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Abstract

In this work we first show that the classical
Thompson sampling algorithm for multi-arm
bandits is differentially private as-is, with-
out any modification. We provide per-round
privacy guarantees as a function of prob-
lem parameters and show composition over T
rounds; since the algorithm is unchanged, ex-
isting O(

√
NT logN) regret bounds still hold

and there is no loss in performance due to
privacy. We then show that simple mod-
ifications – such as pre-pulling all arms a
fixed number of times, increasing the sam-
pling variance – can provide tighter privacy
guarantees. We again provide privacy guar-
antees that now depend on the new param-
eters introduced in the modification, which
allows the analyst to tune the privacy guar-
antee as desired. We also provide a novel
regret analysis for this new algorithm, and
show how the new parameters also impact
expected regret. Finally, we empirically vali-
date and illustrate our theoretical findings in
two parameter regimes and demonstrate that
tuning the new parameters substantially im-
prove the privacy-regret tradeoff.

1 INTRODUCTION

The Thompson Sampling algorithm is one of the ear-
liest developed heuristics for the stochastic multi-arm
bandits problem and has been proven to have good
performance both empirically and theoretically. It is
a Bayesian regret-minimization algorithm that initial-
izes a prior distribution on the parameters of the re-
ward distributions, plays the arm using the posterior
probability of being the best arm, and updates the pos-
terior distribution accordingly using the observations.
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It appeared for the first time by Thompson (1933) in a
two-armed bandit problem motivated by clinical trials.
After being largely ignored in the literature, strong
empirical performance and theoretical guarantees led
to a rapid surge of interest in this algorithm in the
last 15 years (Russo et al., 2018). Indeed, the Thomp-
son Sampling algorithm has since been widely studied
and proven to be useful for solving a wide range of
online learning problems (Agrawal and Goyal, 2012,
2017, 2013; Wang and Chen, 2018; Russo et al., 2018;
Liu and Ročková, 2023; Huang et al., 2021; Hüyük and
Tekin, 2020).

In this work, we first analyze the privacy guaran-
tees of Thompson Sampling to show that the classical
Thompson sampling algorithm for multi-arm bandits
is differentially private (DP) as-is, without any mod-
ification. The algorithm determines the next arm to
play at each timestep by first sampling an estimate of
each arm’s mean reward from the posterior, and then
selecting the arm with the highest noisy posterior sam-
ple. When the algorithm is initialized with Gaussian
priors on reward distributions, this step is equivalent
to adding mean-zero Gaussian noise to the empirical
mean of observed rewards, also known as the Gaussian
Mechanism in the DP literature.

We provide per-round privacy guarantees as a function
of problem parameters and show composition over T
rounds for N arms. In the main body, we express per-
round privacy in terms of Gaussian differential privacy
(GDP) (Dong et al., 2022), compose GDP parameters
across all rounds, and then translate the guarantees
back to the standard DP parameters. GDP is known
to be amenable to many rounds of composition and
the addition of Gaussian noise, both of which occur in
the Thompson Sampling algorithm, but it leads to less
easily interpretable statements of DP guarantees. In
Appendix C, we provide an alternative proof of the DP
guarantees of Thompson Sampling, that relies on a di-
rect analysis of the DP guarantees. Along the way, we
also show that a more general version of the classic Re-
portNoisyMax algorithm (Dwork and Roth, 2014) with
heterogeneous Gaussian noise still satisfies DP, which
may be of independent interest. Since the algorithm
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is unchanged, existing regret bounds from non-private
analysis of Thompson Sampling (Agrawal and Goyal,
2017) still hold, and there is no loss in performance
due to privacy.

Next, we show that simple modifications – such as pre-
pulling all arms b times or increasing the sampling vari-
ance by a factor of c – can provide even tighter privacy
guarantees, and allow the analyst to tune the privacy
parameters as desired. The analysis follows a similar
proof structure as before – proving per-round GDP
guarantees, composing across T rounds, and translat-
ing back to DP – but this time accounting for the
impact of the new parameters b and c. Since we mod-
ify the Thompson Sampling algorithm, existing regret
bounds no longer hold and must be re-derived. We
provide a novel regret analysis for our algorithm that
follows the same high-level structure of the original
analysis by Agrawal and Goyal (2017), while tighten-
ing some intermediate steps and tracking the impact
of the new parameters in the expected regret.

Finally, we empirically validate our theoretical find-
ings for two different families of reward distributions:
Bernoulli and truncated exponential. For both fami-
lies, our experimental findings match our theoretical
results: tuning b and c can lead to substantial im-
provements in the empirical regret, for the same fixed
privacy guarantee. We also observe that the optimal
tuning strategy in terms of the privacy-accuracy trade-
off appears to involve jointly tuning b and c, rather
than tuning just one of the parameters.

1.1 Related Work

There is a large body of work that considers the set-
ting of private stochastic multi-arm bandits (Mishra
and Thakurta, 2015; Hu and Hegde, 2022; Tossou and
Dimitrakakis, 2016; Sajed and Sheffet, 2019; Hu et al.,
2021). These works have considered different algo-
rithms for the problem of privately learning from ban-
dits, adapting popular non-private procedures such as
Successive Elimination, Upper Confidence Bound and
Thompson Sampling.

We focus our attention in this work on the Thomp-
son Sampling algorithm (Thompson, 1933) which has
been shown to to be applicable in solving a wide
range of online learning problems including the classic
multi-arm bandits problem (Agrawal and Goyal, 2012,
2017), contextual bandits (Agrawal and Goyal, 2013),
combinatorial semi-bandits (Wang and Chen, 2018)
and other applications including online job schedul-
ing, subset-selection, variable selection, opportunistic
routing, combinatorial network optimization (Gopalan
et al., 2014; Liu and Ročková, 2023; Huang et al., 2021;
Hüyük and Tekin, 2020).

The empirical efficacy of Thompson Sampling when
applied to the stochastic multi-arm bandits prob-
lem was demonstrated by Chapelle and Li (2011)
before the currently best known theoretical re-
gret bounds were proven by Agrawal and Goyal
(2012). The seminal work on Thompson Sampling
by Agrawal and Goyal (2012) gave a regret bound of

O((
∑N

i=2
1
∆i

)2 log T ) for the stochastic multi-arm ban-
dits problem with N arms over T timesteps, when the
algorithm is instantiated with a Beta prior over re-
wards, where ∆i is the reward gap between the best
arm and arm i. When the ∆i are all bounded away
from 0, this gives a problem-independent regret bound
of O(N2 log T ). Follow-up work (Agrawal and Goyal,
2017) gives an O(

√
NT log T ) regret bound for the

Thompson Sampling algorithm for both a Beta prior
and a Gaussian prior. Our work focuses on the Gaus-
sian prior version of the Thompson Sampling algo-
rithm and its privacy guarantees.

Some recent works on private stochastic bandits
have specifically addressed the problem of privatiz-
ing the Thompson Sampling algorithm as a solu-
tion to the bandits problem. Mishra and Thakurta
(2015) first designed an ϵ-differentially private vari-
ant of the Thompson sampling algorithm, with ex-

pected regret O(N log3 T
∆2ϵ2 ), where ∆ is the reward gap

between the best arm and the second best arm. Hu
and Hegde (2022) presented two ϵ-differentially pri-
vate (near)-optimal Thompson Sampling-based algo-
rithms, DP-TS and Lazy-DP-TS, with regret bounds∑

j O( log T
min{ϵ,∆j} log(

log T
ϵ∆j

)) and
∑

j O( log T
min{ϵ,∆j} ), re-

spectively. Both works involve significant modifica-
tions of the Thompson Sampling algorithm to guar-
antee privacy, while our work mainly analyzes the pri-
vacy guarantee of the original version of the Thompson
Sampling algorithm.

This work builds upon works analyzing the privacy
guarantees of existing well-studied randomized algo-
rithms, most notably the paper by Blocki et al. (2012),
which showed that the Johnson-Lindenstrauss trans-
form itself preserves differential privacy, and the paper
by Smith et al. (2020), which proved that the Flajolet-
Martin Sketch itself is differentially private. Similar in
spirit – although completely different in technical de-
tails – we show that the noise added in Thompson
Sampling is sufficient to satisfy differential privacy.

2 MODEL AND PRELIMINARIES

We consider the classic stochastic multi-armed bandit
(MAB) setting with N arms. At each time t ∈ [T ],
an arm i ∈ A = [N ] is chosen to be played based on
the outcomes from the previous (t− 1) timesteps, and
yields a random real-valued reward rt ∈ [0, 1] sampled
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from a fixed unknown distribution Di with mean µi.
The rewards obtained from playing any arm are sam-
pled i.i.d. and are independent of time or the plays of
other arms.

The analyst must specify a policy π = {πt}t∈[T ], where
each πt maps from the history Ft−1 = {(aτ , rτ )}τ<t

containing the sequence of arms played and rewards
observed up to time t−1, to the new arm at played at
time t.

We measure the analyst’s success using the standard
metric of expected total regret, which is the differ-
ence between the best possible expected cumulative
reward (if the distributions Di were known) and the
expected total reward under policy π (Agrawal and
Goyal, 2013). Letting µ∗ = maxi µi, the expected to-
tal regret is:

E[R(T, π)] = µ∗T − Eat←π[
∑T

t=1 rt]. (1)

2.1 Thompson Sampling

The Thompson Sampling algorithm is a commonly
used policy for minimizing regret in a MAB setting
(Thompson, 1933; Agrawal and Goyal, 2012; Russo
et al., 2018). One reason for the widespread use of
Thompson Sampling is that it is known to achieve low
regret. At a high-level, the algorithm operates as fol-
lows. It starts with a prior belief on the mean reward
µi for each arm. After observing each reward r ∼ Di,
the algorithm performs a Bayesian update to compute
a posterior distribution of µi|r. At every timestep, the
algorithm samples a value θi for each arm according
to the posterior given all observed rewards, and then
plays the arm with the highest sampled θ value.

The Thompson Sampling algorithm is parameterized
only by its initial priors on Di. In this work we fo-
cus on the special case of Gaussian priors, where the
algorithm is initialized with a Gaussian prior for each
arm. We emphasize that the algorithm’s priors on re-
wards need not match the true reward distributions,
and thus this does not conflict with our modeling as-
sumption of bounded rewards. These priors are a part
of the algorithmic construction, and not a part of the
underlying data model.

We focus on the single parameter setting where each
reward distribution Di has unknown mean µi and
known variance σ2

i = 1. For each arm i, the algorithm
is initialized with a prior belief that µi ∼ N (0, 1); after
observing a reward, the posterior distribution of each
µi will remain Gaussian. Concretely, given the initial
prior N (0, 1) and a sequence of rewards (r1, . . . , rt),
the posterior for arm i from which θi will be sampled is
N (µ̂i,t,

1
ni,t+1 ), where ni,t is the number of times arm i

is played up to time t, and µ̂i,t =
1

ni,t+1

∑t
τ=1 1a(τ)=irτ

is the empirical mean of observed rewards from arm i,
with a slight offset to avoid degeneracy based on the
initial prior.

The θi for each arm is sampled according to this pos-
terior at each timestep, and the arm corresponding to
the largest realized θ is selected, output, and the re-
ward from the selected arm is observed internally by
the algorithm. Algorithm 1 presents a formal descrip-
tion of this algorithm.

Algorithm 1 Thompson Sampling with Gaussian pri-
ors
1: Input: number of arms N , time horizon T
2: Initialize µ̂i,0 = 0, ni,0 = 0 for each i = 1, . . . , N
3: for t = 1, 2, . . . , T do
4: For each arm i = 1, . . . , N , sample indepen-

dently θi,t ∼ N (µ̂i,t−1,
1

ni,t−1+1 )

5: Play arm at := argmaxi θi,t and observe rt
6: Output at
7: For i = at, update µ̂i,t =

µ̂i,t−1(ni,t−1+1)+rt
ni,t−1+2 ,

and ni,t = ni,t−1 + 1
8: For all i ̸= at, update µ̂i,t = µ̂i,t−1, and ni,t =

ni,t−1
9: end for

Regret as defined in Equation (1) provides a problem-
independent definition, because it has no additional
assumptions or dependence on the problem instance
characterized by the true reward means (µ1, . . . , µN ).
We will also consider an equivalent problem-dependent
definition of regret, which provides guarantees based
on the true gap between the arm means. Define the
suboptimality gap of arm i to be ∆i := µ∗−µi. We can
use this, and the random variable ni,t, which denotes
the number of times that arm i has been played up to
time t, to re-write the expected regret in a problem-
dependent manner:

E[R(T, π)] = Eat←π[

T∑
t=1

(µ∗−µat)] =

N∑
i=1

∆iEat←π[ni,T ].

(2)

2.2 Differential Privacy

Differential privacy (DP) is a parameterized notion of
database privacy, which ensures that changing a single
element of the input database will lead to only small
changes in the distribution over outputs. In our on-
line setting, we consider database streams, where each
data element (from a data universe R) arrives one-by-
one, and the algorithm must produce an output from
some output space O at each timestep. Two length
T streams R,R′ ∈ RT are said to be neighboring if
they differ only in the data element received in a single
timestep. We first recall the definition of differential
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privacy for streams, adapted from its standard presen-
tation of Dwork et al. (2006) to the streaming setting
as in Cummings et al. (2020).

Definition 1. A streaming algorithm M : RT → OT

is (ϵ, δ)-differentially private if for any pair of neigh-
boring streams R,R′ ∈ RT and for any set of outputs
S ⊆ OT ,

Pr[M(R) ∈ S] ≤ eϵ Pr[M(R′) ∈ S] + δ.

In the context of Thompson Sampling, our neigh-
boring streams correspond to sequences of rewards
R = {rt}t∈[T ] and R′ = {r′t}t∈[T ] that differ in a single
reward value: there exists a single τ such that rτ ̸= r′τ ,
and for all other t ̸= τ , rt = r′t. The output OT is the
sequence of arm pulls {at}t∈[T ] output by the algo-
rithm.

Note that streaming algorithms can be adaptive, where
the chosen arm at at time t is a function of all previous
rewards and arm pulls. We will also analyze the pri-
vacy of single-shot mechanisms, where the mechanisms
output space is R instead of RT . This corresponds to
analysis at a single fixed timestep, rather than across
all time.

We will use Gaussian differential privacy (GDP) (Dong
et al., 2022), which is a variant of DP that is more
amenable to many rounds of composition – where pri-
vate algorithms are applied many times to the same
dataset – and the addition of Gaussian noise, both
of which occur in the Thompson Sampling algorithm.
First we see that it is easy to translate between GDP
and the standard (ϵ, δ)-DP notion.

Definition 2 (Dong et al. (2022)). A mechanism M
is η-GDP if and only if it is (ϵ, δ(ϵ))-DP for all ϵ ≥ 0,
where δ(ϵ) = Φ(− ϵ

η + η/2) − eϵΦ(− ϵ
η − η/2), where

Φ(x) = 1√
2π

∫ x

−∞ exp(−u2/2)du is the cumulative den-

sity function of the standard normal distribution.

One notable advantage of GDP is its composition
properties, meaning that the privacy parameter µ com-
poses slowly as more computations are performed on
the data.

Lemma 1 (Dong et al. (2022)). Let Mt be an ηt-GDP
mechanism, for t = 1, . . . , T . Then the adaptive T -fold

composition of all M1, . . . ,MT is
√∑T

t=1 η
2
t -GDP.

Our analysis will be based on the Gaussian Mecha-
nism, which is a method for privately evaluating a
real-valued function f , and is defined as:

M(D,σ2) = f(D) + Y, where Y ∼ N (0, σ2).

The Gaussian Mechanism satisfies (sf/σ)-GDP (Dong
et al., 2022), where sf = maxR,R′neighbors |f(R) −
f(R′)| is the sensitivity of f , or the maximum change
in the function’s value between neighboring databases.

3 THOMPSON SAMPLING IS DP

In this section, we show that the original Thomp-
son Sampling algorithm (with Gaussian priors) as pre-
sented in Algorithm 1 is differentially private. In-
tuitively, differential privacy requires that algorithms
make randomized decisions based on the database. In
the case of Thompson Sampling, the algorithm is in-
herently randomized, by selecting the next arm based
on the (randomly generated) θi rather than the exact
empirical mean of historical play.

To show this formally, we must show that the par-
ticular distributions of randomness used in Thompson
Sampling satisfy the mathematical requirements of dif-
ferential privacy. To prove this, we will first focus on
the privacy guarantees of a single step at a fixed time
t, and then show how the privacy guarantees composes
across T timesteps. Since GDP is known to yield im-
proved composition guarantees relative to regular DP
composition and other competing DP-like guarantees
such as Renyi-DP (Dong et al., 2022), the analysis
will involve computing single-step privacy guarantees
using GDP (Lemma 2), then applying GDP composi-
tion (Lemma 3), and finally converting back to a DP
guarantee (Theorem 3). While the formal statement
with all parameters is given later in Theorem 3, the
main result can be stated informally as in Theorem 1
below.

Theorem 1 (Informal version of Theorem 3). Algo-
rithm 1 satisfies (ϵ, δ)-differential privacy.

Before formally stating and proving this privacy re-
sult, we remark that since differential privacy does not
require any changes to the algorithm itself, then all ex-
isting regret bounds continue to hold under differential
privacy without incurring additional loss. These regret
bounds are stated below the Theorem 2, and are tight
under the mild assumption that rewards are bounded
in [0, 1].

Theorem 2 (Agrawal and Goyal (2017)). The
Thompson Sampling algorithm with Gaussian pri-
ors (Algorithm 1) has regret at most

∑N
i=1 O( log T

∆i
)

(problem-dependent), or O(
√
NT logN) (problem-

independent).

Returning to the privacy analysis, at time t, Algo-
rithm 1 samples θi,t ∼ N (µ̂i,t−1,

1
ni,t−1

) independently

for each arm, and then selects at = argmaxi θi,t.

First, consider the vector of sampled mean-estimates
{θi,t+1}i∈[N ] that are generated by the Thompson
Sampling algorithm at time t + 1 given history Ft.
The single-step algorithm MTS(Ft) corresponding to
one step of Thompson sampling can be described as
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follows:
MTS(Ft) = argmax

i
θi,t+1,

where θi,t+1 ∼ N ( 1
ni,t+1

∑t
τ=1 1a(τ)=irτ ,

1
ni,t+1 ).

Our first result is that this single step mechanism sat-
isfies Gaussian differential privacy.

Lemma 2. The mechanism MTS(Ft) satisfies
√

1
2 -

GDP with respect to observed rewards.

The full proof of Lemma 2 is deferred to Appendix A.1,
but we give a brief proof sketch here for intuition. Each
θi,t+1 can be expressed as µ̂i(Ft) plus an independent
Gaussian noise term sampled fromN (0, 1

ni,t+1 ). View-

ing µ̂i(Ft) as the real-valued query on the data, this
is simply an instantiation of the Gaussian Mechanism.
The query has sensitivity s ≤ 1

ni,t+1 for arm i, since

rewards are bounded between 0 and 1, so the empirical
means on neighboring reward vectors can differ by at
most 1

ni,t+1 . Since the variance of the Gaussian noise

added is 1
ni,t+1 , and assuming that ni,t ≥ 1 – meaning

that at least one reward has been observed from arm i,

this yields a
√

1
2 -GDP guarantee for this θi,t+1. Since

neighboring reward sequences can only differ in one
single reward, they will also differ in only one single
arm pull, so we need not consider composition across
all N arms. Finally, the outcome of MTS(Ft) is sim-
ply the argmax of the θi, which is post-processing on
the private output.

In Appendix C, we give an alternative proof for the DP
guarantees of MTS(Ft), by proving that ReportNoisy-
Max (Dwork and Roth, 2014) with heterogeneous
Gaussian noise, rather than the standard Laplace noise
with identifical variance, satisfies DP. This result may
be of independent interest, but leads to looser over-
all privacy bounds for Thompson Sampling due to the
composition over a large number of rounds.

Next, we apply the composition guarantees of GDP
given in Lemma 1 to show that the repeated appli-
cation of MTS(Ft) for T rounds – as in Thompson
Sampling – also satisfies GDP.

Lemma 3. The Thompson Sampling algorithm with
Gaussian priors run for T total timesteps (Algorithm

1) satisfies
√

1
2T -GDP.

The proof of Lemma 3 follows immediately from the

fact that one round of Thompson Sampling is
√

1
2 -

GDP by Lemma 2, and then applying GDP compo-
sition (Lemma 1) to get that T rounds of Thompson

Sampling is together
√

1
2T -GDP.

Finally, we use Definition 2 to convert the GDP guar-
antee of Lemma 3 back to the desired (ϵ, δ)-DP.

Theorem 3. Thompson Sampling with Gaussian pri-
ors (Algorithm 1) run for T timesteps is (ϵ, δ(ϵ))-DP

for all ϵ ≥ 0, where δ(ϵ) = Φ(− ϵ√
1
2T

+ 1
2

√
1
2T ) −

eϵΦ(− ϵ√
1
2T

− 1
2

√
1
2T ).

Remark 1. Although GDP provides the tightest com-
position bounds, this comes at the cost of interpretabil-
ity of the resulting differential privacy parameters, as
observed in the statement of Theorem 3. In Appendix
C, we show that the informal Theorem 1 can also be
proved using the composition methods of standard DP
(Theorem 1) and a variant known as Renyi DP (The-
orem 8). We also show empirically in Appendix C.3
that although these other privacy methods provide more
interpretable bounds in terms of the dependence on T ,
the privacy guarantees are often orders of magnitude
weaker than those attained using GDP.

4 IMPROVING THE
PRIVACY-REGRET TRADE-OFF

In this section, we show how the privacy-regret trade-
off of Thompson Sampling can be improved with a
simple modification of the algorithm. Concretely, the
modified algorithm first pulls each arm b times before
beginning the Thompson Sampling procedure. This
serves to give the algorithm a “warm start” with more
accurate prior beliefs on rewards, rather than N (0, 1).
It also decreases the sensitivity of the implicit Gaus-
sian Mechanism that computes θi,t by ensuring that
each ni,t is at least b, thus leading to smaller ϵ values;
on the other hand, the algorithm does not improve
its decisions during these bN rounds, and may incur
maximum loss during these initial rounds.

The second modification is scaling up the variance used
to sample θi,t by a factor of c ≥ 1. This serves to im-
prove the ϵ privacy guarantees of the algorithm since
more noise is added, but it also adds higher levels of
noise to the algorithm’s estimated empirical reward of
each arm, thus increasing regret. The complete Modi-
fied Thompson Sampling algorithm with both of these
changes is presented in Algorithm 2.

We show that by tuning b and c, the Modified Thomp-
son Sampling algorithm can achieve both tighter pri-
vacy guarantees and lower regret, than the values
achieved under the existing settings of b = 0 and c = 1
that correspond to standard Thompson Sampling (Al-
gorithm 1). The remainder of this section provides
analysis of the privacy guarantee and the regret bound
of Algorithm 2.
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Algorithm 2 Modified Thompson Sampling with
Gaussian priors

1: Input: number of arms N , time horizon T , num-
ber of pre-pulls b, variance multiplier c ≥ 1

2: Initialize µ̂i,0 = 0, ni,0 = 0 for each i = 1, . . . , N
3: for i = 1, 2, . . . , N do
4: for j = 1, 2, . . . , b do
5: Play arm i and observe reward ri,j
6: Output i

7: Update µ̂i, =
µ̂i,0(ni,0+1)+ri,j

ni,0+2 , and ni,0 =
ni,0 + 1

8: end for
9: end for

10: for t = 1, 2, . . . , T − bN do
11: For each arm i = 1, . . . , N , sample indepen-

dently θi,t ∼ N (µ̂i,t−1,
c

ni,t−1+1 )

12: Play arm at := argmaxi θi,t and observe rt
13: Output at
14: For i = at, update µ̂i,t =

µ̂i,t−1(ni,t−1+1)+rt
ni,t−1+2 ,

and ni,t = ni,t−1 + 1
15: For all i ̸= at, update µ̂i,t = µ̂i,t−1, and ni,t =

ni,t−1
16: end for

4.1 Privacy Guarantees

The privacy analysis of Algorithm 2 follows a similar
structure as that of Algorithm 1 in Section 3. We start
with Lemma 4, which gives the GDP guarantee.

Lemma 4. Modified Thompson Sampling with Gaus-
sian priors and input parameters (b, c) run for T

timesteps satisfies
√

1
c(b+1)T -GDP.

The full proof of Lemma 4 is presented in Appendix
A.2, and we give a proof sketch here. Similar to the
proof of Lemma 2 in Section 3, the proof begins with
a privacy analysis of the single step of the mechanism
at a fixed time t. The changes for this modified al-
gorithm are in the sensitivity of µ̂i,t and in the noise
that is added. Recall that the GDP parameter of the
Gaussian Mechanism is sf/σ when sensitivity of the
function is sf and the added Gaussian noise has vari-
ance σ2. In Algorithm 2, this expression is:∣∣∣∣∣ 1

ni,t+1√
c

ni,t+1

∣∣∣∣∣ = 1√
c(ni,t+1)

≤ 1√
c(b+1)

.

This single shot GDP guarantee is then composed

across T rounds using Lemma 1, to give
√

1
c(b+1)T -

GDP over T rounds.

Finally, the GDP guarantee of Lemma 4 is converted
to a differential privacy guarantee using Definition 2

to yield the final privacy guarantees of Algorithm 2,
presented in Theorem 4.

Theorem 4. Modified Thompson Sampling with
Gaussian priors and input parameters (b, c) run for
T timesteps satisfies (ϵ, δ(ϵ))-DP for all ϵ ≥ 0, where

δ(ϵ) = Φ(− ϵ√
1

c(b+1)
T
+ 1

2

√
1

c(b+1)T )−eϵΦ(− ϵ√
1

c(b+1)
T
−

1
2

√
1

c(b+1)T ).

To illustrate the impact of b and c on the privacy guar-
antees of Theorem 4, Figure 1 visualizes the tradeoff
between ϵ and δ under varying b and c. We observe
that relative to the values b = 0 and c = 1 corre-
sponding to the special case of standard Thompson
Sampling, increasing these parameters can lead to sub-
stantial improvements in the privacy guarantee. This
means that even a small amount of prepulling or in-
crease in the variance of sampling θ can lead to dra-
matically tighter privacy guarantees, relative to the
standard Thompson Sampling algorithm. Further em-
pirical analysis, including the impact of b and c on re-
gret, is deferred to our experimental results in Section
5.

Figure 1: DP parameter ϵ as a function of δ when fixing
T = 1000 and varying b (top) and c (bottom). Note that

the per-round GDP parameter is
√

1
c(b+1)

, so the role of

c and b are nearly symmetric, leading to nearly identical
plots on the top and bottom. Of course, these parameters
can also be varied together.
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4.2 Regret Guarantees

Since Algorithm 2 differs from the standard Thomp-
son Sampling algorithm, new regret analysis is
needed. Theorem 5 gives both problem-dependent and
problem-independent regret bounds for Algorithm 2,
based on both parameters b and c. Relative to the
guarantees of Theorem 2 from the work by Agrawal
and Goyal (2017) for standard Thompson Sampling,
we see that regret increases by a factor of c.

Theorem 5. Consider the Modified Thompson Sam-
pling with Gaussian priors and input parameters (b, c)
run for T > bN + 4

mini ∆2
i

timesteps, where b ≥
0, c ≥ 1. Then the algorithm has expected regret
bN +O(c

√
N(T − bN) logN) (problem-independent),

or bN +
∑N

i=1 O(c log(T−bN)
∆i

) (problem dependent).

The full proof of Theorem 5 is deferred to Appendix B.
It generalizes the analysis of Agrawal and Goyal (2017)
to incorporate the new parameters b and c. Without
loss of generality, we assume arm 1 is the unique op-
timal arm. The key idea is to note that E[R(T, π)] =∑N

i=1 ∆iE[ni,T ] and E[ni,T ] =
∑T

t=1 Pr[at = i]. There-
fore in order to control the expected regret it suffices
to control the probability that arm i gets play at any
time t. This can be done by intersecting this proba-
bility to events of the form {µ̂i,t−1 − µi ≤ ∆i/3} and
{θi,t − µ1 ≤ −∆i/3}, where arm 1 is assumed WLOG
to be the optimal arm. Since rewards are bounded
in [0, 1] and the θi,t are Gaussian, one can tightly con-
trol these probabilities by carefully conditioning on the
history using Chernoff-type bounds tailored for this
problem.

5 EXPERIMENTS

In this section, we evaluate the empirical performance
of the modified Thompson Sampling algorithm under
varying b and c parameter values. This both helps il-
lustrate performance of the algorithm in terms of pri-
vacy and regret, and it also helps illustrate the role of
the additional parameters. Recall that b = 0 and c = 1
is the special case corresponding to standard Thomp-
son Sampling. We vary combinations of (b, c) that
achieve the same fixed privacy budget, as measured
by the GDP parameter, which we also vary. These ex-
periments can also provide insight for identifying the
optimal (b, c) values to minimize regret given a fixed
privacy budget. We consider two families of true re-
ward distributions: Bernoulli and exponentially dis-
tributed. In Appendix D, we also compare our algo-
rithm against two recent non-TS-based DP algorithms
for online bandit problems: DP-SE (Sajed and Sheffet,
2019) and Anytime-Lazy-UCB (Hu et al., 2021)). All
experiments were run on a personal laptop with an M1

Pro chip in around 2 hours.

5.1 Bernoulli rewards

We start with the experimental setting of Hu and
Hegde (2022), where N = 5 arms have Bernoulli re-
wards with means [0.75, 0.625, 0.5, 0.375, 0.25] re-
spectively. We let T = 105 and vary the desired η-
GDP privacy parameter to be 1, 2 and 5. We vary
the (b, c) parameters jointly to ensure that the desired
GDP guarantee is obtained. Recall from Lemma 4
that to ensure µ-GDP for T = 105 rounds, b and c

must satisfy η =
√

1
c(b+1)10

2.5.

Note that standard Thompson Sampling with b = 0
and c = 1 would yield 102.5 ≈ 316-GDP, which is or-
ders of magnitude higher than the privacy parameters
considered here, so performance for these parameter
values are not shown in the plots.

Figure 2 shows the empirical regret for each parameter
combination over time, defined as,

E[R(T, π)] = µ∗T −
∑T

t=1 rt. (3)

The empirical regret is averaged over 10 runs, for
which we already observe convergence of the average
regret empirically. For each parameter setting, we ob-
serve an initial period of high regret, corresponding
to the pre-pulling phase; this is more pronounced for
larger b values. Afterwards, there is a phase tran-
sition to much lower per-round regret, once the al-
gorithm begins the traditional Thompson Sampling
phase. Parameter regimes with larger b values per-
form extremely well in this phase, both because they
have a more accurate warm-start from the pre-pulls,
and because larger b corresponds to smaller c for the
same fixed GDP guarantees, corresponding to lower
variance in the sampling step. Smaller b values do
not suffer this initial period of loss, but they do incur
more per-round regret; at the extreme, b = 0 has so
much noise that its estimates do not converge. The
convex shape of the regret in the pre-pulling phase is
an artifact of our specific setting, where the algorithm
pre-pulls the arms with the highest average rewards
first.

We also observe that the lowest regret at time T is
achieved by parameter settings with intermediate val-
ues of b and c, rather than settings that only involve
tuning each parameter alone. This suggests that an
optimal tuning strategy would increase both b and c
together. Finally, we observe that the values of b and
c that lead to the lowest empirical regret depend on
the privacy budget, meaning that parameter tuning
to optimize the privacy-regret tradeoff must take into
account the desired privacy level. The regret for all



Thompson Sampling Itself is Differentially Private

Figure 2: Empirical regret of Algorithm 2 under varying
(b, c) when rewards are Bernoulli distributed.

parameters decreases with weaker privacy guarantees,
as expected.

5.2 Truncated exponential rewards

Next, we consider rewards sampled from the truncate
exponential distribution on [0,1] with varying rates.
We again consider N = 5 arms respectively with ex-
ponential rates [0.1, 1, 2, 5, 10], corresponding to
means of approximately [0.492, 0.418, 0.343, 0.193,
0.1]. We again fix T = 105, and vary the (b, c) pa-
rameters jointly to achieve desired GDP guarantees of
η = 1, 2, 5.

Figure 3 shows the empirical regret as defined in Equa-
tion (3) for each parameter combination over time, av-

Figure 3: Empirical regret of Algorithm 2 under varying
(b, c) when rewards are generated from a truncated expo-
nential distribution.

eraged over 10 runs. We observe qualitatively similar
findings as with the Bernoulli rewards: larger b corre-
sponds to high initial regret and then low per-round
regret; larger c corresponds to higher per-round regret,
with the largest value of c (i.e., b = 0) having much
higher regret; the optimal regret-minimizing parame-
ter regimes involve intermediate values of b and c; and
the optimal parameter values depend on the desired
GDP parameter.

6 CONCLUSION

In this work, we analyze the privacy guarantees of
the Thompson Sampling algorithm (Thompson, 1933;
Russo et al., 2018) with Gaussian priors, which is
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commonly used for learning with bandit feedback.
We show that the original Thompson Sampling algo-
rithm satisfies differential privacy without any modifi-
cations, leveraging structural similarities between the
algorithm’s sampling procedure and existing DP tools,
namely the Gaussian Mechanism. Importantly, this re-
sult means that there is no loss in performance from
adding privacy, and known regret bounds (Agrawal
and Goyal, 2017) still hold for the private algorithm.

Additionally, we show that two small modifications to
the algorithm – namely pre-pulling each arm b times
and scaling up the variance of sampling noise by a
factor of c – enables tunable privacy guarantees. The
resulting privacy and regret guarantees depend on the
values of the new parameters b and c, which can be
tuned to substantially improve the privacy guarantee
at only a small increase in regret. We demonstrate our
theoretical results empirically on two different reward
distributions, and show substantial improvements in
regret for a fixed privacy guarantee by properly tuning
the parameters b and c.
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A OMITTED PRIVACY PROOFS

A.1 Proof of Lemma 2

Lemma 2. The mechanism MTS(Ft) satisfies
√

1
2 -GDP with respect to observed rewards.

Proof. We first note that Thompson Sampling itself is inherently an adaptive algorithm whose output at any
time step t depends on its previous outputs at time steps 1, 2, . . . , t− 1. In order to prove the privacy guarantee
of Algorithm 1 composed for T time steps, it suffices to show that at every time step, conditioning on the outputs
in the previous time steps, the algorithm is

√
1/2-GDP. To prove Lemma 2, consider two neighboring histories

Ft and F ′t of length t that differ only in one observed reward. Consider the vector-valued N -dimensional query
µ̂(Ft) = (µ̂1(Ft), . . . , µ̂N (Ft)) that computes the empirical mean of observed rewards from each arm, given
reward history Ft:

µ̂i(Ft) =
1

ni,t + 1

t∑
τ=1

1aτ=irτ .

Then for each i ∈ [N ], θi,t+1 can be expressed as µ̂i(Ft) plus an independent Gassian noise term sampled from
N (0, 1

ni,t+1 ).

We then analyze the privacy guarantee of releasing {θi,t+1}i∈[N ], which is sufficient to determine the arm pulled
at time t + 1, as simply the argmax of all θi,t+1. Let j denote this arm. Since θj,t+1 is the only value that
would depend on the reward observed at time t, then it would be the only value that differs between neighboring
databases of reward histories Ft and F ′t. Therefore the (single shot) N -dimensional empirical mean query has

sensitivity s = max |µ̂j(Ft) − µ̂j(F ′t)| ≤ 1
nj,t+1 . The standard deviation of noise added is

√
1

nj,t+1 , so the GDP

parameter is at most: ∣∣∣∣∣∣
1

nj,t+1√
1

nj,t+1

∣∣∣∣∣∣ = 1√
nj,t + 1

≤ 1√
2
. (4)

The final inequality in Equation (4) comes from the assumption that nj,t ≥ 1, which is required to avoid the
degenerate case of empty database µ̂j,t used in the Gaussian mechanism. Note that if this were not the case,
then θj,t+1 ∼ N (0, 1), and there would be no privacy loss associated with arm j because there would be no data
to protect.
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A.2 Proof of Lemma 4

Lemma 4. Modified Thompson Sampling with Gaussian priors and input parameters (b, c) run for T timesteps

satisfies
√

1
c(b+1)T -GDP.

Proof. We first show the per-round GDP guarantee of Algorithm 2 with respect to the observed rewards is√
1

(b+1)c , and then compose across rounds using Lemma 1 to reach the final result. To prove the per-round

privacy guarantee, consider two neighboring histories Ft and F ′t of length t that differ only in one observed
reward. Consider the vector-valued N -dimensional query µ̂(Ft) = (µ̂1(Ft), . . . , µ̂N (Ft)) that computes the
empirical mean of observed rewards from each arm, given reward history Ft:

µ̂i(Ft) =
1

ni,t + 1

t∑
τ=1

1aτ=irτ .

For each i ∈ [N ], θi,t+1 can be expressed as µ̂i(Ft) plus an independent Gassian noise term sampled from
N (0, c

ni,t+1 ).

Following the same argument as in the proof of Lemma 2, we analyze the privacy guarantee of releasing
{θi,t+1}i∈[N ], which is sufficient to determine the arm pulled at time t + 1 as argmaxi θi,t+1. Denote this
arm as j. As in the proof of Lemma 2, θj,t+1 is the only value that would depend on the reward ob-
served at time t, so it would be the only value that differs between neighboring histories Ft and F ′t. There-
fore the (single shot) N -dimensional empirical mean query is essentially a histogram query with sensitivity
s = max |µ̂j(Ft)− µ̂j(F ′t)| ≤ 1

nj,t+1 .

To calculate the GDP parameter, with a variance multiplier c, the standard deviation of the Gaussian noise

added is now
√

c
nj,t+1 . Additionally, we have a new lower bound for nj,t, of b, due to the b pre-pulls of each arm.

Then the GDP parameter is at most:∣∣∣∣∣∣
1

nj,t+1√
c

nj,t+1

∣∣∣∣∣∣ = 1√
c(nj,t + 1)

≤ 1√
c(b+ 1)

.

Then, using Lemma 1 which composes the single-step privacy guarantee adaptively, the GDP parameter over T
timesteps is √√√√ T∑

t=1

(
1√

c(b+ 1)

)2

=

√
1

c(b+ 1)
T .

B OMITTED REGRET PROOFS

We adapt the arguments of Agrawal and Goyal (2017) to our modified Thompson sampling algorithm. We first
provide the main argument of the proof in Section B.1, followed by proofs of three auxiliary lemmas in Section
B.2.

B.1 Proof of Theorem 5

Theorem 5. Consider the Modified Thompson Sampling with Gaussian priors and input parameters (b, c)
run for T > bN + 4

mini ∆2
i

timesteps, where b ≥ 0, c ≥ 1. Then the algorithm has expected regret

bN +O(c
√
N(T − bN) logN) (problem-independent), or bN +

∑N
i=1 O(c log(T−bN)

∆i
) (problem dependent).

Recall the notation of Algorithm 2, that at is the arm played and outputted at time t, ni,t is the number of

times arm i is pulled after t time steps, and µ̂i,t = 1
ni,t+1 (

∑b
j=1 ri,j +

∑t
τ=1:aτ=i rt) is the empirical mean of

rewards for arm i after t time steps. At time step t, the sample θi,t is drawn from the posterior distribution from
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observations in the previous t − 1 timesteps, i.e. θi,t ∼ N (µ̂i,t−1,
1

ni,t−1+1 ). We emphasize that at time step t,

the sample θi,t ∼ N (µ̂i,t−1,
1

ni,t−1+1 ) is drawn from a distribution updated by data up to time t− 1. That is, the

decision at only depends on µ̂i,t−1 and 1
ni,t−1+1 .

Recall that the expected problem-dependent regret (Equation (2)) can be written as:

E[R(T, π)] =

N∑
i=1

∆iE[ni,T ].

We will therefore need to bound the expected number of suboptimal plays of each arm i during T time steps.
Without loss of generality, we assume arm 1 is the optimal arm, and define ∆i = µ1−µi to be the suboptimality
gap of arm i; if there are multiple optimal arms, this will only improve regret.

For each i, define xi = µi +∆i/3 and yi = µ1 −∆i/3. These will serve as two “mid-points” between µi and µ1.
Thus for i ̸= 1, we have µi < xi < yi < µ1, and for i = 1, we have µi = µ1 = x1 = y1. We will also define the
events Eµ

i (t) = {µ̂i,t−1 ≤ xi}, and Eθ
i (t) = {θi,t ≤ yi}. Note that when the number of observed rewards of arm i

increases, empirical mean µ̂i,t−1 convergences to µi, making the probability of event Eµ
i (t) tend to 1 and that of

Eθ
i (t) tend to 0. We denote the respective complements of these events by Eµ

i (t) and Eθ
i (t). Finally, we define

pi,t := Pr[θ1,t > yi|Ft−1]. Note that this is a random variable that depends on Ft−1, and has a fixed value if
Ft−1 is instantiated to be a particular history Ft−1.

Given b prepulls per arm and T > bN , this notation and the law of total probability leads to the following
identity on the number of arm pulls.

E[ni,T ] = b+

T−bN∑
t=1

Pr [at = i]

= b+

T−bN∑
t=1

Pr
[
at = i, Eµ

i (t)
]
+

T−bN∑
t=1

Pr
[
at = i, Eµ

i (t), E
θ
i (t)

]
+

T−bN∑
t=1

Pr
[
at = i, Eµ

i (t), E
θ
i (t)

]
. (5)

We will upper bound each of these three terms separately. Lemmas 5 and 6 bound the first two terms in Equation
(5), and are both proven in Section B.2.

Lemma 5.
∑T−bN

t=1 Pr
[
at = i, Eµ

i (t)
]
≤ 9

∆2
i
e−2b∆

2
i /9.

Lemma 6. Let T ≥ bN + 1
∆2

i
e

1
4π . Then,

∑T−bN
t=1 Pr

[
at = i, Eµ

i (t), E
θ
i (t)

]
≤ max{0, 18c log((T−bN)∆2

i )

∆2
i

− b}+ 1
∆2

i
.

In order to bound the third term in Equation (5), we will need Lemma 7.

Lemma 7 (Agrawal and Goyal (2017)). For all t, i ̸= 1 and history Ft−1 we have

Pr
[
at = i, Eµ

i (t), E
θ
i (t)|Ft−1 = Ft−1

]
≤ 1− pi,t

pi,t
Pr
[
at = 1, Eµ

i (t), E
θ
i (t)|Ft−1 = Ft−1

]
.

Taking conditional expectations with respect to Ft−1, followed by Lemma 7 we see that

T−bN∑
t=1

Pr
[
at = i, Eµ

i (t), E
θ
i (t)

]
=

T−bN∑
t=1

E
[
Pr(at = i, Eµ

i (t), E
θ
i (t)|Ft−1)

]
≤

T−bN∑
t=1

E
[
1− pi,t
pi,t

Pr(at = 1, Eµ
i (t), E

θ
i (t)|Ft−1)

]

=

T−bN∑
t=1

E
[
E
[
1− pi,t
pi,t

1
(
at = 1, Eµ

i (t), E
θ
i (t)

)∣∣∣Ft−1

]]

=

T−bN∑
t=1

E
[
1− pi,t
pi,t

1(at = 1, Eµ
i (t), E

θ
i (t))

]
. (6)
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The second step is an application of Lemma 7, and the third step uses the fact that pi,t is fixed given Ft−1.

Now, let τk be the time at which arm 1 is played for the k-th time, not counting the pre-pull stage, so that
n1,τk = b + k. Note that pi,t = Pr[θ1,t > yi|Ft−1] changes only if the distribution of θ1,t changes. Thus, pi,t is
the fixed for all t ∈ {τk + 1, . . . , τk+1} for every k. Then,

T−bN∑
t=1

E
[
1− pi,t
pi,t

1(at = 1, Eµ
i (t), E

θ
i (t))

]
=

T−bN−1∑
k=0

E

[
1− pi,τk+1

pi,τk+1

τk+1∑
t=τk+1

1
(
at = 1, Eµ

i (t), E
θ
i (t)

)]

≤
T−bN−1∑

k=0

E
[
1− pi,τk+1

pi,τk+1

]

=

T−bN−1∑
k=0

E
[

1

pi,τk+1
− 1

]
. (7)

To continue bounding E[ 1
pi,τk+1

]− 1, we require Lemma 8, which is also proved in Section B.2.

Lemma 8. Let τk be the first time when arm 1 is played for the k-th time excluding the pre-pulls, i.e. n1,τk = b+k
and n1,t < b+ k for t < τk. Then for T ≥ bN + 4

∆2
i
,

E
[

1

pi,τk+1

]
− 1 ≤

{
71 for all k,

4
(T−bN)∆2

i
for k ≥ max{1, 72c

∆2
i
log((T − bN)∆2

i )− (b+ 1)}.

For ease of notation, define L = ⌈ 72c
∆2

i
log((T − bN)∆2

i ) − (b + 1)⌉. Combining (6), (7) and Lemma 8 we finally

obtain the following upper bound on the third term in Equation (5):

T−bN∑
t=1

Pr
[
at = i, Eµ

i (t), E
θ
i (t)

]
≤

T−bN−1∑
k=0

E
[

1

pi,τk+1
− 1

]

≤ 71L · 1(L > 0) +

T−bN−1∑
k=L

4

(T − bN)∆2
i

≤ 71L · 1(L > 0) +
4

∆2
i

. (8)

The first step combines Equations (6) and (7), the second step applies Lemma 8, treating separately the terms
in the sum with k larger or smaller than L, and conditioning on the case that L > 0, otherwise the first term in
this expression will be upper bounded by 0. The third step upper bounds the final term, since T−bN−1−L

T−bN < 1.

Putting everything together. Finally, plugging in the bounds of Lemma 5, Lemma 6, and Equation (8)
into Equation (5) gives the following bound on the expected number of times each arm i is pulled in a stream of
length T . Recall that L = ⌈ 72c

∆2
i
log((T − bN)∆2

i )− (b+ 1)⌉. Then,

E[ni,T ] ≤ b+
9

∆2
i

e−2b∆
2
i /9 +max{0, 18c log((T − bN)∆2

i )

∆2
i

− b}+ 1

∆2
i

+ 71L1(L > 0) +
4

∆2
i

≤ b+
9

∆2
i

+
18c log((T − bN)∆2

i )

∆2
i

+
1

∆2
i

+ 71 · 72c
∆2

i

log((T − bN)∆2
i ) +

4

∆2
i

.

= b+
14

∆2
i

+
18c log((T − bN)∆2

i )

∆2
i

+
5112c

∆2
i

log((T − bN)∆2
i )

= b+
14

∆2
i

+
5130c

∆2
i

log((T − bN)∆2
i ). (9)

The first inequality is plugging in the bounds of Lemma 5, Lemma 6, and Equation (8) into Equation (5). The

second inequality holds because
18c log((T−bN)∆2

i )

∆2
i

> 0 (because T − bN > e1/4π/∆2
i by assumption) is an upper
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bound for max{0, 18c log((T−bN)∆2
i )

∆2
i

− b}, and 72c
∆2

i
log((T − bN)∆2

i ) > 0 is an upper bound for L. The third and

fourth steps combine terms.

Note that in Equation (9), the term b comes from the pre-pulling stage which we will count separately from the
Thompson Sampling stage. We focus on the Thompson Sampling stage for now, and upper bound the regret
from the pre-pulling stage, which is at most bN later. Define Ẽ[ni,T ] to be the expected number of pulls of arm
i excluding the b pre-pulls, from t = 1 to T − bN , in the Thompson Sampling stage (excluding the pre-pulls).
Then,

Ẽ[ni,T ] ≤
14

∆2
i

+
5130c

∆2
i

log((T − bN)∆2
i ).

To obtain an upper bound on the expected regret due to arm i in the T − bN timesteps of the Thompson
Sampling stage, we multiply the above expression by ∆i.

∆iẼ[ni,T ] ≤
14

∆i
+

5130c

∆i
log((T − bN)∆2

i ). (10)

From Equation (10), adding up the expected regret over the N − 1 suboptimal arms and adding back the bN
maximum possible regret from the pre-pulling phase, we obtain the desired problem-dependent asymptotic bound

bN +
∑N

i=1 O(c
log((T−bN)∆2

i )
∆i

).

Moving to the problem-independent bound, we note that the first term in Equation (10) is decreasing in ∆i and

the second term will also be decreasing for large enough ∆i. More precisely, define f(∆i) =
log((T−bN)∆2

i )
∆i

, so

that f ′(∆i) =
2−log((T−bN)∆2

i )

∆2
i

. We see that f ′(∆i) < 0 (i.e., the second term is decreasing in ∆i) if ∆i ≥ e√
T−bN .

Therefore, if we consider those arms with ∆i ≥ e
√
N logN√
T−bN , the total regret these arms incur in the Thompson

Sampling stage would be bounded by:

N∑
i=1

{
14

∆i
+ 5130c ·

log
(
(T − bN)∆2

i

)
∆i

}
≤

N∑
i=1

{(
14

√
T − bN

e
√
N logN

−
)
+ 5130c ·

√
T − bN ·

log
(
e2N logN

)
e
√
N logN

}

=
14
√
N(T − bN)

e
√
logN

+ 5130c ·
√
T − bN

√
N log

(
e2N logN

)
e
√
logN

= O
(
c
√

N(T − bN) logN
)
.

For every arm with ∆i ≤ e
√
N logN√
T−bN , the total regret due to all of these arms in T − bN time steps is bounded by

(T −bN)∆i ≤ (T −bN) e
√
N logN√
T−bN ≤ e

√
N(T − bN) logN = O(

√
N(T − bN) logN), because bN ≤ T . Therefore,

if we add up the regrets due to all arms (those with ∆i ≥ e
√
N logN√
T−bN and those with ∆i ≤ e

√
N logN√
T−bN ), in the

Thompson Sampling stage, we get that the total regret is O
(
c
√

N(T − bN) logN
)
+O

(√
N(T − bN) logN

)
=

O
(
c
√
N(T − bN) logN

)
. Adding the regret from the pre-pulling stage – which is at most bN – and the regret

from the Thompson Sampling stage, we conclude that the total regret in all T timesteps is bounded by bN +
O(c

√
N(T − bN) logN).

B.2 Proofs of Auxiliary Lemmas

Lemmas 5, Lemma 6 and 8 can be viewed as extended and refined versions of Lemmas 2.15, 2.16, and 2.13 in
(Agrawal and Goyal, 2017), respectively.

Lemma 5.
∑T−bN

t=1 Pr
[
at = i, Eµ

i (t)
]
≤ 9

∆2
i
e−2b∆

2
i /9.

Proof. Recall that Eµ
i (t) = {µ̂i,t−1 > xi}. Let τi,k denote the time we pull arm i for the k-th time, excluding
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the pre-pulling stage. Note that t ≤ τi,t for all t ∈ N, and that for k > ni,t it holds that τi,k > t.

T−bN∑
t=1

Pr[at = i, Eµ
i (t)] ≤

T−bN∑
k=1

Pr[Eµ
i (τi,k)].

The above inequality holds true because if we are at a timestep t such that the pulled arm is not i, then the
probability in the left-hand side sum is zero. So we should only count the probabilities at timesteps {t = τi,k}
for k = 1, 2, . . . , T − bN .

At time τi,k, the empirical mean µ̂i,τi,k−1 used by the algorithm to make the decision is upper bounded by the
average of the outcomes of (b + k − 1) i.i.d. plays of arm i. We will use Hoeffding’s inequality (Lemma 9) to
obtain high probability bounds of the deviations between these empirical means and their true means.

Lemma 9 (Hoeffding’s inequality). Let X1, . . . , Xn ∈ [0, 1] be i.i.d. and E[Xi] = µ,∀i. Let Sn = X1 + . . .+Xn.
Then for all a ≥ 0,

Pr[Sn ≥ nµ+ a] ≤ e−2a
2/n and Pr[Sn ≤ nµ− a] ≤ e−2a

2/n.

Using the definition Eµ
i (τi,k) = {µ̂i,τi,k−1 > µi +∆i/3}, followed by Hoeffding’s Inequality (Lemma 9),

T−bN∑
k=1

Pr
[
Eµ

i (τi,k)
]
=

T−bN∑
k=1

Pr

[
µ̂i,τi,k−1 − µi >

∆i

3

]

≤
T−bN∑
k=1

e−
2(k+b−1)∆2

i
9

=

T−bN−1∑
k=0

e−
2(k+b)∆2

i
9

= e−
2b∆2

i
9

T−bN−1∑
k=0

(e−
2∆2

i
9 )k

=
e−2b∆

2
i /9(1− e−2(T−bN)∆2

i /9)

1− e−2∆
2
i /9

. (11)

The last equalities follow by simple manipulations and the computation of a geometric sum. Finally, noting that
1−e−xt

1−e−x ≤ 1
1−e−x ≤ 2

x for t ≥ 0 and x ∈ (0, 2/9], we see that (11) implies

T−bN∑
k=1

Pr
[
Eµ

i (τi,k)
]
≤ 9

∆2
i

e−2b∆
2
i /9.

Lemma 6. Let T ≥ bN + 1
∆2

i
e

1
4π . Then,

∑T−bN
t=1 Pr

[
at = i, Eµ

i (t), E
θ
i (t)

]
≤ max{0, 18c log((T−bN)∆2

i )

∆2
i

− b}+ 1
∆2

i
.

Proof. First define M =
18c log((T−bN)∆2

i )

∆2
i

. Then by the law of total probability,

T−bN∑
t=1

Pr
[
at = i, Eµ

i (t), E
θ
i (t)

]
=

T−bN∑
t=1

Pr
[
at = i, ni,t−1 + b ≤ M,Eµ

i (t), E
θ
i (t)

]
+

T−bN∑
t=1

Pr
[
at = i, ni,t−1 + b > M,Eµ

i (t), E
θ
i (t)

]
. (12)

We can bound the first term in Equation (12) by removing the conditioning, as follows,

T−bN∑
t=1

Pr
[
at = i, ni,t−1 + b ≤ M,Eµ

i (t), E
θ
i (t)

]
≤ E

[
T−bN∑
t=1

1 (at = i, ni,t−1 + b ≤ M)

]
≤ max{0,M − b}. (13)
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where the second step holds because for any arm i, the timesteps satisfying at = i, ni,t−1 + b ≤ M are those in
which the arm was pulled at most M − b times.

To bound the second term in Equation (12), we show that if ni,t−1 is large and the event Eµ
i (t) is satisfied, then

the probability that the event Eθ
i (t) is violated is small. Recall that Eθ

i (t) is the event that θi,t ≤ yi.

T−bN∑
t=1

Pr
[
at = i, ni,t−1 + b > M,Eµ

i (t), E
θ
i (t)

]
≤

T−bN∑
t=1

Pr

(
at = i, Eθ

i (t)

∣∣∣∣ni,t−1 + b > M, Eµ
i (t)

)

= E

[
T−bN∑
t=1

Pr

(
at = i, Eθ

i (t)

∣∣∣∣ni,t−1 + b > M, Eµ
i (t)

) ∣∣∣∣Ft−1

]

= E

[
T−bN∑
t=1

Pr

(
at = i, Eθ

i (t)

∣∣∣∣ni,t−1 + b > M, Eµ
i (t), Ft−1

)]

= E

[
T−bN∑
t=1

Pr

(
θi,t > yi

∣∣∣∣ni,t−1 + b > M, µ̂i,t−1 ≤ xi, Ft−1

)]
. (14)

Next we will upper bound the probabilities inside the expectation in Equation (14) using that Z ∼ N(0, 1) we
have that

E
[
Pr
(
θi,t > yi

∣∣∣ni,t−1 + b > M, µ̂i,t−1 ≤ xi, Ft−1

)]
≤ Pr

[
µ̂i,t−1 + Z

√
c

ni,t−1 + b+ 1
> yi

]
≤ Pr

[
xi + Z

√
c

ni,t−1 + b+ 1
> yi

]
. (15)

To bound the latter expression we will use Mill’s inequality (Lemma 10) as it allows us to bound the deviations
of centered Gaussian random variable θi,t around 0.

Lemma 10 (Mill’s inequality). Let X ∼ N(µ, σ2). Then for any t > 0,

Pr[X − µ > t] ≤ σ√
2π

e−
t2

2σ2

t
and Pr[X − µ < −t] ≤ σ√

2π

e−
t2

2σ2

t
.

Let Z be a standard Gaussian random variable. Consecutively using yi−xi =
∆i

3 , Mill’s inequality (Lemma 10),

the fact that ni,t−1 + b+ 1 > M =
18c log((T−bN)∆2

i )

∆2
i

and T ≥ bN + 1
∆2

i
e

1
4π we see that

Pr

[
xi + Z

√
c

ni,t−1 + b+ 1
> yi

]
= Pr

[
Z

√
c

ni,t−1 + b+ 1
>

1

3
∆i

]
≤
√

c

2π(ni,t−1 + b+ 1)

3

∆i
exp

(
−∆2

i

18

(ni,t−1 + b+ 1)

c

)
≤ 1

2
√

π log((T − bN)∆2
i )

1

(T − bN)∆2
i

≤ 1

(T − bN)∆2
i

. (16)

We can now use (14), (15)(16) and sum all the probabilities over t = 1, . . . , T − bN , yielding

T−bN∑
t=1

Pr
[
at = i, ni,t−1 + b > cMi(T ), E

µ
i (t), E

θ
i (t)

]
≤ 1

∆2
i

. (17)

Plugging in the bounds of Equations (13) and (17) into Equation (12) gives the desired bound.
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Lemma 8. Let τk be the first time when arm 1 is played for the k-th time excluding the pre-pulls, i.e. n1,τk = b+k
and n1,t < b+ k for t < τk. Then for T ≥ bN + 4

∆2
i
,

E
[

1

pi,τk+1

]
− 1 ≤

{
71 for all k,

4
(T−bN)∆2

i
for k ≥ max{1, 72c

∆2
i
log((T − bN)∆2

i )− (b+ 1)}.

Proof. Recall that pi,t = Pr[θ1,t > yi|Ft−1] and θi,t ∼ N (µ̂i,t−1,
c

ni,t−1+1 ). Let us introduce some useful notation.

Let Θ1, . . . ,Θr
iid∼ N (µ̂1,τk ,

c
k+b+1 ) be a random sample identically distributed to θi,τk given Fτk , and let Gk be a

geometric random variable that denotes the number of trials until Θk > yi. Note that pi,τk+1 = Pr [Θj > yi|Fτk ]
and hence

E
[

1

pi,τk+1

]
− 1 = E [E [Gk|Fτk ]] = E [Gk] =

∞∑
r=0

Pr(Gk ≥ r).

We will therefore establish the desired upper bound by upper bounding the summands of the above expression
or equivalently, lower bounding Pr(Gk < j). We will first establish a bound that holds for all k, and then we
will establish a tighter bound that holds when k is sufficiently large.

Upper bound for all j: Define MAXr := max1≤k≤r(Θk) and z =
√
log r. Then,

Pr[Gk < r] ≥ Pr[MAXr > yi]

≥ Pr

[
MAXr > µ̂1,τk +

√
c

k + b+ 1
z ≥ yi

]
= E

[
E
[
1

(
MAXr > µ̂1,τk +

√
c

k + b+ 1
z ≥ yi

) ∣∣∣Fτk

]]
= E

[
1

(
µ̂1,τk +

√
c

k + b+ 1
z ≥ yi

)
Pr

(
MAXr > µ̂1,τj +

√
c

k + b+ 1
z
∣∣∣Fτk

)]
. (18)

To continue bounding this expression, we first lower bound Pr(MAXr > µ̂1,τk +
√

c
k+b+1z|Fτk) using Mill’s

inequality (Lemma 10). This lemma gives that for any instantiation Fτk of Fτk and r > 1, then

Pr

[
MAXr > µ̂1,τk +

√
c

k + b+ 1
z|Fτk = Fτk

]
= 1−

r∏
k=1

Pr

[
Θk ≤ µ̂1,τk +

√
c

k + b+ 1
z|Fτk = Fτk

]

≥ 1−

(
1− 1√

2π

e−z
2/2

z

)r

= 1−
(
1− 1√

2πr log r

)r

≥ 1− e−
√

r
2π log r (19)

If r ≥ e11, we have e−
√

r
2π log r ≤ 1

r2 . Therefore, we can bound this term separately for r < e11 and r ≥ e11,

Pr

[
MAXr > µ̂1,τk +

√
c

k + b+ 1
z|Fτk = Fτk

]
≥

{
1− e−

√
r

2π log r for 1 < r < e11

1− 1
r2 for r ≥ e11

.

Plugging this into Equation (18) gives,

Pr[Gk < r] ≥


(
1− e−

√
r

2π log r

)
E
[
1
(
µ̂1,τk +

√
c

k+b+1z ≥ yi

)]
for 1 < r < e11(

1− 1
r2

)
E
[
1
(
µ̂1,τk +

√
c

k+b+1z ≥ yi

)]
for r ≥ e11

=


(
1− e−

√
r

2π log r

)
Pr
(
µ̂1,τk +

√
c

k+b+1z ≥ yi

)
for 1 < r < e11(

1− 1
r2

)
Pr
(
µ̂1,τk +

√
c

k+b+1z ≥ yi

)
for r ≥ e11

. (20)
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Continuing lower bounding this expression, we have:

Pr

[
µ̂1,τk +

√
c

k + b+ 1
z ≥ yi

]
= Pr

[
µ̂1,τk − µ1 ≥ −

√
c log r

b+ k + 1
− 1

3
∆i

]

≥ 1− exp

−2(b+ k + 1)

(
1

3
∆i +

√
c log r

b+ k + 1

)2


= 1− 1

r2c
exp

(
−2

9
(b+ k + 1)∆2

i −
4

3
∆i

√
(b+ k + 1)c log r

)
≥ 1− 1

r2c

≥ 1− 1

r2
(21)

where the first step comes from the definitions of yi = µ1 − 1
3∆i and z =

√
log r, the second inequality comes

from an application the Hoeffding’s inequality. . The third line expands and combines terms, the fourth line
upper bounds the exponential term by 1, and the fifth line follows from c ≥ 1.

We can return to bounding E [Gk] =
∑∞

r=0 Pr(Gk ≥ r) using Equation (18) by plugging in Equations (20) and
(21).

E[Gk] =

∞∑
r=0

Pr[Gk ≥ r]

≤ 1 + 1 +

∞∑
r=2

(1− Pr[Gk < r])

≤ 2 +

⌊e11⌋∑
r=2

(
1−

(
1− e−

√
r

2π log r

)(
1− 1

r2

))
+

∞∑
r=⌈e11⌉

(
1−

(
1− 1

r2

)2
)

= 2 +

⌊e11⌋∑
r=2

(
e−

√
r

2π log r

(
1− 1

r2

)
+

1

r2

)
+

∞∑
r=⌈e11⌉

(
2

r2
− 1

r4

)

≤ 2 + 2

∞∑
r=2

1

r2
+

⌊e11⌋∑
r=2

e−
√

r
2π log r

≤ 2 +
π2

3
+ 65.58

≤ 71.

Thus,

E
[

1

pi,τk+1

]
− 1 = E[Gk] ≤ 71,

which is the first upper bound of the lemma.

Tighter upper bound for k ≥ max{1, 72c
∆2

i
log((T − bN)∆2

i ) − (b + 1)}: Note that when k is large, there is

an increased probability of the event θ1 > yi, because µ̂1,t is closer to µ1. Thus we give a tighter bound for this
case when k is sufficiently large.

We first use the fact that Θk ∼ N (µ̂1,τk ,
c

b+k+1 ) to apply Lemma 11, which bounds the tails of Θk.

Lemma 11. Let X ∼ N(µ, σ2). Then for any t > 0, we have

Pr[X − µ > t] ≤ e−
t2

2σ2 and Pr[X − µ < −t] ≤ e−
t2

2σ2 .
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We instantiate Lemma 11 on Θk with t = ∆i/6 to get the first inequality below, and use the assumed lower
bound on k to get the second inequality below. Thus for any instantiation Fτk of Fτk ,

Pr

[
Θk > µ̂1,τk − ∆i

6

∣∣Fτk = Fτk

]
≥ 1− e−

∆2
i (b+k+1)

72c

≥ 1− 1

(T − bN)∆2
i

. (22)

Next define the event At−1 to be the event that µ̂1,t−1 − ∆i

6 ≥ yi. Note that At−1 implicitly depends on the
history Ft−1. Now, consider an instantiation Fτk of Fτk such that Aτk occurs. For such Fτk , from Equation (22)
we have that,

Pr[Θk > yk|Fτk = Fτk ] ≥ 1− 1

(T − bN)∆2
i

. (23)

Let Ft−1|At−1 denote the random variable Ft−1 conditioned on the event At−1 occurring. Then

E
[

1

pi,τk+1

]
= E

[
1

Pr(Θk > yi|Fτk)

]
≤ E

[
1

Pr(Θk > yi|Fτk |Aτk
) Pr(Aτk)

]

≤ E

[
1

(1− 1
(T−bN)∆2

i
) Pr(Aτk)

]
. (24)

The second step is by law of total probability, and the third step applies the bound in Equation (23).

We can continue to bound Pr(Aτk) as follows. For any t ≥ τk + 1 and j ≥ 72c
∆2

i
log((T − bN)∆2

i )− b− 1,

Pr(At−1) = 1− Pr

[
µ̂1,t < µ1 −

∆i

6

]
≥ 1− exp

(
−n1,t−1∆

2
i

18

)
≥ 1− exp

(
−4c log((T − bN)∆2

i ) +
1

18

)
≥ 1− e1/18

1

(T − bN)4∆8
i

, (25)

where the first line follows from the definition of At−1, the second line is an application of Hoeffding’s inequality
(Lemma 9), the third line uses n1,t−1 ≥ b+k ≥ 72c

∆2
i
log((T −bN)∆2

i )−1 for any t ≥ τk+1 and the last inequality

used c ≥ 1.

Hence for T ≥ bN + e1/54

∆2
i
, from (23) we obtain the lower bound

Pr(At−1) ≥ 1− 1

(T − bN)∆2
i

. (26)

Finally, combining (24), (25) and (26), using that (T − bN)∆2
i ≥ 4 by our assumption, we get that

E
[

1

pi,τk

]
− 1 ≤ 1(

1− 1
(T−bN)∆2

i

)2 − 1 ≤ 4

(T − bN)∆2
i

.
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C ALTERNATE PRIVACY ANALYSES

C.1 Alternative Method: Standard DP

In the privacy analysis presented in Section 3 and 4, we treat Thompson sampling at every time step as an
instantiation of the Gaussian mechanism and analyze the privacy guarantee assuming that all samples {θi,t}i∈[N ]

are output. However, in reality, only the index of the sample which with the max value needs to be published:

argmax
i

θi,t where θi,t ∼ N (µ̂i,t−1,
1

ni,t−1 + 1
) for i = 1, . . . , N. (27)

We are interested in whether this fact can be used to achieve a better bound. There is an existing algorithm,
ReportNoisyMax (Dwork and Roth, 2014), presented in Algorithm 3 for differentially privately computing an
argmax of several functions. This algorithm adds Laplace noise of the same parameters to each value, and then
produces the argmax of the noisy values. To contrast, Equation (27) adds Gaussian noise with different variance
to each empirical means. Thus a single round of Thompson Sampling can be viewed as a variant of the classic
ReportNoisyMax algorithm, that adds heterogeneous Gaussian noise.

Algorithm 3 ReportNoisyMax

Input: Database R, queries {f1, . . . , fn} of sensitivity s, privacy parameter ϵ
1: Sample Z1, . . . , Zn ∼ Lap(s/ϵ)
2: Return argmaxi∈[n](fi(R) + Zi)

Algorithm 3 achieves (ϵ, 0)-differential privacy by tuning the Laplace noise parameter based on the sensitivity s of
all functions and privacy parameter ϵ (Dwork and Roth, 2014). Algorithm 4 formally defines the Heterogeneous
Gaussian ReportNoisyMax algorithm, which adds Gaussian noise of heterogeneous variances to a set of queries,
where each query possesses different sensitivities.

Algorithm 4 Heterogeneous Gaussian ReportNoisyMax

Input: Database R, queries {f1, . . . , fn}, where query fi has sensitivity si, noise variances {σ2
1 , . . . , σ

2
n}

1: Sample Xi ∼ N (0, σ2
i ) for i ∈ [n]

2: Return argmaxi∈[n](fi(R) +Xi)

In the context of Thompson sampling, the queries fi(R) are the empirical means µ̂i,t of the arms, given the
history of observed rewards Ft. Recall that neighboring histories Ft and F ′t contain databases of rewards R
and R′ that differ only in a single reward observation, so only one empirical mean will be different across these
neighbors. Thus we prove differential privacy guarantees for Algorithm 4 under the assumption that for any pair
of neighboring databases R,R′, it holds that f(R) = (f1(R), . . . , fn(R)) and f(R′) = (f1(R

′), . . . , fn(R
′)) differ

at at most one function value, and the sensitivity of the j-th function is sj .

Theorem 6 gives the privacy guarantee of Algorithm 4 under this assumption. The proof of this theorem follows
closely to the structure of the proof of privacy of ReportNoisyMax in Dwork and Roth (2014), but is modified
in key ways based on the different noise distribution, and the fact that Algorithm 4 satisfies (ϵ, δ)-DP for δ > 0,
while Algorithm 3 satisfies (ϵ, 0)-DP.

Theorem 6. Assume that for any pair of neighboring databases R and R′, f(R) and f(R′) differ at at most

one entry. Then, Algorithm 4 is (ϵ, δ)-differentially private for ϵ ≥ 1
2

√
log n−1

2δ maxi∈[n]

(
si
σi

)
.

Proof. Let R and R′ be two neighboring databases, let M denote Algorithm 4, and let c = f(D) and c′ = f(D′)
for the given collection of functions f = {f1, . . . , fn}. Without loss of generality, let c ≥ c′. Fix any i ∈ [n]. We
will bound from above and below the ratio of the probabilities that i is selected with D and with D′. Fix X−i
to be a draw from the Gaussian distributions used for all queries except the i-th one.

We first argue that Pr[M(R) = i|X−i] ≤ Pr[M(R′) = i|X−i] + 1
n−1δ. Define X∗ to be the minimum value of Xi

such that ci +Xi ≤ c′j +Xj for all j ̸= i. Then i is the output of Algorithm 4 if and only if Xi > X∗. Then for
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all j ̸= i,

ci +X∗ > cj +Xj

=⇒ (si + c′i +X∗) ≥ ci +X∗ > cj +Xj ≥ c′j +Xj

=⇒ c′i + (si +X∗) ≥ c′j +Xj .

Thus, if Xi ≥ X∗ + si, then the i-th noisy function value will be the maximum under database R′ when the
noise vector is (Xi, X−i). Note that Xi = σiZ in distribution, for Z ∼ N (0, 1).

We will next apply a lemma from Nissim et al. (2007) that bounds the closeness between a standard normal
random variable Z and Z plus an additive shift.

Lemma 12 (Nissim et al. (2007)). For a subset S ∈ Rd and a vector a ∈ Rd, we write S + a for the set
{y + a : y ∈ S}. The standard normal distribution N (0, 1) satisfies that for all ||a||1 ≤ 2ϵ√

log(1/2δ)
and subsets

S ∈ Rd,
Pr

Z∼N (0,1)
[Z ∈ S] ≤ eϵ Pr

Z∼N (0,1)
[Z ∈ S + a] + δ.

Applying Lemma 12 with d = 1, a = si
σi
, and for (ϵ, δ) such that 2ϵ√

log((n−1)/2δ)
≥ maxi∈[n]

(
si
σi

)
≥ si

σi
,

Pr[Z ≥ X∗

σi
] ≤ eϵ Pr[Z ≥ X∗

σi
+

si
σi

] +
δ

n− 1

=⇒ Pr[xi ≥ x∗] ≤ eϵ Pr[xi ≥ x∗ + si] +
δ

n− 1
.

Then,

Pr[M(D) = i|X−i] = Pr[Xi ≥ X∗] ≤ eϵ Pr[Xi ≥ X∗ + si] +
δ

n− 1
≤ eϵ Pr[M(R′) = i|X−i] +

δ

n− 1
.

We now argue that Pr[M(R′) = i|X−i] ≤ Pr[M(R) = i|X−i] + 1
n−1δ. Similarly, define X∗ to be the minimum

value of Xi such that ci + Xi ≤ c′j + Xj for all j ̸= i. This means that i is the output of M if and only if
Xi > X∗. Then for all j ̸= i, we have

c′i +X∗ > c′j +Xj

=⇒ si + c′i +X∗ > si + c′j +Xj

=⇒ c′i + (si +X∗) > (si + c′j) +Xj

=⇒ ci + (si +X∗) ≥ c′i + (si +X∗) > (si + c′j) +Xj ≥ cj +Xj .

Thus, if Xi ≥ X∗+ si then the i-th noisy function value will be the maximum under database R when the noise
vector is (Xi, X−i). Again, we note that Xi = σiZ in distribution, Z ∼ N (0, 1). Applying Lemma 12 with d = 1

and a = si
σi
, then for (ϵ, δ) such that 2ϵ√

log((n−1)/2δ)
≥ maxi∈[n]

(
si
σi

)
≥ si

σi
,

Pr[Z ≥ X∗

σi
] ≤ eϵ Pr[Z ≥ X∗

σi
+

si
σi

] +
δ

n− 1

=⇒ Pr[Xi ≥ X∗] ≤ eϵ Pr[Xi ≥ X∗ + si] +
δ

n− 1
.

Then,

Pr[M(R′) = i|X−i] = Pr[Xi ≥ X∗] ≤ eϵ Pr[Xi ≥ X∗ + si] +
δ

n− 1
≤ eϵ Pr[M(R) = i|X−i] +

δ

n− 1
.

Using the law of total probability we can obtain Pr[M(D) = i] ≤ eϵ Pr[M(D′) = i] + δ
n−1 for all i ∈ [n]. Then,

for any S = {i1, i2, . . . , ik}, Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S]+ k
n−1δ. We have the worst case happening when

k = n − 1 because when k = n, S = Range(M), both probabilities are 1. We conclude that Algorithm 4 is

(ϵ, δ)-differentially private for ϵ ≥ 1
2

√
log n−1

2δ maxi∈[n]

(
si
σi

)
.
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Now, we can apply the above theorem in the context of Thompson Sampling.

Theorem 7. At timestep t, the action of Algorithm 1 is (ϵ, δ)-differentially private for ϵ = 1
2
√
2

√
log N−1

2δ .

Proof. At timestep t of Algorithm 1, we are instantiating Algorithm 4 with sensitivity si =
1

ni,t−1+1 , and adding

Gaussian noise of variance σ2
i = 1

ni,t−1+1 . Plugging these into Theorem 6 gives that Algorithm 1 at timestep

t is (ϵ, δ)-differentially private for ϵ ≥ 1
2

√
log N−1

2δ maxi(
1

ni,t−1+1/
√

1
ni,t−1+1 ) = 1

2

√
log N−1

2δ maxi

(
1√

ni,t−1+1

)
.

Note that for privacy to be relevant, it must be that ni,t−1 ≥ 1, otherwise there would no data to protect. Thus,

maxi

(
1√

ni,t−1+1

)
≤ 1√

2
, and the algorithm is (ϵ, δ)-differentially private for any ϵ ≥ 1

2
√
2

√
log N−1

2δ .

Corollary 1 gives a bound on the complete Algorithm 1 across all timesteps, by utilizing Advanced Composition
(Dwork et al., 2010) to compose the privacy guarantees of Theorem 7.

Corollary 1. Given any ϵ, δ such that ϵ = 1
2
√
2

√
log N−1

2δ , Algorithm 1 is (ϵTS , δTS)-differentially private for

ϵTS = ϵ
√
2T log( 1

δTS−Tδ ) + Tϵ(eϵ − 1) for δTS > Tδ.

C.2 Alternative Method: RDP

Renyi Differential Privacy (RDP) (Mironov, 2017) also generalizes differential privacy, with the guarantees of
closeness of outputs across neighboring databases based on Renyi divergence.

Definition 3. (Renyi Differential Privacy (Mironov, 2017)). An algorithm M satisfies (α, γ(α))-RDP with
α ≥ 1 if for any neighboring datasets D and D′:

Dα(M(D)||M(D′)) =
1

α− 1
logEx∼M(D)

[(
Pr[M(D) = x]

Pr[M(D′) = x]

)α−1
]
≤ γ(α),

where the Renyi divergence Dα between two distributions P and Q is

Dα(P ||Q) =
1

α− 1
logEx∼Q [(P (x)/Q(x))α] =

1

α− 1
logEx∼P [(P (x)/Q(x))α−1].

It is known that the Gaussian Mechanism that adds noise N (0, σ2) to the value of a function with sensitivity s

is (α, γ(α))-RDP where γ(α) = s2

2σ2α, for any α > 1. In the context of a single-step of the Thompson Sampling
algorithm, let arm j be the arm where the observed rewards different across two neighboring databases). Then,

γ(α) =
α

2σ2
j

s2j =
1/(nj,t−1 + 1)2

2/(nj,t−1 + 1)
α =

1

2(nj,t−1 + 1)
α ≤ 1

4
α.

The last inequality holds because nj,t−1 ≥ 1, otherwise the dataset would be empty and there would be no data
to protect.

The composition guarantees of RDP show that the adaptive composition of T mechanisms that each satisfy
(α, γ(α))-RDP, will together satisfy (α, Tγ(α))-RDP (Mironov, 2017). Thus T rounds of Thompson Sampling
will together satisfy (α, 1

4αT )-RDP. To convert the RDP guarantee back to DP, we use the fact from (Mironov,

2017) that if an algorithmM satisfies (α, γ(α))-RDP, then it also satisfies (γ(α)+ log(1/δ)
α−1 , δ)-DP for any δ ∈ (0, 1).

This gives us the final privacy result of Theorem 8.

Theorem 8. Algorithm 1 is (ϵ, δ)-differentially private for any δ ∈ (0, 1), α > 1, and ϵ = 1
4αT + log(1/δ)

α−1 .

C.3 Comparisons of the GDP, Standard DP and RDP Results

In Figure 4, we empirically evaluate the privacy guarantees provided by our three different privacy results:
Theorem 3 (GDP), Corollary 1 (Standard DP), and Theorem 8 (RDP). We observe that the guarantees obtained
by GDP and RDP are significantly tighter than the one obtained by the standard DP method. Unlike the
standard DP guarantee, the GDP and RDP guarantees do not depend on N . RDP and GDP offer comparable
guarantees, with GDP showing a slight advantage in specific regions, particularly when δ is small, and consistently
performing no worse than RDP across all scenarios.



Thompson Sampling Itself is Differentially Private

Figure 4: DP parameter ϵ as a function of δ when fixing T = 1000, obtained by three different analyses (GDP,
RDP and Standard DP). The left plot has N = 2, and the right plot has N = 10.

D COMPARISON AGAINST OTHER PRIVATE BANDIT ALGORITHMS

We compare our modified TS algorithm against two recent non-TS-based DP algorithms for online bandit
learning:, DP-SE (Sajed and Sheffet, 2019) and Anytime-Lazy-UCB (Hu et al., 2021), with empirical results in
Figure 5 below. We use the same arm settings as in Section 5.1, and privacy parameters ϵ = 4.88, 35.57, and
96.71, corresponding to 1-, 5- and 10-GDP if δ = 10−6 for all three algorithms. The (b, c) parameters used by
TS are set via grid search and are omitted on the plots due to space limitation. We observe that when ϵ is small,
corresponding to strongest privacy, TS is not the optimal algorithm; as ϵ increases, TS begins to substantially
outperform the other methods.

Figure 5: Comparisons of our modified TS algorithm against DP-SE (Sajed and Sheffet, 2019) and Anytime-
Lazy-UCB (Hu et al., 2021), under fixed privacy levels ϵ = 4.88, 35.57, and 96.71.
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