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Abstract

Predictive models in ML need to be trust-
worthy and reliable, which often at the very
least means outputting calibrated probabili-
ties. This can be particularly difficult to guar-
antee in the online prediction setting when the
outcome sequence can be generated adversar-
ially. In this paper we introduce a technique
using Blackwell’s approachability theorem for
taking an online predictive model which might
not be calibrated and transforming its predic-
tions to calibrated predictions without much
increase to the loss of the original model. Our
proposed algorithm achieves calibration and
accuracy at a faster rate than existing tech-
niques (Kuleshov and Ermon, 2017) and is
the first algorithm to offer a flexible trade-
off between calibration error and accuracy in
the online setting. We demonstrate this by
characterizing the space of jointly achievable
calibration and regret using our technique.

1 Introduction

In the online learning setting, a predictive model, also
known as a forecaster, gives a probability value predic-
tion at each time step, and its performance is evaluated
based on a loss function. For the class of loss function
known as a proper scoring rule, the only way to mini-
mize that score is to predict the true probabilities of an
outcome. For most prediction problems we do not know
how to compute the true probabilities of outcomes, and
the best we can do is to use a trained model (e.g., a
deep neural network or contextual bandit algorithm)
attaining a low scoring-rule loss without necessarily
minimizing it. However, most training methods for pre-
dictive models do not guarantee calibrated probability
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values. There has been a large body of work high-
lighting the need for calibrated probability estimates
(i.e., models that are able to assess their uncertainty)
(Jiang et al., 2011; DeGroot and Fienberg, 1983) and
on how to obtain these calibrated probability estimates
Foster (1999). In the offline setting, this is generally
done by some post-processing of the data to remap the
probability values to calibrated probability estimates
in a way that minimizes the increase in loss, such as by
post-hoc calibration or recalibration. In contrast, in
the online prediction setting, little work has been done
on this subject. Recently, Kuleshov and Ermon (2017)
and Foster and Hart (2021) have presented various
approaches for taking an online predictive model and
transforming its predictions without major increase in
loss. Kuleshov and Ermon (2017) introduced this prob-
lem as an online recalibration problem, and provided
an algorithm for achieving epsilon accuracy relative
to the loss function using a connection between cali-
bration and internal regret. In this paper, we show
that their result can be significantly improved by using
Blackwell’s Approachability Theorem. We present an
algorithm, making use of approachability, that achieves
recalibration at a much faster rate than the internal
regret minimization algorithm by Kuleshov and Ermon
(2017). We also characterize the achievable amount of
calibration and regret as a function of the time hori-
zon using our technique; more precisely, we study for
which exponents a, b does there exist a forecasting al-
gorithm that guarantees at most T a calibration error
and no more than T b regret relative to scoring rule loss
functions. We provide the first algorithm that offers a
flexible tradeoff between calibration error and regret
in the online setting.

1.1 Motivation

Calibrating probability predictions As the preva-
lence of machine learning systems in decision-making
settings grows, it is essential that the predictions
they provide are trustworthy, especially in applications
where the confidence associated with the prediction is
at least as important as the prediction itself. Neural
networks have been found to be poor at assessing their
own uncertainty (Guo et al., 2017), and as a result,
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may output probability values that do not match the
true probabilities of outcomes. This can have seri-
ous consequences; machine learning systems have been
known to propagate unintended but harmful discrim-
ination, as shown by Buolamwini and Gebru (2018)
for image classification and Bolukbasi et al. (2016) for
natural language tasks. One proposed method for ad-
dressing the issue of assessing uncertainty is calibration
(Hebert-Johnson et al., 2018). Calibration requires
that the probability estimates from the ML model
match the true distribution of the outcome; for exam-
ple, for a binary class, if a model outputs a probability
of 0.3 a certain number of times, the proportion of
true outcomes should be 30 percent across the total
instances when the model predicted 0.3. In the online
setting, many works have proposed techniques for how
to achieve calibrated probability estimates, even in the
adversarial setting (Foster, 1999; Mannor and Stoltz,
2010; Abernethy et al., 2011).

Limitations of calibration While calibration is a
useful property for online predictors to have, calibra-
tion is not sufficient and does not fully reflect domain
specific knowledge. For example, consider two ML
weather forecasters. Suppose the true outcome is that
it rains once every two days. Forecaster 1 predicts
50 percent chance of rain every day, and Forecaster 2
predicts 0 percent chance of rain on the days it does
not rain and 100 percent on the days it does. Observe
that both of these forecasters are equally calibrated;
however, the second forecaster is a better predictor of
the likelihood of rain. Calibration does not capture this
fact. Although calibration does not imply accuracy,
accuracy does imply calibration, simply because being
accurate requires an understanding of the outcome dis-
tribution. This is why, in practice, proper scoring rules
are used to assess the accuracy of predictions (Gneiting
and Raftery, 2007).

Incorporating expert/domain-specific knowl-
edge in online prediction models Forecaster 2 is
an example of a forecaster that reflects domain-specific
knowledge and is also calibrated. However, it is also
possible for a forecaster that acts on domain specific
knowledge to be poorly calibrated. Consider a third
forecaster in the same weather prediction setting which
predicts 20 percent chance of rain on the days it does
not rain, and 80 percent chance of rain on the days that
it does. This predictor is poorly calibrated, because
it incurs a calibration error of 0.2 for every decision.
However, compared to Forecaster 1, its predictions still
reflect a domain-specific understanding of the proba-
bility distribution. The goal of our work is to take
a model such as this third forecaster and transform
its predictions in an online setting to achieve calibra-

tion while still making decisions that are informed by
domain knowledge.

1.2 Problem formulation

In this paper, we focus on a class of loss functions
known as strictly proper scoring rules. We refer the
reader to Section 2.2 for an introduction on the subject.

Consider an online prediction environment where the
timing of each round of the prediction process is as
follows.

1. An oracle reveals a prediction qt.

2. The algorithm must make a prediction pt.

3. The actual label yt ∈ {0, 1} is revealed.

4. The algorithm receives a score S(pt, yt).

At the end of T rounds, the following quantities are
calculated.

• The forecaster’s cumulative score is Sf =∑T
t=1 S(pt, yt).

• The oracle’s cumulative score is So =∑T
t=1 S(qt, yt).

• The forecaster’s average regret is 1
T (Sf − So).

• The forecaster’s ℓ1-calibration error is

∑
p∈{p1,...,pT }

∣∣∣∣∣ 1T
T∑

t=1

(yt − p) · 1pt=p

∣∣∣∣∣ .
(Although written as a sum over all p ∈ [0, 1], the
sum is actually finite because there are only finitely
many p for which the summand is nonzero.)

For the sake of generality, our model makes no assump-
tions about how the oracle’s predictions are generated,
except that if the algorithm is randomized the oracle
cannot anticipate the algorithm’s future coin-tosses.
This means, for example, that our simple prediction
model subsumes more elaborate models in which the
predictions qt are generated by a contextual bandit
algorithm, or by a pre-trained model such as a deep
neural network, using domain-specific features observed
at time t or earlier.

Our work addresses the question: for which exponent
pairs (a, b) is there a forecasting algorithm that guar-
antees regret Õ(T a) and calibration error Õ(T b)? The
purpose of this paper is to propose a method of tack-
ling this question using Blackwell’s Approachability
Theorem.
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1.3 Our results

For the notion of regret described above, we show that
there is a family of approachability-based algorithms,
parameterized by ε > 0, that simultaneously achieves
calibration O(ε + 1/

√
εT ) and average regret O(ε2 +

1/
√
εT ). This is a significant improvement from the

result by Kuleshov and Ermon (2017), which achieves
calibration O(ε + 1/

√
ε2T ) and average regret O(ε +

1/
√
ε2T ). The improved dependence on ε is significant

in practice because it impacts how many samples, T , are
required in order to make the average regret less than
some specified upper bound, δ. For example, to make
ε2 + 1/

√
εT less than δ one would set T = O(δ−5/2)

and ε = O(δ1/2), whereas to make ε + 1/
√
ε2T less

than δ requires T = O(δ−4) and ε = O(δ). For δ = 0.1
this amounts to the difference between a few hundred
samples versus more than ten thousand.

By choosing ε appropriately, we show that our algo-
rithm can be designed to achieve the best known cali-
bration upper bound of T− 1

3 while limiting regret to no
more than T− 1

3 . If one is more interested in minimizing
regret, we also show that ε can be chosen to achieve
regret of T− 2

5 while limiting calibration error to no
more than T− 1

5 . The algorithm allows for a linear in-
terpolation between these two bounds. That is, for any
x in the interval

[
1
3 ,

2
5

]
, we can set ε = T−2x to achieve

calibration O(T 2x−1) while simultaneously achieving
regret O(T−x).

1.4 Comparison to prior work

Calibration and proper scoring rules Foster
(1999) first reduced calibration to approachability.
Since then, a number of alternative proofs of calibra-
tion using reductions to approachability have emerged
(Mannor and Stoltz, 2010; Abernethy et al., 2011). Our
work draws ideas and techniques from these papers,
and extends those ideas with innovations specific to
the task of online recalibration. Unlike in the standard
setting of calibrated binary sequence prediction, the
recalibration problem incorporates side information
in the form of an oracle who makes a prediction at
each timestep. In the standard calibration problem,
the goal is to minimize calibration error. In the re-
calibration problem, the algorithm must attain two
goals simultaneously: sublinear calibration error and
sublinear regret relative to the oracle’s predictions. To
achieve both of these objectives we need to modify the
vector payoffs and the approachable set used in the
standard reduction from calibration to approachabil-
ity. The main technical innovation in this work lies
in verifying that the modified set is indeed approach-
able in the modified vector-payoff game. After showing
that the modified set is indeed approachable, we rely

on a reduction from approachability to Online Linear
Optimization by Abernethy et al. (2011) to construct
an algorithm for recalibration. The geometry of our
approachable set leads to quantitative bounds on cali-
bration error and regret that improve upon the state
of the art.

Recalibration in offline setting In the offline set-
ting, calibrated predictions are usually constructed
using methods such as Platt Scaling (Platt, 1999) and
isotonic regression (Niculescu-Mizil and Caruana, 2005).
In the context of binary classification, these methods
reduce the problem of outputting calibrated predic-
tions to a one-dimensional regression problem. Given
data {(xi, yi)}ni=1, they train a model f(s) to predict
pi = f(s) from uncalibrated scores si = g(xi) produced
by a classifier g. These techniques are particularly
suited for the offline setting where the training and the
calibration phases of the algorithm can be separated
and thus, do not apply in the online setting and can fail
when the test distribution does not match the training
distribution. Our results, on the other hand, are robust
to adversarial manipulations.

Recalibration in online setting Kuleshov and Er-
mon (2017) present an algorithm for recalibration, that
is, for achieving ε calibration and ε regret simultane-
ously at a rate of 1/ε

√
T . They achieve this by running

1/ε many calibration algorithms in parallel for each
prediction interval that the expert (called “oracle” in
our work, “blackbox predictor” in theirs) makes. This
method works because calibrated predictors have been
shown to minimize internal regret (Cesa-Bianchi and
Lugosi, 2006). They are able to bound the regret by the
internal regret, which is bounded by calibration error,
which itself is bounded by ε. The two main issues with
their approach are first, the additional cost of running
1/ε calibration algorithms in parallel; and second, hav-
ing to rely on the calibration error bound in order to
bound the regret. Our technique bypasses these con-
straints by appealing to Blackwell’s Approachability
Theorem. With Blackwell’s Approachability Theorem,
we can treat this problem as a vector-valued game
where one tries to simultaneously minimize the cali-
bration and regret components of the vector. Instead
of having 1/ε different calibration algorithms, we have
only a single calibration algorithm which also takes
regret into account. The single calibration algorithm
achieves a stronger guarantee by leveraging the fact
that proper scoring rules incentivize calibration. We
also take this a step further by giving precise error
bounds as a function of the time horizon, and allowing
a trade-off between calibration error and regret.
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Online Minimax multiobjective optimization
An even more general problem than recalibration is
online multiobjective optimization, for which Lee et al.
(2022) present a minimax theorem and a multiplicative-
weights algorithm that achieves (a suitable notion of)
the minimax value plus a sublinear regret term. By cast-
ing recalibration as an online multiobjective optimiza-
tion problem, we show in Appendix B how to achieve
calibration error and average regret both bounded by
O(ε + 1/

√
εT ), for any ε > 0. This matches the cal-

ibration error bound for our Algorithm 1, but with
a worse dependence on ε in the regret bound. The
reduction from recalibration to online multiobjective
optimization uses loss vectors of dimension roughly
21/ε, so a naïve implementation of the algorithm of Lee
et al. (2022) would be computationally inefficient. In
the Appendix, we indicate how it can be implemented
to run in time poly(1/ε) per iteration by exploiting the
special structure of the loss vectors arising from our
reduction. This running time is exponentially faster
than the naïve reduction, but still exponentially slower
than the O(log(1/ε)) running time per iteration of our
Algorithm 1.

Calibeating Another closely related result is con-
tained in a preprint by Foster and Hart (2021). In their
paper on “calibeating,” they present a method for trans-
forming expert predictions to calibrated predictions,
while measuring accuracy against an even more strict
benchmark than ours: they compare the algorithm’s
loss to that of the expert after the calibration error
has been removed, a benchmark called the “refinement
score”. They prove this for the loss function known as
the Brier score, when calibration is quantified using the
ℓ2 objective. Our result is incomparable to theirs: while
their benchmark for accuracy is stricter than ours, our
quantification of calibration (using ℓ1 rather than ℓ2)
is stricter than theirs. Furthermore, our recalibration
procedure applies to any strictly proper scoring rule
loss, whereas their calibeating procedure is specialized
to the Brier score.

2 Background

2.1 Calibration

Let y1, y2, . . . ∈ {0, 1} be a sequence of outcomes, and
p1, p2, . . . ∈ [0, 1] a sequence of probability predictions
by a forecaster. We define for every T and every pair
p, ε where 0 ≤ p ≤ 1 and ε > 0, the quantities

nT (p, ε) :=

T∑
t=1

I[pt ∈ (p− ε/2, p+ ε/2)],

ρT (p, ε) :=

∑T
t=1 ytI[pt ∈ (p− ε/2, p+ ε/2)]

nT (p, ε)
.

The quantity ρT (p−ε/2, p+ε/2) should be interpreted
as the empirical frequency of yt = 1, up to round T ,
on only those rounds where the forecaster’s prediction
was “roughly” equal to p. The goal of calibration, of
course, is to have this empirical frequency ρT (p, ε) be
close to the estimated frequency p. To capture how
close an algorithm A to being ε-calibrated, we use a
notion of rate below.

Definition 1. Let P(ε) denote the set of midpoints
of the intervals [iε, (i+ 1)ε] for i = 0, 1, . . . , ⌊ε−1⌋. Let
the (ℓ1, ε)-calibration rate for forecaster A be

Cε
T (A) =

max

0,
1

T

 ∑
z∈P(ε)

nT (z, ε) · |z − ρT (z, ε)|

− ε

2


We say that a forecaster is (ℓ1, ε)-calibrated if Cε

T (A) =
o(1). This in turn implies lim supT→∞ Cε

T (A) = 0.

2.2 Proper Scoring Rules, Regret, and
Recalibration

Kuleshov and Ermon (2017) define the problem of
online recalibration in which the task is to transform a
sequence of uncalibrated forecasts qt into predictions
pt that are calibrated and almost as accurate as the
original qt. They show that this objective is achievable
if and only if the loss function used to measure forecast
accuracy is a proper scoring rule, a term which we now
define.

Suppose there is a future event denoted by a random
variable X with a finite set Y of possible outcomes. For
example: Y = {rain, no rain}. Let ∆Y be the set of
probability distributions on Y . An algorithm reports a
probability distribution p ∈ ∆Y , observes the outcome
y ∈ Y and receives a score S(p, y).

Definition 2. A scoring rule is a function S : ∆Y ×
Y 7→ R. It is proper if accurately reporting the distri-
bution of X minimizes the expected score: that is, for
all distributions p, q ∈ ∆Y

EX∼p [S(p,X)] ≤ EX∼p [S(q,X)] . (1)

Scoring rule S is strictly proper if Inequality (1) is
strict whenever p ̸= q.

Note that we adopt the convention that the scoring
rule is a loss function rather than a payoff function,
i.e. p is the unique probability that minimizes S(·, p)
rather than maximizing it. We extend S to the domain
∆Y ×∆Y by making it linear in the second variable. In
other words, S(q, p) is shorthand for EX∼p [S(q,X)] .
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We assume the scoring rule S is Lipschitz-continuous
in its first variable, with Lipschitz constant LS , i.e.

∀p, q ∈ ∆Y ∀y ∈ Y |S(p, y)−S(q, y)| ≤ LS ·∥p−q∥,

where ∥p− q∥ denotes the total variation distance be-
tween p and q.

We measure a forecaster’s accuracy by comparing with
the score of the oracle. Let q1, q2, . . . ∈ [0, 1] be a
sequence of probability predictions by an oracle.

Definition 3. Let the regret at timestep t for forecaster
A be

r(pt, qt, yt) = S(pt, yt)− S(qt, yt)

This leads to an average regret of RT (A) =
1
T

∑T
t=1 r(pt, qt, yt). We say that a forecaster has

no-regret if RT (A) = o(1). This in turn implies
lim supT→∞ RT (A) = 0. We also say a forecaster has
δ-regret rate if RT (A) ≤ δ.

Definition 4. Let the (ℓ1, ε, δ)-recalibration rate for
forecaster A be

Cε,δ
T (A) = max

{
0, Cε

T (A), RT (A)−
δ

2

}
(2)

We say that a forecaster is (ℓ1, ε, δ)-recalibrated
if Cε,δ

T (A) = o(1). This in turn implies
lim supT→∞ Cε,δ

T (A) = 0.

This definition is analogous to Definition 4 in Kuleshov
and Ermon (2017), except that we have quantified the
calibration and accuracy using two parameters, ε and
δ, whereas they use ε for both.

2.3 Blackwell’s Approachability Theorem

Blackwell approachability (Blackwell, 1956) generalizes
the problem of playing a repeated two-player zero-sum
game to games whose payoffs are vectors instead of
scalars. In a Blackwell approachability game, at all
times t, two players interact in this order: first, Player
1 selects an action xt ∈ X; then, Player 2 selects an
action yt ∈ Y ; finally, Player 1 incurs the vector-valued
payoff u(xt, yt) ∈ Rd. The sets X,Y of player actions
are assumed to be compact convex subsets of finite-
dimensional vector spaces, and u is assumed to be a
biaffine function on X × Y . Player 1’s objective is to
guarantee that the average payoff converges to some
desired closed convex target set S ⊆ Rd. Formally,
given target set S ⊆ Rd, Player 1’s goal is to pick
actions x1, x2, . . . ∈ X such that no matter the actions
y1, y2, . . . ∈ Y played by Player 2,

dist

(
1

T

T∑
t=1

u(xt, yt),S

)
→ 0 as T →∞ (3)

The action xt is allowed to depend on the realized payoff
vectors us(xs, ys) for s = 1, 2, . . . , t− 1. We say the set
S is approachable if Player 1 has a strategy that attains
the goal (3) no matter how Player 2 plays. Blackwell’s
Approachability Theorem asserts that a convex set
S ⊂ Rd is approachable if and only if every closed
halfspace containing S is approachable. Henceforth
we refer to this necessary and sufficient condition as
halfspace-approachability.

In this paper, we shall adopt the notation, distp(x,S)
to be the mins∈S ∥x− s∥p. We will refer to the ℓp ball
∈ Rd of radius r centered at the origin as Bd

p(r).

We now give an equivalent and alternative character-
ization of the definition of recalibration rate (Defi-
nition 4): let the recalibration vector at time T de-
noted vT be given by: vT = cT ⊕ RT where
cT (i) = nT (iε,ε)

T (iε− ρT (iε, ε)) for 0 ≤ i ≤ ⌈ε−1⌉,
and RT = 1

T

∑T
t=0 S(pt, yt)− S(qt, yt).

Lemma 5.

Cε,δ
T (A) = max

{
dist1

(
cT , B

ε−1

1 (ε/2)
)
, Rt − δ/2

}
(4)

3 Recalibration via Approachability

We now describe the construction of the payoff game
that allows us to reduce recalibration to approachability.
This payoff game modifies the standard construction
for calibration in (Foster, 1999; Abernethy et al., 2011)
by adding an additional dimension for regret.

3.1 Reduction

For any m ≥
√
4LS where LS is the lipschitz constant

of the scoring rule, we will show how to construct an
(ℓ1, ε, δ)-recalibrated forecaster for ε = 1

m and δ = 4LS

m2 .
On each round t, after observing the oracle’s prediction
qt, a forecaster will randomly predict a probability
pt ∈ {0/m, 1/m, 2/m, . . . , (m− 1)/m, 1}, according to
the distribution wt, that is Pr(pt = i/m) = wt(i). We
define a vector-valued game. Let the player choose
wt ∈ X := ∆m+1, and the adversary choose yt ∈
Y := [0, 1], and the payoff vector will be ℓt(wt, yt) =
c(wt, yt)⊕ r(wt, qt, yt)

1 defined as follows:

c(wt, yt) :=

(
wt(0)

(
yt −

0

m

)
, . . . ,wt(m)

(
yt −

m

m

))
(5)

r(wt, qt, yt) :=

m∑
i=0

wt(i)

(
S

(
i

m
, yt

)
− S(qt, yt)

)
(6)

1⊕ represents concatenation
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The set we wish to approach is

Smapproach (7)

=

{
(x, z) | x ∈ Rm+1, z ∈ R s.t ||x||1 ≤

1

m
, z ≤ 4LS

m2

}
(8)

In Section 1.4, we pointed out that Kuleshov and Er-
mon (2017)’s approach works by running 1/ε = m
many calibration algorithms in parallel, one for each
prediction interval [i/m, (i+ 1)/m]. Each calibration
algorithm solves a vector-valued game with payoff vec-
tors of dimension m. Thus, their approach can also be
interpreted as using a quadratic number of dimensions
(m2) in the payoff vector while we show how to achieve
the same low regret guarantee using a linear number of
dimensions (m+ 2). Our main technical contribution
is that the lower-dimensional problem we formulate re-
quires a novel proof of approachability, which our work
supplies, whereas in the higher-dimensional problem
formulated implicitly by Kuleshov and Ermon (2017)
approachability follows “for free” due to a more general
result by (Blum and Mansour, 2007; Cesa-Bianchi and
Lugosi, 2006).

3.2 Proof of Approachability

For the calibration vector-payoff game, Abernethy et al.
(2011) prove approachability via response-satisfiability.
While this is arguably the simplest way to prove ap-
proachability, it is important to note that to construct
an algorithm for approaching the desired set, sim-
ply proving response-satisfiability is not enough. A
halfspace oracle needs to be provided as well. Al-
though Abernethy et al. (2011) prove approachability
by response-satisfiability, they present a halfspace ora-
cle based on the construction in Foster’s halfspace-
approachability proof. For our recalibration prob-
lem, we prove approachability by showing halfspace-
approachability. Our proof is constructive, hence it
directly yields a halfspace oracle.
Theorem 6. For the vector-valued game defined in
5, the set S = Smapproach is approachable. That is, any
halfspace H containing S is approachable.

Proof. First we characterize the set of halfspaces con-
taining S. Let H be a halfspace of Rm+2 defined by
the equation ⟨a, x⟩+ bz ≤ θ for x ∈ Rm+1, z ∈ R. We
claim that S ⊆ H iff b ≥ 0 and θ ≥

(
||a||∞

m + 4bLS

m2

)
.

To see this, observe that for H to contain S. It must
be the case that

max

{
⟨a, x⟩+ bz | ||x||1 ≤

1

m
, z ≤ 4LS

m2

}
≤ θ

First, we need b ≥ 0, since we can choose z to vi-
olate this constraint otherwise. Secondly, we need
θ ≥

(
||a||∞

m + 4bLS

m2

)
, since we can choose x and z to

violate this constraint otherwise. Thus, if S ⊆ H,
then both conditions b ≥ 0 and θ ≥

(
||a||∞

m + 4bLS

m2

)
must hold for H. Conversely, if both conditions b ≥ 0

and θ ≥
(

||a||∞
m + 4bLS

m2

)
hold for H, then S ⊆ H.

This is because for any (x, z) ∈ S, ⟨a, x⟩ + bz ≤(
||a||∞

m + 4bLS

m2

)
≤ θ and if b < 0, we can obtain a

contradiction by choosing z < − θ
b .

WLOG, we will assume θ =
(

||a||∞
m + 4bLS

m2

)
, since ap-

proachability of a halfspace defined by ⟨a, x⟩ + bz ≤(
||a||∞

m + 4bLS

m2

)
implies approachability of ⟨a, x⟩+bz ≤

θ for θ ≥
(

||a||∞
m + 4bLS

m2

)
. That is, we will only con-

cern ourselves with proving halfspace-approachability
for halfspaces such that θ =

(
||a||∞

m + 4bLS

m2

)
. For a

halfspace such that a = 0, we follow the halfspace ora-
cle in 17 and set ai = 0 for all i. This gives us regret at
most 4LS

m2 ; see proof of 7 in the appendix. If a ̸= 0, then
we can consider the halfspace normalized by ||a||∞, that
is, the halfspace defined by a′ = a

||a||∞ , b′ = b
||a||∞ and

θ = 1
m + 4b′LS

m2 . Since ||a′||∞ = 1 and b′ ≥ 0, by Lemma
7, this halfspace is approachable. Consequently, any
halfspace containing S is approachable.

Lemma 7. Consider a pair (a, b) ∈ Rm+1 × R such
that ∥a∥∞ = 1 and b ≥ 0. The halfspace H1, defined
below, is approachable.

H1 :=

{
(x, z) ∈ Rm+1 × R

∣∣∣∣ ⟨a, x⟩+ bz ≤ 1

m
+

4bLS

m2

}
(9)

The full proof can be found in the appendix. We
provide a proof sketch here. To show that H1 is
approachable, we will find a mixed distribution for
the forecaster (i.e, a probability distribution over
p ∈ {0/m, 1/m, 2/m, . . . , (m − 1)/m, 1}) such that
Ep [⟨a, c(p, y)⟩+ br(p, qt, y)] ≤ 1

m + 4bLS

m2 for any y ∈
{0, 1}. For simplicity, define

f(i, y) = ai

(
i

m
− y

)
+ b

[
S

(
i

m
, y

)
− S(qt, y)

]
(10)

Fi =

[
f(i, 0)
f(i, 1)

]
(11)

so our objective becomes to show that there ex-
ists a distribution p over i

m ∈ {0, . . . ,m} such that
Ep f(i, y) ≤ 1

m + 4bLS

m2 for y ∈ {0, 1}, or equivalently
that the vector Ep Fi belongs to the quadrant-shaped
set (−∞, 1

m + 4bLS

m2 ] × (−∞, 1
m + 4bLS

m2 ]. We will be
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choosing p to be either a point-mass on i
m for some

i, or a distribution on two consecutive values in the
set {0, 1

m , 2
m , . . . , 1}. For p ∈ [0, 1] let D(p) denote the

vector corresponding to the scoring rule term in Fi.

D(p) = b ·
[
S(p, 0)− S(qt, 0)
S(p, 1)− S(qt, 1)

]
As a result of the fact that S is a proper scoring rule,
an important observation is that the curve formed
by D(p) is convex and its tangent lines are parallel to[

p
p− 1

]
. Thus, F0, F1, . . . , Fm are points on a sequence

of tangent lines to the convex curve formed by D(p).
Additionally, we can show that F0 lies in the left half-
plane while Fm must belong to the lower half-plane.
Thus, F0, F1, . . . , Fm are always in the second, third or
fourth quadrants and lie on lines with slopes that are
slowly changing from negative to positive.

If Fi belongs to the third quadrant — that is, the set
(−∞, 0]× (−∞, 0] — then we choose p to be a point-
mass on i. This guarantees that EpFi ≤ 1

m + 4bLS

m2 .
Otherwise, there must be at least one index j such that
Fj lies in the second quadrant while Fj+1 lies in the
fourth quadrant. Using plane geometry, we show that
the line segment joining Fj and Fj+1 intersects the set
(−∞, 1

m + 4bLS

m2 ] × (−∞, 1
m + 4bLS

m2 ] as required. The
rest of the proof can be found in the appendix.

3.3 Efficient Algorithm via Online Linear
Optimization

We now show how the results in the previous section
lead to an efficient algorithm for online recalibration.
The steps in this section are parallel to those in Section
5.2 of Abernethy et al. (2011) but we have to repeat
them because our payoff game and convex sets are
different.

Theorem 8. For any m, there exists a (ℓ1,
1
m , 4LS

m2 )-
online recalibration algorithm that runs in time
O(logm) per iteration and guarantees an expected re-
calibration rate of O

(√
m
T

)
Following the steps of the reduction from Approach-
ability to OLO outlined in Abernethy et al. (2011),
we provide a convex set K whose elements correspond
to halfspaces containing Smapproach, and express the dis-
tance of a loss vector to the set S we wish to approach
as an optimization over the convex set K. We do so
in Lemma 9. Then, we present an algorithm (halfs-
pace oracle) such that given a halfspace θt ∈ K, it
returns a distribution wt ∈ ∆m+1 with the guarantee
that ⟨ℓt(wt, yt),θt⟩ ≤ 1

m + 4LS

m2 . Lastly, we present an
algorithm for recalibration that uses Online Gradient
Descent Zinkevich (2003) to select the halfspace θt ∈ K
to approach at each timestep.

We define the convex set K as follows{
(a, b) | a ∈ Rm+1, b ∈ R s.t ||a||∞ ≤ 1, 0 ≤ b ≤ 1

}
(12)

This is an appropriate choice of K due to Lemma 9,
since it allows us to upper bound the distance to S in
terms of a linear optimization objective over the set K.

Lemma 9. For any vector x ∈ Rm+2 such that
∥x1:m+1∥1 ≥ 1/m, and |xm+2| ≥ 4LS

m2 ,

dist1
(
x,Smapproach

)
= − 1

m
− 4LS

m2
−min

θ∈K
⟨−x, θ⟩ (13)

We defer the proof of Lemma 9 to the appendix. The
usefulness of the lemma above is that it allows us to
combine the approachability guarantee of Theorem 6
to upper bound the distance to the target convex set
in terms of regret of an online linear optimization algo-
rithm.

dist1

(
1

T

T∑
t=1

ℓt(wt, yt),Smapproach

)
(14)

= − 1

m
− 4LS

m2
−min

θ∈K

〈
− 1

T

T∑
t=1

ℓt(wt, yt),θ

〉
(15)

≤ 1

T

(
T∑

t=1

⟨−ℓt(wt, yt),θt⟩ −min
θ∈K

T∑
t=1

⟨−ℓt(wt, yt),θ⟩

)
(16)

where the inequality follows from the approachability
guarantee of Theorem 6: for any halfspace θt, there
exists a distribution wt such that ⟨ℓt(wt, yt), θt⟩ ≤
1
m + 4LS

m2 for any yt ∈ {0, 1}.

The Halfspace Oracle: Approach(θt+1) Given
any θt ∈ K, we must construct w ∈ ∆m+1 so that
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⟨ℓt(wt, yt),θt⟩ ≤ 1
m + 4LS

m2 for any yt. The proof of
approachability for Lemma 7 is a constructive one and
describes how to choose wt ∈ ∆m+1 given θt. Recall
functions f(i, y) and Fi defined in 10. The algorithm
firsts check if F0 or Fm is in the 3rd quadrant. If one
of them is, then we output a point distribution at the
corresponding probability value. If none of F0 or Fm is
in the 3rd quadrant, then we binary search for an index
i with Fi in the 3rd quadrant or a pair of consecutive
indices j, j+1 where Fj is in 2nd quadrant and Fj+1 is
in the 4th quadrant. In the first case, wvt(i) = 1 and
0 everywhere else. In the second case, we set

wt(j) =
f(j + 1, 1)− f(j + 1, 0)

f(j, 0)− f(j + 1, 0)− f(j, 1) + f(j + 1, 1)
(17)

wt(j + 1) =
f(j, 0)− f(j, 1)

f(j, 0)− f(j + 1, 0)− f(j, 1) + f(j + 1, 1)
(18)

and 0 everywhere else. The correctness of this proce-
dure follows from the proof of Lemma 7. Note that
Fi does not need to be pre-computed for every index.
It can be computed online during the binary search
steps. Thus, this halfspace oracle can be implemented
in O(logm) steps.

The Learning Algorithm: OGD(θt|lt) Similar to
Abernethy et al. (2011), we use the Online Gradient
Descent algorithm (Zinkevich, 2003) as the learning
algorithm.

Algorithm 1 Online Recalibration Algorithm
Input: some natural number m ≥

√
4LS

Initialize: θ1 = 0,w1 ∈ ∆m+1

for t = 1, . . . , T do
Observe qt from black-box prediction oracle
Sample it ∼ wt, predict pt =

it
m , observe yt

Set lt := −ℓt(wt, yt)
Query learning algorithm: θt+1 ← OGD(θt|lt)
// Online Gradient Descent step
Query halfspace oracle: wt+1 ← Approach(θt+1)
// Obtain wt+1 ∈ ∆m+1 from θt+1

end for

OGD guarantees that the regret is no more than DG
√
T

where D is the ℓ2 diameter of the set and G is the ℓ2-
norm of the largest cost vector. For the convex set
K, the ℓ2 diameter is O(

√
m). The ℓ2-norm of the

calibration component of the vector is bounded by
√
2.

To make the size of the regret at time t small and at

most 1, we normalize by the lipschitz-constant LS

Cε,δ
T (A) ≤ dist1

(
1

T

T∑
t=1

ℓt(wt, yt),Smapproach

)
(19)

≤ Regrett
T

≤ GD√
T

= O

(√
m

T

)
(20)

4 Convergence Rates

In this section, we describe how the results from the
previous sections can be used to obtain bounds on
calibration error and regret.

Theorem 10. For any x ∈ [ 13 ,
2
5 ], given a black-box

prediction oracle, there exists a forecasting algorithm
that simultaneously achieves expected regret O(T−x)
while keeping the expected ℓ1-calibration error less than
T 2x−1.

Proof. In Theorem 8, we show that for any m, there
exists an (ℓ1,

1
m , 4Ls

m2 )-online recalibration algorithm
which satisfies a recalibration rate of O

(√
m
T

)
. By

definition 4, this implies that the ℓ1-calibration error is
upper bounded by O( 1

m +
√

m
T ) and the regret is upper

bounded by O( 1
m2 +

√
m
T ). Setting m = ⌈T 1−2x⌉, we

obtain an algorithm that guarantees expected regret of
O(T−x) and expected calibration error O(T 2x−1)

Figure 1: The graph below captures the linear tradeoff
between regret and ℓ1 calibration error. According to
Theorem 10, the set of jointly achievable rates contains
the shaded region.
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A Appendix

Lemma 11. For every qt ∈ [0, 1] there exists a w ∈ ∆m+1 such that for all y ∈ {0, 1}, rt(w, y) ≤ 2Ls

m2 . 2

Proof. Fix q = qt. Recalling the definition of rt(w, y) in Equation (6), we see that the lemma is equivalent to
proving

min
w∈∆m+1

max
y∈{0,1}

m∑
i=0

wt(i)

(
S

(
i

m
, y

)
− S(q, y)

)
≤ 2Ls

m2
. (21)

The functions S
(

i
m , y

)
and S(q, y) appearing on the right side of (21) are affine functions of y, so we can enlarge

the domain of y to be the compact, convex set [0, 1], rather than the two-element set {0, 1}, and then apply von
Neumann’s Minimax Theorem to conclude that inequality (21) is equivalent to

max
y∈[0,1]

min
w∈∆m+1

m∑
i=0

w(i)

(
S

(
i

m
, y

)
− S(q, y)

)
≤ 2Ls

m2
. (22)

The inequality (22) is easy to prove. For any y ∈ [0, 1], choose k ∈ [m] such that |y − k
m | ≤

1
m , and let x = k

m .
By the Lipschitz property of S we have

|S(x, 0)− S(y, 0)| ≤ Ls|x− y| ≤ Ls

m
and |S(y, 1)− S(x, 1)| ≤ Ls|x− y| ≤ Ls

m
,

so the triangle inequality implies

|S(x, 0)− S(y, 0) + S(y, 1)− S(x, 1)| ≤ 2Ls

m
,

and hence

(x− y)[S(x, 0)− S(y, 0) + S(y, 1)− S(x, 1)] ≤ 1

m
· 2Ls

m
=

2Ls

m2
. (23)

Now, using the fact that S is a strictly proper scoring rule we have

S(x, y)− S(q, y) ≤ S(x, y)− S(q, y) + [S(q, y)− S(y, y)] + [S(y, x)− S(x, x)]

= [S(x, y)− S(y, y)] + [S(y, x)− S(x, x)]

= (1− y)[S(x, 0)− S(y, 0)] + y[S(x, 1)− S(y, 1)]

+ (1− x)[S(y, 0)− S(x, 0)] + x[S(y, 1)− S(x, 1)]

= (x− y)[S(x, 0)− S(y, 0) + S(y, 1)− S(x, 1)] ≤ 2Ls

m2
.

Therefore, if we set w to be the probability vector defined by w(k) = 1 and w(j) = 0 for all j ̸= k, we have

m∑
i=0

w(i)

(
S

(
i

m
, y

)
− S(q, y)

)
=

(
S

(
k

m
, y

)
− S(q, y)

)
= S(x, y)− S(q, y) ≤ 2Ls

m2
.

As y ∈ [0, 1] was arbitrary, we have shown that inequality (22) holds, completing the proof of the lemma.

A.1 Proof of Lemma 7

Lemma 12. Consider a pair (a, b) ∈ Rm+1 × R such that ∥a∥∞ = 1 and b ≥ 0. The halfspace H1, defined below,
is approachable.

H1 :=

{
(x, z) ∈ Rm+1 × R

∣∣∣∣ ⟨a, x⟩+ bz ≤ 1

m
+

4bLS

m2

}
(9)

2rt(w, y) should be interpreted as rt(w, qt, y)
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Proof. To show that H1 is approachable, we will find a mixed distribution for the forecaster (i.e, a probability
distribution over p ∈ {0/m, 1/m, 2/m, . . . , (m− 1)/m, 1}) such that Ep [⟨a, ℓc(p, y)⟩+ bℓr(p, y)] ≤ 1

m + 4bLS

m2 for
any y ∈ {0, 1}. For simplicity, define

c(i, y) =
i

m
− y and Ci =

[
c(i, 0)
c(i, 1)

]
d(i, y) = b · S

(
i

m
, y

)
− b · S(qt, y) and Di =

[
d(i, 0)
d(i, 1)

]
f(i, y) = aic(i, y) + d(i, y) and Fi =

[
f(i, 0)
f(i, 1)

]
= aiCi +Di

Observe that f(i, y) = ⟨a, ℓc( i
m , y)⟩+ bℓr(

i
m , y), so our objective becomes to show that there exists a distribution

p over i
m ∈ {0, . . . ,m} such that Ep f(i, y) ≤ 1

m + 4bLS

m2 for y ∈ {0, 1}, or equivalently that the vector Ep Fi belongs
to the quadrant-shaped set (−∞, 1

m + 4bLS

m2 ]× (−∞, 1
m + 4bLS

m2 ]. We will be choosing p to be either a point-mass on
i
m for some i, or a distribution on two consecutive values in the set {0, 1

m , 2
m , . . . , 1}. Hence, the vector Ep Fi will

belong to one of m closed line segments forming a polygonal path through the vectors F0, F1, . . . , Fm. Observe
that F0 belongs to the left half-plane, i.e. f(0, 0) ≤ 0, because

f(0, 0) = a0c(0, 0) + d(0, 0) = b(S(0, 0)− S(qt, 0)) ≤ 0,

where the last inequality holds because b ≥ 0 and S is a proper scoring rule. Similarly, Fm belongs to the lower
half-plane, i.e. f(m, 1) ≤ 0, because

f(m, 1) = amc(m, 1) + d(m, 1) = b(S(1, 1)− S(qt, 1)) ≤ 0.

If F0 or, respectively, Fm belongs to the third quadrant — that is, the set (−∞, 0]×(−∞, 0] — then we choose p to
be a point-mass on 0 or 1, respectively. The remaining case is that F0 and Fm belong to the sets (−∞, 0]× (0,∞)
and (0,∞)× (−∞, 0], respectively. In that case, F0 and Fm lie on opposite sides of the line L consisting of all

points
[
x0

x1

]
that satisfy x0 = x1; F0 lies above L while Fm lies below it. Hence, there must be at least one

index j such that Fj lies on or above L while Fj+1 lies below it. We aim to construct a distribution p supported
on { j

m , j+1
m } such that Ep Fi belongs to the set (−∞, 1

m + 4bLS

m2 ] × (−∞, 1
m + 4bLS

m2 ]. Assume without loss of
generality that j ≥ m/2. (The case j ≤ m/2 is handled symmetrically, by exchanging the roles of the labels y = 0
and y = 1, i.e. the first and second coordinates of the vectors we are considering.)

For p ∈ [0, 1] let D(p) denote the vector

D(p) = b ·
[
S(p, 0)− S(qt, 0)
S(p, 1)− S(qt, 1)

]
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and observe that the notation Di defined earlier is equivalent to D(i/m). The fact that S is a proper scoring rule
ensures that when y is a random sample from {0, 1} taking the value 1 with some probability p, the value of p′
that minimizes Ey[S(p

′, y)− S(qt, y)] is p′ = p. Since the expected value Ey[S(p
′, y)− S(qt, y)] is calculated by

taking the inner product of the vector D(p′) with the probability vector

Y (p) =

[
1− p
p

]
,

this means that the curve D = {D(p′) | 0 ≤ p′ ≤ 1} is convex and that the line

L(p) = {x | ⟨Y (p), x⟩ = ⟨Y (p), D(p)⟩}

is tangent to D at the point D(p). The normal vector to this tangent line is Y (p), so the vector C(p) =

[
p

p− 1

]
,

being orthogonal to Y (p), is parallel to the tangent line at D(p). When p = i/m, observe that the vector C(p)
defined here coincides with Ci defined earlier.

Summarizing the foregoing discussion, the line L(j/m) = {Dj + λCj | λ ∈ R} is tangent to the convex curve
D at the point Dj , hence it lies (weakly) below that curve. In particular, recall the line L consisting of points
whose first and second coordinates are equal, and consider the point Ij where L intersects L(j/m). Since L(j/m)

lies (weakly) below D and D intersects L at D(qt) =

[
0
0

]
, the intersection of L(j/m) with L must belong to the

third quadrant. From these properties, it will follow that the line segment joining Fj to Fj+1 intersects the set
(−∞, 1

m + 4bLS

m2 ]× (−∞, 1
m + 4bLS

m2 ] as required.

Let Ej be the intersection point of L(j/m) with a vertical line through Dj+1. Since L(j/m) lies below D, we
know that Ej is situated directly below Dj+1. To reason about the distance between Dj+1 and Ej , observe that
the convexity of the curve D implies that the slope of the line segment joining Dj to Dj+1 lies between the slopes
of the tangent lines at Dj and Dj+1. Those slopes are 1−m/j and 1−m/(j + 1), respectively. Hence, a pair of
lines passing through Dj , with slopes 1−m/j and 1−m/(j + 1), will intersect the vertical line through Dj+1 in
a line segment that contains Dj+1. The lower endpoint of that line segment is Ej . Its length is the difference
between the slopes of the two lines, times the horizontal displacement between Dj and Dj+1. In other words, the
length of the vertical line segment is

m

j(j + 1)
· b ·

[
S

(
j

m
, 0

)
− S

(
j + 1

m
, 0

)]
≤ m

(m/2)2
· bLS

m
=

4bLS

m2
.
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Since the vertical line segment contains Ej and Dj+1, its length is an upper bound on their distance from one
another.

Now define
Gj = Ej + aj+1Cj = Fj+1 + (Ej −Dj+1) + aj+1(Cj − Cj+1).

Since Ej lies on L(j/m) and Cj is parallel to L(j/m), we know that Gj lies on L(j/m). To determine the position

of Gj relative to L, observe that Cj − Cj+1 =

[
−1/m
−1/m

]
is parallel to L, Fj+1 + (Ej −Dj+1) lies below Fj+1, and

recall that Fj+1 lies below L. Hence, Gj lies below L. As Fj lies on or above L it follows that the line segment
joining Fj to Gj intersects L, and this intersection point must be Ij because the segment connecting Fj to Gj is
contained in L(j/m). Write Ij = (1− t)Fj + tGj for some parameter t ∈ [0, 1].

If p is the distribution that selects a random i
m ∈ {

j
m , j+1

m } by setting i
m = j

m with probability 1− t and i
m = j+1

m
with probability t, then

Ep Fi = (1− t)Fj + tFj+1 = (1− t)Fj + tGj + t(Fj+1 −Gj)

= Ij + t(Dj+1 − Ej) + taj+1(Cj+1 − Cj)

= Ij + t(Dj+1 − Ej) +
taj+1

m

[
1
1

]
. (24)

We need to show that both coordinates of the vector in Equation (24) are less than or equal to 1
m + 4bLS

m . The

first coordinate of Ij is non-positive, the first coordinate of Dj+1−Ej is zero, and the first coordinate of taj+1

m

[
1
1

]
is at most 1

m since 0 ≤ t ≤ 1 and |aj+1| ≤ 1. The second coordinate of Ij is non-positive, the second coordinate

of Dj+1 − Ej is at most 4bLS

m2 , and the second coordinate of taj+1

m

[
1
1

]
is at most 1

m .

A.2 Constructing the Halfspace Oracle

Here we go into more detail about how to construct the oracle asserted in Section 3.3. Recall that in the proof of
Lemma A.1, given a halfspace θ parameterized by (a, b), we defined the vector Fi as follows:

Fi =

[
f(i, 0)
f(i, 1)

]
where f(i, y) = ai

(
i

m
− y

)
+ b

[
S

(
i

m
, y

)
− S(qt, y)

]
(25)

In the proof, we note that F0 is either in the 2nd or 3rd quadrant. Similarly, Fm is either in the 3rd or 4th
quadrant. Thus, we first check if F0 or Fm is in the 3rd quadrant. If one of them is, then we output a point
distribution at the corresponding probability value. If none of F0 or Fm is in the 3rd quadrant, then we binary
search for an index i with Fi in the 3rd quadrant or a pair of consecutive indices j, j + 1 where Fj is in 2nd
quadrant and Fj+1 is in the 4th quadrant. In the first case, wt(i) = 1 and 0 everywhere else. In the second case,
we set

wt(j) =
f(j + 1, 1)− f(j + 1, 0)

f(j, 0)− f(j + 1, 0)− f(j, 1) + f(j + 1, 1)
(26)

wt(j + 1) =
f(j, 0)− f(j, 1)

f(j, 0)− f(j + 1, 0)− f(j, 1) + f(j + 1, 1)
(27)

and 0 everywhere else. The correctness of this procedure follows from the proof of Lemma A.1. The formula is
obtained by solving this system of equations below to obtain a convex combination of Fj and Fj+1:

[
1 1

] [ wt(j)
wt(j + 1)

]
= 1 and

[
1 −1

] [f(j, 0) f(j + 1, 0)
f(j, 1) f(j + 1, 1)

] [
wt(j)

wt(j + 1)

]
= 0

Note that Fi does not need to be pre-computed for every index. It can be computed online during the binary
search steps. Thus, this halfspace oracle can be implemented in O(logm) steps.
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A.3 Proof of Lemma 9

Lemma 13. For any vector x ∈ Rm+2 such that ∥x1:m+1∥1 ≥ 1/m, and |xm+2| ≥ 4LS

m2 ,

dist1
(
x,Smapproach

)
= − 1

m
− 4LS

m2
−min

θ∈K
⟨−x, θ⟩ (13)

Proof.

dist1
(
x,Smapproach

)
= dist1

(
x1:m+1, B

m+1
1 (1/m)

)
+ dist1

(
xm+2,

(
−∞,

4Ls

m2

])
(28)

= − 1

m
− min

θ:||θ||∞≤1
⟨−x1:m+1, θ⟩ −

4Ls

m2
− min

θ∈[0,1]
⟨−xm+2, θ⟩ (29)

= − 1

m
− 4Ls

m2
−min

θ∈K
⟨−x, θ⟩ (30)

(31)

Remark: We need ∥x1:m+1∥1 ≥ 1/m, and |xm+2| ≥ Ls

m2 mainly for technicality in order to ensure equality. If
these didn’t hold, just like in the proof of Approachability, if you’re already in the set you wish to approach, you
can just make an arbitrary move. Similarly, if ∥x1:m+1∥1 < 1/m (i.e calibration error is already less than 1

m ), the
algorithm can just follow the oracle’s predictions. On the other hand, if xm+2 < Ls

m2 , then following the halfspace
oracle still ensures expected calibration error of at most 1

m for the timestep.
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B Reducing Recalibration to Online Multiobjective Optimization

In this section we present a reduction from recalibration to the online multiobjective optimization problem studied
by Lee et al. (2022). We begin by reviewing their assumptions and terminology and restating their main result.

B.1 Review of Online Multiobjective Optimization

In the setting considered by Lee et al. (2022), a learner and an adversary play a T -round game where the timing
and information structure of each round t are as follows.

1. The adversary presents to the learner an environment (Xt, Y t, ℓt) where each of Xt, Y t is a compact convex
subset of a finite-dimensional Euclidean space, and ℓt is a continuous vector-valued loss function taking
values in [−C,C]d, such that each coordinate function ℓtj(x, y) (j = 1, 2, . . . , d) is convex in its first argument
and concave in its second argument.

2. The learner chooses xt ∈ Xt and reveals it to the adversary.

3. The adversary chooses yt ∈ Y t and reveals it to the learner.

The game ends after T rounds, and the cumulative loss vector is
∑T

t=1 ℓ
t(xt, yt). The learner’s objective is to

minimize the maximum coordinate of this vector.

The algorithm analyzed by Lee et al. (2022) is easy to describe. For a specified learning rate η > 0, the algorithm
computes in each round a weight vector χt whose jth coordinate is proportional to exp(η

∑t−1
s=1 ℓ

s
j(x

s, ys)). Then
it chooses xt by solving the minimax problem

xt ∈ arg min
x∈Xt

max
y∈Y t
⟨χt, ℓt(x, y)⟩.

The analysis of the algorithm relates the learner’s loss to a quantity called the AMF value, defined as follows. For
the environment (Xt, Y t, ℓt) selected by the adversary at time t, define wt

A by

wt
A = sup

y∈Y t

min
x∈Xt

{
max
j∈[d]

ℓtj(x, y)

}
.

This quantity wt
A is called the AMF value of the stage-t environment (Xt, Y t, ℓt) because it is the value of the

game in which the adversary moves first, announcing y ∈ Y t, the learner responds by selecting x ∈ Xt, and
the learner seeks to minimize the loss function maxj∈[d] ℓ

t
j(x, y). (The abbreviation “AMF” stands for “adversary

moves first”.)
Theorem 14 (Lee et al. (2022)). Suppose T ≥ ln(d). If the learner uses the multiplicative-weights algorithm

described above, with learning rate η =
√

ln d
4TC2 , then its cumulative loss vector will satisfy

max
j∈[d]

T∑
t=1

ℓtj(x
t, yt) ≤

T∑
t=1

wt
A + 4C

√
T ln d. (32)

B.2 Reducing Recalibration to Online Multiobjective Optimization

Suppose we are given ε = 1/m for some natural number m, and we wish to design a recalibration algorithm that
predicts probabilities pt in the set {0, 1/m, 2/m, . . . , 1}. Recall the vector-payoff game from Section 3 that was
used for recalibration. Adjusting notation to match the notation from Lee et al. (2022), the forecasting algorithm
uses a distribution xt drawn from Xt = ∆m+1, the set of probability distributions on the (m + 1)-element
set {0, 1/m, . . . , 1}. (In Section 3 this distribution was called wt.) The adversary selects yt from Y t = [0, 1].
(Formerly this was called yt and constrained to belong to {0, 1}.) The vector payoff ℓt(x, y) is defined to be
ℓt(x, y) = c(x, y)⊕ rt(x, y), where

ci(x, y) = xi

(
y − i

m

)
(33)

rt(x, y) =

m∑
i=0

xi

(
S

(
i

m
, y

)
− S(qt, y)

)
. (34)
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After T rounds of interaction, if we write the average loss vector ℓ̄ = 1
T

∑T
t=1 ℓ

t(xt, yt) as

ℓ̄ =

(
1

T

T∑
t=1

c(xt, yt)

)
⊕

(
1

T

T∑
t=1

rt(x
t, yt)

)
= c̄⊕ r̄

then ℓ1 calibration error is ∥c̄∥1 while the average regret is r̄.

The objective in the recalibration problem is to ensure that ∥c̄∥1 and r̄ are both small. This doesn’t quite
correspond to the learner’s goal in online multiobjective optimization, which is to make every coordinate of the
average loss vector small. The difference is that in recalibration we are concerned with ∥c̄∥1 rather than ∥c̄∥∞.
However, the difference can be overcome by embedding the loss vectors in a higher dimension. Specifically, let
d = 2m+1+1 and let M be the matrix with d rows and m+2 columns such that the first d−1 rows of M constitute
the set of row vectors {±1}m+1 ⊕ (0) while the last row of M is the row vector (0)m+1 ⊕ (1) = (0, 0, . . . , 0, 1). For
any vector w = c⊕ r ∈ Rm+1 ⊕ R we have

max
j∈[d]

(Mw)j = max{∥c∥1, r}. (35)

Hence, in the online multiobjective optimization problem with d-dimensional vector losses ℓ̃t = Mℓt, the maximum
coordinate of the (normalized) cumulative loss vector 1

T

∑T
t=1 ℓ̃

t(xt, yt) equals the maximum of the forecaster’s ℓ1
calibration error and average regret.

To apply Theorem 14 to the sequence of environments (Xt, Y t, ℓ̃t) we first need upper bounds on the infinity-norms
of the loss vectors ℓ̃t(x, y) and on the AMF values, wt

A, of these environments. Such upper bounds are very easy
to obtain. We have

∥ℓ̃t(x, y)∥∞ = max{∥c(x, y)∥1, |rt(x, t)|} ≤ max{1, Ls},

where the inequality follows from the definitions of c(x, y) and rt(x, y), recalling that the Lipschitz constant of
the scoring rule S is Ls. As for bounding the AMF values, for each y ∈ [0, 1], if we let i

m be the element of
{0, 1/m, 2/m, . . . , 1} closest to y, then |y − i

m | ≤
1

2m . Define x ∈ ∆m+1 to be a point-mass distribution on i.
Then,

∥c(x, y)∥1 =

∣∣∣∣y − i

m

∣∣∣∣ ≤ 1

2m
,

Meanwhile,

rt(x, y) = S

(
i

m
, y

)
− S (qt, y) ≤ S

(
i

m
, y

)
− S (y, y) ≤ Ls

∣∣∣∣ im − y

∣∣∣∣ ≤ Ls

2m
.

Hence,

wt
A = sup

y∈[0,1]

min
x∈∆m+1

{
max
j∈[d]

ℓ̃tj(x, y)

}
= sup

y∈[0,1]

min
x∈∆m+1

{max (∥c(x, y)∥1, rt(x, t))} ≤
max(1, Ls)

2m
.

Using the upper bounds C ≤ max(1, Ls) and wt
A ≤

max(1,Ls)
2m in Theorem 14, we find that if the algorithm of Lee

et al. (2022) with learning rate η =
√

ln d
4CT 2 is applied to the sequence of environments (Xt, Y t, ℓ̃t) it will satisfy

the bound

max
j∈[d]

(
1

T

T∑
t=1

ℓ̃tj(x
t, yt)

)
≤ 1

T

T∑
t=1

wt
A +

1

T
· 4C
√
T ln d ≤ max(1, Ls) ·

(
1

2m
+ 4

√
ln d

T

)
.

Earlier we derived that the left side is the maximum of the forecaster’s ℓ1 calibration error and average regret.
Recalling that 1/m = ε and that d = 2m+1 + 1, we find that both the ℓ1 calibration error and the average regret
are bounded above by max(1, Ls) ·O(ε+ 1/

√
εT )).

Compared to this bound, our Algorithm 1 achieves the same upper bound on ℓ1 calibration error but an improved
bound of O(Lsε

2 + 1/
√
εT ) on average regret. It is tempting to try to modify the reduction from recalibration

to online multiobjective optimization, to see if it can achieve the same bound. For example, above when we
derived the inequality rt(x, y) ≤ Ls

2m , a more refined analysis using the property that the scoring rule S is strictly
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proper would yield the bound rt(x, y) ≤ O
(
Ls

m2

)
. This means one could modify the definition of the loss vectors

ℓ̃t(x, y) by rescaling their final coordinate to equal m · rt(x, y) rather than rt(x, y), without invalidating the
upper bound on the AMF values wt

A. Then an upper bound of the form maxj

(
1
T

∑
t ℓ̃

t
j(x

t, yt)
)
≤ O(ε) would

simultaneously imply ℓ1 calibration error O(ε) and average regret O(ε2), because one gains a factor of 1/m = ε
when rescaling the final coordinate of 1

T

∑
t ℓ̃

t
j(x

t, yt) to convert it back into average regret. However, defining the
final coordinate of ℓ̃t(x, y) to equal m · rt(x, y) would mean that the infinity-norm of the loss vectors is bounded
above by C = m ·max(1, Ls), it is no longer bounded above merely by max(1, Ls). Hence, the rescaling inflates
the regret term 4C

√
T ln d in Theorem 14 by a factor of m = 1/ε, more than offsetting any potential gains

resulting from the rescaling.

B.3 Efficient Implementation of the Reduction

Because the reduction described in Section B.2 involves loss vectors in dimension d = 2m+1 + 1, a straightforward
implementation of the reduction runs the risk of requiring running time O(2m) per iteration. Fortunately, there
is an implementation requiring only poly(m) running time per iteration. The key to avoiding the exponential
dependence on m is, first of all, to store the vectors ℓt(xt, yt), which are only (m+ 2)-dimensional, rather than
the exponentially higher-dimensional loss vectors ℓ̃(xt, yt). However, the algorithm still needs to compute

xt ∈ arg min
x∈Xt

max
y∈Y t
⟨χt, ℓ̃t(x, y)⟩

where χt is a d-dimensional vector with coordinates

χt
j =

exp(η
∑t−1

s=1 ℓ̃
s
j(x

s, ys))∑
i∈[d] exp(η

∑t−1
s=1 ℓ̃

s
i (x

s, ys))
.

Expanding out the inner product ⟨χt, ℓ̃t(x, y)⟩ in the definition of xt, we find that

xt ∈ arg min
x∈Xt

max
y∈Y t

∑
j∈[d] exp(η

∑t−1
s=1 ℓ̃

s
j(x

s, ys)) · ℓ̃tj(xt, yt)∑
i∈[d] exp(η

∑t−1
s=1 ℓ̃

s
i (x

s, ys))
. (36)

To compute the sums in the numerator and denominator, recall that for each j ∈ [d− 1] there is a corresponding
sign vector σ ∈ {±1}m+1 such that ℓ̃sj(x

s, ys) =
∑m+1

k=1 σkℓ
s
k(x

s, ys). Hence, the sum in the denominator of
Equation (36) simplifies as

∑
i∈[d]

exp(η

t−1∑
s=1

ℓ̃si (x
s, ys)) = exp(η

t−1∑
s=1

ℓ̃sd(x
s, ys)) +

∑
σ∈{±1}m+1

exp(η

t−1∑
s=1

m+1∑
k=1

σkℓ
s
k(x

s, ys))

= exp(η

t−1∑
s=1

ℓ̃sd(x
s, ys)) +

∑
σ∈{±1}m+1

m+1∏
k=1

exp(ησk

t−1∑
s=1

ℓsk(x
s, ys))

= exp(η

t−1∑
s=1

ℓ̃sd(x
s, ys)) +

m+1∏
k=1

∑
σk∈±1

exp(ησk

t−1∑
s=1

ℓsk(x
s, ys)) (37)

and the formula on the last line can be computed in O(mt) arithmetic operations. In fact, a further running time
improvement can be achieved by using dynamic programming to amortize over time steps. At the end of each
time step, if we store the quantities exp(η

∑t−1
s=1 ℓ̃

s
d(x

s, ys)) and exp(ησk

∑t−1
s=1 ℓ

s
k(x

s, ys)) for each k ∈ [m+1] and
σk ∈ ±1, then updating these values to incorporate the loss vector from time s = t requires constant time (a
single multiplicative update) for each of the 2m + 3 stored values. Evaluating the formula on the last line of
Equation (37) then requires applying only O(m) arithmetic operations to the stored values.

A similar simplification pertains to the numerator in Equation (36). To save space, we will ignore the j = d term
of the sum, which is a special case that can be computed separately from the terms corresponding to j ∈ [d− 1].
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As before, each j ∈ [d− 1] corresponds to a sign vector σ ∈ {±1}m+1.

∑
σ∈{±1}m+1

exp

(
η

t−1∑
s=1

m+1∑
k=1

σkℓ
s
k(x

s, ys)

)(
m+1∑
k′=1

σk′ℓtk′(xt, yt)

)

=

m+1∑
k′=1

∑
σ∈{±1}m+1

m+1∏
k=1

exp

(
η

t−1∑
s=1

σkℓ
s
k(x

s, ys)

)
σk′ℓtk′(xt, yt)

=

m+1∑
k′=1

 ∑
σk′∈{±1}

exp

(
ησk′

t−1∑
s=1

ℓsk′(xs, ys)

)
σk′ℓtk′(xt, yt)

 · ∏
k ̸=k′

 ∑
σk∈{±1}

exp

(
ησk

t−1∑
s=1

ℓsk(x
s, ys)

) . (38)

As before, using dynamic programming the expression on the last line can be computed using only O(m) arithmetic
operations per time step.
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