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Abstract

Low-Rank Markov Decision Processes
(MDPs) have recently emerged as a
promising framework within the domain
of reinforcement learning (RL), as they
allow for provably approximately correct
(PAC) learning guarantees while also incor-
porating ML algorithms for representation
learning. However, current methods for
low-rank MDPs are limited in that they
only consider finite action spaces, and give
vacuous bounds as |A| → ∞, which greatly
limits their applicability. In this work,
we study the problem of extending such
methods to settings with continuous actions,
and explore multiple concrete approaches
for performing this extension. As a case
study, we consider the seminal FLAMBE
algorithm (Agarwal et al., 2020), which is a
reward-agnostic method for PAC RL with
low-rank MDPs. We show that, without any
modifications to the algorithm, we obtain a
similar PAC bound when actions are allowed
to be continuous. Specifically, when the
model for transition functions satisfies a
Hölder smoothness condition w.r.t. actions,
and either the policy class has a uniformly
bounded minimum density or the reward
function is also Hölder smooth, we obtain a
polynomial PAC bound that depends on the
order of smoothness.

1 INTRODUCTION

Reinforcement learning (RL) is an important frame-
work for the study of automated decision making,
where decisions are sequentially made over time with
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context that evolves based on previous decisions.
While RL gained popularity through large scale game-
playing, this problem has many diverse practical appli-
cations, such as memory management for computing
systems (Chinchali et al., 2018), online resource alloca-
tion in computer clusters (Lykouris and Vassilvtiskii,
2018; Tessler et al., 2021), personalized recommenda-
tions (Zheng et al., 2018), bidding/advertising (Cai
et al., 2017), autonomous driving (Sallab et al., 2017),
robotics (Kober et al., 2013), and automated trading
(Li et al., 2019).

It is widely recognized that achieving provably correct
RL for general Markov Decision Processes (MDPs)
with arbitrary state spaces incurs a sample complex-
ity of either Ω(|S|) or Ω(|A|H), where |S|, |A|, and H
are the sizes of the state space, action space, and hori-
zon respectively (Krishnamurthy et al., 2016). This
is problematic, because many of the most promising
RL applications involve both long horizons and com-
plex observations such as images or text, so both |S|
and |A|H may be intractably large. Fortunately, there
has been extensive recent work on discovering more
restricted MDP classes that are useful for modeling
realistic problems with rich state spaces while still al-
lowing for PAC learning results with polynomial sam-
ple complexity (Jiang et al., 2017; Du et al., 2019; Sun
et al., 2019; Jin et al., 2020; Agarwal et al., 2020; Misra
et al., 2020; Du et al., 2021; Chen et al., 2022).

A framework of particular interest is low-rank MDPs
(Jiang et al., 2017), since they are extremely general
and subsume many other such frameworks (e.g., lin-
ear MDPs, Jin et al., 2020, or block MDPs, Du et al.,
2019). Unlike some of the more general frameworks,
such as bounded Bellman-rank MDPs (Jiang et al.,
2017), low-rank MDPs allow for the development of
efficient and practical algorithms. This framework
utilizes a low-rank structure for the MDP transitions
based on state and action features, which can be esti-
mated using conventional machine learning techniques,
rendering them particularly suited for addressing chal-
lenges in environments with rich and complex action
spaces. Despite the rich body of recent research on
PAC algorithms for low-rank MDPs with polynomial
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sample complexity, the complexity invariably scales
polynomially with |A|. This is problematic, because
many of the real world applications that motivate this
line of work feature large or infinite action spaces; for
example, actions in autonomous driving have contin-
uous parts (e.g., steering wheel angle), and actions in
algorithmic trading have (roughly) continuous parts
(e.g., quantity of security to buy/sell). Furthermore,
the low-rank RL framework allows for flexible model-
ing of generic action spaces via the state/action em-
bedding function, so it seems natural that it should be
able to tractably handle infinitely large action spaces.

In this paper, we study the problem of extending low-
rank MDP PAC results to settings with continuous
action spaces, where |A| = ∞. We first discuss why
the dependence on |A| occurs with these algorithms,
and how this dependence may be alleviated. In partic-
ular, we provide a novel result motivated by Sobolev
interpolation theory that can be used to improve ex-
isting analyses when certain problem parameters are
sufficiently smooth. Then, as a specific case study,
we consider the FLAMBE algorithm of Agarwal et al.
(2020), which was the first tractable (computation-
ally oracle efficient) PAC RL algorithm for low-rank
MDPs, and allows for reward-agnostic learning. We
discuss how our methods can be applied to the analysis
of FLAMBE, in order to provide PAC bounds for con-
tinuous action spaces. These bounds apply when the
transition operators allowed by the model are smooth
w.r.t. actions, and either the policy class has a uniform
bounded maximum density or the allowed reward func-
tions are Hölder-continuous in actions. In addition, we
provide a similar analysis for the more recent RAFFLE
algorithm of Cheng et al. (2023), which was shown to
have near-optimal sample complexity, in the appendix.
Aside from the specific continuous action PAC bounds
established for FLAMBE and RAFFLE, we hope this
work will serve as a valuable template for generalizing
low-rank MDP PAC algorithms to continuous action
spaces more broadly.

1.1 Related Work

Low-rank MDPs Low-rank MDPs are a class of
models at the interplay of representation learning and
exploration in reinforcement learning. In recent years,
these models have garnered a lot of interest due to ef-
forts to provide algorithms that can leverage machine
learning while also having provable guarantees on e.g.
correctness and sample complexity (Jin et al., 2020;
Yang and Wang, 2019, 2020; Agarwal et al., 2020;
Modi et al., 2021; Uehara et al., 2021; Chen et al., 2022;
Cheng et al., 2023). The seminal oracle-efficient algo-
rithm in this space is FLAMBE (Agarwal et al., 2020),
which performs reward-free exploration to learn a low-

rank model of the MDP. Subsequent works by have de-
veloped other algorithms improving on this in various
ways, such as establishing tighter bounds for explor-
ing with a particular reward function (Uehara et al.,
2021), performing both model-free and reward-free ex-
ploration (Modi et al., 2021), extending to MDPs with
low Bellman Eluder dimension (Chen et al., 2022), or
using exploration-driven proxy rewards (Cheng et al.,
2023). In addition to oracle-efficient algorithms for
low-rank MDPs, there is past work on (computation-
ally inefficient) algorithms for more general bounded
Bellman/Witness Rank classes (Jiang et al., 2017; Sun
et al., 2019; Du et al., 2021), or for the more restricted
block MDP class (Du et al., 2019; Misra et al., 2020).
However, these works generally do not allow for con-
tinuous action spaces.

One exception to the above is Agarwal and Zhang
(2022), which considers an even more general setting
(linear embeddability), and allows for arbitrary action
spaces. However, this approach has two important
drawbacks. First, as is common in the literature that
considers similarly general settings such as bounded
Bellman rank, the algorithms presented are at face
value computationally intractable; in the case of Agar-
wal and Zhang (2022), their proposed methodology
requires posterior sampling over all possible Q func-
tions. In contrast, our paper follows the line of work on
the more restricted low-rank MDP setting, for which
tractable algorithms (given an oracle for performing
MLE) can be designed. Second, given the lower bound
in Cheng et al. (2023) for low-rank MDPs that depends
on |A|, it is clear that the dependence on action space
size cannot be avoided in general without additional
assumptions, such as smoothness. Thus, the assump-
tions in Agarwal and Zhang (2022) implicitly constrain
the low-rank MDP setting in some other way.

Continuous action spaces in RL Some efforts have
been made to adapt PAC RL algorithms designed for
discrete action spaces to continuous ones via the dis-
cretization of the action space, as seen in the work of
Song and Sun (2019); Domingues et al. (2020); Sinclair
et al. (2021). However, discretization has several draw-
backs, such as computational inefficiency and exponen-
tial performance degradation in high dimensions, due
to its limited capacity to exploit function smoothness
beyond Lipschitz. In contrast, our approach can lever-
age any degree of smoothness to counteract the curse
of dimension and, as we will see, our bounds approach
those for finite action spaces when the smoothness of
the transition function grows. This cannot be achieved
by discretization. To the best of our knowledge, there
has been no other effort in directly adapting such RL
algorithms to continuous action spaces without dis-
cretizing the action space.
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Leveraging Smoothness in Machine Learning
Smooth functions (continuous functions that admit
higher order derivatives) have become popular in ma-
chine learning, since improved learning rates can often
be achieved for sufficiently smooth classes. For exam-
ple, it is well known that learning d-dimensional, α-
times differentiable functions have a minimax-optimal
convergence rate of O(n−2α/(2α+d)) (Stone, 1982).
Many algorithms can leverage such smoothness, in-
cluding kernel methods, Gaussian processes, and deep
neural networks (Giné and Nickl, 2021). While smooth
functions have also found some practical application in
reinforcement learning, particularly when considering
smooth rewards in multi-armed bandit (H = 1) prob-
lems (Liu et al., 2021; Jia et al., 2023; Hu et al., 2022),
its application to reinforcement learning more broadly
remains a promising area for further exploration.

1.2 Overview of Paper

First, in Section 2 we formally introduce the low-rank
MDP setting as in Jiang et al. (2017), and provide a
brief overview of existing PAC results for this setting.
Then, in Section 3 we discuss why the |A| dependence
tends to occur for these algorithms and correspond-
ing PAC bounds, and in Section 4 we provide some
theoretical results and discussion that are helpful for
extending these results to continuous A. Expanding
upon this, in Section 5 we consider as a case study the
FLAMBE algorithm of Agarwal et al. (2020), and we
apply our results from Section 4 to obtain PAC bounds
for FLAMBE that hold when A is continuous, without
any modifications to the algorithm. We also provide
a similar analysis for the more recent RAFFLE algo-
rithm of Cheng et al. (2023) in Appendix B. Finally,
we draw some conclusions in Section 6. We relegate
all proofs to Appendix A.

1.3 Notation

We let N denote the space of non-negative integers
{0, 1, 2, . . .}. We let N+ and R+ denote the space
of positive integers and real numbers, respectively
(i.e., N \ N+ = {0}). For any k ∈ N+, we let
[k] = {0, 1, . . . , k − 1}. For any s ∈ R+, we let
⌊s⌋ = {i ∈ N : i < s} be the largest integer strictly
smaller than s (note ⌊5⌋ = 4 unlike the usual floor
function) and {s} = s − ⌊s⌋ be the remainder; that
is, we have the unique decomposition s = ⌊s⌋ + {s},
where ⌊s⌋ ∈ N and {s} ∈ (0, 1]. For any f : Rd → R
and β ∈ Nd, we define Dβf = ∂|β|

∂x
β1
1 ∂x

β2
2 ...∂x

βd
d

f(x)

whenever this derivative exists, where |β| :=
∑d
i=1 βi.

Whenever all derivatives of order j exist, we let ∇jf
denote the vector-valued function of all Dβf such that
|β| = j, and we let ∇0f = f . Finally, for any

p ∈ [1,∞], positive integer d, and Borel measurable
D ⊆ Rd, we let ∥ · ∥Lp(D) denote the standard Lp
norm w.r.t. the Borel measure on D. We abbreviate
∥·∥L∞(D) (i.e., the essential supremum of the absolute
value) by ∥ · ∥∞.

2 LOW-RANK MDP SETTING

We consider a finite-horizon episodic MDP defined by
a tupleM = (S,A, T,H, ρ), where S is the state space,
A is the action space, T = (T0, . . . , TH−1), where Th :
S×A 7→ ∆(S) is the transition function at time h, H is
the finite time horizon, and ρ ∈ ∆(S) is the initial state
distribution. We assume that S may be some generic
measurable set (with measure µ), such that T (· | s, a)
is continuous w.r.t. µ for every (s, a).1 We note that
this MDP definition does not include reward functions
Rh : S × A 7→ [0, 1] for each h ∈ [H], since we will
consider reward-agnostic algorithms. In addition, past
definitions of this setting such as in Jiang et al. (2017)
often dictate that A = [K] for some finite K ∈ N+,
but we do not impose this restriction.

The low-rank assumption is that the transition op-
erator T has a low-rank representation, and can be
summarized by the following definition leveraged from
Agarwal et al. (2020):

Definition 1 (Low-rank MDP). An operator T :
S × A 7→ ∆(S) admits a low-rank decomposition with
dimension d ∈ N if there exists two embedding func-
tions ϕ∗ : S ×A 7→ Rd and ψ∗ : S 7→ Rd such that

T (s′ | s, a) = ϕ∗(s, a)⊤ψ∗(s′) ∀ s, s′ ∈ S ,

where the embeddings ϕ∗ and ψ∗ satisfy the (with-
out loss of generality) normalization conditions
∥ϕ∗(s, a)∥2 ≤ 1 ∀s, a, and ∥

∫
ψ∗(s)g(s)dµ(s)∥2 ≤√

d ∀g such that g : S 7→ [0, 1]. An MDP M is a
low-rank MDP with rank d if Th admits a low-rank de-
composition with dimension d for every h ∈ [H]. We
let ϕ∗h and ψ∗

h denote the true embeddings for the de-
composition of Th.

For learning within a low-rank MDP structure, we as-
sume that we are given a set of hypothesis embeddings
Φ ⊆ S ×A 7→ Rd and Ψ ⊆ S 7→ Rd such that we have
the following realizability assumption:

Assumption 1 (Realizability). For every h ∈ [H], we
have ϕ∗h ∈ Φ and ψ∗

h ∈ Ψ.

1That is, we can interpret the function T (s′ | s, a) ∈ R+

as the conditional density of s′ given (s, a), with respect to
base measure µ, which may be, e.g., a Borel measure (if S
is continuous) or a counting measure (if S is discrete).
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3 LIMITATIONS OF EXISTING
LOW-RANK MDP RESULTS

As highlighted in Section 1.1, a range of recent al-
gorithms offer PAC guarantees for low-rank MDPs.
In general, all of these algorithms have sample com-
plexity that is Õ(Poly(d,H, |A|, ϵ, log(1/δ))) for learn-
ing ϵ-optimal policies with probability at least 1 − δ.
Additionally, in every instance, these bounds exhibit
a super-linear dependence on |A|, leading to signifi-
cantly poor scalability when |A| becomes combinato-
rially large or infinite.

Fundamentally, the dependence on |A| arises because
these algorithms tend to employ some form of uniform
exploration, with actions being sampled uniformly at
random at least sometimes. In the linear MDP setting,
where the ϕ∗h embeddings are known, it is possible
to bypass uniform exploration by exploring strategi-
cally within the embedding space structure (Jin et al.,
2020), thus eliminating the sample complexity’s de-
pendence on |A|. However, low-rank MDPs present
the added complexity of needing to learn these embed-
dings. For example, low-rank MDP papers leverage
MLE bounds (e.g., see Agarwal et al., 2020, Theorem
21) to learn embeddings that are accurate across the
distribution of state-action pairs (s, a) that the train-
ing data is sampled from: if we ensure that such error
is small when a is sampled uniformly at random for a
given state s, then we can ensure that it is small for all
policies applied at the same s, based on the following
importance sampling lemma.

Lemma 1. For any given f : S × A → R+, any dis-
tribution ρ over states, and any policy π, we have

Es∼ρ,a∼π(·|s)[f(s, a)] ≤ |A|Es∼ρ,a∼unifA [f(s, a)] .

This lemma is trivial to prove by noting that π(a |
s)/unifA(a) ≤ 1/unifA(a) = |A| for all discrete sets
A. That is, the importance sampling lemma, which is
implicitly used in the analysis of most of these papers,
allows us to bound the errors of learned embeddings
(or the probabilities of other “bad” events) under any
action distribution, given that we perform some explo-
ration uniformly at random.

Unfortunately, the implicit use of Lemma 1 in the the-
oretical analysis of these works introduces |A| factors
within error bounds, which translates into polynomial
dependence on |A| in the sample complexity.

4 ERROR BOUNDS WITH
CONTINUOUS ACTIONS

Given the limitations discussed in Section 3, a natural
question to ask is whether we can provide bounds like

Lemma 1 when A is continuous. In order to make this
discussion concrete, we will consider the continuous ac-
tion space A = [0, 1]m ⊂ Rm for some m ∈ N+, which
is equipped with the standard Borel measure for the
Euclidean space Rm. Although this choice of continu-
ous action space may at a first glance seem restrictive,
it is a natural way to parameterize many kinds of con-
tinuous actions that have m independent degrees of
freedom, and the action space can typically be written
this way, e.g., by a simple change of variables. Note
as well that that this assumed normalization of ac-
tion components to be on the scale [0, 1] is important
for interpreting smoothness of functions w.r.t. a; for
example, if the “natural” scale of actions for a given
problem were [0, Amax], for some Amax ≫ 1, then we
would need to scale up all order-α derivatives w.r.t.
actions by a factor of Aαmax in order to normalize and
be scale invariant. Additionally, our results easily ex-
tend to more general A with Lipschitz boundaries, as
the main property of [0, 1]m used in the proofs of the
lemmas and theorem below are that it is Lipschitz. See
our proofs in the appendix for more detail.

In the next sections, we explore two strategies to ad-
dress the challenges outlined. In our case study exam-
ining the FLAMBE algorithm of Agarwal et al. (2020)
in Section 5, we will use both approaches in different
parts of the analysis.

4.1 Utilizing Smoothness of Error Functions

In many cases where we need to apply Lemma 1, the
function f(s, a) corresponds to an “error” term asso-
ciated with state-action pairs. For many problems, we
may be able to justify that such errors are smooth with
respect to a given, e.g., assumptions on the smooth-
ness of transitions in terms of a. Specifically, we will
provide a generalization of Lemma 1 that can be ap-
plied to a fairly general class of smooth functions.

Definition 2 (α-smooth functions). For any α ∈
(0,∞) and D ⊆ Rm, f : D → R is an α-smooth func-
tion if the ⌊α⌋-order mixed derivatives of f exist, and
there exists a constant L such that: (1)

∥∥∇jf∥∥∞ ≤ L
for all j ≤ ⌊α⌋; and (2) all ⌊α⌋-order derivatives are
{α}-Hölder continuous with norm at most L, i.e.,

sup
a,a′∈D,|β|=⌊α⌋

|Dβf(a)−Dβf(a′)|
∥a− a′∥{α}2

≤ L .

That is, α-smooth functions have mixed derivatives up
to the order ⌊α⌋ that are bounded. Moreover, these
mixed derivatives have have bounded {α} fractional
derivatives. For example, when α ∈ (0, 1], this defini-
tion corresponds to α-Hölder continuity (Leoni, 2017);
and, in particular, when α = 1, this definition corre-
sponds to Lipschitz continuity. Furthermore, for any
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α ∈ (0,∞) the set of α-smooth functions corresponds
to the α-Hölder space (Tsybakov, 2008). However, im-
plicit in our definition is a particular norm, which we
explicitly define below.

Definition 3 (α-smoothness norm). For any α-
smooth function f , we define ∥f∥Cα as the minimum
L ≥ 0 such that the conditions of Definition 2 hold.

For example, ∥f∥Cα corresponds to the Hölder-
continuity norm for all α ≤ 1, and ∥f∥C1 corresponds
to Lipschitz norm. More generally, for any α ∈ (0,∞)
we have that ∥ · ∥Cα is a norm on the α-Hölder space.
We also note that these definitions are clearly nested,
with ∥f∥Cα ≤ ∥f∥Cβ for any α < β.

Given this smoothness definition, we can provide a
weaker version of Lemma 1 under the condition that
f is α-smooth in a for each s. This bound is based on
the following theorem, which bounds the maximum of
α-smooth functions by some power of their mean.

Theorem 2 (Uniform bound on α-smooth functions).
Let f : S ×A → R+ be α-smooth in the action a such
that ∥f∥Cα ≤ L for any s ∈ S and some α ∈ (0,∞).
Then, for any distribution ρ over states, and any policy
π, we have

Es∼ρ,a∼π(·|s)[f(s, a)]

≤ cL
m

m+α

(
Es∼ρ,a∼unifA [f(s, a)]

) α
m+α

,

for some constant c that depends only on m and α.

The proof of Theorem 2 is based on a result that allows
us to bound the maximum value of any non-negative,
α-smooth function on a Lipschitz subset of Rd by its
L1 norm on that domain to the power of α/(m + α);
this follows from Sobolev interpolation theory (see e.g.,
Fiorenza et al., 2021) and may be of independent in-
terest. Full proof details are provided in the appendix.

In terms of exponents on the mean, Theorem 2 gives a
weaker version of the inequality in Lemma 1, and the
two exponents coincide only as α → ∞. Often, this
more relaxed bound can substitute Lemma 1, trading
|A| dependency for less favorable exponents in down-
stream sample complexity calculations.

4.2 Using Smoothed Policies

An alternative approach to extending Lemma 1 to con-
tinuous A is to restrict attention to policies with uni-
formly bounded density. Specifically, if we restrict to
policies π such that π(a | s)/unifA(a) is bounded by
some constantK for all s ∈ S, then it is trivial to verify
that Lemma 1 holds with |A| replaced by K. There-
fore, in cases where this restriction in policy class is
feasible, we may be able to produce identical PAC re-
sults under this restriction with |A| replaced by K.

Nevertheless, this restriction may be unsuitable in
practice, since we might want to be able to learn ap-
proximately optimal deterministic policies, which have
unbounded density. Fortunately, in many cases it may
be possible to extend PAC results based on this re-
striction to unrestricted PAC results when reward and
transition functions are Hölder continuous, based on
the following lemma.

Lemma 3. Let V (π;R) = Eπ[
∑
h∈H R(sh, ah)] de-

note the value of policy π for reward function R,
where Eπ denotes expectation over data sampled fol-
lowing policy π for all H time steps. In addition, as-
sume that there exists some α ∈ (0, 1] and L < ∞
such that: (1) R(s, a) is uniformly α-Hölder contin-
uous in a with norm at most L all s ∈ S; and (2)
ϕ∗h(s, a)

⊤ψ∗
h(·) is uniformly α-Hölder continuous in a

under total variation distance with norm at most L
for all s ∈ S and h ∈ [H]. Then, for any policy
π, there exists a corresponding policy πK such that
sups∈S,a∈A πK(a | s)/unifA(a) ≤ K, and

|V (π)− V (πK)| ≤ 2
√
mLHK−α/m .

The proof of this lemma follows by comparing the
value of π with the value of a “smoothed” version of π
that has density ratio at most K, using the simulation
lemma (Agarwal et al., 2019). We provide details in
the appendix.

Lemma 3 implies that learning an approximately op-
timal policy under this density restriction gives an ap-
proximately optimal unrestricted policy whenK is suf-
ficiently large, and when rewards and transitions are
sufficiently smooth. Similarly, for model-based algo-
rithms under the same smoothness assumptions, if a
learned model M̂ of the MDP gives ϵ-accurate value
estimates for all policies with density ratio at most K,
then M̂ also gives ϵ+2LHK−α/m-accurate estimates
for all unrestricted policies. In either case, this can be
used to extend PAC bounds under the policy density
restriction to unrestricted PAC bounds, by setting K
appropriately. We will use the latter model-based ap-
proach for the reward-agnostic setting of FLAMBE in
the following section.

5 CASE STUDY: FLAMBE

We consider a case study on implementing our pro-
posed strategies to extend PAC results for low-rank
MDPs to continuous action spaces, by applying these
to the FLAMBE algorithm of Agarwal et al. (2020).
We first present the FLAMBE algorithm along with
the existing PAC result that holds for discrete actions,
and then we extend this result to continuous actions
under appropriate smoothness conditions. Then, at
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the end of the section we provide a brief discussion of
implementation.

5.1 FLAMBE Algorithm

We summarize the seminal FLAMBE algorithm of
Agarwal et al. (2020) in Algorithm 1. This algorithm
is computationally efficient assuming that we have ac-
cess to two oracles: (1) a maximum likelihood esti-
mation (MLE) oracle, which, given a dataset of n tu-
ples {(si, ai, s′i) : i ∈ [n]} of state, action, and suc-
cessor state, returns the embeddings that maximize
the empirical log likelihood

∑n
i=1 log(ϕ(si, ai)

⊤ψ(s′i));
and (2) a sampling oracle, which, given a pair of em-
beddings ϕ ∈ Φ and ψ ∈ Ψ, and a state-action pair
(s, a), can sample successor states s′ ∼ ϕ(s, a)⊤ψ(·).
The MLE oracle is used to solve the maximum likeli-
hood step of the algorithm, and the sampling oracle
is used to solve the approximate policy optimization
problem in the elliptical planner.2 We note that for
practical applications (Φ,Ψ) could be parameterized
directly as a generative model, in which case the MLE
oracle could be implemented using standard methods
for fitting generative models, and the sampling ora-
cle would be trivial. In contrast to Agarwal et al.
(2020), our presentation of FLAMBE only performs
approximate policy optimization in the planner. This
approach aligns more closely with their analysis using
the sampling oracle and does not impact the theoreti-
cal analysis.3

Ultimately, FLAMBE returns a learnt model M̂ for
M and estimates ϕ̂h, ψ̂h for ϕ∗h and ψ∗

h, respectively,
for each h ∈ [H]. These learnt embeddings can then
be used to perform planning for arbitrary reward func-
tions, with the PAC guarantee for sparse reward func-
tions defined as follows:

Definition 4. Let V (π;R,M) denote the value (ex-
pected sum of rewards) of policy π under MDP model
M, with reward function R = (R0, . . . , RH−1) such
that Rh : S ×A 7→ [0, 1] for each h ∈ [H]. We say that
R is sparse if V (π;R,M) ≤ 1 for every policy π and
modelM.

As a simple example, reward functions that can
only take non-zero values at a single time step are
sparse. The authors gave the following guarantee on
FLAMBE’s performance, which is adapted from Agar-
wal et al. (2020, Theorem 2 and Appendix B).

Theorem 4. For appropriate values of β, Jmax, n,

2By Agarwal et al. (2020, Lemma 15) this step can be

solved in Õ(d3H6(1/β)4 log(1/δ)) calls to the sampling or-
acle, with probability at least 1− δ.

3This is because at the termination of the elliptical plan-

ner we still have E[ϕh̃(sh̃, ah̃)
TΣ−1

T ϕh̃(sh̃, ah̃) | π,M̃] ≤ β
for every policy π, which is all that is required.

FLAMBE returns a model M̂ that, with probability at
least 1− δ, satisfies that for every policy π and sparse
reward function R,∣∣∣V (π;R,M̂)− V (π;R,M)

∣∣∣ ≤ ϵ,
and the number of trajectories collected by the algo-
rithm is

Õ

(
H22|A|9d7

(1
ϵ

)10
ln
( |Φ||Ψ|

δ

))
.

That is, with a polynomial sample complexity, the al-
gorithm learns a model M̂ that can be used for policy
optimization under any sparse reward function. Al-
though the assumption that R is sparse may seem re-
strictive, as argued in Agarwal et al. (2020), this is
sufficient to ensure that we can fit Q functions using
the estimated embeddings ϕ̂h with error at most ϵ.
We also note that this result can be easily extended
to a similar PAC guarantee for all (non-sparse) re-
ward functions taking values in [0, 1], by replacing ϵ
with ϵ/H in the sample complexity bound, since any
reward function can be written as a sum of H sparse
reward functions.

We also note that the exact same FLAMBE algorithm
can be used with continuous action spaces as long as
we can sample actions uniformly from A: for example,
when A = [0, 1]m we can sample uniformly random ac-
tions by sampling m i.i.d. uniformly random variables
from [0, 1]. All of the results below apply to the same
FLAMBE algorithm without any special modifications
for continuous actions.

5.2 Smoothness Assumption for Extension

We now provide a concrete smoothness assumption
that can be used to extend Theorem 4 to continuous
action spaces. As in Section 4, we consider continuous
action spaces of the form A = [0, 1]m ⊂ Rm for some
m ∈ N+. These assumptions will allow us to use the
methods detailed in Section 4 in order to obtain gen-
eralized PAC bounds, which we present in Section 5.3.

For this extension, we require that the embedding
classes Φ and Ψ satisfy a smoothness condition for
transition function errors. Specifically, we require that
the errors of transition functions allowed by Φ and Ψ
versus the true transition functions are smooth w.r.t.
actions, as detailed below:

Assumption 2 (α-smooth Transition Errors). There
exists some error function E : ∆(S) × ∆(S) → [0, 1]
on distributions of states, αE ∈ (0,∞), and LE <
∞ such that the following hold: (1) TV(ρ, ρ′) ≤
E(ρ, ρ′) ≤ H(ρ, ρ′) for all distributions ρ, ρ′ ∈ ∆(S),
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Algorithm 1 FLAMBE: Feature Learning and Model-Based Exploration

Input: EnvironmentM, function classes Φ,Ψ, subroutines MLE and SAMP, parameters β, n.
Set ρ0 to be the random policy, which takes all actions uniformly at random.
Set Dh = ∅ for each h ∈ {0, ...,H − 1}.
for j = 1, ..., Jmax do

for h = 0, ...,H − 1 do
Collect n samples (sh, ah, sh+1) by rolling into sh with ρj−1 and taking ah ∼ unif(A).
Add these samples to Dh.
Solve maximum likelihood problem: (ϕ̂h, ψ̂h)← MLE(Dh).

Set T̂h(sh+1 | sh, ah) =
〈
ϕ̂h(sh, ah), ψ̂h(sh+1)

〉
end for
For each h, call the planner (Algorithm 2) with h step model T̂0:h−1 and β to obtain ρpreh .

Set ρj = unif
(
{ρpreh ◦ unif(A)}

H−1
h=0

)
to be uniform over the discovered h-step policies,

each of which we augment with random actions from time step h onwards.
end for

Algorithm 2 Elliptical Planner

Input: MDP M̃ =
(
ϕ0:h̃, ψ0:h̃

)
, subroutine SAMP, parameter β > 0. Initialize Σ0 = Id×d.

for t = 1, 2, ..., do
Compute πt such that

E
[
ϕh̃(sh̃, ah̃)

TΣ−1
t−1ϕh̃(sh̃, ah̃) | πt,M̃

]
≥ sup

π
E
[
ϕh̃(sh̃, ah̃)

TΣ−1
t−1ϕh̃(sh̃, ah̃) | π,M̃

]
− β

2

If the objective is at most β/2, halt and output ρ = unif({πτ}τ<t).
Compute Σπt

= E
[
ϕh̃(sh̃, ah̃)ϕh̃(sh̃, ah̃)

T | πt,M̃
]
. Update Σt ← Σt−1 +Σπt

.

end for

where TV(·, ·) and H(·, ·) denote total variation dis-
tance and Hellinger distance, respectively; and (2) for
any s ∈ S, ϕ ∈ Φ, ψ ∈ Ψ, and h ∈ [H], the function
a 7→ E(ϕ(s, a)⊤ψ(·), ϕ∗h(s, a)⊤ψ∗

h(·)) is αE-smooth with
CαE -norm at most LE.

In other words, this assumption requires that the er-
rors (in terms of some metric that lies between the
total variation and Hellinger distances) of transition
operators allowed by Φ,Ψ are smooth in the action a.

We note that this assumption is used to apply Theo-
rem 2 in place of Lemma 1 in the FLAMBE analysis.
While Agarwal et al. (2020) only use the total varia-
tion distance error function in their analysis, we de-
cided to weaken this assumption and allow for various
error functions. This relaxation is due to the fact that
the smoothness assumption might be more feasible for
certain error functions than others, depending on the
context. We elaborate on two particular cases below.

Using Total Variation Distance

In cases where the embeddings ϕ ∈ Φ themselves are
αE-Hölder continuous for some αE ∈ (0, 1], we can
easily justify Assumption 2 using total variation dis-
tance, as shown in the following lemma. Note that this

case includes Lipschitz-continuous embeddings with
αE = 1.

Lemma 5. Suppose that ϕ(s, a) is α-Hölder contin-
uous in a with norm LΦ for every ϕ ∈ Φ and s ∈
S (under L2 norm) for some α ∈ (0, 1], and that∫
∥ψ(s)∥2dµ(s) ≤ U for all ψ ∈ Ψ, for some fixed

U < ∞. Then, the conditions of Assumption 2 hold
with E(·, ·) = TV(·, ·), αE = α, and LE = 2ULΦ.

We defer the proof of Lemma 5 to the appendix. Note
that the assumption on Ψ in Lemma 5 is slightly
stronger than the assumed normalization condition in
Definition 1, but it can also be easily justified in many
settings; for example, if all embedding values are non-
negative then it is easy to argue that U ≤ d.4

Using Hellinger Distance

Unfortunately, Lemma 5 only allows us to leverage
smoothness up to Lipschitz continuity (αE = 1). In
order to exploit higher order smoothness, we can in-
stead consider the Hellinger distance. Recall that the

4This holds since ∥ψ(s′)∥1 =
∑d

i=1 ψ(s
′)i for non-

negative embeddings, therefore we have
∫
∥ψ(s)∥2dµ(s) ≤∫

∥ψ(s)∥1dµ(s) = ∥
∫
ψ(s)dµ(s)∥1 ≤ d, given the normal-

ization in Definition 1 and ∥ · ∥2 ≤ ∥ · ∥1 ≤
√
d∥ · ∥2.
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Hellinger distance is defined according to H(ρ, ρ′) =
1√
2

∫
(
√
ρ(s)−

√
ρ′(s))2dµ(s)1/2, for distributions ρ, ρ′

that are continuous w.r.t. µ. Since this corresponds
to L2 distance in the Hilbert space of square root den-
sities, it is evident that for any integer αE ∈ N+, As-
sumption 2 holds with Hellinger distance as long as all
order αE mixed derivatives of

√
ϕ(s, a)⊤ψ(·) w.r.t. a

exist, and that these derivatives have L2(S) norm at
most LE/2.

Noting that d
dx

√
f(x) = f(x)−1/2 d

dxf(x), one could
easily justify this as long as ϕ(s, a) is uniformly
αE-smooth in a for all ϕ ∈ Φ and s ∈ S, and
supϕ,ψ,s,a

∫
(ϕ(s, a)⊤ψ(s′))1−2αEdµ(s′) < ∞. The lat-

ter of these conditions holds for any αE if all transition
operators allowed by Φ,Ψ have a uniformly bounded
minimum density. Similarly, Assumption 2 may be
justified for non-integer αE > 1 using analogous rea-
soning in terms of fractional derivatives.

Compared with using total variation distance, this ap-
proach allows us to leverage higher order smoothness
of the embeddings ϕ(s, a), at the cost of requiring that
the allowed transition densities ϕ(s, a)⊤ψ(·) cannot be
too concentrated around zero.

5.3 Bound for Restricted Policies

We now present the first of our PAC results for
FLAMBE in the continuous action setting under As-
sumption 2. For this result, we use both the methods
described in Section 4.1 and Section 4.2. In some parts
of the FLAMBE analysis, Lemma 1 is applied to poli-
cies returned by the elliptical planner (which may have
arbitrarily large density) and with the transition func-
tion error (which is smooth under Assumption 2) so
we can apply the approach described in Section 4.1.
In other places, Lemma 1 is applied to the policies
that we want to bound estimation error for with dis-
continuous error functions, in which case we can apply
the simple bound described in Section 4.2. With this,
the sample complexity of our result depends on the
density ratio K of the policies being evaluated.

Theorem 6. SupposeM has rank d, and let Assump-
tion 1 and Assumption 2 be given. Then, if we set the
hyperparameters β, n, and Jmax appropriately, with
probability at least 1 − δ, FLAMBE returns a model
M̂ that satisfies

∣∣∣V (π;R,M̂)− V (π;R,M)
∣∣∣ ≤ ϵ

for every sparse reward function R, and every policy
π that is continuous with respect to the measure on
A and satisfies sups,a π(a | s) ≤ K. The number of

trajectories collected by the algorithm is

Õ

(
H22+16τK5+4τd7+4τ

(1
ϵ

)10+8τ

· L(9+8τ)κ
E ln

( |Φ||Ψ|
δ

))
,

where τ = m/αE, and κ = m/(m+ αE).

The exact hyperparameter values that yield this re-
sult are given in the proof of this theorem (see Ap-
pendix A). In this bound, K corresponds to the max-
imum probability density (or sharpness) of policies we
are guaranteed to accurately evaluate, and τ corre-
sponds (inversely) to the assumed level of smoothness
relative to the dimensionality of the action space. We
note that as τ → 0 (i.e., we assume a very high order
of smoothness relative to m) we recover the same de-
pendence on H, d, and 1/ϵ as in Theorem 4 (LE and
K together play a similar role as |A|, so comparing
exponents of these parameters is less straightforward).
However, when we have a lower level of smoothness,
the polynomial factors in this bound can be signifi-
cantly worse than in Theorem 4. A simple intuition
for this is that the smoother the transition operators
allowed by the embedding classes Φ and Ψ, and the
lower the number of degrees of freedom in the action
space, the easier it is to explore A.

5.4 Bound for Unrestricted Policies

Unfortunately, in many applications we would like to
consider deterministic policies, for which K = ∞ and
Theorem 6 becomes vacuous. In order to address this,
we take the approach described in Section 4.2. Here we
require an additional assumption on the smoothness of
the actual transition operator, as follows:

Assumption 3. (α-smooth Transitions) There ex-
ists some fixed αT ∈ (0, 1] and LT < ∞ such that
TV(ϕ∗h(s, a)

⊤ψ∗
h(·), ϕ∗h(s, a′)⊤ψ∗

h(·)) ≤ LT ∥a′ − a∥αT ,
for every h ∈ [H], s ∈ S, and a, a′ ∈ A.

This assumption is easy to justify as long as the true
embeddings ϕ∗h(s, a) are uniformly αT -Hölder contin-
uous for all s, h by applying Lemma 5. Given this, we
are ready to provide our second PAC result.

Theorem 7. Let the conditions and definitions of
Theorem 6 be given, as well as Assumption 3. Then, if
we set the hyperparameters β, n, and Jmax appropri-
ately, with probability at least 1− δ, FLAMBE returns
a model M̂ that satisfies∣∣∣V (π;R,M̂)− V (π;R,M)

∣∣∣ ≤ ϵ
for every policy π, and every sparse reward function R
such that Rh(s, a) is αR-Hölder continuous with norm
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at most LR for all h ∈ [H] and s ∈ S. The number of
trajectories collected by the algorithm is

Õ

(
H22+16τ+(4τ+5)σd7+4τ

(1
ϵ

)10+8τ+(4τ+5)σ

· L(9+8τ)κ
E L(4τ+5)σ ln

( |Φ||Ψ|
δ

))
,

where σ = m/min(αT , αR), and L = max(LT , LR).

We note that this theorem similarly gives us a sam-
ple complexity that is polynomial in all problem vari-
ables for fixed action space dimension and order of
smoothness. We can see that the less smooth the re-
ward functions under consideration (i.e., the smaller
αR is and the greater LR is), the greater the num-
ber of trajectories needed to learn a model that can
accurately estimate policy values. Similarly, the less
smooth the transition function is, the more trajectories
are needed. Note as well that, since αT ≤ 1, we can-
not have σ → 0 for very smooth problem instances, so
this bound gives worse exponents than Theorem 6 for
smooth problem instances, at the benefit of allowing
for arbitrarily sharp policies. The proof of Theorem 7
is a fairly straightforward application of Lemma 3 to
Theorem 6, along the lines discussed in Section 4.2,
and we defer details to the appendix.

5.5 Discussion of Implementation

FLAMBE with continuous actions can mostly be im-
plemented identically as with discrete actions. The
only slight complication comes with implementing the
elliptical planner. As in the discrete case, we can
implement this planner using backward dynamic pro-
gramming, since under MDP linearity Q functions are
linear in ϕ(s, a) (Jin et al., 2020). However, imple-

menting this requires computing maxa w
⊤ϕ̂(s, a) for

various vectors w, states s, and estimated embeddings
ϕ̂. With discrete actions this optimization is trivial,
whereas when A is continuous we require some kind of
non-trivial optimization procedure. Below we discuss
some possible approaches.

Using Concave Embeddings If we ensure that by
design ϕ(s, a) is concave in a for all ϕ ∈ Φ, then the op-

timization problem maxa w
⊤ϕ̂(s, a) is tractable (equiv-

alent to minimizing a convex function) as long as w is
non-negative. This latter condition may be additional
assumptions on a problem by problem basis depending
on the embedding structure.

Using Grid Search We could approximately solve
the problem maxa w

⊤ϕ̂(s, a) by performing grid search

over a ∈ [0, 1]m. When the embeddings ϕ̂(s, a) are

relatively smooth in a, and m is not too large, then
this approach should be reasonably tractable.

Using Blackbox Non-convex optimiztion A
third approach, which might be the most useful
in many problems in practice, is to simply treat
maxa w

⊤ϕ̂(s, a) as a blackbox optimization problem.
For example, for some fixed iteration of dynamic pro-
gramming, where w and ϕ̂ are fixed, we could learn a
mapping from s to argmaxa w

⊤ϕ̂(s, a) using machine
learning procedures such as deep learning, treating this
as a general nonconvex policy optimization problem.
While this kind of approach may be difficult to theoret-
ically analyze, it may be effective in ensuring accurrate
elliptical planning performance in practice.

6 Conclusion

We studied the problem of generalizing low-rank MDP
methods to settings with continuous action spaces. We
first provided a detailed discussion of exactly how/why
low-rank MDP PAC bounds depend on the size of the
action space, and we discussed multiple techniques
that could be used to extend existing PAC results
to continuous action spaces by utilizing smoothness
of problems parameters w.r.t. actions. Then, as a
case study, we considered the seminal reward-agnostic
FLAMBE algorithm of Agarwal et al. (2020), and in-
vestigated how to extend their theory to continuous
action spaces using these methods. Based on these
insights, we provided novel PAC bounds for low-rank
MDPs with continuous action spaces, and we derived
sample complexities that are polynomial in all problem
parameters except for the assumed degree of smooth-
ness relative to the dimension of the action space. We
hope that this work is useful and impactful in mo-
tivating further research on low-rank MDPs, as well
as other practical PAC RL settings, with continuous
action spaces. In particular, an interesting and rele-
vant avenue of future research would be to construct
lower bounds on sample complexity under appropri-
ate smoothness assumptions, further advancing the
theoretical foundations and algorithmic approaches in
these areas.
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A PROOFS

A.1 Proof of Theorem 2

The proof is based on a recent contribution (Lemma 9) from the field of functional analysis. Before delving into
it, we introduce a prior, more established lemma to develop a better intuition about the final result.

Lemma 8 (Gagliardo–Nirenberg interpolation inequality). Let 1 ≤ p, q ≤ ∞, s ∈ N, k ∈ N+ such that 0 ≤ k < s
and let θ be such that

0 ≤ θ ≤ 1− k/s

and

(1− θ)
(
1

p
− s− k

m

)
+ θ

(
1

q
+
k

m

)
=

1

r
∈ (−∞, 1]

Then there exists a constant Cs,m,k,p,q,r > 0 that depends only on s,m, k, p, q, r such that:

∥∇kf∥Lr(Rm) ≤ Cs,m,k,p,q,r∥∇sf∥1−θLp(Rm)∥f∥
θ
Lq(Rm)

for every f : Rm → R with the following properties: (1) f is s times differentiable; (2) ∥∇sf∥Lp(Rm), ∥f∥Lq(Rm) <
∞ ; and (3) f vanishes at infinity.

The Gagliardo–Nirenberg (GN) interpolation inequality was originally proposed independently by Emilio
Gagliardo and Louis Nirenberg in 1958, but the generality of the statement, as well as the details of the proof have
been subject to refinement until recently. The version presented in Lemma 8 is based on Theorem 12.87 in Leoni
(2017). The GN interpolation inequality has found numerous applications in various branches of mathematics,
including the theory of elliptic and parabolic partial differential equations, harmonic analysis, and functional
analysis.

The GN inequality will be central to our proof of Theorem 2. To see this, let g : Rm → R be a function defined
on all of Rm that is α-smooth with α ≥ 1 and vanishes at ∞. Setting p, r = ∞, s = ⌊α⌋, k = 0, q = 1 in

Lemma 8, we immediately obtain θ = ⌊α⌋
m+⌊α⌋ and a bound of the form:

∥g∥∞ ≤ C⌊α⌋,m,0,∞,1,∞L
m

m+⌊α⌋ ∥g∥
⌊α⌋

m+⌊α⌋
L1(Rm) (1)

Remark 1 (GN Inequality Constant). In (1), the GN constant C⌊α⌋,m,0,∞,1,∞ depends on p, r = ∞ which can
potentially lead to a large constant value. Finding the best values for the GN constant is an area of active research
with several recent results finding tight values for these constants in specific scenarios. For example, Liu and
Wang (2017) find that for s = 1 (i.e. ⌊α⌋ = 1) the constant is C1,m,0,∞,1,∞ = 1 (see Eq. 1.20 from their paper).
We assume that the GN constant for s > 1 will similarly have values that are not too large.

Two challenges arise when applying Lemma 8 directly to our scenario: (1) the GN inequality applies to functions
over the entire Rm, while our functions are defined on a bounded domain, and (2) the bound lacks precision
for non-integer α values, requiring an adjustment similar to Theorem 2. Traditionally, the first issue has been
mitigated using linear extension operators for domains with Lipschitz boundaries (see Stein (1970)). The second
challenge has been fully resolved only recently, through the work of Ha”im Brezis and Petru Mironescu (Brezis
and Mironescu, 2018, 2019). This result relies on the Sobolev norm, which we define here for α-smooth functions:

Definition 5 (Sobolev norm of α-smooth functions). For two integers s ∈ N and p ∈ N+, the Sobolev norm
∥ · ∥W s,p of an s-smooth function defined on D is defined as:

∥f∥W s,p(D) =

s∑
j=0

∥∇jf∥Lp(D)

For α-smooth functions with a potentially non-integer α ∈ (0,∞), the fractional Sobolev norm for the (α,∞)
indices is given by:

∥f∥Wα,∞(D) = ∥f∥W ⌊α⌋,∞(D) + max
β:|β|=⌊α⌋

∣∣Dβf
∣∣
C0,{α}
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We now present the GN inequality for fractional smoothness from Brezis and Mironescu (2019).

Lemma 9. [Fractional GN inequality, Theorem 1 in Brezis and Mironescu (2019)] Let D be Rm, a half space
or a Lipschitz bounded domain in Rm, and let s1, s2, r, p1, p2, q, θ,m satisfy:

s1, s2, r ∈ R+, p1, p2, p ∈ N, 1 ≤ p1, p2, p ≤ ∞,
r < s := θs1 + (1− θ)s2, and

1

q
=

(
θ

p1
+

1− θ
p2

)
− s− r

m
.

Then, the following inequality holds

∥f∥W r,q(D) ≤ Cm,r,q,s1,s2,p1,p2∥f∥θW s1,p1 (D)∥f∥
1−θ
W s2,p2 (D)

for every f : D → R with ∥f∥W s1,p1 (D), ∥f∥W s2,p2 (D) <∞ if and only if at least one of the following statements

is false:


s2 ∈ N and s2 ≥ 1,

p2 = 1,

0 < s2 − s1 ≤ 1− 1
p1
.

.

Here Cm,r,q,s1,s2,p1,p2 is a constant that depends only on m, r, q, s1, s2, p1, p2 and ∥f∥W s,p(D) is the fractional
Sobolev norm.

We are now ready to provide a proof for Theorem 2.

Proof of Theorem 2. Let g(a) := Es∼ρ[f(s, a)]. Since f(s, a) is α-smooth in the action a with α ∈ (0,∞) and
∥f∥Cα ≤ L, it immediately follows that g(a) is also α-smooth with ∥g∥Cα ≤ L. Furthermore, since A is a
Lipschitz domain, we can apply Lemma 9 directly by setting the following parameters: q = ∞, r = 0, p1 =
1, s1 = 0, p2 =∞, s2 = α. This yields a coefficient θ = α

m+α and

∥g∥W 0,∞(A) ≤ Cm,0,∞,0,α,1,∞∥g∥
α

m+α

W 0,1(A)∥g∥
m

m+α

Wα,∞(A) (2)

We note that the conditions ∥g∥W s1,p1 (A) = ∥g∥W 0,1(A) < ∞, ∥g∥W s2,p2 (A) = ∥g∥Wα,∞(A) < ∞ hold

from the properties of α-smooth functions (Definition 2). In particular, ∥g∥Wα,∞(A) =
∑⌊α⌋
j=0 ∥∇jg∥Lp(D) +

maxβ:|β|=⌊α⌋
∣∣Dβg

∣∣
C0,{α} ≤ (⌊α⌋+ 2)L. Absorbing all constants into one constant C and rearranging the terms,

we can rewrite (2) as:

∥g∥∞ ≤ CL
α

m+α ∥g∥
α

m+α

L1(A)

We further write ∥g∥L1(A) =
∫
A g(a)dµ(a) = µ(A)

∫
A g(a)

1
µ(A)dµ(a) = Ea∼unifAg(a) since µ(A) = 1. Putting

everything together, we obtain following inequality:

sup
a∈A

g(a) ≤ CL
m

m+α [Ea∼unifAg(a)]
α

m+α

The desired conclusion immediately follows by noting that Es∈ρ,a∼π(·|s)[f(s, a)] ≤ Es∼ρ[supa∈A f(s, a)] =
supa∈A g(a) and Es∼ρ,a∼unifA [f(s, a)] = Ea∼unifAEs∼ρ[f(s, a)] = Ea∼unifAg(a). This concludes our proof.

Remark 2 (Generality of A = [0, 1]
n
). We note that the result in Theorem 2 is scale-invariant. That is,

if we consider A = [0, 1]
n

to be the scaling of a larger space A′ = [0, Amax]
n

with f ′ : A′ → R such that
f ′(a′) = f(a′/Amax), the bound in Theorem 2 is the same across both A and A′. Intuitively, this is because the
bound on the derivatives increases as the space shrinks, but the measure of the space decreases proportionally.
Let L′ be bound in Definition 2 of f ′. Then L = L′

Aα
max

. Noting that supa∈A f(a) = supa′∈A′ f(a′), we have:

sup
a∈A

f(a) ≤ CL
m

m+α [Ea∼unifAf(a)]
α

m+α

⇒ sup
a′∈A′

f(a′) ≤ C
(

L′

Aαmax

) m
m+α

(
µ(A′)

∫
A′
f ′(a′)

1

µ(A′)
dµ(a′)

) α
m+α

= C(L′)
m

m+α (Amax)
− αm

m+α (Amax)
mα

m+α
[
Ea′∼unif′A

f ′(a′)
] α

m+α

= C(L′)
m

m+α
[
Ea′∼unif′A

f ′(a′)
] α

m+α

Thus, as long as A is bounded, the result in Theorem 2 holds in all generality.
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A.2 Proof of Lemma 3

Consider any policy π(a | s). The core of this proof relies on the construction of a “smoothed”, intermediary
policy πK(a | s). We define πK as follows:

Definition 6. [Intermediary policy] Let π(· | s) ∈ ∆(A) be a given policy that we wish to evaluate. Then,
for all s ∈ S and K ∈ R+, define the intermediary policy πK(· | s) ∈ ∆(A) as the distribution that samples
a ∈ A by first sampling a′ ∼ π(· | s), and then a ∼ unifB∞(a′,K−1/m/2)∩A, where B∞(a′,K−1/m/2) = {a ∈ Rm :

∥a− a′∥∞ ≤ K−1/m/2} is the ℓ∞ ball of radius K−1/m/2 in Rm.

In other words, the intermediary policy πK is given by sampling in an m-dimensional hypercube of side length
K−1/m centered at action a′ sampled from the original policy π. πK is trivially continuous in the action a.
Furthermore, since the volume of the hypercube is 1/K, πK has a density bounded by K. We now introduce a
result that describes the behavior of Ea∼πK(·|s)[f(a)], where f(a) is an α-Hölder continuous function.

Lemma 10. Let Cα,L be the class of α-Hölder continuous functions f : A → [0, 1] with α ∈ (0, 1] and norm at
most L as in Definition 2. Furthermore, let π(· | s) ∈ ∆(A) be a given policy and let πK(· | s) be its intermediary
policy as in Definition 6. Then, the following inequality holds:

sup
f∈Cα,L

(
Ea∼πK(·|s)[f(a)]− Ea∼π(·|s)[f(a)]

)
≤
√
mLK− α

m .

Proof of Lemma 10. For α-Hölder continuous functions with Hölder norm bounded by L we have that |f(a) −
f(a′)| ≤ L∥a−a′∥α2 for any a, a′ ∈ A. This allows us to bound the difference in expectations under a given policy
π(· | a) and the corresponding intermediary policy πK(· | a):

sup
f∈Cα,L

(
Ea∼πK(·|s)[f(a)]− Ea∼π(·|s)[f(a)]

)
= sup
f∈Cα,L

(
Ea′∼π(·|s)

[
Ea∼unif

BA(a′,K−1/m)∩A
f(a)

]
− Ea∼π(·|s)[f(a)]

)
≤ sup
f∈Cα,L

(
Ea′∼π(·|s)

[
Ea∼unif

BA(a′,K−1/m)∩A
[f(a′) +

√
mLK−α/m]

]
− Ea∼π(·|s)[f(a)]

)
=
√
mLK−α/m

where the inequality comes from |f(a) − f(a′)| ≤ L∥a − a′∥α2 ≤ L(
√
m∥a − a′∥∞)α ≤

√
mLK−α/m for a, a′ ∈

B∞(a′,K−1/m/2) ∩ A.

Remark 3. For α > 1, we cannot easily leverage the additional smoothness properties of the class Cα,L. To
understand this, let m = 1, r ≪ 1, and consider the Taylor expansion of f(a′) around f(a) such that ∥a−a′∥2 = r.
The Taylor expansion contains a term that is bounded by Lr which is of leading order given r ≪ 1. In other
words, for small r, functions of smoothness α ≥ 1 are locally linear with derivatives bounded by L. Thus, for
α > 1, we cannot obtain a bound better than Lr using similar arguments as above. Note that Lr is still a valid
bound in this regime since the functions are still Lipschitz with constant L.

Using the result of Lemma 10, we can obtain the conclusion of Lemma 3 by applying the performance difference
lemma, and bounding the difference between V (π;R,M̃) and V (πK ;R,M̃) for any model M̃ allowed by (Φ,Ψ),
where πK is the intermediary policy of π (Definition 6). We give details below:

|V (π;R,M̃)− V (πK ;R,M̃)| ≤
H−1∑
h=0

Esh∼PπK
h

∣∣∣Eah∼π(sh)[Qπ,M̃(sh, ah)]− Eah∼πK(sh)[Q
π,M̃(sh, ah)]

∣∣∣
≤
H−1∑
h=0

Esh∼PπK
h

∣∣∣Eah∼π(sh)[Rh(sh, ah)]− Eah∼πK(sh)[Rh(sh, ah)]

+ Eah∼π(sh)E
[
V π,M̃h+1 (sh+1) | sh, ah,M̃

]
− Eah∼πK(sh)E

[
V π,M̃h+1 (sh+1) | sh, ah,M̃

] ∣∣∣ .
Now, by assumption Rh is α-Hölder continuous in a with Hölder norm at most L. In addition, R is a sparse

reward so V π,M̃h+1 : S 7→ [0, 1], which along with the assumption that ϕ∗h(s, a)ψ
∗
h(·) is also α-Hölder continuous
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under the total variation distance, implies that E
[
V π,M̃h+1 (sh+1) | sh, ah,M̃

]
is also α-Hölder continuous in a with

constant L. Therefore, we can apply the result of Lemma 10 to control the terms above and obtain the desired
result:

|V (π;R,M̃)− V (πK ;R,M̃)| ≤
H−1∑
h=0

Esh∼PπK
h

(√
mLK−α/m +

√
mLK−α/m

)
≤ 2
√
mHLK−α/m .

Remark 4. While the assumption of the theorem is that both R and ϕ∗h(s, a)ψ
∗
h(·) are α-Hölder continuous in a

with Hölder norm at most L, this is without loss of generality. To see this, assume instead that R is αR-smooth
with αR ∈ (0,∞) and Hölder norm LR, and similarly ϕ∗h(s, a)ψ

∗
h(·) is αT -smooth with αT ∈ (0,∞) and Hölder

norm LT . Then, we could simply set α := min(αR, αT , 1) and L := max(LR, LT ) and the result of Lemma 3
applies due to the nesting of α-smooth classes.

A.3 Proof of Lemma 5

Proof. For any given h, ϕ, ψ, s, a, a′ we have

|errϕ,ψh (s, a′)− errϕ,ψh (s, a)|

≤
∥∥∥(ϕ(s, a′)Tψ(·)− ϕ∗h(s, a′)Tψ∗

h(·)
)

−
(
ϕ(s, a)Tψ(·)− ϕ∗h(s, a)Tψ∗

h(·)
)∥∥∥

TV

≤ 2 sup
ϕ∈Φ,ψ∈Ψ

∥∥∥ϕ(s, a′)Tψ(·)− ϕh(s, a)Tψh(·)∥∥∥
TV

≤ 2U sup
ϕ∈Φ
∥ϕ(s, a′)− ϕ(s, a)∥2

≤ 2ULΦ∥a′ − a∥α ,

where the first inequality follows from the triangle inequality, the second follows from Assumption 1, the third
follows from Hölder’s inequality and the assumd bound on Ψ, and the final inequality follows from Hölder
continuity of all ϕ ∈ Φ. The conclusion immediately follows.

A.4 Proof of Theorem 6

Proof of Theorem 6. Since m ≥ 1, we cannot simply use Theorem 2 to replace the simple importance sampling
bound applied by Agarwal et al. (2020), and conclude by simply replacing |A| in the result of Agarwal et al.
(2020) with some complex term involving the constants c, LE , αE as in Assumption 2. Instead, we must carefully
percolate the weaker bound given by Theorem 2 through the arguments of Agarwal et al. (2020, Appendix B).
In this section, we briefly summarize this process.

Let us refer to Agarwal et al. (2020, Lemma x) by AKKS-Lx, for each x, and similarly AKKS-Cx for corol-
laries. We will briefly describe how updated versions of of the lemmas and corollaries in Agarwal et al. (2020,
Appendix B) can be obtained under our assumptions, by using Theorem 2 instead of the simple importance
sampling bound. We sketch these arguments and results, with formal details omitted when the implications are
straightforward. In these arguments we will assume without further comment that λ ≤ 1/d.

AKKS-L17 First, we note that at termination we have

sup
π

E
[
ϕH−1(sH−1, aH−1)

⊤Σ−1
T ϕH−1(sH−1, aH−1) | M̃, π

]
≤ sup

π
E
[
ϕH−1(sH−1, aH−1)

⊤Σ−1
T−1ϕH−1(sH−1, aH−1) | M̃, π

]
≤ E

[
ϕH−1(sH−1, aH−1)

⊤Σ−1
T−1ϕH−1(sH−1, aH−1) | M̃, πT

]
+
β

2
≤ β ,
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where the first inequality follows because ΣT − ΣT−1 is positive semi-definite (PSD), the second equality fol-
lows because inequality follows due to the approximate optimization condition, and the third follows from the
termination condition. Therefore, since Σρ =

1
T

∑T
t=1 Σπt

and ΣT =
∑T
t=1 Σπt

+ I, we have

∀π : E
[
ϕH−1(sH−1, aH−1)

⊤(Σρ + I/T )−1ϕH−1(sH−1, aH−1) | M̃, π
]
≤ Tβ .

Finally, we note that since at every non-terminating iteration the objective is at least β/2, we can apply an
identical potential-based argument as in the original proof of AKKS-L17, except with β replaced with β/2,
which gives us the bound

T ≤ 8d log(1 + 8/β)/β .

That is, by using our alternative elliptical planner that only approximately optimizes the objective each iteration,
we obtain the same guarantee as in AKKS-L17, except the bound on T is a constant-factor weaker.

AKKS-C5 The statement and proof of this corollary is identical since no aspect of it relies on A being discrete.

AKKS-L6 For this lemma, we can obtain a similar result, by relying on both Assumption 2 and Theorem 2

instead of the simple importance sampling bound. We simplify notation by leting U(αE , LE) := cL
m

m+αE

E where
c is the constant in Theorem 2. Thus, we can obtain the bound

Esh∼Pπ
h ,ah∼π(sh)[1{sh ̸= sabsorb}err(sh, ah)]

≤ Esh∼Pπ
h

[
1{sh ̸= sabsorb}U(αE , LE)Eah∼unifA [err(sh, ah)]

αE/(m+α)
]

≤ U(αE , LE)Esh∼Pπ
h ,ah∼unifA [1{sh ̸= sabsorb}err(sh, ah)]αE/(m+αE)

≤ U(αE , LE)ϵ
αE/(2(m+αE))
TV ,

where the first inequality follows from Assumption 2, the second follows from Jensen’s inequality, and the last
following the same logic as in AKKS-L6. Therefore, following the remaining steps as in AKKS-L6, we obtain

the same result except with U(αE , LE)ϵ
αE/(2(m+αE))
TV in place of K

√
ϵTV.

AKKS-L7 and AKKS-C8 Plugging in the previous result from AKKS-L6, we obtain an almost-identical

results, except with K
√
ϵTV replaced everywhere by U(αE , LE)ϵ

αE/(2(m+αE))
TV . In particular, this gives us a

bound on the maximum number of rounds

Jmax =
4Hd

λU(αE , LE)ϵ
αE/(2(m+αE))
TV

log

(
1 +

4H

λU(αE , LE)ϵ
αE/(2(m+αE))
TV

)
,

in order to obtain a round where

P[(sh, ah) /∈ K(Σj,j) | π,M̂(j)] ≤ 2HU(αE , LE)ϵ
αE/(2(m+αE))
TV

AKKS-L9 We can obtain a very similar lemma here, except that we need to interpret K differently. Here, we
will interpret K as some constant such that the density ratio π(a | s)/unifA(a) is bounded by K for every s, a.
Them, the same result follows using an identical argument involving importance sampling, except that the value
K in the bound is π-dependent. We note that this implicitly requires π to be non-deterministic.

AKKS-L10 We will obtain a similar lemma here, except that the lemma will only apply to policies π that
have a bounded density ratio sups,a π(a | s)/unifA(a) ≤ K for some K, and the bounds will be K-dependent.

First, applying successively our updated versions of AKKS-L6, AKKS-L9, and AKKS-C8, we have

P[(sh, ah) /∈ K(Σj,j) | π,M̂(j)]

≤ αH2KU(αE , LE)ϵ
αE/(2(m+αE))
TV +

Tβ

2α
+
αd

2T
+HU(αE , LE)ϵ

αE/(2(m+αE))
TV

∆
= ϵescape .

Then, tracing the rest of the proof with the updated version of AKKS-L6, we get a final result of

max
π,R

∣∣∣V (π;R,M̂)− V (π;R,M)
∣∣∣ ≤ HU(αE , LE)ϵ

αE/(2(m+αE))
TV +Hϵescape .
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Final steps. We put together the updated lemmas and corollaries to obtain the final K-dependent bound on
the sample complexity in order to accurately evaluate all policies π that satisfy sups,a π(a | s)/unifA(a) ≤ K.
To simplify our notation, we introduce the following abbreviations: τ = m/αE and κ = m/(m+ αE).

First, we note that from AKKS-10, the policy evaluation error is given by

error = αH3KU(αE , LE)ϵ
αE/(2(m+αE))
TV +

HTβ

2α
+
Hαd

2T
+ (H2 +H)U(αE , LE)ϵ

αE/(2(m+αE))
TV

= αH3KU(αE , LE)ϵ
1/(2(1+τ))
TV +

HTβ

2α
+
Hαd

2T
+ (H2 +H)U(αE , LE)ϵ

1/(2(1+τ))
TV

≤ αH3KU(αE , LE)ϵ
1/(2(1+τ))
TV +

HTβ

2α
+
Hαd

2T
+ 2H2U(αE , LE)ϵ

1/(2(1+τ))
TV ,

Next, optimizing over α in this bound and setting

α =

√
HTβ

2

(
H3KU(αE , LE)ϵ

1/(2(1+τ))
TV +

Hd

2T

)−1

gives us

error ≤
√(

2H4KTβU(αE , LE)ϵ
1/(2(1+τ))
TV +H2dβ

)
+ 2H2U(αE , LE)ϵ

1/(2(1+τ))
TV .

Next, we note that β is a free parameter of the algorithm, which we may set arbitrarily low at the cost of greater
sample complexity. We balance the first term by setting β according to

β =
2H2KU(αE , LE)ϵ

1/(2(1+τ))
TV

d
,

which gives us

error ≤
√
2H2

√
Tβ + 1

√
KU(αE , LE)ϵ

1/(4(1+τ))
TV + 2H2U(αE , LE)ϵ

1/(2(1+τ))
TV .

We note that U(αE , LE) +
√
U(αE , LE) ≤ 2max(U(αE , LE), 1). For now, assume that U(αE , LE) ≥ 1. We

further apply the fact that K ≥ 1, ϵTV ≤ 1, and Tβ ≤ 8d log(1 + 8/β) in order to get

error ≤ 8
√
d
√
log(1 + 8/β)H2

√
KU(αE , LE)ϵ

1/(4(1+τ))
TV .

Now, we would like to set ϵTV sufficiently small such that the error is less than ϵ. We can achieve this if we set

ϵTV = 8−4−4τ H
−8−8τU(αE , LE)

−4−4τK−2−2τd−2−2τ ϵ4+4τ

log(1 + 8/β′)2+2τ
,

as long as β′ satisfies

β′ ≤ β =
2H2KU(αE , LE)ϵ

1/(2(1+τ))
TV

d
=

ϵ2

25d2H2U(λT , LE) log(1 + 8/β′)

⇐⇒ 8/β′ ≥ 28d2H2U(αE , LE)ϵ
−2 log(1 + 8/β′) .

We note that log(1 + x) ≤ x/
√
x+ 1 for x ≥ 0, so this condition on β′ is clearly satisfied if we set

β′ =
8

216d4H4U2(αE , LE)ϵ−4 − 1
.

Next, we need to reason about how small λ and n must be set to achieve this. Recall that

ϵTV ≤ λd+
2 log(JmaxH|Φ||Ψ|/δ)

n
.

This implies that we can achieve the required bound as long as we set

λ =
8−4−4τ

2

H−8−8τU(αE , LE)
−4−4τK−2−2τd−3−2τ ϵ4+4τ

log(1 + 8/β′)2+2τ
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n = 84+4τ H
8+8τU(αE , LE)

4+4τK2+2τd2+2τ log(1 + 8/β′)2+2τ

ϵ4+4τ
log(JmaxH|Φ||Ψ|/δ)

Furthermore, recalling the definition of Jmax and disregarding the log terms, we have

Jmax =
4Hd

λU(αE , LE)ϵ
1/(2(1+τ))
TV

log

(
1 +

4H

λU(αE , LE)ϵ
1/(2(1+τ))
TV

)

= Õ

(
Hd

λU(αE , LE)ϵ
1/(2(1+τ))
TV

)

= Õ
(
H13+8τU(αE , LE)

5+4τK3+2τd5+2τ

ϵ6+4τ

)
.

Finally, the total sample complexity is given by nJmaxH. Plugging in the above values for n, λ, and ϵTV, and
disregarding log terms, we have

nJmaxH = Õ

(
H22+16τK5+4τd7+4τ

(
1

ϵ

)10+8τ

U(αE , LE)
9+8τ ln

(
|Φ||Ψ|
δ

))
. (3)

Furthermore, recalling that U(αE , LE) = cL
m

m+αE

E = cLκE , we obtain the desired sample complexity:

nJmaxH = Õ

(
H22+16τK5+4τd7+4τ

(
1

ϵ

)10+8τ

L
(9+8τ)κ
E ln

(
|Φ||Ψ|
δ

))
. (4)

A.5 Proof of Theorem 7

Proof of Theorem 7. The proof of this theorem is an immediate application of Theorem 6 for the smoothed,
intermediary policy πK as in Definition 6. First, note that we can decompose the error of the policy π in terms
of errors of the policy πK :

|V (π;R,M)− V (π;R,M̂)| ≤ |V (π;R,M)− V (πK ;R,M)|

+ |V (πK ;R,M)− V (πK ;R,M̂)|

+ |V (πK ;R,M̂)− V (π;R,M̂)|

We can bound the first and third term on the RHS of the above inequality using the result of Lemma 3. To see

this, let σ = m/min(αT , αR) and L = max(LT , LR). Then, by setting K =
(

8
√
mHL
ϵ

)σ
, Lemma 3 yields:

|V (π;R,M)− V (π;R,M̂)| ≤ |V (πK ;R,M)− V (πK ;R,M̂)|+ ϵ

2

Since πK has bounded density, we can control the remaining term on the RHS by leveraging the result of Theo-

rem 6 withK =
(

8
√
mHL
ϵ

)σ
and ϵ replaced with ϵ/2. This would ensure that |V (πK ;R,M)−V (πK ;R,M̂)| ≤ ϵ/2

with probability at least 1− δ. Therefore, putting this together and plugging in this value of K into our result
from Theorem 6, we get our desired performance result of

|V (π;R,M)− V (π;R,M̂)| ≤ ϵ ,

with a total number of trajectories collected given by

Õ

(
H22+16τ+(4τ+5)σd7+4τ

(1
ϵ

)10+8τ+(4τ+5)σ

L
(9+8τ)κ
E L(4τ+5)σ ln

( |Φ||Ψ|
δ

))
,

where σ = m/min(αT , αR), and L = max(LT , LR). Furthermore, the corresponding values of the hyperparam-
eters β, n, and Jmax that achieve these results are the same as those from the proof of Theorem 6, plugging in
the above value of K.
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B CASE STUDY: RAFFLE

In this section, we apply our framework to RAFFLE (Cheng et al., 2023), a recently proposed reward-free low-

rank MDP algorithm which was shown to achieve near optimal sample complexity Õ
(
H3d2K(d2+K)

ϵ2

)
(Theorem

2 in Cheng et al. (2023)). The significant improvement in sample complexity over FLAMBE is attributed to a
novel exploration-driven pseudo-reward mechanism which targets sample collection towards high-error regions.

We now seek to derive a similar sample complexity for the RAFFLE algorithm when the action space is con-
tinuous, specifically A = [0, 1]m. We first note that the size K of the discrete action space in RAFFLE enters
the bound in their Theorem 2 via the application of importance sampling (IS) bounds, as in our Lemma 1. The
IS bound is applied with two different choices of f(s, a): (1) the (squared) TV error of transition distributions

(as in our Assumption 2), denoted by f
(n)
h (s, a); and (2) their (squared) bonus reward function terms, given by

b̂
(n)
h (s, a). Thus, in order to provide a similar bound, it suffices to make f

(n)
h (s, a) and b̂

(n)
h (s, a) α-smooth in a

and replace the IS bounds with the bound in our Theorem 2.

The TV error smoothness assumption is already outlined in Assumption 2 which we take to hold for RAFFLE

as well. Next, we see that the bonus reward function is the matrix norm of ϕ
(n)
h (s, a) induced by a symmetric

matrix with eigenvalues smaller that λ−1
n . Thus, we introduce the following assumption:

Assumption 4 (α-smooth feature vectors). There exists αΦ ∈ (0,∞) such that the scalar components ϕi(s, a),
i ∈ [d] are αΦ-smooth in a ∈ A with norm LΦ for every ϕ ∈ Φ and s ∈ S.

Assumption 4 is similar to the assumption that enables smooth TV errors in Lemma 5. However, Assumption 4
is more general in that it allows for higher degrees of smoothness when αΦ ≥ 1.

Remark 5. RAFFLE applied IS bounds to f(s, a)2 =
∥∥ϕ(s, a)⊤ψ(·)− ϕ∗h(s, a)⊤ψ∗

h(·)
∥∥2
TV

and g(s, a)2 =∥∥∥ϕ̂(n)h (s, a)
∥∥∥2
U
, involving sums over Ujiϕ̂

(n)
h,i (s, a)ϕ̂

(n)
h,j (s, a). While Assumption 2 and Assumption 4 only impose

smoothness on f(s, a) and each of the ϕ̂
(n)
h,i (s, a)’s, respectively, the space of α-smooth functions as defined in Def-

inition 2 is closed under multiplication (Behzadan and Holst, 2021, Theorem 4.2 and Proposition 4.3), making

f(s, a)2 αE-smooth and ϕ̂
(n)
h,i (s, a)ϕ̂

(n)
h,j (s, a) αΦ-smooth. In the remainder of this section, we extend our notation,

denoting the α-smooth norms of f2(s, a) and the ϕ̂
(n)
h,i (s, a)ϕ̂

(n)
h,j (s, a) products by LE and LΦ, respectively.

With Assumption 2 and Assumption 4, we can replace the IS bounds with the bound in our Theorem 2 and
carefully propagate these arguments through sample complexity proof in Cheng et al. (2023, Appendix A). In the
remainder of this section, we sketch this process and results, with formal details omitted for brevity. We provide
the sample complexity of the RAFFLE algorithm with continuous action spaces in the following theorem:

Theorem 11 (RAFFLE guarantees for continuous A). AssumeM has rank d and Assumption 1, Assumption 2,
and Assumption 4 hold. Let α = min(αE , αΦ), L = max(LE , LΦ), and τ = m/(m + α). Then, if τ < 1/2 and

we set α̂n = Õ
(√

nτ (Lτ + (dL)τ + d2)
)
, λn = Õ(d), with probability at least 1 − δ, RAFFLE returns a model

M̂ that satisfies ∣∣∣V (π;R,M̂)− V (π;R,M)
∣∣∣ ≤ ϵ

for every sparse reward function R, and every policy π. The total number of trajectories collected by RAFFLE
is upper bounded by

Õ

H1+
2

1−2τ d
2

1−2τ

(
1

ϵ

) 2
1−2τ

L
τ

1−2τ (Lτ + (Ld)τ + d2)
1

1−2τ

 .

We note that as τ → 0 (indicating that ε and ϕ(s, a) have a very high order of smoothness relative to m) we
achieve identical dependence on H, d, and 1/ϵ as in Cheng et al. (2023).

Remark 6. Although this theorem is not applicable to ε and ϕ(s, a) with a lower degree of smoothness (τ ≥ 1/2),
it is worth noting that a more refined bound could potentially be achieved through an alternative proof strategy,
instead of naively replacing the IS arguments in Cheng et al. (2023)’s proof with our Theorem 2. We leave this
for future work.



Andrew Bennett†, Nathan Kallus†, Miruna Oprescu†

Proof of Theorem 11. Similarly to the FLAMBE analysis, we refer to Cheng et al. (2023, Lemma x, Appendix
A) by CHYL-Lx, for each x, and similarly CHYL-Cx and CHYL-Px for corollaries and propositions, respectively.
Whenever possible, we keep notation consistent with that in Cheng et al. (2023).

CHYL-L1 The statement and proof of this lemma remains unchanged, as its validity does not depend on A
being discrete.

CHYL-C1 Let α = min(αE , αΦ) and L = max(LE , LΦ). Setting

α̂n = 5

√
β3nζ

α
m+α
n

(
L

m
m+α + (dL)

m
m+α + d2

)
in the definition of the bonus reward term b̂h(s, a), the statement and result of this lemma stay the same.

CHYL-L2 We add an additional condition to the statement of the lemma that g2 is α-smooth with norm L.
Then, for all h ≥ 2 and for all policies πh, there exists some c = O(1) such that the following inequality holds:

E
sh∼Ph−1
ah∼πh

[g(sh, ah)|sh−1, ah−1]

≤ ∥ϕh−1(sh−1, ah−1)∥(Mh−1,ϕ)−1 ×√
cnL

m
m+α E

sh∼(P⋆,Π)
ah∼U

[g2(sh, ah)]
α

m+α + λndB2 + nB2 E
sh−1∼(P⋆,Π)

ah−1∼Π

[fh−1(sh−1, ah−1)2].

Here, U = unifA. To obtain this result, we replace the importance sampling argument in step (iv) of the proof
in (Cheng et al., 2023) with the result in our Theorem 2.

CHYL-L3 We now propagate the result of CHYL-L2 to obtain new bounds for Eq. (11-14) in Cheng et al.
(2023, Appendix A). We first note that for any h, we have

E
sh−1∼P⋆

h−1
(·|sh−2,ah−2)

ah−1∼Πn(sh−1)

[
f
(n)
h−1(sh−1, ah−1)

2
∣∣∣ sh−2, ah−2

]
(5)

=

∫
sh−1

∫
ah−1

f (n)(sh−1, ah−1)
2ϕ⋆h−2(sh−2, ah−2)

⊤µ⋆h−2(sh−1)Πn(ah−1 | sh−1)dah−1dsh−1

=

d∑
i=1

Ωiϕ
⋆
h−2,i(sh−2, ah−2) ,

where

Ωi =

∫
sh−1

∫
ah−1

f (n)(sh−1, ah−1)
2µ⋆h−2,i(sh−1)Πn(ah−1 | sh−1)dah−1dsh−1 .

Now, by the normalization assumption on µ⋆h−2, and the fact that f (n) is uniformly bounded by 1, it easily

follows that ∥Ω∥2 ≤
√
d, and therefore ∥Ω∥1 ≤ d. Therefore, given Assumption 4, it easily follows that (5) is

uniformly αΦ-smooth in ah−2 with norm at most dLΦ. Then, applying Theorem 2 it follows that

E
sh−1∼(P⋆,Πn)

ah−1∼U

[
f
(n)
h−1(sh−1, ah−1)

2
]

= E
sh−2∼(P⋆,Πn)
ah−2∼Πn(sh−2)

 E
sh−1∼P⋆

h−1
(·|sh−2,ah−2)

ah−1∼Πn(sh−1)

[
f
(n)
h−1(sh−1, ah−1)

2
∣∣∣ sh−2, ah−2

]

≤ d
m

m+αΦ L
m

m+αΦ

Φ E
sh−2∼(P⋆,Πn)

ah−2∼U

 E
sh−1∼P⋆

h−1
(·|sh−2,ah−2)

ah−1∼Πn(sh−1)

[
f
(n)
h−1(sh−1, ah−1)

2
∣∣∣ sh−2, ah−2

]
αΦ

m+αΦ
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= d
m

m+αΦ L
m

m+αΦ

Φ E
sh−2∼(P⋆,Πn)
ah−2,ah−1∼U

sh−1∼P⋆
h−1(·|sh−2,ah−2)

[
f
(n)
h−1(sh−1, ah−1)

2
] αΦ

m+αΦ

Given this observation, we can follow the steps as in the original proof of CHYL-L3, using the the modified
CHYL-L2 above, as well replacing the importance sampling argument at time step h− 2 with Theorem 2 using
the above observation. Specifically, we have

E
sh∼P̂

(n)
h−1

ah∼π

[
f
(n)
h (sh, ah)

∣∣∣∣sh−1, ah−1

]

≤
∥∥∥ϕ̂(n)h−1(sh−1, ah−1)

∥∥∥
(U

(n)

h−1,ϕ̂
)−1
×√√√√√√cnL

m
m+αE

E E
sh−1∼(P⋆,Πn)
ah−1,ah∼U
sh∼P⋆

h

[
f
(n)
h (sh, ah)2

] αE
m+αE + λnd+ n(dLΦ)

m
m+αΦ E

sh−2∼(P⋆,Πn)
ah−2,ah−1∼U
sh−1∼P⋆

h−1

[
f
(n)
h−1(sh−1, ah−1)2

] αΦ
m+αΦ

(above bound and CHYL-L2)

≤
∥∥∥ϕ̂(n)h−1(sh−1, ah−1)

∥∥∥
(U

(n)

h−1,ϕ̂
)−1

√
cnL

m
m+αE

E ζ
αE

m+αE
n + cn(dLΦ)

m
m+αΦ ζ

αΦ
m+αΦ
n + β3nζnd2

(CHYL-L1 and λn = β3ndζn)

≤
∥∥∥ϕ̂(n)h−1(sh−1, ah−1)

∥∥∥
(U

(n)

h−1,ϕ̂
)−1

√
β3n

(
L

m
m+αE

E ζ
αE

m+αE
n + (dLΦ)

m
m+αΦ ζ

αΦ
m+αΦ
n + ζnd2

)
≤ αn

∥∥∥ϕ̂(n)h−1(sh−1, ah−1)
∥∥∥
(U

(n)

h−1,ϕ̂
)−1

where we set αn = α̂n/5 =

√
β3nζ

α
m+α
n

(
L

m
m+α + (dL)

m
m+α + d2

)
. Note that without loss of generality we can let

the constant c from Theorem 2 be absorbed into β3 since they are both O(1).

Eq. (12) follows from similar arguments such that

E
sh∼P∗

h−1
ah∼π

[
f
(n)
h (sh, ah)

∣∣∣∣sh−1, ah−1

]
≤ αn

∥∥ϕ∗h−1(sh−1, ah−1)
∥∥
(U

(n)

h−1,ϕ⋆ )−1 .

For Eq. (13), we have b̂
(n)
h (s, a) = min

{
α̂n

∥∥∥ϕ̂(n)h (s, a)
∥∥∥
(Û

(n)
h )−1

, 1

}
≤ 3α̂n

∥∥∥ϕ̂(n)h (s, a)
∥∥∥
(U

(n)

h,ϕ̂
)−1

from CHYL-L1.

We can then apply CHYL-L2 (before the IS argument):

E
sh∼P⋆

h−1
ah∼πn

[
b̂
(n)
h (sh, ah)

∣∣∣∣sh−1, ah−1

]
≤
∥∥ϕ⋆h−1(sh−1, ah−1)

∥∥
(W

(n)

h−1,ϕ⋆ )−1

√
n E

sh∼(P⋆,Πn)
ah∼πn

[{b̂(n)h (sh, ah)}2] + λnd.

We note that b̂
(n)
h (s, a) is not α-smooth and thus we cannot directly apply our Theorem 2 results here. Instead,

we will have to bound this term by ∥ϕ̂(n)h (s, a)∥
(U

(n)

h,ϕ̂
)−1 which we now show is αΦ-smooth with norm at most LΦ:

∥ϕ̂(n)h (s, a)∥2
(U

(n)

h,ϕ̂
)−1

= tr
{
ϕ̂
(n)
h (sh, ah)ϕ̂

(n)
h (sh, ah)

T (U
(n)

h,ϕ̂
)−1
}

=

d∑
i=1

d∑
j=1

{(U (n)

h,ϕ̂
)−1}jiϕ̂(n)h,i (sh, ah)ϕ̂

(n)
h,j (sh, ah)

≤ 1

λn

d∑
i=1

d∑
j=1

ϕ̂
(n)
h,i (sh, ah)ϕ̂

(n)
h,j (sh, ah) (from the definition of (U

(n)

h,ϕ̂
)−1)
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By Assumption 4, we have that ∥ϕ̂(n)h (s, a)∥2
(U

(n)

h,ϕ̂
)−1

is the sum of d2 αΦ-smooth functions with norm at

most LΦ/λn. Since the set of α-smooth function is closed under addition, it immediately follows that

∥ϕ̂(n)h (s, a)∥2
(U

(n)

h,ϕ̂
)−1

is αΦ-smooth with norm at most d2LΦ/λn = dLΦ/(β3 log(2|Φ||Ψ|nH/δ)) < dLΦ. Then,

we can control the b̂
(n)
h (s, a) expression as follows:

n E
sh∼(P⋆,Πn)

ah∼πn

[{b̂(n)h (sh, ah)}2] ≤ 9nα̂2
n E

sh∼(P⋆,Πn)
ah∼πn

[∥∥∥ϕ̂(n)h (sh, ah)
∥∥∥2
(U

(n)

h,ϕ̂
)−1

]

≤ 9nα̂2
nc(dLΦ)

m
m+αΦ E

sh∼(P⋆,Πn)
ah∼U

[∥∥∥ϕ̂(n)h (sh, ah)
∥∥∥2
(U

(n)

h,ϕ̂
)−1

] αΦ
m+αΦ

(from Theorem 2 on
∥∥∥ϕ̂(n)h (sh, ah)

∥∥∥2
(U

(n)

h,ϕ̂
)−1

)

≤ 9cα̂2
n(dLΦ)

m
m+αΦ n

m
m+αΦ E

sh∼(P⋆,Πn)
ah∼U

[
n
∥∥∥ϕ̂(n)h (sh, ah)

∥∥∥2
(U

(n)

h,ϕ̂
)−1

] αΦ
m+αΦ

≤ 9cα̂2
n(dLΦ)

m
m+αΦ n

m
m+αΦ d

αΦ
m+αΦ

= 9cα̂2
ndL

m
m+αΦ

Φ n
m

m+αΦ (same argument as the original CHYL-L3)

Putting everything together, we obtain

E
sh∼P⋆

h−1
ah∼πn

[
b̂
(n)
h (sh, ah)

∣∣∣∣sh−1, ah−1

]

≤
∥∥ϕ⋆h−1(sh−1, ah−1)

∥∥
(W

(n)

h−1,ϕ⋆ )−1

√
9cα̂2

ndL
m

m+αΦ

Φ n
m

m+αΦ + λnd

≤
∥∥ϕ⋆h−1(sh−1, ah−1)

∥∥
(W

(n)

h−1,ϕ⋆ )−1

√
225β3n

1+ m
m+αΦ ζ

α
m+α
n L

m
m+αΦ

Φ d
(
L

m
m+α + (dL)

m
m+α + d2

)
+ β3nζnd2

≤
∥∥ϕ⋆h−1(sh−1, ah−1)

∥∥
(W

(n)

h−1,ϕ⋆ )−1

√
450β3n

1+ m
m+α ζ

α
m+α
n L

m
m+α d

(
L

m
m+α + (dL)

m
m+α + d2

)
≤ γn

∥∥ϕ⋆h−1(sh−1, ah−1)
∥∥
(W

(n)

h−1,ϕ⋆ )−1 ,

where we set γn =

√
450β3n

1+ m
m+α ζ

α
m+α
n L

m
m+α d

(
L

m
m+α + (dL)

m
m+α + d2

)
. We note that this coefficient has a

similar to the original γn, but with the first K replaced by L
m

m+α , the second K replaced by L
m

m+α and different
exponents for ζn and n.

For h = 1, we similarly have:

E
a1∼πn

[
f
(n)
1 (s1, a1)

]
≤

√
cL

m
m+αE

E E
a1∼U

[
f
(n)
1 (s1, a1)2

] αE
m+αE ≤

√
cL

m
m+αE

E ζ
αE

m+αE
n

≤
√
cL

m
m+α ζ

α
m+α
n ,

E
a1∼πn

[
b̂(s1, a1)

]
≤ 3α̂n

√√√√ E
a1∼πn

[∥∥∥ϕ̂(n)1 (s1, a1)
∥∥∥2
(U

(n)

1,ϕ̂
)−1

]

≤ 15αn

√√√√
cL

m
m+αΦ

Φ E
a1∼U

[∥∥∥ϕ̂(n)1 (s1, a1)
∥∥∥2
(U

(n)

1,ϕ̂
)−1

] αΦ
m+αΦ

(Theorem 2)

≤ 15αn

√√√√
c
L

m
m+αΦ

Φ

n
αΦ

m+αΦ

d
αΦ

m+αΦ
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≤ 15αn

√√√√
cd
L

m
m+αΦ

Φ

n
αΦ

m+αΦ

≤≤ 15αn

√
cd
L

m
m+α

n
α

m+α

This concludes the updated CHYL-L3. We propagate these results through Propositions 4-6 of Cheng et al.
(2023).

CHYL-P4 For all n ∈ [N ], policy π and reward r, given that the event E occurs, we obtain the inequality:∣∣∣V πP⋆,r − V πP̂ (n),r

∣∣∣ ≤ V̂ π
P̂ (n),b̂(n) +

√
cL

m
m+α ζ

α
m+α
n .

The proof of this proposition only changes when bounding Ea1∼πn

[
f
(n)
1 (s1, a1)

]
which we instead bound using

the updated CHYL-L3 for h = 1. This concludes the proof.

CHYL-P5 Replacing the IS arguments and the statements of CHYL-L3 and CHYL-P4 with the updated ones,
we obtain:

V πn

P⋆,b̂(n)
≤

H∑
h=1

E
sh∼(P⋆,πn)

ah∼πn

[
αn ∥ϕ⋆h(sh, ah)∥(U(n)

h,ϕ⋆ )−1

]
+

√
cL

m
m+α ζ

α
m+α
n ,

V πn

P⋆,f(n) ≤
H∑
h=1

E
sh∼(P⋆,πn)

ah∼πn

[
αn ∥ϕ⋆h(sh, ah)∥(U(n)

h,ϕ⋆ )−1

]
+ 15αn

√
cd
L

m
m+α

n
α

m+α
.

Taking the sum of these terms and noting that ζ = NζN , we have:∑
n∈[N ]

V πn

P⋆,f(n)+b̂(n)
+

√
cL

m
m+α ζ

α
m+α
n

≤ 15αNN

√
cd
L

m
m+α

N
α

m+α
+ 2N

√
cL

m
m+α ζ

α
m+α

N +HγN
√
Ndζ +HαN

√
cNL

m
m+αΦ

Φ (dζ)
αΦ

m+αΦ

≤ 15αN

√
cdL

m
m+αN1+ m

m+α +
2αN
√
N√

β3(L
m

m+α + (dL)
m

m+α + d2)

+H
√
Ndζ

√
450β3N

1+ m
m+α ζ

α
m+α

N L
m

m+α d
(
L

m
m+α + (dL)

m
m+α + d2

)
+H

√
β3Nζ

α
m+α

N

(
L

m
m+α + (dL)

m
m+α + d2

)√
cNL

m
m+α (dζ)

α
m+α

≤ 17ζHd

√
β3N

1+ 2m
m+αL

m
m+α

(
L

m
m+α + (dL)

m
m+α + d2

)
+ ζHd

√
450β3N

1+ 2m
m+αL

m
m+α

(
L

m
m+α + (dL)

m
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)
+ ζHd

√
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1+ m
m+αL

m
m+α

(
L

m
m+α + (dL)

m
m+α + d2

)
≤ (17 +

√
450 + 1)ζHd

√
β3N

1+ 2m
m+αL

m
m+α

(
L

m
m+α + (dL)

m
m+α + d2

)
≤ 64ζHd

√
β3N

1+ 2m
m+αL

m
m+α

(
L

m
m+α + (dL)

m
m+α + d2

)
Note that in first inequality above we apply Theorem 2 first, then we follow the steps as in the original proof
of CHYL-L3, and after apply Cauchy Schwartz we use Jensen’s inequality to move the αE/(m+ αE) power out
the front, before applying their Lemma 10.

CHYL-P6 We can now leverage the result in CHYL-P6 to obtain the following expression for Nϵ:

ϵNϵ
2

= 64ζHd

√
β3N

1+ 2m
m+α

ϵ L
m

m+α
(
L

m
m+α + (dL)

m
m+α + d2

)
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⇒ Nϵ =

(
214β3H

2d2L
m

m+α
(
L

m
m+α + (dL)

m
m+α + d2

)
ζ2

ϵ2

) 1

1− 2m
m+α

Thus, letting τ = m/(m + α) < 1/2, the sample complexity of the algorithm is given by HNϵ which can be
written as:

Õ

H1+
2

1−2τ d
2

1−2τ

(
1

ϵ

) 2
1−2τ

L
τ

1−2τ (Lτ + (Ld)τ + d2)
1

1−2τ

 .

We note that as in the case of FLAMBE, when αE , αΦ → ∞, i.e. τ → 0, we recover the sample complexity of
RAFFLE with a discrete action space and K = 1.
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