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Abstract

Predicting patient features from single-cell
data can help identify cellular states impli-
cated in health and disease. Linear models
and average cell type expressions are typi-
cally favored for this task for their efficiency
and robustness, but they overlook the rich
cell heterogeneity inherent in single-cell data.
To address this gap, we introduce MixMIL,
a framework integrating Generalized Linear
Mixed Models (GLMM) and Multiple In-
stance Learning (MIL), upholding the advan-
tages of linear models while modeling cell
state heterogeneity. By leveraging predefined
cell embeddings, MixMIL enhances compu-
tational efficiency and aligns with recent ad-
vancements in single-cell representation learn-
ing. Our empirical results reveal that MixMIL
outperforms existing MIL models in single-cell
datasets, uncovering new associations and elu-
cidating biological mechanisms across differ-
ent domains.

1 INTRODUCTION

Single-cell omics data have been instrumental in unveil-
ing cellular heterogeneity, proving invaluable in study-
ing human health and disease (Perez et al., 2022; Ahern
et al., 2022; Vandereyken et al., 2023; Lim et al., 2023).
Within these vast datasets, determining which cells
are impacted by specific interventions or genetic varia-
tions is of utmost importance. However, drawing such
associations at the single-cell level is statistically chal-
lenging, given the sparse nature of the data and the
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structured noise introduced by cellular dependencies
within a sample (You et al., 2023; Cuomo et al., 2023).
Traditional pooling procedures, such as the pseudo-
bulk approach in single-cell RNA sequencing, sidestep
these challenges but at the expense of overlooking key
cell states (Perez et al., 2022; Ahern et al., 2022; Yazar
et al., 2022; Janssens et al., 2021; Lafarge et al., 2019;
Ljosa et al., 2013).

Multiple instance learning provides a principled frame-
work for modeling cellular heterogeneity through atten-
tion and has proven effective in several domains (Ilse
et al., 2018; Javed et al., 2022; Li et al., 2021; Cui
et al., 2023b; Shao et al., 2021). Yet, its application
to single-cell datasets has been limited. This might
be attributed to the characteristic low signal-to-noise
ratio of these datasets, a setting where simple models
based on mean pooling and linear assumptions tend to
perform adequately (Crowell et al., 2020).

To bridge this gap, we introduce Mixed Models with
Multiple Instance Learning (MixMIL), a new frame-
work integrating the robustness of the Generalized
Linear Mixed Model (GLMM) with the MIL ability
to model heterogeneity. Designed for robustness and
efficiency in single-cell analyses, MixMIL leverages
cell embeddings from pre-trained unsupervised mod-
els (Theodoris et al., 2023; Cui et al., 2023a; Doron
et al., 2023) and integrates a simple attention-based
MIL module into GLMMs, synthesizing the strengths
of both frameworks. In extensive simulations and eval-
uations, we benchmarked MixMIL against the GLMM
and state-of-the-art MIL architectures. Across a spec-
trum of applications, spanning single-cell genomics to
microscopy and reaching into histopathology, MixMIL
consistently outperformed other MIL implementations,
underscoring that reduced complexity through princi-
pled model design can notably enhance results in these
contexts.
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2 RELATED WORK

Multiple Instance Learning MixMIL models cel-
lular heterogeneity within the GLMM framework using
MIL. MIL organizes data into collections of instances,
called bags, and operates on the premise that the label
of the collection is known while the labels of individual
instances remain unknown. In attention-based MIL
(ABMIL), Ilse et al. (2018) trained a bag-level classifica-
tion model where a neural network learns the influence
of single instances on the bag label prediction in the
form of attention weights. Later efforts built upon the
notion of attention-based deep MIL to improve the
interpretability of instance contribution (Javed et al.,
2022) and alleviate performance degradation due to
class imbalance (Li et al., 2021). More related to our
setting, Cui et al. (2023b) used variational inference
to estimate the posterior distribution of instance-level
weights to enhance model interpretability and uncer-
tainty estimation. In the medical field, MIL has been
widely employed to study the heterogeneous effect of
disease in large histopathology images in the context of
cancer prediction (Ilse et al., 2018; Sudharshan et al.,
2019; Zhao et al., 2020; Wagner et al., 2023), segmen-
tation (Lerousseau et al., 2020) and somatic variant
detection (Cui et al., 2020). In contrast to earlier ap-
proaches, MixMIL uniquely integrates attention-based
MIL within GLMMs.

Generalized Linear Mixed Models MixMIL in-
troduces multiple instance learning within the GLMM
framework. GLMMs extend linear models with ran-
dom effects to enable robust regression and hierarchical
modeling, and they are equipped to handle a variety
of outcome distributions (Breslow and Clayton, 1993;
Bates et al., 2014). Specialized GLMMs have become
indispensable in genomics, especially in association
analysis (Lippert et al., 2011; Bates et al., 2014; Loh
et al., 2018) and interaction testing (Casale et al., 2017;
Moore et al., 2019; Dahl et al., 2020). In recent ad-
vancements, GLMM-based interaction tests have been
employed to model cell state heterogeneity in single-
cell datasets (Neavin et al., 2021; Cuomo et al., 2022;
Gewirtz et al., 2022; Nathan et al., 2022). These tests
primarily focus on associating singular patient and ge-
nomic features while modeling effect heterogeneity—for
instance, exploring how the effect of a genetic variant
might regulate the expression of an individual gene
based on cell state (Cuomo et al., 2022). In contrast,
MixMIL seeks to characterize single patient features
using the cell state representations from a group of
cells, uniquely incorporating a MIL module in GLMMs
for this purpose.

Predefined Embeddings and Single-Cell Atlases
MixMIL employs shallow machine learning functions

on predefined embeddings for robustness and efficiency.
This synergy was first spotlighted in representation
learning for computer vision with frameworks such as
SimCLR (Chen et al., 2020) and later extended by
others (He et al., 2020; Caron et al., 2021). Rapidly,
this influence radiated across biological disciplines, ad-
vancing representational learning in computational
pathology (Ben Taieb and Hamarneh, 2020; Wang
et al., 2023), single-cell genomics (Lopez et al., 2018;
Theodoris et al., 2023; Cui et al., 2023a), and mi-
croscopy (Marin Zapata et al., 2020; Siegismund et al.,
2022). While the use of predefined embeddings in MIL
has been considered elsewhere (Li et al., 2021; Shao
et al., 2021), the synergy with MixMIL is especially
timely within the single-cell omics sphere. As the do-
main leans towards foundational models for comprehen-
sive single-cell atlases (Schiller et al., 2019; Travaglini
et al., 2020; Deprez et al., 2020; Wagner et al., 2019;
Wilk et al., 2020; Sikkema et al., 2022), MixMIL stands
primed, ready to leverage the wealth of emerging high-
quality embeddings, equipping researchers for robust,
integrated analyses.

3 METHODOLOGY

3.1 Problem Statement

Multiple instance learning is a variation of supervised
learning where the training set consists of labeled
bags, each containing several instances. Formally, a
bag associated with a single label y consists of I un-
ordered and independent instances {x1, . . . ,xI}, where
xi ∈ RQ. We here collectively denote these instances
with X = [x1, . . . ,xI ]

T ∈ RI×Q. Notably, the number
of instances I can vary across different bags. The pri-
mary goal of MIL is to predict the label y from the
bag of instances X, using a function that is invariant
to permutations among instances. This problem could
be solved by a model that defines instance embeddings
through a function f , f(X) = {f(x1), . . . , f(xI)}, and
then aggregates them into a single bag embedding
z, which is eventually fed to a predictor. In the fol-
lowing, we focus on two approaches that will serve
as an inspiration for our method. First, we present
the attention-based deep MIL framework (Ilse et al.,
2018) that utilizes deep neural networks and the atten-
tion mechanism for aggregation. Second, we outline a
GLMM (Breslow and Clayton, 1993), an extension of
linear models widely used in genomic analyses.

3.2 Attention-Based MIL

Ilse et al. (2018) introduced an innovative pooling func-
tion for MIL, implementing the concept of attention
to aggregate instance-level features into bag-level ones.
Specifically, they first introduce a neural network func-
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tion f to derive low-dimensional instance embeddings
from instance features xi and then use a weighted
average pooling function equivalent to the attention
mechanism to aggregate {f(x1), . . . , f(xI)} into bag
embeddings z. Finally, they consider a classifier to
predict the bag label y from z. The weighting function
was defined as follows:

z = f(X)Tw, with wi > 0 ∀i and Σiwi = 1, (1)

where w ∈ RI denotes the vector of importance weights
across the I instances. Modeling the importance
weights as a two-layer neural network function with
softmax activation function on the last layer, ω(f(X)),
they can ensure that the constraints on the weights
are always satisfied while the entire architecture can
be trained end-to-end—i.e., the function f , the impor-
tance weight function ω and the bag-level classifier can
be jointly optimized.

Following the foundational work by Ilse et al. (2018),
more advanced implementations of attention-based MIL
have emerged. For example, DSMIL computes atten-
tion weights for each observation in a bag based on
their similarity with the instance which has the highest
classification score for a certain class (Li et al., 2021).
Attention weights are then used to aggregate features.
In multiclass classification, each class has its own crit-
ical instances, which allows DSMIL to use different
importance weighting for different classes. Moreover,
Cui et al. (2023b) suggested using Bayesian neural
networks for attention-based MIL. Such an approach
optimizes a posterior on the parameters of the attention
function via variational inference and yields calibrated
uncertainties for better weight interpretability.

3.3 Generalized Linear Mixed Model for MIL

We can employ a GLMM in the context of MIL to
model the relationship between the bag label y and
fixed bag embeddings z(X) derived from bag X while
accounting for bag covariates c. Specifically, given a
link function g, the expected value of the bag label,
µ = E[y|X], is linked to a linear predictor of bag
embeddings z(X) and covariates c through

g(µ) = cTα+ z(X)Tβ, (2)

where α ∈ RK and β ∈ RQ denote the effects of the K
covariates and Q-dimensional bag embeddings, respec-
tively. In the case of high-dimensional bag embeddings,
β is modeled as a random effect to improve robustness.
We note that for average pooled bag embeddings, which
are common in single-cell omics analysis (Perez et al.,
2022; Ahern et al., 2022; Yazar et al., 2022; Janssens
et al., 2021; Lafarge et al., 2019; Ljosa et al., 2013), we

have z(X) = 1
I

∑I
i=1 f(xi).

3.4 Our Approach: The MixMIL Model

We propose a novel integration of the attention-based
MIL and GLMM frameworks, as illustrated in Figure 1.
Our approach encompasses two main steps: (i) Utilize
predefined instance embeddings and model the impor-
tance weights as a shallow function of them; (ii) Replace
the static pooling function in standard GLMMs (2) with
a dynamic, trainable attention-based pooling function
that leverages the aforementioned importance weights.

3.4.1 The Model

Predefined Embeddings and Shallow Attention
Weight Function Leveraging insights from recent
advances in representation learning (see Section 2), we
employ predefined instance embeddings from domain-
specific unsupervised models as instance features, by-
passing the need for end-to-end optimization of a fea-
ture extractor f . These embeddings are ubiquitously
available across various data modalities (see Section 2).
Additionally, we model instance importance weights
using a single linear layer with a softmax activation
function across instances. With these assumptions, the
bag embeddings can be written as follows:

zγ(X) = XTωγ(X) ∈ RQ, (3)

with ωγ(X) = softmax (Xγ) = softmax

x
T
1 γ

.

.

.

x
T
I γ

 ∈ RI ,

where X ∈ RI×Q denotes the predefined embeddings
across all instances, and we made explicit that both the
bag embeddings z and the weight function ω depend
on the parameters γ. This way of aggregating bag
embeddings is an attention mechanism as defined by
Ilse et al. (2018) in Eq. (1).

Modeling Dependencies To model the relationship
between the bag label y and bag embeddings zγ(X)
defined in Eq. (3), we consider the GLMM formulation
for MIL in Eq. (2):

g(µ) = cTα+ zγ(X)Tβ, (4)

where now the bag pooling function zγ(X) (specified
in Eq. (3)) is dynamic and end-to-end trainable. To
ensure robust regression for small sample sizes or higher-
dimensional instance embeddings, we model both β
and γ as random effects, i.e., we introduce the priors
β ∼ N (0, σ2

βIQ×Q) and γ ∼ N (0, σ2
γIQ×Q). Here,

IQ×Q denotes the Q×Q identity matrix, and σ2
β and

σ2
γ are the variances associated with the parameters β

and γ. Given these priors, namely:

p(β) = N
(
β |0, σ2

βIQ×Q

)
(5)

p(γ) = N
(
γ |0, σ2

γIQ×Q

)
, (6)
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Figure 1: (a) MixMIL uses predefined instance embeddings from domain-specific unsupervised models for robustness and
efficiency. (b) Generalized multi-instance mixed model framework defining MixMIL.

the marginal likelihood of the model is the following:

p(y|c,α,X) =

∫
p
(
y
∣∣∣cTα+ zγ(X)Tβ

)
p(β)p(γ)dβdγ

(7)

This integral is generally intractable, but it can be
approximated using various techniques such as Monte
Carlo methods, Laplace approximation, or variational
inference. In this work, we opt to use variational
inference.

Instance Importance Heterogeneity The param-
eter σ2

γ primarily controls the heterogeneity of the
importance weights across instances. Indeed, when
σ2
γ = 0, we have γ = 0, and z0(X) reduces to a simple

average across all instances. In this case, MixMIL sim-
plifies to a standard GLMM with average pooled bag
features. Conversely, larger values of σ2

γ correspond
to a more significant disparity in importance weights
across instances, with only a few instances contributing
the most to bag label predictions.

Model Interpretability Given that both the pre-
dictor from bag embeddings and the pooling function
are linear in the instance embeddings, the aggregate
effect of bag embeddings on bag labels can be expressed
as follows:

zγ(X)T β = ωγ(X)TXβ = ωγ(X)T tβ(X), (8)

where tβ(X) = Xβ ∈ RI can be viewed as the vector
of instance-level phenotypic predictions. This inter-
pretable formula provides a way to decompose the
overall bag prediction into a weighted sum of instance-
level contributions, offering insights into the individual
instance influences on the final prediction.

3.4.2 Inference

The aim in inference is to determine the posterior
distribution p(θ | D) of the random effect parameters

θ = {β,γ} given the observed data D. As exact infer-
ence is intractable for our model, we resort to varia-
tional inference, a strategy that approximates the true
posterior p(θ | D) by introducing a variational family
qϕ(θ) parameterized by ϕ, and optimizing ϕ to maxi-
mize the Evidence Lower Bound (ELBO):

ELBO
(
ϕ, σ2

β , σ
2
γ

)
= Eqϕ(θ)

[
log p(D|θ)

]
−DKL

(
qϕ||p

)
.

(9)

Here DKL

(
qϕ||p

)
denotes the Kullback-Leibler diver-

gence between the variational approximation qϕ(θ)
and the prior distribution of the parameters p(θ).

We here consider the variational family of multivariate
Gaussian distributions with full rank covariance:

qϕ(θ) = N (θ |µϕ,Σϕ) , (10)

parameterized by 2Q mean parameters and Q(2Q+ 1)
covariance parameters. In simulations, we also ex-
plore a mean field variational family, which assumes a
fully factorized posterior across parameter dimensions—
leading to 2Q mean parameters and 2Q variance pa-
rameters.

Optimization We jointly optimize the ELBO with
respect to fixed effects α, variational parameters ϕ,
and prior hyperparameters σ2

β and σ2
γ using mini-batch

gradient descent. This optimization strategy, aligning
with the empirical Bayes method (Carlin and Louis,
2000), adjusts the prior distributions in response to
observed data. In order to backpropagate through the
expectation term in the ELBO, we sample from the
variational posterior and utilize the reparameterization
trick (Ranganath et al., 2014). In our experiments, we
found that using the Adam optimizer with a learning
rate of 10−3, a training batch size of 64 bags, and
8 posterior samples to approximate the expectation,
produced robust results across all settings.
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3.4.3 Predictive Posterior

After optimization, we employ the learned approximate
posterior q(β,γ) to predict the label of a new bag from
its instance embeddings X⋆:

y⋆ = Eq(β,γ)

[
ωγ(X

⋆)T tβ(X
⋆)
]
, (11)

where we used the formulation in Eq. (8). More-
over, to retrieve important instances, we can leverage
the expected value of the importance weights, namely
Eq(β,γ)

[
ωγ(X

⋆)
]
.

3.4.4 Likelihood Choices in Experiments

Genotype Labels For genotype labels, where the
label represents the minor allele count with possible
values in the set {0, 1, 2}, we employ a Binomial
likelihood with two trials (Hao et al., 2016). The linear
predictor operates in the logit space, and the resulting
probability for the binomial distribution is derived from
the sigmoid function applied to the logits.

Multiclass Classification For the multiclass classifi-
cation problem in the microscopy dataset, we employ a
categorical likelihood. Specifically, given C classes, we
use parameters α ∈ RK×C , β ∈ RQ×C , and γ ∈ RQ×C

to specify class-specific covariate, feature, and attention
effects. The aggregated predictions as per Eq. (11) then
produce a C-dimensional logit vector. The class proba-
bilities are then derived from the logit vector using the
softmax link function. With this approach, MixMIL
can learn different attention mechanisms for different
classes. We employ the same prior for feature and at-
tention effects across all classes as outlined in Eq. (5-6).

Binary Classification For the histopathology classi-
fication task, we use a Bernoulli likelihood. The linear
predictor operates in the logit space, and the probabil-
ity is determined by the sigmoid function applied to
the logits.

3.4.5 Implementation and Complexity

Implementation1 To facilitate efficient training and
inference on both GPU and CPU, we implemented
MixMIL using PyTorch. This choice also enabled us
to leverage the numerous probability distributions al-
ready available in Pytorch for our generalized likelihood
framework. For efficient computation of bag-level op-
erations across all bags (e.g., bag-level softmax), we
utilized the PyTorch Scatter library. Importantly, our
code supports the simultaneous analysis of multiple
labels, which we make efficient by tensorizing compu-
tations across outcomes.

1https://github.com/AIH-SGML/MixMIL

Model Size and Complexity MixMIL employs sin-
gle linear layers for importance labels and predictions,
resulting in 2Q + K likelihood parameters, where Q
represents the number of instance features and K de-
notes the number of bag covariates. This is significantly
fewer than MIL baselines like ABMIL, DSMIL, and
BayesMIL (Table 1). However, we note that MixMIL’s
variational posterior can notably exceed the likelihood’s
parameter count, especially with the multivariate Gaus-
sian variational posterior having 2Q+Q(2Q+ 1) pa-
rameters.

4 EXPERIMENTS

We demonstrate the utility of MixMIL by applying it
to the task of making predictions for unseen bags of
instances. After benchmarking our model in extensive
simulations, we selected three applications from diverse
domains: (i) predict genetic labels from transcriptional
cell embeddings, (ii) predict a compound’s Mode of
Action (MoA) from morphological cell embeddings, (iii)
classify histology slides between cancer vs healthy from
histological patch embeddings.

4.1 Methods Considered

MIL Models We considered the established AB-
MIL (Ilse et al., 2018) and its variation Gated ABMIL.
Additionally, we included recently published methods
DSMIL (Li et al., 2021) and Bayes-MIL (Cui et al.,
2023b). For the MoA prediction tasks, we also con-
sidered Additive MIL (Javed et al., 2022), given its
reported improved performance in multiclass predic-
tion tasks. For full details on hyperparameter sweeping
and selection across the different experiments, see Ap-
pendix C.

Traditional ML Models In simulation studies, we
also benchmarked MixMIL against a GLMM with a
corresponding likelihood and two widely used nonlinear
models: Random Forest and XGBoost. All models have
predefined bag-level features as inputs. For this, we ex-
plored three different strategies: mean pooling, median
pooling, and a combination of mean, squared mean,
and cubed mean of instance features. Detailed imple-
mentation specifics and comparisons with such models
on the simulation setting are provided in Appendix C.1
and E.1. We initially also tried to train these models
directly on instance features by assigning bag labels to
the corresponding instances. However, these models
were too slow and underperformed (see Table E.1) and
thus were excluded from further comparisons.

https://github.com/AIH-SGML/MixMIL
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Figure 2: (a-c) Out-of-sample prediction accuracy (Spearman correlation, ρ) for MixMIL, GLMM, and baseline MILs
(ABMIL, Gated ABMIL, DSMIL, and Bayes-MIL) varying the sample size (a), the amount of instance importance
heterogeneity (b) and the number of instances (c). (d-f) Instance retrieval ROC-AUC of MixMIL and baseline MILs for
the top 10% of instances in the same simulated scenarios. GLMM is not shown as it is not designed for instance retrieval.
Stars denote default values that were kept constant while varying other parameters. Error bars denote standard errors
across 10 repeat experiments. Full results across all methods and scenarios can be found in Section E.1.

4.2 Simulations

Dataset Generation We designed our simulation
to emulate the single-cell genomics application. First,
we generated instance embeddings Xiq ∼ N (0, 1) , im-
portance weights ωγ with γq ∼ N (0, σ2

γ) , and bag em-
bedding effects βq ∼ N (0, σ2

β). Next, we employed the
model in Eq. (4) to generate bag-level logits. Finally,
we generated genotypes using a binomial likelihood
function with 2 trials taking as input the simulated
logits (see also Section 3.4.4). We systematically varied
parameters such as the sample size, instance impor-
tance heterogeneity (σ2

γ), the number of instances per
bag, the number of instance features, and the variance
explained by bag embedding effects. For each parame-
ter configuration, we ran 10 repeat experiments.

Setup Out-of-sample prediction accuracy for all mod-
els was measured using Spearman’s rank correlation
between the actual bag logits and the predicted values
in a simulated test set of 200 bags. To evaluate the
effectiveness of the MIL models to retrieve the most
important instances using the weight posterior, we used
ROC-AUC for the top 10% of the simulated instances.
Standard errors on all metrics were computed across
the 10 repeat experiments.

Results When evaluating models across varying sam-
ple sizes, we noticed variable relative performance of
the compared models: while the GLMM was superior
to baseline MILs at lower sample sizes, baseline MILs
gradually improved with more samples, all surpass-
ing the GLMM at around 2,000 bags (Figure 2a). In

contrast, MixMIL outperformed all baselines through-
out (Figure 2a), emphasizing its reliability in settings
where traditional MIL models might be prone to over-
fitting. As we increased the instance importance het-
erogeneity, we noted a sharp downturn in the perfor-
mance of GLMM (Fig 2b), a trend also observed in
other conventional ML models (Figure E.1(ii)). In
contrast, MIL models maintained their accuracy more
effectively. When varying the number of instances per
bag, the number of instance features, and the variance
attributed to bag embedding effects, MixMIL consis-
tently outperformed baselines (Figure 2c, Figure E.1).
We also compared MixMIL with a version utilizing a
mean field posterior. As the latter exhibited slightly
diminished performance (Figure E.1(i) and E.2), it was
not considered in the real data analyses. To conclude,
in instance retrieval tasks, MixMIL consistently out-
performed baseline MILs, accurately retrieving the top
simulated instances (Figure 2d-f).

4.3 Single-Cell Genomics Dataset

Task We here consider the task of predicting genetic
variants from transcriptional cell embeddings in the
OneK1K dataset (Yazar et al., 2022). This task carries
biological significance: Identifying genetic variants asso-
ciated with cellular transcriptional states can pinpoint
cellular processes implicated in health and disease (Con-
sortium, 2017; Westra et al., 2013).

Dataset The OneK1K dataset comprises single-cell
RNA sequencing (scRNA-seq) data from approximately
1.3 million peripheral blood mononuclear cells, derived
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Figure 3: Scatter plots comparing the prediction performance (Spearman correlation, ρ) of MixMIL (y-axis) against
baseline MILs (x-axis) for 28 genetic labels: MixMIL vs ABMIL (a), MixMIL vs DSMIL (b), MixMIL vs Bayes-MIL (c),
MixMIL vs Gated ABMIL (d). Genetic labels for which MixMIL yielded improved prediction accuracy are highlighted in
red. The count of these genes and the P-values from a binomial test (assuming a null of 50/50 performance chance over 28
trials) are reported for each comparison.

from 982 genotyped donors. For our analysis, we con-
sidered the sub-lymphoid cells (CD4, CD8, NK cells),
spanning cells sharing core lymphoid pathways yet
exhibiting distinct functionalities. Regarding genetic
labels, we focused on independent variants associated
with the average transcriptional state (see next para-
graph). The final dataset for our analysis consisted of
981 individuals (bags), 1.1M cells (instances2), and 28
genetic labels.

Setup Cell state embeddings were obtained from
single-cell expression data using single-cell Variational
Inference (scVI) with 30 latent factors (Lopez et al.,
2018), a deep generative model for cell state represen-
tation learning (see Appendix D.2 for full details). To
identify the set of independent genetic labels for our
task, we processed 16,718 variants known as cis-eQTLs,
using a series of criteria including their association
with average transcriptional state and linkage equilib-
rium considerations. This procedure yielded 28 distinct
variants, which we used as labels when comparing alter-
native MIL implementations. A detailed methodology
on this selection process can be found in Appendix D.1.
For all models, we controlled for sex and age, and ad-
ditionally accounted for population structure by using
the four leading principal components of genetic data.
We used MixMIL’s fixed effects for this purpose and
regressed these covariates from the data for the base-
line MILs. Out-of-sample prediction performance for
MIL models was computed utilizing a 5-fold stacked
cross-validation procedure. Briefly, we concatenated
the out-of-sample predictions on each test fold, forming
a single prediction vector for all samples. We then cor-
related this prediction vector with the observed data
using Spearman correlation.

Results MixMIL demonstrated a consistent enhance-
ment in performance compared to MIL baselines across
the majority of the 28 genetic labels (Figure 3). Specif-

2The number of cells per donor ranged from 139 to 2587

Table 1: Running times and number of parameters for
MixMIL and baseline MILs on the genetics dataset. Specif-
ically, we report batch training times (ms) and prediction
times (ms) benchmarked on a V100 GPU with 32GB mem-
ory, alongside counts of likelihood and variational parame-
ters.

Method batch time predict time lik pars var pars
(ms) (ms) (#) (#)

Bayes-MIL 5.65± 0.02 16.55± 0.30 2883 1890
ABMIL 1.72± 0.02 0.21± 0.01 1922 -
Gated ABMIL 2.02± 0.02 0.25± 0.01 2852 -
DSMIL 1.99± 0.06 0.39± 0.02 992 -
MixMIL 0.14± 0.01 0.04± 0.01 67 1890

ically, MixMIL outperformed ABMIL for 27 out of 28
labels (P< 2 · 10−7, from a binomial test; Figure 3),
DSMIL for 25 out 28 labels (P< 2 · 10−5), Bayes-MIL
for 24 out of 28 labels (P< 9 · 10−5), and Gated AB-
MIL for 25 out of 28 labels (P< 2 · 10−5). Notably, in
addition to improved prediction performance, MixMIL
showed a marked reduction in running time, being
over 12× faster than ABMIL and over 40× faster than
Bayes-MIL (Table 1). Relatedly, MixMIL also has a
lower complexity than other MIL models, utilizing less
than 7% of the parameters of DSMIL and under 2.4%
of the parameters in Bayes-MIL (Table 1). Finally, we
leveraged MixMIL’s instance retrieval to delve deeper
into the transcriptional cell states that are most predic-
tive of specific genetic labels. Notably, some of these
states corresponded with known cell types, while others
revealed novel biological insights (Figure E.3).

4.4 Microscopy Dataset

Task We considered the task to predict a com-
pound’s MoA3 from morphological cell embeddings
using the microscopy-based drug screening dataset
BBBC021 (Caie et al., 2010). Accurate MoA clas-
sification is critical in drug discovery as it expedites

3A compound’s MoA refers to the specific biological
process affected by the compound
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the understanding of drug effects. As not all cells in
culture respond uniformly to the same perturbation,
using MIL to model response heterogeneity can im-
prove MoA prediction accuracy and offer insight into
phenotypic responses.

Dataset The BBBC021 dataset contains microscopy
images of MCF7 breast cancer cell lines treated with
113 compounds for 24 hours (Caie et al., 2010). Fol-
lowing Ljosa et al. (2013), we focus on 39 compounds
with a visible impact on cell morphology, which was
associated with 12 distinct MoA labels. The experi-
ments were run on plates with 96 wells, each containing
multiple cells. All cells in a well were perturbed by the
same compound, and the same compound was used to
perturb multiple wells on a single plate and multiple
replicate plates. Within this setup, we have 2,526 wells
(bags), 133,628 cells (total number of instances), and
12 MoAs (labels).

Setup We extracted morphological cell embeddings
from single-cell images using the pre-trained ResNet50
model proposed by Perakis et al. (2021), which was
trained on the same dataset using the self-supervised
SimCLR framework (Chen et al., 2020). For all mod-
els, we used the leading 256 principal components of
the SimCLR embeddings as instance representations—
increasing the number of principal components did
not significantly improve performance. We, further-
more, accounted for plate batch effects using MixMIL’s
covariate effects. To accommodate the multiclass clas-
sification task, we employed a categorical likelihood
for MixMIL as described in Section 3.4.4. We then
compared its performance with the baseline models in
Section 4.1 using the F1 score metric and balanced
accuracy. To evaluate model generalization, we held
out one plate per compound for testing and optimized
the model on the wells of the remaining plates. To com-
pute standard errors, we ran three repeat experiments,
each time holding out a different plate.

Table 2: F1 score and balanced accuracy comparison for
MixMIL and baseline MILs on the MoA classification task.
We report averages and standard errors across three repeat
experiments, holding out a different plate per treatment for
testing.

Method Bal. Accuracy F1 Macro F1 Micro

Bayes-MIL 0.63± 0.02 0.63± 0.02 0.70± 0.01
ABMIL 0.72± 0.02 0.73± 0.01 0.76± 0.01
Gated ABMIL 0.67± 0.03 0.65± 0.03 0.70± 0.03
Additive ABMIL 0.41± 0.00 0.34± 0.00 0.47± 0.02
DSMIL 0.89± 0.02 0.89± 0.02 0.90± 0.01
MixMIL 0.94± 0.02 0.94± 0.01 0.95± 0.01

Results MixMIL surpassed other MIL models in out-
of-sample predictions (Table 2). Furthermore, a vi-

sual assessment of instances based on MIL methods’
attention weights revealed that MixMIL consistently
down-weighted experimental artifacts (Figure 4 and
Figure E.4).

DSMIL

ABMIL

Bayes-MIL

MixMIL

top-weighted bottom-weighted

Figure 4: Top and bottom 16 weighted cells for the Latrun-
culin B drug for different MIL methods.

4.5 Histopathology Dataset

Task We used MixMIL to classify histology slides as
cancerous or healthy. Each slide comprises numerous
patches, each represented by an embedding. The appli-
cation of MIL to this problem enables the assessment
of individual patch contributions to the overall slide
diagnosis (Ilse et al., 2018; Li et al., 2021; Cui et al.,
2023b).

Setup and Results Our experiments utilized the
widely-referenced Camelyon16 (Ehteshami Bejnordi
et al., 2017) histopathology dataset. In particular,
we employed the version provided by Li et al. (2021),
which offers SimCLR embeddings of 4,886,434 patches
at 20x magnification spanning across 399 slides (160
cancerous and 239 healthy), and a predefined train-
test split. We earmarked 10% of the training bags
for hyperparameter optimization (see Appendix C.3).
No covariates were available for this dataset. All MIL
models exhibited remarkable accuracy, with MixMIL
topping the performance chart (Table 3).

Table 3: AUC classification accuracy results on the test
set of the official train-test split of Camelyon16 (Li et al.,
2021), evaluated over five different training seeds.

Method AUC

Bayes-MIL 0.865± 0.031
ABMIL 0.958± 0.015
Gated ABMIL 0.965± 0.006
DSMIL 0.915± 0.013
MixMIL 0.977± 0.001
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5 DISCUSSION

In this work, we presented Mixed Models with Multi-
ple Instance Learning (MixMIL), a framework merging
GLMMs and attention-based MIL. Conceived with ge-
nomics analyses in mind, MixMIL achieves robustness
and efficiency by utilizing pre-trained embeddings and
a shallow function for attention modeling. Our simula-
tions demonstrate the versatility of MixMIL, even in
scenarios where simple ML baselines surpassed tradi-
tional MIL approaches. This adaptability was further
validated in real-world data applications spanning a
wide range of tasks—from applications like genomics,
characterized by a lower signal-to-noise ratio, to bench-
mark MIL datasets in histopathology. As a limitation,
we note that MixMIL’s inherent simplicity could lead
to suboptimal performance when working with large
datasets on complex tasks. We hope that by sharing
the MixMIL framework, the scientific community finds
a valuable tool to analyze multi-instance datasets.
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Mixed Models with Multiple Instance Learning:
Appendix

A MixMIL TRAINING DETAILS

To enhance numerical stability during training, we reparameterize the embedding-based prediction of our model.
Specifically, introducing a bag-level index i to Eq (3-4) in the main text, we denote the embedding-based bag
prediction of bag i, composed of Ii instances, as:

(u)i = zγ(Xi)
Tβ (A.1)

where Xi ∈ RIi×Q collectively denotes the instance embeddings in bag i. During training, we reparameterize
the embedding-based prediction u to have sample mean 0 and sample variance b2 = 1

Q

∑Q
j=1 β

2
j . Importantly,

this reparameterization does not alter the model structure but improves its trainability and interpretability4.
Specifically, we implement the reparameterization by first introducing

(ũ)i = zγ(Xi)
T β / b︸ ︷︷ ︸

η

, (A.2)

where η has unit mean square. We then rescale ũ to:

u = b× ũ−mean(ũ)

std(ũ)
. (A.3)

This standardization operation can be implemented within the Pytorch framework using a batchnorm layer. By
using this reparameterization, we introduce stochasticity and stability during training, while keeping track of
training set statistics for inference.

B BASELINE MODELS

B.1 MIL Baselines

• ABMIL. Ilse et al. (2018) use neural networks and attention to learn instance-specific weights and perform
bag-level aggregation to optimize a downstream prediction task. The authors additionally propose a gated
version of the model where they combine tanh and sigmoid activation functions to the attention weights to
better learn non-linearities.

• Additive MIL. Javed et al. (2022) overcome the lack of weight interpretability by pooling instance-level
predictions rather than pooling instance features. In greater detail, attention weights are first estimated
similarly to ABMIL and used to weigh single instances in a bag. Successively, a predictor is applied directly
to the weighted instances to derive instance-specific logits, which are summed to yield a bag-level prediction.

• DSMIL. Li et al. (2021) first model an instance classifier which provides class-specific activation scores for
each element in a bag. Max-pooling on the classification scores defines a critical instance per class. To obtain
bag-level embeddings, attention weights are learned based on the distance of single elements from the critical
instance per class and used to aggregate features.

4After this reparameterization, σ2
β can be directly interpreted as the variance explained by pooled bag embeddings.
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• Bayes-MIL. Cui et al. (2023b) derive uncertainty over the attention weights of a standard MIL model by
learning patch-specific posterior distributions with variational inference. In their application to histopathology
screens, the authors introduce a slide regularizer to concentrate attention on either the positive or negative
side of patches for precise localization with high confidence. Additionally, the authors encode spatial
information between patches in Multiple Instance Learning (MIL) for Whole Slide Image (WSI) recognition
and localization, proposing the use of Conditional Random Fields (CRF). Because spatial information is not
available for the simulation, genetics and microscopy datasets, we use the Bayes-MIL version without slide
regularizer and CRF.

B.2 Traditional ML Models

In simulation studies, we also benchmarked MixMIL against a GLMM with a corresponding likelihood and two
widely used nonlinear models: Random Forest and XGBoost. All models use predefined bag-level features as
inputs, based on three different strategies: mean pooling, median pooling, and a combination of mean, squared
mean, and cubed mean of instance features (Figure E.1 (ii)).

C EXPERIMENTAL SETUP

C.1 Simulations and Genomics Dataset

MIL Model Hyperparameter Search Hyperparameters for all MIL models across the simulations and
genomics application were optimized based on the simulation default scenario, which emulates the genomics
dataset. Specifically, we used our simulation procedure with default parameters to generate 10 datasets, including
training and validation sets. For each simulated dataset, we trained MIL models with different losses, learning rates
and regularization parameters (Table C.1) on the training set and evaluated their performance on the validation
set. The hyperparameters for each model were then chosen based on the average Spearman correlation between
predicted and true values, and are listed in Table C.2. Across the losses that we considered, which included
common regression losses (MSELoss, HuberLoss, SmoothL1Loss, L1Loss) as well as the negative log-likelihood of
the Binomial distribution used in MixMIL, the HuberLoss consistently yielded the best results for this use case.

Table C.1: Hyperparameter sweep for Simulations and Genomics dataset

Model Learning Rate Weight Decay Dim. Encoder Regularization

Bayes-MIL {5e-3, 5e-4, 1e-4, 1e-5} {5e-4, 1e-4, 5e-5, 1e-5, 1e-6 } {30} log10space(1e-6, 1e-10)
DSMIL {5e-3, 2e-4, 5e-5} {5e-3, 5e-4, 1e-4} {30} -
ABMIL {5e-3, 5e-4, 5e-5} {5e-3, 5e-4, 1e-4, 1e-5, 0} {30} -
Gated ABMIL {5e-3, 5e-4, 5e-5} {5e-3, 5e-4, 1e-4, 1e-5, 0} {30} -

Table C.2: Optimized Hyperparameters for Simulations and Genomics dataset

Model Learning Rate Weight Decay Dim. Encoder Regularization

Bayes-MIL 5e-4 1e-6 30 1e-8
DSMIL 2e-4 5e-3 30 -
ABMIL 5e-4 1e-4 30 -
Gated ABMIL 5e-4 1e-4 30 -

Traditional ML Models Hyperparameter Search To tune the hyperparameters of the baseline models
considered in our paper, we performed a randomized search of the hyperparameter space, using a 5-fold cross-
validation within the training set and sampling 20 hyperparameter combinations. Specifically, each combination
of hyperparameters was evaluated by the average cross-validated Spearman correlation metric, the combination
that provided the best performance was chosen, and the final models were retrained on the entire training set
before performing out-of-sample predictions on the test set. For full information on hyperparameters and their
respective search spaces see Table C.3 and Table C.4.
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Table C.3: Random Forest Hyperparameter Search Space

Hyperparameter Search Space

Number of Estimators (n estimators) {50, 100, 150, 200, 500}
Max Features (max features) {sqrt, log2, None}
Max Depth (max depth) {10, 20, 30, 50}
Min Samples Split (min samples split) {2, 5, 10}
Min Samples Leaf (min samples leaf) {1, 2, 4}

Table C.4: XGBoost Hyperparameter Search Space

Hyperparameter Search Space

Max Depth (max depth) {3, 4, ..., 9}
Learning Rate (learning rate) {10−3, ..., 10−2, ..., 100}
Number of Estimators (n estimators) (100, 1000)
Subsample (subsample) (0.5, 1)
Col Sample By Tree (colsample bytree) (0.5, 1)
Objective (objective) binary:logistic

Evaluation Metric (eval metric) logloss

C.2 Microscopy Dataset

For the microscopy data, we ran three repeat experiments, each time holding out a different plate as a test set.
For each repeat experiment, we trained MIL models with different hyperparameters on 90% of the training set
(Table C.5) and evaluated their predictive performance based on the F1 score on the remaining 10%. For each
model, we considered hyperparameters that yielded the best performance on this validation set and retrained on
the entire training set before computing predictions on the test set. We noticed that the same hyperparameters
were selected for each model across the three repeat experiments (Table C.6).

Table C.5: Hyperparameter sweep for Microscopy Dataset

Model Learning Rate Dim. Encoder

Bayes-MIL {1e-3, 5e-4, 1e-4} {64, 100, 128}
DSMIL {1e-3, 5e-4, 1e-4} {64, 100, 128}
ABMIL {1e-3, 5e-4, 1e-4} {64, 100, 128}
Additive ABMIL {1e-3, 5e-4, 1e-4} {64, 100, 128}
Gated ABMIL {1e-3, 5e-4, 1e-4} {64, 100, 128}

Table C.6: Optimized Hyperparameters for Microscopy Dataset

Model Learning Rate Weight Decay Dim. Encoder

Bayes-MIL 1e-4 1e-5 64
DSMIL 1e-4 1e-5 100
ABMIL 5e-4 1e-5 100
Additive ABMIL 5e-4 1e-5 100
Gated ABMIL 5e-4 1e-5 100

C.3 Histopathology Dataset

We employed the version of Camelyon16 provided by (Li et al., 2021), which contained a predefined train-test split.
We earmarked 10% of the training bags for hyperparameter optimization and swept MIL model hyperparameters
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using a grid-search approach (Table C.7). For each model, we picked hyperparameters based on the validation
loss. The final parameters are shown in Table C.8.

Table C.7: Hyperparameter sweep for Camelyon16 Dataset

Model Learning Rate Weight Decay Dim. Encoder Regularization

Bayes-MIL {5e-4, 1e-4, 5e-5, 1e-5} {1e-4, 1e-5, 1e-6, 1e-7} {30, 60, 120} log10space(1e-6, 1e-10)
DSMIL {1e-4, 2e-4, 5e-5} {5e-3} {30, 60, 120} -
ABMIL {1e-4, 5e-4, 5e-5} {1e-4} {30, 60, 120} -
Gated ABMIL {1e-4, 5e-4, 5e-5} {1e-4} {30, 60, 120} -

Table C.8: Optimized Hyperparameters for Camelyon16 Dataset

Model Learning Rate Weight Decay Dim. Encoder Regularization

Bayes-MIL 5e-4 1e-5 30 1e-8
DSMIL 1e-4 5e-3 60 -
ABMIL 5e-5 1e-4 60 -
Gated ABMIL 5e-4 1e-4 30 -

D DATA PREPROCESSING

D.1 Variant Filtering Procedure

To identify the 28 variants associated with the average transcriptional state, we adopted the following approach:
We started from 16,718 variants associated with proximal gene expression in the primary analysis of this data.
These variants are typically known as cis-expression Quantitative Trait Loci (cis-eQTLs). Then, we selected
variants that could be predicted from average cell embedding using a GLMM (Spearman ρ > 0.15). Next, to
mitigate dependencies between genetic labels due to linkage disequilibrium (Slatkin, 2008), we undertook a
clumping procedure (Purcell et al., 2007), which yielded the final set of 28 variants.

D.2 Single-Cell Embeddings

Single-cell RNA-seq data consists of a cell-by-gene matrix of RNA counts per cell. For the OneK1K dataset,
we have approximately 1.3 million cells and 32,000 genes (Yazar et al., 2022). However, due to technical bias
and experimental dropout, many of these genes are uninformative. Therefore, it is common to subset to the
most highly variable genes and perform analyses on embedding space. The single-cell Variational Inference
(scVI) model (Lopez et al., 2018) is designed with the properties of this data in mind. We used hyperparameters
commonly used for this type of dataset size and report them in Table D.1.

Table D.1: Summary of scVI (Lopez et al., 2018) parameters

Parameter Value

Layers 2
Batch Size 256
Epochs 15
Gene Likelihood ZINB
Covariate Sequencing Pool
Highly Variable Genes (HVG) 5000
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As described in the main, we performed the scVI integration on the sub-lymphoid cells (CD4, CD8, NK cells).

D.3 Microscopy Image Feature Extraction

We downloaded cell images from Caie et al. (2010), extracted single cell images using nuclear coordinates made
available by Ljosa et al. (2013), and applied plate correction as described in Singh et al. (2014). We then collected
the weights of a ResNet50 SimCLR model pre-trained by Perakis et al. (2021) to infer cell embeddings. The
extracted embeddings have a dimensionality of 2048, which we reduce using PCA.

D.4 Accounting for Covariates

The single-cell genomics and microscopy datasets contain covariates and batches which should not be predictive
of the outcome labels but could confound the prediction. We, therefore, accounted for them as fixed effects (cTα),
leveraging the GLMM structure of MixMIL and regressed them from the data for the baseline MILs. We used
the covariates sex, age, and population structure (4 genetic PCs) for the genetics use case. In the microscopy
experiment, we accounted for plate-batch effects. We applied constant intercepts for the histopathology and
simulation experiments.
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E ADDITIONAL RESULTS

E.1 Simulations
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(i) Comparison with MIL models
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(ii) Comparison with vs GLMM, Random Forest, and XGBoost

Figure E.1: Out-of-sample prediction performance (Spearman correlation, ρ) in different simulation settings,
varying one parameter at a time while keeping the others constant. Specifically, we varied the number of bags (a),
the number of instances (b), the number of features (c), the heterogeneity effect (d) and the variance of signal (e).
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Figure E.2: Instance retrieval ROC-AUC of MixMIL for top 10% of instances in the same simulated scenarios as
in Figure E.1. Error bars denote standard errors across 10 repeat experiments.

Table E.1: Comparison of instance-level models and their mean-embedding-based counterparts with MixMIL in
the default scenario (marked by white stars in Figures 2, E.1, and E.2). The instance-level models, which either
matched or underperformed compared to other models and required longer training times, were not included in
further analyses.

Model Type Out of sample predictions (ρ)

Random Forest mean 0.45± 0.02
Random Forest instance-level 0.45± 0.02

XGBoost mean 0.36± 0.02
XGBoost instance-level 0.48± 0.02

GLMM mean 0.58± 0.02
GLMM instance-level 0.57± 0.02

MixMIL MIL 0.84± 0.01

E.2 Single-cell Genomics Dataset

Table E.2: Comparison of prediction performance of MixMIL and baseline MILs on the single-cell genomics data.
The table reports the mean and standard deviation of Spearman correlation across 28 genes, and the P-values
obtained from a paired t-test, assessing the statistical significance of the differences in performance between
MixMIL and each of the baseline MILs.

Method Prediction performance (Spearman) MixMIL improvement (t-test P-value)

ABMIL 0.21± 0.18 < 4 · 10−7

DSMIL 0.22± 0.17 < 2 · 10−7

Bayes-MIL 0.23± 0.14 < 2 · 10−4

Gated ABMIL 0.24± 0.18 < 5 · 10−6

MixMIL 0.29± 0.17 -
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(i) rs12151621 (Chromosome 2, near GNLY (Tewary et al., 2010)). Differential gene
analysis brought up processes related to defence response (GO:0031349) and regulation
of the MAPK cascade (GO:0043408, Plotnikov et al. (2011)).

(ii) rs9928554 (Chromosome 16, near IL32), associated with Vitamin E measurements
(openTargets, Ochoa et al. (2023)). Differential gene analysis brought up processes
related to protein transport to the membrane (GO:0072657) and cell regulatory processes
(GO:0050728, GO:0043408, GO:0031349).

(iii) rs7503161 (Chromosome 17, near EIF5A) associated with increased hemoglobin
concentration and height (openTargets, Ochoa et al. (2023)). EIF5A is involved in the
positive regulation of the apoptosis (programmed cell death) signaling pathway. Differ-
ential gene analysis yielded processes directly (GO:0042981, GO:0043069, GO:0043066)
and indirectly (GO:0071345, GO:1902531) related to cell death.

Figure E.3: Three examples of genetic variants for which MixMIL improved predictions. (a) UMAP of cell
transcriptional embeddings showing cell types (top panel) and top 5% relevant cells according to MixMIL’s
weights (bottom panel). The odds ratio (OR) quantifies the enrichment of top-weighted cells within each cell
type. (b) Box plots showing GLMM genetic predictions vs observed values, where the GLMM was fit either
using the top 5% of the instances (left) or the bottom 5% (right) as ranked by MixMIL. Panels (i) and (ii) show
variants where MixMIL’s importance weights align with known cell types. Conversely, panel (iii) finds a cell state
not captured by any individual cell type.
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E.3 Microscopy Dataset
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Figure E.4: Top and bottom 16 weighted cells for the Nocodazole, Simvastatin, Epothilone B, and Mevinolin for different
MIL methods. While MixMIL down-weights images with technical artifacts and yields consistent phenotypes in the top
classes, the competing MIL models tend to miss or up-weight noisy images and produce inconsistent phenotypes for the
most important perturbed images.
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Table E.3: F1 score comparison between MixMIL and competing MIL models on individual MoA labels. We observe that
MixMIL improves on the MIL baselines on most considered classes.

MoA Category Method F1

Actin Disruptors ABMIL 0.841 ± 0.014
Additive ABMIL 0.235 ± 0.121
Bayes-MIL 0.733 ± 0.035
DSMIL 0.920 ± 0.025
Gated ABMIL 0.730 ± 0.040
MixMIL 0.992 ± 0.004

Aurora Kinase Inhibitors ABMIL 0.910 ± 0.013
Additive ABMIL 0.600 ± 0.155
Bayes-MIL 0.862 ± 0.011
DSMIL 0.970 ± 0.008
Gated ABMIL 0.783 ± 0.034
MixMIL 1.000 ± 0.000

Cholesterol-Lowering ABMIL 0.550 ± 0.026
Additive ABMIL 0.562 ± 0.023
Bayes-MIL 0.293 ± 0.059
DSMIL 0.885 ± 0.008
Gated ABMIL 0.415 ± 0.011
MixMIL 0.914 ± 0.001

DNA Damage ABMIL 0.711 ± 0.009
Additive ABMIL 0.316 ± 0.101
Bayes-MIL 0.715 ± 0.027
DSMIL 0.882 ± 0.016
Gated ABMIL 0.558 ± 0.071
MixMIL 0.922 ± 0.019

DNA Replication ABMIL 0.677 ± 0.013
Additive ABMIL 0.595 ± 0.015
Bayes-MIL 0.712 ± 0.012
DSMIL 0.838 ± 0.030
Gated ABMIL 0.542 ± 0.039
MixMIL 0.928 ± 0.010

Eg5 Inhibitors ABMIL 0.868 ± 0.004
Additive ABMIL 0.457 ± 0.118
Bayes-MIL 0.825 ± 0.006
DSMIL 0.947 ± 0.006
Gated ABMIL 0.859 ± 0.014
MixMIL 0.993 ± 0.004

Epithelial ABMIL 0.759 ± 0.023
Additive ABMIL 0.000 ± 0.000
Bayes-MIL 0.631 ± 0.026
DSMIL 0.865 ± 0.012
Gated ABMIL 0.722 ± 0.026
MixMIL 0.929 ± 0.008

Kinase Inhibitors ABMIL 0.673 ± 0.040
Additive ABMIL 0.000 ± 0.000
Bayes-MIL 0.503 ± 0.048
DSMIL 0.956 ± 0.010
Gated ABMIL 0.658 ± 0.032
MixMIL 0.927 ± 0.019

Microtubule Destabilizers ABMIL 0.769 ± 0.019
Additive ABMIL 0.621 ± 0.024
Bayes-MIL 0.701 ± 0.012
DSMIL 0.932 ± 0.002
Gated ABMIL 0.816 ± 0.009
MixMIL 0.968 ± 0.006

Microtubule Stabilizers ABMIL 0.932 ± 0.014
Additive ABMIL 0.283 ± 0.146
Bayes-MIL 0.858 ± 0.013
DSMIL 0.964 ± 0.006
Gated ABMIL 0.822 ± 0.020
MixMIL 1.000 ± 0.000

Protein Degradation ABMIL 0.312 ± 0.020
Additive ABMIL 0.292 ± 0.038
Bayes-MIL 0.275 ± 0.027
DSMIL 0.688 ± 0.054
Gated ABMIL 0.321 ± 0.037
MixMIL 0.773 ± 0.026

Protein Synthesis ABMIL 0.757 ± 0.023
Additive ABMIL 0.076 ± 0.039
Bayes-MIL 0.447 ± 0.041
DSMIL 0.879 ± 0.008
Gated ABMIL 0.625 ± 0.016
MixMIL 0.960 ± 0.006
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Table E.4: Comparison of MixMIL and MIL baseline models with varying numbers of embedding principal
components based on balanced accuracy, F1-macro, and F1-micro, including confidence intervals. Consistent with
previous scenarios, MixMIL outperforms other approaches on all evaluated feature dimensions.

Method Number of Features Balanced Accuracy F1-macro F1-micro

ABMIL 64 0.581 ± 0.036 0.577 ± 0.041 0.607 ± 0.047
256 0.726 ± 0.018 0.730 ± 0.016 0.764 ± 0.015
512 0.714 ± 0.010 0.709 ± 0.013 0.746 ± 0.009

Additive ABMIL 64 0.298 ± 0.022 0.203 ± 0.020 0.340 ± 0.028
256 0.410 ± 0.003 0.336 ± 0.002 0.470 ± 0.019
512 0.475 ± 0.045 0.379 ± 0.051 0.501 ± 0.051

Bayes-MIL 64 0.727 ± 0.042 0.733 ± 0.044 0.758 ± 0.031
256 0.623 ± 0.018 0.628 ± 0.024 0.699 ± 0.014
512 0.641 ± 0.005 0.642 ± 0.010 0.693 ± 0.011

DSMIL 64 0.849 ± 0.028 0.850 ± 0.026 0.859 ± 0.022
256 0.892 ± 0.025 0.894 ± 0.023 0.902 ± 0.019
512 0.890 ± 0.018 0.895 ± 0.018 0.908 ± 0.014

Gated ABMIL 64 0.528 ± 0.016 0.508 ± 0.016 0.582 ± 0.032
256 0.669 ± 0.031 0.654 ± 0.032 0.701 ± 0.031
512 0.674 ± 0.029 0.676 ± 0.027 0.707 ± 0.027

MixMIL 64 0.912 ± 0.019 0.915 ± 0.018 0.924 ± 0.017
256 0.939 ± 0.017 0.942 ± 0.015 0.950 ± 0.013
512 0.939 ± 0.019 0.944 ± 0.016 0.951 ± 0.014


