable ML. In future research, we aim
to address other sources of instability, such as the dif-
ference between FI methods, although their effect is
more challenging to quantify.

Finally, our current algorithm is conservative, as
demonstrated in simulations where the coverage level
surpasses the requested (1-α)%. Future research will
also be aimed at narrowing the CIs while maintain-
ing nominal coverage and reducing the impact of the
number of features on coverage by using a filtering step
(e.g., eliminating non-important features).
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes, see Section 4.

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. No. In this paper, we aim to
improve the validity and efficiency of
the ranking compared to other meth-
ods, not the complexity.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes, in the supplemen-
tal material.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes, in Sections 3
and 4.

(b) Complete proofs of all theoretical results.
Yes, in the supplemental material.

(c) Clear explanations of any assumptions. Yes,
in Sections 3 and 4.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes, in the supplemental mate-
rial.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes,
in Section 5 and in the supplemental
material.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes, in Section 5 and in
the supplemental material.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes, in the supplemental
material.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Yes, in the references, foot-
notes, and supplemental material.

(b) The license information of the assets, if ap-
plicable. Not Applicable.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not Appli-
cable.

(d) Information about consent from data
providers/curators. Not Applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Appli-
cable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable.
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Confident Feature Ranking:
Supplementary Materials

A PFI VARIANCE ANALYSIS

In Section 2, we present two options for defining the base FI values for PFI (Breiman, 2001): (1) a single
permutation, and (2) a single observation. We obtain the same global FI values from the two base definitions by
setting the values of the number of permutations (B) and the size of the explanation set (N) accordingly. However,
the different decomposition of the global FI value to base FI values allows for the analysis of various sources of
uncertainty – the variance of the permutations and the variance of the explanation set. Our framework is limited
to quantifying only one source of uncertainty by aggregating base FI values to global FI values. Therefore, using
it might be a problem when the uncertainty of the global FI values stems from multiple sources of uncertainty.
Nevertheless, if most of the variability comes from one of the sources, it is reasonable to target it and disregard
the other sources. In the case of PFI, we expect that the size of the explanation set introduces greater variance
than the number of permutations. Our results clearly show this; therefore, we can use our framework to quantify
the uncertainty of global PFI values.

A.1 Experimental Setup

In this experiment, we use the same DGPs (A and B) described in Section 5.2, including the definition of X, Y ,
and the functions.

A.1.1 Dummy Prediction Model

Instead of training a model, we create a Dummy model that predicts Y from X using the DGP’s function.
We use this approach to control the variability stemming from the training and focus on the variability of the
permutations and explanation set.

A.1.2 Experiment Details

We sample the data as described above with various configurations of B, p, and N , and the two functions. For
each configuration:

(1) We perform B permutations for each observation and calculate the loss difference for each permutation b:
L(f(xb

[j]), y)− L(f(x), y).

(2) We average all of the permutations for each observation.

(3) We average all of the observations.

The result of steps 1-3 is a set of p global FI values Φ̂PFI
1 , . . . , Φ̂PFI

p . We repeat this process 100 times and
calculate the average and standard deviation (SD) across the repetitions.

A.2 Results

For both functions we compare the SD of the global FI values for different values of B and N . In Figure 10, we
can see that different features have different SDs, but in all conditions the SD is almost fixed with respect to B
and decreases with N . This indicates that the number of observations introduces more variability to the global
FI values than the number of permutations.
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B DEFINITIONS AND PROOFS

B.1 Proof of Theorem 1

In this section, we present the detailed proof of Theorem 1.

Recall that D is the set of partial rankings and that we assume that the probability of any error in D is less
than α. To prove the theorem, we first show that any error in coverage, i.e., a CI that does not cover the true
rank, must be caused by at least one partial ranking error in D:

Suppose that there is a coverage error. Without loss of generality, assume that the coverage error occurs for
feature 1:

[l1, u1] ⊈ [L1, U1].

The coverage error can be in one or both bounds:

(1) l1 < L1,

(2) u1 > U1.

If (1), then L1 > 1, and there are L1− 1 > 0 pairs of the type (1, k) ∈ D, meaning that there are L1− 1 features
with a significantly lower observed global FI than the observed global FI of feature 1. However, according to
Definition 1, l1− 1 = #{k : Φ1 > Φk}, meaning that there are only l1− 1 features with true global FI lower than
the true global FI of feature 1. Combining these two statements together, there must be at least one feature
k = 2, ..., p for which (1, k) ∈ D but Φ1 ≯ Φk, meaning that there is a partial ranking error in D.

If (2), then the set {k ∈ 2, ..., p : (k, 1) ∈ D} is higher than the set {k : Φk > Φ1}. Again, this would mean that
for at least one value of k there is a partial ranking error.

The event of at least one coverage error is contained in the event of obtaining a partial ranking error. Given
that, the coverage error probability is bounded by FWER = α.

B.2 FWER Adjustment Procedures

Here, we provide details on the two sequential procedures that we use in our implementation. After adjustments,
the p-values are compared to a chosen α level. Note that all p-values are inflated compared to their original
level, making it less likely that the null hypothesis will be rejected. Furthermore, the p-values keep their relative
order after adjustment. In the procedures below, this is governed by the max function, which assures that the
order is maintained. The resulting process is sequential in that for a given level α, after the first non-rejected
value, all others would not be rejected. Let p1, ..., pK be a set of K p-values obtained by testing a family on null
hypotheses H0

1 , . . . ,H
K
0 ; below we demonstrate how the two FWER adjustment procedures are used to calculate

padg1 , ..., padgK , a set of adjusted p-values.

B.2.1 Holm’s Procedure

We implement Holm’s procedure (Holm, 1979) on one-sided hypothesis tests. The paired t-test is calibrated with
this procedure for normally distributed base FI values.

Let p(1) ≤, ...,≤ p(K) ≤ 1 be the sorted set of p-values. Then:

padj(1) = K · p(1),

padj(2) = max{padj(1) , (K − 1)p(2)},

. . . ,

padj(k) = max{padj(1) , ..., p
adj
(k−1), (K − (k − 1))p(k)},

. . . ,

padj(K) = max{padj(1) , ..., p
adj
(K−1), p(K)}.

B.2.2 Min-P Procedure

Holm’s procedure is highly conservative, since it is valid regardless of the structure of dependence between
the p-values. To improve it, Westfall and Young (1993) suggested the Min-P procedure. The idea is to use
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bootstrapping to model the structure of dependencies between p-values, obtain lower adjusted p-values, and
reject more hypotheses. The details of the Min-P procedure described here are taken from Efron (2012).

Here, we also start with the sorted set of p-values p(1) ≤, ...,≤ p(K) ≤ 1. Let i1, . . . iK indicate the corre-
sponding original indices, p(k) = pik , and define Ik = {ik, ik+1, . . . , iK} and πk = P0{minj∈Ik(Pj) ≤ p(k)}. Here,
(P1, . . . , PK) indicates a hypothetical realization of the unordered p-values p1, ..., pK obtained under the complete
null hypothesis, meaning all H0

ks are true. The adjusted p-values are then defined by:

padjj = max
k≤j

πk.
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C Confident Feature Ranking: Step-By-Step

This section demonstrates how our ranking method constructs simultaneous CIs for the true ranks. We use
the bike sharing dataset (Fanaee-T and Gama, 2014), the TreeSHAP FI method, and our ranking method with
Holm’s procedure for n = 50 base FI values. This demonstration is a detailed description of the example
presented in Section 5.3 (Figure 7).

Base and Global FI Values We construct a TreeSHAP explainer (Lundberg et al., 2019) based on the trained
XGB model. The base FI values are the absolute values of the local SHAP values the explainer produces for an
explanation set of size n = 50. The global FI values are the average of the base FI values. The values and the
order of the global base FI values for this explanation set are presented in Table 1.

Pairwise Differences The paired-sample t-test is based on the differences between the base FI values of two
features vj−vk. The one-sided hypothesis H0

jk : Φj ≥ Φk is rejected if the difference between the observed global
FI values is significantly different from zero. In Figure 11a, we present the differences between Workingday and
all other features. The average of the differences between Workingday and Month and Temp is near zero.

Partial Rankings We set the significance level to α = 0.1, and for each pair of features, we run two paired
one-sided t-tests; then, we adjust the p-values to multiple comparisons using Holm’s procedure. In Figure 11b,
gray and black indicate that the observed global FI value of the feature in row j is respectively less and greater
than the observed global FI value of the feature in column k. White indicates that the difference is zero (neither
H0

jk nor H0
kj were rejected). The set of partial rankings D is then obtained. For example, we can conclude that

(Month, Y ear) ∈ D, (Day,Month) ∈ D, and (Month,Workingday) ̸∈ D.

Constructing Simultaneous CIs for the True Ranks For each feature, we initialize the lower bound of
the CI to one and the upper bound to p. If there are no differences between the features, the CIs for all features
are [1, p]. Otherwise, there are differences. Without loss of generality, consider the Workingday feature. By
looking at the row for Workingday in Figure 11b, we can see that the observed global FI value of Workingday is
significantly higher than the observed global FI values of Day and Weather, and it is significantly lower than the
observed global FI values of Year and Hour. There is no significant difference between Workingday and Month
and Temp. Therefore, we increase the lower bound by two, decrease the upper bound by two, and obtain the
confidence set [3, 5] for the true rank of Workingday.

We repeat the same process for all features and obtain 90% simultaneous CIs for the true ranks. See lower and
upper bounds in Table 1 and a visualization of the CIs in Figure 11c.

Table 1: Ranks and Simultaneous CIs

Feature Observed Global FI Observed Rank CI
Hour 129.042 7 [7, 7]
Year 44.805 6 [6, 6]
Temp 33.777 5 [4, 5]
Workingday 28.95 4 [3, 5]
Month 23.987 3 [3, 4]
Weather 10.865 2 [2, 2]
Day 5.673 1 [1, 1]
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D EXPERIMENT DETAILS AND ADDITIONAL RESULTS

D.1 Ranking Method Comparison

D.1.1 Baseline Ranking Method

We implement a naive ranking method to construct CIs for the features’ true ranks based on bootstrap samples.
For each sample, we rank the global FI values. We report lower and upper bounds (Lj , Uj) by taking the α/2
and 1− α/2 quantiles of the ranks of the j’th feature over the bootstrap distribution.

D.1.2 Additional Results

Equal Correlations In Figure 12, we present the ranking efficiency of three ranking methods for p = 10 and
p = 50 as a function of n, with multiple levels of correlations. We use the same configuration as in Figure 5: low
and high σ-factors, µ-exponent=0.25, with and without ties. We can observe the same efficiency trends seen for
p = 30: the efficiency increases as ρ increases, the gap between the methods increases as the σ-factor increases,
the efficiency improves as the n increases, and our ranking method is more efficient than ICRanks.

Number of Features We compare the ranking efficiency for different numbers of features and multiple values
of µ-exponent, with n = 500, σ-factor=1, equal correlations, and ρ = 0.5 (see Figure 13). The efficiency degrades
as the means become more dense (µ-exponent decreases), , and the number of features has almost no effect on
the efficiency.

Correlation Structure We compare the equal correlation structure with the block-wise pairs structure of the
correlation matrix. In Figure 14, we present the results for different numbers of features, n = 500, σ-factor=1, µ-
exponent-0.25, and low (0.1) and high (0.9) values of ρ. The differences between the structures of the correlation
matrix are more substantial for ρ = 0.9.

D.2 SHAP Ranking Measures

Here, we sample the training and explanation sets using the DGP described in Section 5.2. For each configuration
of (X,Y ), we train an XGB (default hyperparameters) or RF (number of estimators=1,000) regression model
for this experiment. We follow the XGB tutorial6 to train both the XGB and RF models (see the train and test
R2 of the model in Table 2).

Table 2: Prediction Models’ Performance

Model DGP p Train R2 Test R2

RF

DGP-A
10 0.786 0.783
30 0.523 0.515
50 0.346 0.336

DGP-B
10 0.863 0.862
30 0.836 0.836
50 0.745 0.744

XGB

DGP-A
10 0.956 0.952
30 0.963 0.958
50 0.954 0.945

DGP-B
10 0.875 0.868
30 0.951 0.946
50 0.964 0.959

D.2.1 Additional Results

In the paper, we present an example of the efficiency of RF with DGP-A and XGB with DGP-B. Here, we
present the complementary efficiency results for all configurations (see Figure 15). The simultaneous coverage
for all configurations is almost one (0.997± 0.009). In addition, we compare the efficiency of our CIs (using our
method with the Min-P procedure) with n = 1000 base FI values, to the efficiency of the true FI ranks as an
upper bound on the efficiency of the observed values (see Table 3); as can be seen, the efficiency of our ranking
method with n = 1000 is not ideal, even in the case of perfect true ranking.

6XGB tutorial

https://xgboost.readthedocs.io/en/stable/tutorials/rf.html
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Table 3: Ranking Efficiency

Model DGP p True Efficiency Mean Efficiency

RF

DGP-A
10 0.222 0.238
30 0.393 0.412
50 0.486 0.495

DGP-B
10 0.222 0.386
30 0.634 0.641
50 0.772 0.777

XGB

DGP-A
10 0 0.204
30 0 0.293
50 0 0.32

DGP-B
10 0 0.299
30 0 0.247
50 0 0.287

D.2.2 Ranking Runtime Analysis

We also analyzed TreeSHAP’s runtime and our method’s runtime. In Figure 16, we present the runtime of
TreeSHAP and the different ranking methods. TreeSHAP’s runtime clearly depends on the sample size n, since
it is a local FI method. In contrast, the runtime of the ranking methods depends on the number of features (p).
The runtime of our method with Holm’s procedure is comparable to that of ICRanks but with lower variance.
The runtime of our method with the Min-P procedure is much higher, because it is based on a bootstrap process
and increases with the number of repetitions (B).

D.2.3 Non-Normal Base FI Value Distribution

We use the paired-sample t-test to compare base FI values and adjust the p-values with the Min-P or Holm’s
procedure. Our primary assumption is that the paired test is calibrated for the possible distributions of base FI
values (note that the paired-sample t-test is calibrated even when the base FI values are not normally distributed).
However, we found that our method does not always maintain simultaneous coverage when the base FI values
have an extremely long tail. In this example, we sample the data from:

y = x1x2 + x2
3 − x4x7 + x8x10 − x2

6

+ x11x12 + x2
13 − x14x17 + x18x20 − x2

16

+ x21x22 + x2
23 − x24x27 + x28x30 − x2

26 + ϵ;

X ∼ N30(0,Σ); ϵ ∼ N(0, 1),

where Σ is an equal correlation matrix

with ρ = 0.3 and {σ2
j } ∼ χ2.

We train an RF model and calculate the base FI values with TreeSHAP. Table 4 summarizes the average coverage
and simultaneous coverage. As can be seen, for all sizes of n (the number of base FI values) our method does not
maintain simultaneous coverage; the marginal coverage is almost 90% for small sizes of n, and the simultaneous
coverage of the Min-P procedure is better.

We further analyze the CIs of the features for p = 30, an RF model, and a single explanation set of size
n = 100, 000. In Figure 17, the base FI values distribution of two features, for which we found coverage errors
for multiple explanation sets. The true global FI values of the two features are almost identical, and the variance
is relatively large. More importantly, the distributions of the base FI values of both features display extremely
long tails, and the observed global FI values are influenced by the rare values at the tails. In such cases, we
recommend replacing the paired t-test with a robust alternative (Wilcox, 2011).

D.3 High-Dimensional Example

Displaying the global FI values or the CIs for the ranks for many features may be difficult to interpret. Therefore,
typically only the top-k features are presented. For example, in SHAP’s global bar plot API7 the default number

7Global bar plot API.

https://shap.readthedocs.io/en/latest/generated/shap.plots.bar.html
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Table 4: Ranking Coverage

n Ranking Method Coverage Simultaneous Coverage

100
Holm 0.839 0.08
Min-P 0.96 0.63

500
Holm 0.75 0.01
Min-P 0.888 0.56

1000
Holm 0.7 0.01
Min-P 0.85 0.37

3000
Holm 0.634 0.01
Min-P 0.782 0.14

of features to present is 10. In Figure 18, we present the complete ranking for the Nomao dataset(Candillier
and Lemaire, 2012) features . Our ranking method makes it easier to interpret which features are irrelevant and
determine how to select a threshold k for the most important features to display.
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E IMPLEMENTATION DETAILS

E.1 Availability of Data

The bike sharing dataset (Fanaee-T and Gama, 2014) contains 10,886 records of bike rentals between 2011 and
2012 from the Capital Bikeshare program in Washington, D.C. The regression task is forecasting demand for bike
rentals based on time and environmental measures such as month and weather. The data is publicly available
at Kaggle.

The COMPAS dataset (Angwin et al., 2016) contains 6,172 records of criminal history from Broward County
from 2013 and 2014. The classification task is assessing a criminal defendant’s likelihood to re-offend based on
jail and prison time, and demographics. The data is publicly available at Propublica’s Github.

Nomao is a search engine of places. The Nomao dataset (Candillier and Lemaire, 2012) contains 34,465 records
with comparison features about places, such as name and localization, from different sources. The classification
task is detecting whether two sources of information refer to the same place. The data is publicly available at
OpenML.

E.2 Reproducibility Instructions

The code for our ranking method, experiments, and visualizations was written in the Python programming
language (Python version 3.10.3) and can be found in this Git repository. The ICRanks R package was imported
to Python through the rpy2 package.

E.3 Computing Infrastructure

The experiments were performed on a server with 64G RAM and 16 CPUs.

https://www.kaggle.com/competitions/bike-sharing-demand/data
https://github.com/propublica/compas-analysis
https://www.openml.org/search?type=data&sort=runs&id=1486&status=active
https://github.com/BityaNeuhof/confident_feature_ranking
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Figure 10: SD of global FI values of p = 10 features for two functions; with respect to the number of permutations
(B) and the number of observations (N).
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Figure 11: Visualization of Algorithm 1: first, test all one-sided pairs of hypotheses for the difference between
base FI values (a), then adjust the p-values and obtain the partial rankings from the rejected hypotheses (b),
and finally construct the CIs for the true ranks (c).
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Figure 12: Ranking efficiency for p = 10 and p = 50.

3010 50
p

0.05

0.10

0.15

0.20

E
ffi

ci
en

cy

μ-exponent=0.5

3010 50
p

0.20

0.25

0.30

0.35

0.40
μ-exponent=0.25

3010 50
p

0.5

0.6

0.7

0.8

0.9
μ-exponent=0.1

Ranking Method
Holm
Min-P
ICRanks

Ties
Without Ties
With Ties

Figure 13: Ranking efficiency as a function of p for multiple values of µ-exponent and three ranking methods.
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Figure 14: Ranking efficiency with low (a) and high (b) values of ρ, as a function of p for two correlation
structures and three ranking methods.
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Figure 15: Ranking efficiency as a function of n for different numbers of features (p) and ranking methods.
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Figure 16: TreeSHAP and ranking times (in seconds) as a function of the number of features (p) for different
sizes (n) of Dexplain.
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Figure 18: CIs for the true ranks of the Nomao dataset features. The features are ordered by their observed
global FI value. There are 31 irrelevant features and many intersections between CIs.
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