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Abstract

Measuring diversity accurately is important for
many scientific fields, including machine learn-
ing (ml), ecology, and chemistry. The Vendi
Score was introduced as a generic similarity-
based diversity metric that extends the Hill num-
ber of order q = 1 by leveraging ideas from quan-
tum statistical mechanics. Contrary to many di-
versity metrics in ecology, the Vendi Score ac-
counts for similarity and does not require knowl-
edge of the prevalence of the categories in the col-
lection to be evaluated for diversity. However, the
Vendi Score treats each item in a given collec-
tion with a level of sensitivity proportional to the
item’s prevalence. This is undesirable in settings
where there is a significant imbalance in item
prevalence. In this paper, we extend the other Hill
numbers using similarity to provide flexibility in
allocating sensitivity to rare or common items.
This leads to a family of diversity metrics—Vendi
scores with different levels of sensitivity con-
trolled by the order q—that can be used in a vari-
ety of applications. We study the properties of the
scores in a synthetic controlled setting where the
ground truth diversity is known. We then test the
utility of the Vendi scores in improving molecular
simulations via Vendi Sampling. Finally, we use
the scores to better understand the behavior of im-
age generative models in terms of memorization,
duplication, diversity, and sample quality.

1 INTRODUCTION

Evaluating diversity is a critical problem in many areas of
machine learning (ML) and the natural sciences. Having a
reliable diversity metric is necessary for evaluating gener-
ative models, curating datasets, and analyzing phenomena
from the scale of molecules to evolutionary patterns.
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Ecologists have long studied the role of diversity in vari-
ous ecosystems (Whittaker, 1972; Hill, 1973), devising in-
terpretable metrics that capture intuitive notions of diver-
sity. However, these metrics tend to be limited in that they
assume the ability to partition elements of an ecosystem
into classes or species whose prevalence is known a pri-
ori. These metrics are also limited because they don’t ac-
count for species similarity. Many have recently argued for
the importance of accounting for species similarity to reli-
ably measure diversity (Leinster and Cobbold, 2012). We
further argue that a diversity metric that accounts for simi-
larity can be unsupervised, i.e. such a metric doesn’t need
to assume the partitioning of elements of an ecosystem into
known classes, nor does it need to assume knowledge of
class prevalence.

The Vendi Score was recently proposed as a generic un-
supervised interpretable diversity metric that accounts for
similarity by leveraging ideas from ecology and quantum
mechanics (Friedman and Dieng, 2022). It’s been shown
useful for measuring the diversity of datasets and genera-
tive models (Friedman and Dieng, 2022; Stein et al., 2023;
Diamantis et al., 2023), balancing the modes of image gen-
erative models (Berns et al., 2023), and accelerating molec-
ular simulations (Pasarkar et al., 2023). However, the Vendi
Score accounts for different elements in a given collection
according to their prevalence in the collection. This is un-
desirable in settings where there are large variations in item
prevalence, such is the case for many ml settings. We illus-
trate this failure mode in Figure 1, where the Vendi Score
(q = 1), under class imbalance, fails to separately account
for the very rare classes (the black square and the yellow
diamond) and lumps them into one class.

Contributions And Main Findings. In this paper, we
make several contributions and findings that we summarize
below.

• We extend the Vendi Score to a family of diversity met-
rics, Vendi scores with different levels of sensitivity to
item prevalence. The sensitivity is determined by a
positive real number q, the order of the score. The
Vendi scores are based on the Hill numbers in ecology
but, unlike Hill numbers, they account for similarity
and are unsupervised.
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Figure 1: Sensitivity of Different Vendi Scores Under Different Scenarios. (A) Varying the number of classes under
perfect balance. Each Vendi score measures the number of classes exactly; they are effective numbers. (B) Varying the
number of classes under imbalance. Smaller orders qmore accurately describe the correct number of modes. (C) Combining
two similarity functions for shape and color. All choices of order q except q = ∞ give increases in diversity with the
similarity composition. (D) Varying the correlation of shape and color features. As the correlation between shape and
color decreases from left to right, all q except q = ∞ yield larger Vendi scores. (E) Decreasing the similarity between
class members. q = ∞ gives a Vendi Score that is more resistant to intra-class variance. For smaller qs, the Vendi scores
increase with larger amounts of variance, although the Vendi score with q = 0.1 decreases slightly between example S2

and S3.
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• We showcase the usefulness of the Vendi scores in ac-
celerating the simulation of Alanine Dipeptide, a well-
studied benchmark molecular system. We find that the
choice of q can prioritize dynamics along certain axes,
which can improve mixing and convergence.

• We show how the scores can be used to better eval-
uate and understand the behavior of generative mod-
els. We study the Vendi scores jointly with several
metrics used in ml to evaluate memorization, diver-
sity, coverage, and sample quality. Our results reveal
that generative models with a high human error rate or
low Fréchet Distance (fd) and Kernel Distance (kd)—
i.e. those generative models that tend to produce sam-
ples that human evaluators cannot distinguish from
real data—are those that memorize training samples
and create duplicates around the memorized training
samples. This finding calls for the need to pair sam-
ple quality metrics with a metric that reliably mea-
sures duplication or memorization and a metric that
measures diversity effectively. We recommend pair-
ing sample quality metrics with a Vendi score of small
order (q ∈ [0.1, 0.5]) for diversity and the Vendi score
of infinite order for duplication and memorization. In-
deed, the Vendi score with infinite order is the most
sensitive to duplicates and is strongly correlated with
CT -modified, a metric used to measure memorization,
whereas Vendi scores of small order are more sensitive
to rarer items and can effectively reflect diversity.

• We found the scores to be strongly correlated, posi-
tively or negatively, with many existing metrics used
to measure memorization and coverage. Those metrics
rely on training data. Our findings suggest the Vendi
scores provide the ability to indirectly evaluate memo-
rization and coverage without relying on training data.
This capability becomes even more important in pri-
vacy settings and as training datasets become more and
more closed-source.

2 RELATED WORK
Several diversity metrics have been proposed in ml and
ecology.

Diversity metrics in ml. ML researchers often use
some form of average pairwise similarity to quantify di-
versity, e.g. pairwise-BLEU (Shen et al., 2019) and D-
Lex-Sim (Fomicheva et al., 2020) for text data or IntDiv
for molecular data (Benhenda, 2017). Average similarity
computations have been scaled from squared complexity to
linear complexity in the size of the collection to be evalu-
ated for diversity, enabling the assessment of the diversity
of very large chemical databases (Miranda-Quintana et al.,
2021; Chang et al., 2022; Rácz et al., 2022). However, as
discussed in Friedman and Dieng (2022), average similar-
ity can fail to effectively capture diversity, even in simple
scenarios, e.g. it can score two populations with the same

number of components/species but different levels of per-
component variance the same.

Other metrics used to evaluate diversity, especially in com-
puter vision, include recall (Sajjadi et al., 2018) and Fréchet
Inception distance (FID) (Heusel et al., 2017). However,
these metrics are less flexible as they rely on a reference
distribution, and in the case of FID, additionally require the
availability of a pre-trained network.

Yet other ways of measuring or enforcing diversity have
been considered in active learning and experimental design
settings (Nguyen and Garnett, 2023; Maus et al., 2022).
For example Nguyen and Garnett (2023) enforce diver-
sity via a diminishing returns criterion for multiclass ac-
tive search, penalizing multiple explorations of the same
class through a concave utility function. This yields im-
proved results in multiclass active search. However, the ap-
proach is domain-specific and targets diversity indirectly.
Several other works have studied diversity in the framework
of Bayesian optimization (Maus et al., 2022) or evolution-
ary algorithms (Mouret and Clune, 2015; Vassiliades et al.,
2017; Pugh et al., 2016).

Diversity metrics in Ecology. Ecologists have long been
interested in quantifying diversity and have developed sev-
eral metrics to assess the diversity of ecological systems.
Some of the most ubiquitously used metrics in ecology are
arguably the Hill numbers (Hill, 1973) and the triplets alpha
diversity, beta diversity, and gamma diversity (Whittaker,
1972).

Hill numbers have been shown to be the only family of di-
versity metrics that satisfy the axioms of diversity (Leinster
and Cobbold, 2012). Hill numbers, although interpretable
and grounded in intuitive notions of diversity, have impor-
tant shortcomings that limit their use: (1) they assume some
concept of classes and an ability to classify samples within
classes (2) they assume knowledge of an abundance vector
p quantifying the number of elements in each class and fi-
nally (3) they ignore similarity between elements.

Gamma diversity measures the total diversity of an ecosys-
tem spanning some space. Whittaker (1972) intuited that
such a diversity metric should account for both the local di-
versity measured over individual sites spanning a narrower
region of the space (or alpha diversity) and the differenti-
ation among the different sites (or beta diversity). These
diversity indices have the same limitations as the Hill num-
bers mentioned above.

The Vendi Score. The Vendi Score aims to alleviate many
of the challenges faced by the commonly employed met-
rics in ml and ecology. It is interpretable, reference-free,
and satisfies the same axioms of diversity as the Hill num-
bers (Friedman and Dieng, 2022). Furthermore, unlike the
Hill numbers, the Vendi Score accounts for similarity and
doesn’t require knowledge of class prevalence.
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In a recent extensive evaluation study for image generative
models, Stein et al. (2023) used the Vendi score of order q =
1 and found it to work more effectively as a measure of per-
class diversity. In this paper, we show that by using different
orders q of the Vendi score, we can gain useful insights into
the global diversity of generative model outputs.

3 HILL NUMBERS AND ECOLOGICAL
DIVERSITY

Consider a probability distribution p = (p1, . . . , pS) on
a space X = {1, . . . , S}. Ecologists refer to each mem-
ber of X as a species and to the individual probability pi
as the relative abundance of the ith species in X . Ecol-
ogists have proposed a number of axioms that a diversity
metric should satisfy to match intuitions Leinster and Cob-
bold (2012):

1. Effective number. Diversity is defined as the effective
number of species in a population, ranging between 1
and |X |. A population containingN equally abundant,
completely dissimilar species should have a diversity
score of N . If all species are identical, the diversity
should be minimized and equal to 1.

2. Partitioning. Suppose a population is partitioned into
subpopulations, with no species shared between sub-
sets, and the species in each subset completely dissim-
ilar from the species in any other subset. Then the di-
versity of X should be entirely determined by the di-
versity and size of each subpopulation.

3. Identical species. If two species are identical, then
merging them into one should leave the diversity of
the population unchanged.

4. Monotonicity. When the similarities between species
are increased, diversity should decrease.

5. Permutation symmetry. Diversity should be un-
changed by changing the order in which the species
are listed.

Historically, most ecological diversity indices have not ac-
counted for species similarity, making the assumption that
all species are completely dissimilar and defining diversity
only in terms of the relative abundance p. In this setting,
Chapter 7 of Leinster (2020) shows that the only metrics
satisfying the axioms described above are the Hill numbers.
The Hill number Dq of order q is the exponential of the
Renyi entropy Hq of order q,

Hq(p) =
1

1− q
log

∑
i∈supp(p)

pqi (1)

Dq(p) = exp (Hq(p)) . (2)

Here supp(p) denotes the set of indices i for which pi > 0
and q ≥ 0 determines the relative weight assigned to rare
or common items. With q = 0, all species are given equal

weight and D0(p) is equal to the size of the support. This
is an uninformative measure of diversity. More interesting
diversity indices correspond to q ̸= 0, with q = 1 and q =
∞ corresponding to special limit cases. Indeed, the Hill
number of order q = 1 is the exponential of the Shannon
entropy of p,

D1(p) = exp

−
∑

i∈supp(p)

pi log pi

 (3)

and weighs each species in proportion to its prevalence. The
other interesting Hill number is also a limit, the Hill number
of infinite order,

D∞(p) = exp(− logmax
i
pi) =

1

maxi pi
(4)

which assigns all the weight to the most common species.
For q ̸∈ {0, 1,∞}, the behavior depends on whether q is
less than 1 or greater than 1. Values of q smaller than 1
assign higher weight to rare species whereas large values of
q assign higher weight to common species.

Despite their popularity in ecology, Hill numbers have
shortcomings that limit their use beyond ecology: they
make the strong assumption that species prevalence is
known and don’t account for species similarity.

4 COUSINS OF THE VENDI SCORE:
EXTENDING HILL NUMBERS USING
SIMILARITY

How can we lift the limitations of the Hill numbers men-
tioned above and extend their applicability? Friedman
and Dieng (2022) provide a solution for q = 1, drawing
ideas from quantum statistical mechanics. Indeed, the von
Neumann entropy H(ρ) for a quantum system with density
matrix ρ is of the same form as the Hill number of order
1,

H(ρ) = −tr(ρ log ρ) = −
∑
i

λi log λi (5)

where the λis are the eigenvalues of ρ. Replacing the den-
sity matrix with a normalized similarity matrix of species
yields the Vendi Score:

VS(x,k) = exp

(
−tr
(
Kx

N
log

Kx

N

))
(6)

= exp

(
−
∑
i

λi log λi

)
(7)

where k(·, ·) is a user-defined similarity function that in-
duces a similarity matrix Kx over the species and the λis
are the eigenvalues of Kx

N .

In this paper, we provide a theorem that relates the eigen-
values of a normalized similarity matrix to item prevalence
and use this result to extend the Vendi Score to the other
Hill numbers.
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Figure 2: Sensitivity of different Vendi scores to missing Alanine Dipeptide conformation. Left: Ramachandran plot
from an unbiased simulation of Alanine Dipeptide plotted against the two dihedral angles ϕ, ψ. Center: Ramachandran plot
after removing the left-handed conformation. Right: The percent difference for different Vendi scores between samples from
the original simulation and samples missing the left-handed state. Vendi scores are calculated using 20, 000 molecules from
each set of samples using an invariant RBF Kernel with γ = 1.

Theorem 4.1. [The Similarity-Eigenvalue-Prevalence
Theorem] Let (x1, . . . ,xN ) denote a collection of el-
ements, where each xi = (xi1, . . . ,xiMi) contains
a unique element repeated Mi times, i.e. xij = xik

for all j, k ∈ {1, . . . ,Mi}. Define C =
∑N

i=1Mi.
Let K ∈ RC×C denote a kernel matrix such that
K(xi•,xj•) = 1 when i = j and 0 otherwise,
∀i, j ∈ {1, . . . , N}. Denote by K̃ = K

C the normal-
ized kernel. Then K̃ has exactly N non-zero eigenvalues
λ1, . . . , λN and λi = Mi

C ∀i ∈ {1, . . . , N}.

Proof. A complete proof of this theorem can be found in
the appendix.

The theorem states that under the assumption that mem-
bers of different species are completely dissimilar—this
is the same assumption made in the computation of the
Hill numbers— there are as many nonzero eigenvalues of
the species similarity matrix as there are species and that
these eigenvalues are exactly equal to the prevalence of
the different species. This theorem therefore provides a
recipe for recovering the different Hill numbers exactly us-
ing the similarity-based construct the Vendi Score is based
on.

The benefit of computing the Hill numbers using the same
similarity-based approach as the Vendi Score is it hints
at the possibility of not needing to assume knowledge of
species prevalence. Furthermore, the assumption of com-
plete dissimilarity between species is strong and limits
the Hill numbers’ applicability. The similarity-based ap-
proach described above readily allows us to lift that assump-
tion, by simply replacing the zero entries in the similar-
ity matrix with a user-defined similarity function between
species.

Endowed with Theorem 4.1, we can safely transition from
Hill numbers—diversity indices that assume knowledge
of species prevalence and that don’t account for species
similarity—to Vendi scores, diversity indices that don’t as-
sume knowledge of species prevalence and that effectively
account for species similarity. We denote by VSq(x,k) the
Vendi score of order q for the collection x under similarity
function k(·, ·) and define,

VSq(x,k) = exp

 1

1− q
log

∑
i∈supp(λ(x,k))

λqi (x,k)


(8)

Here λ(x,k) denotes the set of eigenvalues of the normal-
ized similarity matrix induced by the input similarity func-
tion k(·, ·), and supp(λ(x,k)) denotes the indices for the
nonzero eigenvalues.

Figure 1 shows the behavior of the Vendi scores under dif-
ferent scenarios. The figure considers collections composed
of elements with different shapes and colors. The scores
are computed using a similarity function that assigns 1 to
elements with the same shape and color, 0.5 to elements
that have either the same shape or the same color, and 0 to
completely distinct elements. In the figure, we see that the
Vendi Score (q = 1), under class imbalance, fails to detect
the introduction of a rare class (the black square), leading
to a score of ≈ 3 despite the presence of 4 classes. The
Vendi scores with orders smaller than 1 are more sensitive
to those rare classes and accurately measure diversity un-
der class imbalance. The figure also shows Vendi scores
with smaller orders to be more reliable under the presence
of small variations within different classes.

The Vendi scores have several desiderata beyond the ones
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we mentioned earlier. Indeed, they enjoy the same axioms
as the Hill numbers and are therefore interpretable diversity
scores that can be used to study diversity, e.g. in ecological
systems. Some of these features include:

1. The Vendi scores are monotonically decreasing as a
function of the order q,

VS∞(x,k) ≤ · · · ≤ VS1(x,k) ≤ VS0(x,k). (9)

2. The Vendi score of order 2 provides bounds on the
Vendi score of order ∞:√

VS2(x,k) ≤ VS∞(x,k) ≤ VS2(x,k). (10)

More importantly, the Vendi scores are differentiable,
which makes them amenable to gradient-based methods in
machine learning and science. This differentiability enables
us to go beyond simply evaluating diversity to effectively
enforcing diversity, by embedding the scores into objective
functions of interest.

Enforcing diversity. Enforcing diversity has benefits in
molecular simulations as shown by Pasarkar et al. (2023),
but also in many areas of machine learning, e.g. ac-
tive learning and experimental design (Maus et al., 2022;
Nguyen and Garnett, 2023), generative modeling (Dieng
et al., 2019), and reinforcement learning (Eysenbach et al.,
2018).

Enforcing diversity with average similarity may be ineffec-
tive as average similarity fails to capture heterogeneity in
data, e.g. variances between members of the same species.
We refer the reader to Friedman and Dieng (2022) for ex-
amples illustrating the limitations of average similarity as a
diversity metric.

Enforcing diversity with other existing diversity metrics
such as FID, KID, recall, and coverage is currently compu-
tationally impossible. Indeed, these metrics are either non-
differentiable or may be challenging to optimize as they re-
quire querying large pre-trained networks at each optimiza-
tion iteration.

The Vendi scores are differentiable interpretable diversity
indices that can be used to effectively enforce diversity. In
Section 5 we use the scores within Vendi Sampling to en-
force diversity and study their effectiveness for accelerating
molecular simulations.

Computation. Computing the Vendi scores requires find-
ing the eigenvalues of anN ×N normalized similarity ma-
trix. This has complexity O(N3) which is computation-
ally costly for large collections. Fortunately, Rayleigh-Risz
provides a way to reduce computational cost. Consider a
collection of size N and denote by K̃ its normalized sim-
ilarity matrix. Let V ∈ RN×m be an orthogonal matrix,
with m << N . We can compute the eigenvalues of K̃ by

computing the eigenvalues of V ∗K̃V , which is an m ×m
matrix.

There are different ways to choose the orthogonal matrix
V , each leading to a different scaling strategy. For very
large collections, choosing V to be a binary orthogonal ma-
trix is equivalent to subsampling m elements of the collec-
tion and approximating the Vendi scores using that subset.
This would have O(m3) complexity, which is efficient for
m << N , and would allow to trade-off accuracy with com-
putational cost since m is determined by the user. When
embeddings are readily available for the elements in the
collection, e.g. Inceptionv3 or DINOv2 embeddings for
images, we can perform a Gram-Schmidt orthogonaliza-
tion of the embedding matrix of the elements of the collec-
tion to define V . We would then use V as described above
to compute the Vendi scores. This would have complex-
ity O(N2m)—the same complexity as the computation of
metrics such as FID—and has the benefit to extend the co-
variance trick mentioned in Friedman and Dieng (2022) to
similarity functions beyond cosine similarity.

5 EMPIRICAL STUDY
5.1 Application To Vendi Sampling
Molecular simulations through Langevin Dynamics are of-
ten plagued by slow mixing times between metastable
states. A recent alternative approach, Vendi Sampling, was
developed to improve the speed at which these simulations
can be performed (Pasarkar et al., 2023). In Vendi Sam-
pling, a collection of molecular replicas are evolved over
time using Langevin Dynamics, with an additional diver-
sity penalty term, called the Vendi force, given by the gra-
dient of the logarithm of the Vendi score. We aim to study
how the choice of order q affects the behavior of the Vendi
force and the convergence of Vendi Sampling. We analyze
convergence by looking at free energy differences.

In order to provide an unbiased estimate of this quantity, we
switch the coefficient of the Vendi force to 0 after a specified
number of steps. We only analyze samples taken when this
coefficient is 0.

We can measure the relative probabilities of each state by
performing a long unbiased simulation. We perform simu-
lations in OpenMM (v. 8.0) (Eastman et al., 2017), follow-
ing the experimental setup of Pasarkar et al. (2023).

To calculate the Vendi scores, we use a Gaussian Radial Ba-
sis Function (RBF) kernel k(x, x′) = exp

(
−γ∥x− x′∥2

)
where γ is a hyperparameter of choice. We also require
that the kernel be invariant to various rigid-body transfor-
mations, including translations and rotations. We follow
the method outlined in Jaini et al. (2021) for computing in-
variant coordinates. The invariant coordinates are passed
into the RBF kernel, from which we can compute the Vendi
scores. Further experimental details regarding how simula-
tions are performed are available in the appendix.
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Figure 3: Behavior of the Vendi scores for sampling Alanine Dipeptide. Left: Convergence of Vendi sampling under
different scores over 25ns of simulation to the free energy difference estimated from long unbiased simulations (dashed
gray line). Right: Number of transitions for each score in and out of the left-handed state over the course of the first 50ps
of simulation. Shaded regions represent uncertainty over 10 trials.

We first look to see how sensitive each Vendi score is in de-
tecting Alanine Dipeptide conformations. In this molecule,
the conformations are largely defined by its two dihedral an-
gles ϕ (C-N-Cα-C) andψ (N-Cα-C-N) along the backbone.
We focus on the left-handed state (defined by 0 < ϕ < 2),
which constitutes ≈ 1% of all samples in the reference
simulations. We compare Vendi scores from samples from
all conformation to samples that are not in the left-handed
state. We find that for extreme values of q, the score is rel-
atively unaffected, whereas for q = 0.5 and q = 1, there
is a significant change in the Vendi score (Fig 2). In Fig-
ure 1, q = 0.1 can detect imbalanced classes, but it can-
not detect when the intra-class variance changes between
non-zero values. This result, combined with Fig 2, sug-
gests that the small values of q can only detect rare classes
when there is not a large amount of intra-class diversity, as
there would be for Alanine Dipeptide conformations. Fig-
ure 1 also demonstrates that Vendi Score∞ only detects the
presence of large classes, so it is not surprising that it is
insensitive to missing the small left-handed state.

We further test the behavior of these scores in Vendi Sam-
pling for Alanine Dipeptide (Fig 3). We evaluate conver-
gence using the boundary of ϕ = 0. Hyperparameters
are tuned for each choice of q via grid search. We find
that for most choices of order q, the sampling method con-
verges within 0.4kBT of the estimated free energy differ-
ence within the first 5ns of simulation, while the Vendi score
with q = 0.1 is slower to converge. Interestingly, unlike in
the Double Well system (see Appendix), we find that q = ∞
is able to increase mixing rapidly in the initial stages of the
simulation. With this choice of q, only the largest eigen-
value of the replica’s kernel matrix is optimized, suggest-
ing that the associated eigenvector is aligned with a useful
biasing potential at various steps in the simulation. This
highlights the importance of using large q for regulariza-
tion.

5.2 Application To Generative Models

We analyze 40 of the generative models presented in Stein
et al. (2023), which spans multiple classes of models and
training datasets. In particular, we look at models trained on
CIFAR-10 (Krizhevsky et al., 2009), Imagenet256 (Deng
et al., 2009), LSUN-Bedroom (Yu et al., 2015), and FFHQ
(Karras et al., 2019). Further description of the models and
metrics is available in the appendix.

Stein et al. (2023) find that the DINOv2 ViT-L/14 network
(Oquab et al., 2023) produces a representation space for
which various evaluation metrics align well with human
evaluation. We thus use the same network to produce em-
beddings of the generated outputs from each model. Vendi
Scores are computed on these embeddings using a linear
kernel.

In Fig. 4, we see that Vendi Score∞ correlates quite well
with a model’s ability to produce high-quality images (its
Human Error Rate), andCT -modified, a memorization met-
ric presented in Stein et al. (2023) that is a modified ver-
sion of the original CT metric proposed by Meehan et al.
(2020). CT -modified measures how often a generated data
point is closer to the training data than the test data, pe-
nalizing models that are closer to the training data. Vendi
Score∞ is most sensitive to large groups of similar samples,
likely duplicates. The strong negative correlation between
Vendi Score∞ and CT -modified therefore suggests that the
models with the highest Vendi Score∞ are producing large
groups of samples around the training data. This also ex-
plains why the models with the highest Vendi Score∞ have
high Human Error Rates as well: the samples being pro-
duced by the models contain many duplicates that are highly
similar to the training data, which will make much of the
generated output difficult to classify as fake.

Figure 5 provides a comprehensive overview of all tested
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metrics and their correlations. Notable in the figure is the
strong negative correlation between Vendi Score∞ and the
metrics used to measure sample quality, namely Fréchet
Distance (FD) (Heusel et al., 2017; Stein et al., 2023), and
Kernel Distance (KD) (Bińkowski et al., 2018; Stein et al.,
2023). Models with low FD and KD have high sample qual-
ity by definition. Due to the strong negative correlation be-
tween Vendi Score∞ and FD and KD, models with good
sample quality as measured by FD and KD tend to produce
duplicates, since they have high Vendi Score∞. This is the
same conclusion we drew earlier, looking at human error
rate and Vendi Score∞. We also take note of the correla-
tion between the Vendi scores and coverage, another metric
used to measure diversity (Naeem et al., 2020). Coverage
measures how many training data points are ’close’ to any
generated data point. Models with a high Vendi Score∞ are
producing images centered around the training data, which
would satisfy the coverage requirement for those training
samples.

6 DISCUSSION

In this paper, we extended the Vendi Score (Friedman and
Dieng, 2022) to exhibit different levels of sensitivity to rare
or common items in a collection. This led to a family of
metrics, called Vendi scores, indexed by an order q ≥ 0. We
observed that Vendi scores with small values of q prioritize

rarer elements, whereas those with high order q emphasize
more common items.

Choice of the order q. The ideal choice of q for a given
setting depends on the phenomena under study. For exam-
ple, in Figure 2, we aimed to detect the presence/absence of
a rare class when other larger classes with significant intra-
class variance exist. In this case, a good value of q is not
as sensitive to the variance within a class but can also de-
tect rare classes. This means q cannot be too low, so the
score can be somewhat insensitive to the intra-class vari-
ance, or too high, so the score can be somewhat sensitive to
rare items. Using the orders q = 0.5 or q = 1 best balances
these behaviors. It is worth noting that the choice of the
kernel can influence this trade-off, as it will determine the
amount of intra-class variance in the kernel matrix.

In Vendi Sampling, the order q must facilitate transitions
over high energy barriers typical in molecular simulations.
For example, in Alanine Dipeptide, the left-handed state is
separated from the other states by a large energy barrier.
The Vendi score with infinite order, VS∞, yielded the most
transitions across this barrier. Since VS∞ only relies on the
largest eigenvalue, it provides a bias potential along the axis
corresponding to the associated eigenvector along which all
transitions are occurring. However, in a simulation in which
there are multiple transitions of interest, the eigenvector as-
sociated with the largest eigenvalue is likely insufficient,
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Figure 5: Pearson correlations between metrics aver-
aged across four training datasets. CT -modified is com-
puted only on CIFAR-10 and Imagenet256. Vendi scores
of large order q correlate strongly with various metrics for
evaluating generative models.

making smaller values of q needed.

When evaluating whether there are duplicates in the outputs
of generative models, we want to use a Vendi score that is
sensitive to duplication. Our results demonstrate that VS∞
is a good candidate for this task.

Limitations. This paper addressed the limitation of the
Vendi Score under imbalanced settings. A pending problem
is the choice of the kernel, which also affects the behavior of
the Vendi scores. In future work, we aim to understand how
the choice of kernel interfaces with the order q. The Vendi
scores can also be computationally costly to compute when
faced with large collections of data that do not have vec-
tor representations. Finding methods for scaling the scores
remains an open problem.

7 CONCLUSION
We extended the Vendi Score to a family of diversity metrics
that allocate different levels of sensitivity to rare or common
items in a collection. These scores vary in their overall be-
havior, such as their sensitivity to imbalanced classes and
inter-class variance. Our molecular simulations of Alanine
Dipeptide revealed that using a score of order q = ∞ en-
ables faster mixing, suggesting that the associated eigenvec-
tor is aligned with a useful bias potential. We also demon-
strated the utility of using the Vendi scores in evaluating
image generative models. Our experiments revealed that
image generative models that tend to score well on sample
quality metrics, e.g. human error rate or Fréchet Distance,
are those models that produce duplicates around memorized

training samples. This calls for the need to pair sample
quality metrics with the Vendi scores, to better distinguish
models that have high sample quality only because of mem-
orization and duplication around memorized samples and
models that do produce sharp samples without memoriza-
tion.
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Supplementary Materials

1 Appendix
1.1 Proof of Theorem 4.1

Theorem 1.1 (The Similarity-Eigenvalue-Prevalence Theorem). Let (x1, . . . ,xN ) denote a collection of elements, where
each xi = (xi1, . . . ,xiMi

) contains a unique element repeated Mi times, i.e. xij = xik for all j, k ∈ {1, . . . ,Mi}.
Define C =

∑N
i=1 Mi. Let K ∈ RC×C denote a kernel matrix such that K(xi•,xj•) = 1 when i = j and 0 otherwise,

∀i, j ∈ {1, . . . , N}. Denote by K̃ = K
C the normalized kernel. Then K̃ has exactly N non-zero eigenvalues λ1, . . . , λN

and λi =
Mi

C ∀i ∈ {1, . . . , N}.

Proof. Without loss of generality we construct K̃ as a block diagonal matrix with N blocks, where each block corresponds
to a matrix indexed by the elements of xi. Denote by Ji the ith block. On the one hand, we have

det(K̃) =

N∏
i=1

det(Ji) and det(K̃− γIC) =

N∏
i=1

det(Ji − γIMi
)

for any γ. Therefore the eigenvalues of K̃ are exactly the collection of the eigenvalues of J1, . . . ,JN . On the other hand,
each Ji is of size Mi × Mi and we have Ji =

1
C (1 . . . 1)

T
(1 . . . 1). Therefore rank(Ji) = 1 and the null space of Ji is

of dimension Mi − 1. This means Ji has Mi − 1 zero eigenvalues. Denote by λi the remaining eigenvalue and by vi its
associated eigenvector. We have

Ji(vi1 . . .viMi)
T = λi(vi1 . . .viMi)

T

1

C
(1 . . . 1)

T
(1 . . . 1) (vi1 . . .viMi

)T = λi(vi1 . . .viMi
)T

1

C
(1 . . . 1)

T
(vi1 + · · ·+ viMi

) = λi(vi1 . . .viMi
)T

Then vi = (1 . . . 1) and λi =
Mi

C . Since the eigenvalues of K̃ correspond to the eigenvalues of J1, . . . ,JN , we conclude
K̃ has exactly N nonzero eigenvalues λ1, . . . , λN and λi =

Mi

C ∀i.

1.2 Vendi Sampling: Alanine Dipeptide Experimental Details
We compare against unbiased Alanine Dipeptide Langevin Dynamics simulations. These simulations used a time step of
2.0 fs and a collision frequency of 1.0ps−1. We establish baselines by running 10 simulations of 100 ns with 32 repli-
cas.

Vendi Sampling requires the computation of the Vendi Score at each simulation time-step. In our molecular studies, we
compute the Vendi Score using the translation- and rotation-invariant kernel defined in Jaini et al. (2021). This kernel takes
as input the 3D coordinates of the molecular replicas, produces a set of invariant coordinates, and then applies a Radial
Basis Function (RBF) kernel on the coordinates. Invariant coordinates are computed by first centering each molecule at
the origin (achieving translation invariance) and then aligning all molecules along a common frame (achieving rotational
invariance). We compute the Vendi Score on the resulting similarity matrix from the invariant kernel.

We analyze convergence by measuring the dihedral angle ϕ of each Alanine Dipeptide sample. After collecting all angles ϕ
in a given simulation, we compute the free energy difference between samples with ϕ < 0 and ϕ > 0. Following Pasarkar
et al. (2023), this is calculated with

F = − log
P (ϕ > 0)

logP (ϕ <= 0)
(1)
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Figure 6: Performance of Different Vendi Scores in Sampling from Double Well Left: Free energy difference over time
for each choice of Vendi Score shows similar levels of convergence to the true free energy difference. Hyperparameters are
tuned individually for each Vendi Score. Center: Number of transitions of replicas across boundary of x = 0 over time for
each choice of Vendi Score. Hill Numbers farther from 1 seem to provide less transitions, likely due to smaller gradients,
as shown in Right.

This difference is computed for each of the 10 baseline trials to estimate the true free energy difference across this bound-
ary. We also use this boundary to compute the number of times that a replica transitions in and out of the left-handed
states.

1.3 Vendi Sampling: Double Well System
We additionally study the two-dimensional Double Well system from Noé et al. (2019). The Double Well system is chal-
lenging for Langevin dynamics due to a large energy barrier that separates two imbalanced modes. Through the addition
of the Vendi force, we expect to see fast convergence as well as transitions across this barrier. We perform this set of
experiments following the setup used in Pasarkar et al. (2023).

To compute the Vendi Score, we used the kernel k(x, x′) = 1 − |x−x′|
|x|+|x′| . We also use a linear annealing schedule for

ν, decreasing it at a constant rate to 0 for a specified period of time. For each choice of Vendi Score, we determined
the optimal hyperparameters using a grid search. In Figure 6, we used the following hyperparameters: For q = 0.1 and
q = ∞, we used ν = 50 with annealing rate 1

50000 . For q = 0.5 and q = 1., we use ν = 100 with annealing rate
1

100000 . And finally for q = 1.5 and q = 2., we used ν = 50 with annealing rate 1
25000 . 16 particles are initialized

with random positions sampled from U [−2.5, 2.5]2 and simulations are performed with a step-size of 10−2 for 2, 000, 000
million steps. We measure convergence using the Free energy difference between the regions {x ∈ [−2.5, 0], y ∈ [−4, 4]}
and {x ∈ [0, 2.5], y ∈ [−4, 4]}.

The choice of Vendi Score does not noticeably affect convergence in this system, but the Vendi Score regularization is
indeed quite different across scores (Fig. 6). Over the first 100, 000 steps, we find that for Vendi Scores with extreme Hill
Numbers, q = 0.1 and q = ∞, there is still a slow transition rate for particles across the boundary while the Vendi force is
active compared to other choices of q. The slow transition rate is supported by the small Vendi force magnitudes for q = 0.1
and q = ∞.

We have observed that q = 0.1 leads to a very sensitive Vendi Score, whereas q = ∞ gives the least sensitive Vendi Score.
Yet, they provide similar effects in the Double Well setting: for q = 0.1, samples are likely to already be considered diverse
and therefore there is not much optimization necessary through the Vendi force. For large q, the score is determined only
by the largest eigenvalue of the gram matrix K/n. Optimizing for the largest eigenvalue may not be informative in some
systems.

Meanwhile, for q = 0.5 and q = 1.0, the effect of the Vendi Force is largest, demonstrating a trade-off between the sensitivity
of small and large Hill Numbers.

1.4 Image Generative Model Analysis
Stein et al. (2023) provided analysis of dozens of image generative models across datasets and model types. We study
all models for which they provided publically available image outputs. For details regarding dataset curation and model
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Figure 7: Vendi Score∞ is well-correlated with human evaluation on LSUN-Bedroom (Left) and FFHQ (Right) datasets.

training, we refer the reader to Stein et al. (2023).

For CIFAR-10, there were 6 StudioGAN models used (Kang et al., 2023a): ACGAN (Odena et al., 2017), BigGAN (Brock
et al., 2018), LOGAN (Wu et al., 2019), ReACGAN (Kang et al., 2021), MHGAN (Turner et al., 2019), and WGAN-
GP (Gulrajani et al., 2017). Other models tested included LSGM-ODE (Vahdat et al., 2021), iDDPM-DDIM (Nichol and
Dhariwal, 2021), PFGM++ (Xu et al., 2023), RESFLOW (Chen et al., 2019), NVAE (Vahdat and Kautz, 2020), StyleGAN2-
ada (Karras et al., 2020), StyleGAN2-XL (Sauer et al., 2022).

For Imagenet, we analyzed results from the following models: ADM, ADMG, ADMG-ADMU (Dhariwal and Nichol,
2021), BigGAN (Brock et al., 2018), DiT-XL-2, GigaGAN (Kang et al., 2023b), LDM (Rombach et al., 2022), Mask-GIT
(Chang et al., 2022), RQ-Transformer (Lee et al., 2022), and StyleGAN-XL (Sauer et al., 2022).

For FFHQ, we used the following models: Efficient-vdVAE (Hazami et al., 2022), Insgen (Yang et al., 2021), LDM (Rom-
bach et al., 2022), Projected-GAN (Sauer et al., 2021), StyleGAN2-ada (Karras et al., 2020), StyleGAN2-XL (Sauer et al.,
2022), StyleNAT (Walton et al., 2022), StyleSwin (Zhang et al., 2022), and Unleashing-Transformers (Bond-Taylor et al.,
2022).

Finally, for LSUN-Bedroom, we use the following models: Unleashing-Transformers (Bond-Taylor et al., 2022), Projected-
GAN (Sauer et al., 2021), ADMNet-dropout (Dhariwal and Nichol, 2021), DDPM (Ho et al., 2020), iDDPM (Nichol and
Dhariwal, 2021), StyleGAN (Karras et al., 2019), Diffusion-projected GAN (Wang et al., 2022), and Consistency (Meehan
et al., 2020).

We also show that the Human Error Rate is strongly correlated with Vendi Score∞ on the LSUN-Bedroom and FFHQ
datasets in Figure 7.
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