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Abstract

Resampling methods such as the bootstrap
have proven invaluable in the field of ma-
chine learning. However, the applicability
of traditional bootstrap methods is limited
when dealing with large streams of depen-
dent data, such as time series or spatially
correlated observations. In this paper, we
propose a novel bootstrap method that is
designed to account for data dependencies
and can be executed online, making it par-
ticularly suitable for real-time applications.
This method is based on an autoregressive se-
quence of increasingly dependent resampling
weights. We prove the theoretical validity of
the proposed bootstrap scheme under gen-
eral conditions. We demonstrate the effec-
tiveness of our approach through extensive
simulations and show that it provides reli-
able uncertainty quantification even in the
presence of complex data dependencies. Our
work bridges the gap between classical resam-
pling techniques and the demands of mod-
ern data analysis, providing a valuable tool
for researchers and practitioners in dynamic,
data-rich environments.

1 INTRODUCTION

Uncertainty quantification (UQ) has become indis-
pensable in statistics, machine learning, and numer-
ous other scientific disciplines. It plays a pivotal role
in assessing the reliability of predictions, parameter
estimates, and models. Bootstrapping is a universal
ad-hoc approach for UQ and a cornerstone of many ap-
proaches leveraging UQ. Especially in the context of
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theoretically unknown or difficult-to-compute uncer-
tainty distributions, bootstrap methods have proven
to be remarkably powerful.

A potential bottleneck in real applications is that com-
putation of the bootstrapped distributions and storage
of underlying data gets expensive in time and mem-
ory with increasing amount of data. Especially in the
context of big data sets and/or streaming data set-
tings, this limits the applicability of standard boot-
strap methods. Yet, this is a common setup in modern
data analysis.

Online algorithms attempt to address these chal-
lenges by performing continuous, cheap updates of a
model/estimate — optimally processing only a frac-
tion of the data within each iteration. This signifi-
cantly decreases the associated costs and requires only
a fraction of the data kept in memory.

Existing bootstrap schemes, however, are either not
computable by an online algorithm or make restrictive
assumptions on dependence in the data. This moti-
vates the development of an online bootstrap scheme
for general time series.

Our main contributions can be summarized as follows:

1. We propose a novel bootstrap procedure that (i)
can be computed online and (ii) works for both
independent and dependent data streams. To the
best of our knowledge, this is the first such boot-
strapping scheme.

2. We prove its theoretical validity under general
conditions and provide theoretical insights into
the optimal choice of hyperparameters.

3. We demonstrate validity and effectiveness
through a number of simulations illustrating its
advantages over the current state of the art.

The remainder of the paper is structured as follows.
Section 2 provides some theoretical background and
summarizes related work. Section 3 introduces the
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new method and presents the main theoretical results,
which is evaluated empirically in Section 4. Section 5
discusses applications and limitations. All proofs are
provided in the supplementary material.

2 BACKGROUND AND RELATED
WORK

2.1 Online learning

Online learning deals with problems where there is a
continuous stream of data (Cesa-Bianchi and Lugosi,
2006). Such problems arise naturally if events are ob-
served at the moment they occur. In other settings,
a complete data set is available from the start, but it
is computationally preferable to work through it se-
quentially or in batches. Online convex optimization
methods like stochastic gradient descent are prime ex-
amples (Shalev-Shwartz et al., 2012).

In such situations, one could recompute a quantity
of interest at every time step using all data observed
so far. However, this is very inefficient if the num-
ber of parameters or observations is large. In fact,
re-computing on the full data set is often infeasible,
because there is limited memory or limited time to
update. For example, computing the sample average
at Xn = 1

n

∑n
t=1Xt naively requires O(n) time at any

given moment in time.

Online algorithms strive to perform continuous up-
dates that are cheap, optimally processing only a sin-
gle observation at every step. Continuing the example
above, the sample average at time n adheres to the
cheap update rule Xn = (1−1/n)Xn−1+Xn/n, which
scales as O(1) in time and memory. Such algorithms
and their corresponding theoretical properties are cur-
rently subject of interest in numerous fields, such as
optimization (Fang et al., 2018; Godichon-Baggioni,
2019; Zhong et al., 2023), multi-armed bandits (Di-
makopoulou et al., 2021; Wan et al., 2023) and rein-
forcement learning (Ramprasad et al., 2022).

2.2 Bootstrapping

Bootstrapping is considered as one of the fundamental
achievements of statistics (Kotz and Johnson, 1992).
Generally speaking, bootstrapping is a form of resam-
pling: From a given set of samples x1, . . . , xn accord-
ing to some random variables X1, . . . , Xn, we gener-
ate synthetic samples x∗1, . . . , x

∗
n, or more generally,

synthetic random variables X∗1 , . . . , X
∗
n depending on

X1, . . . , Xn. Efron (1979) proposed the first bootstrap,
based on sampling with replacement, nowadays called
the empirical bootstrap.

Example 2.1 (Empirical bootstrap). The empirical
bootstrap generates a new sample X∗1 , . . . , X

∗
n by draw-

ing uniformly at random from the observed sample
{X1, ..., Xn} (with replacement).

The multiplier bootstrap (Van der Vaart and Wellner,
1996) offers a general class of bootstrapping schemes
based on perturbations of the original observations
with suitable weights. The empirical bootstrap can-
not be computed online, because it requires keeping
track of the entire observed sample {X1, . . . , Xn}. The
multiplier bootstrap does not suffer from this issue.

Example 2.2 (Multiplier bootstrap). Let V1, . . . , Vn
be iid real valued random variables with

E(Vi) = Var(Vi) = 1.

Then we obtain the multiplier bootstrap for iid data by

X∗i =
Vi

V n
Xi, where V n =

1

n

n∑
i=1

Vi.

Popular special cases include the Gaussian bootstrap
(Burke, 1998) and Bayesian bootstrap (Rubin, 1981)
where the weights Vi are drawn from the standard nor-
mal and standard exponential distributions, respec-
tively. The iid multiplier bootstrap can be computed
online. Indeed, each X∗i depends only on the i-th ob-
servation Xi, a new weight Vi and a running average
of Vi’s. Fang et al. (2018) and Zhong et al. (2023) used
this insight to design an online method for computing
bootstrap confidence intervals for the SGD estimator.
However, this method is only valid for iid data.

Recall the random variables X∗i depend on Xi. We
abbreviate the probabilities and variances given real-
izations of Xi by

P∗(·) = P(· | X1, X2, . . . ),

Var∗(·) = Var(· | X1, X2, . . . ).

These quantities depend on X1, ..., Xn and are, there-
fore, itself random variables. Now if the average over
(Xi)i∈N satisfies a central limit theorem, then, we ex-
pect the average over synthetic random variables to
satisfy a similar central limit theorem.

Definition 2.3 (Bootstrap consistency). Let (Xi)i∈N
and (X∗i )i∈N be sequences of Rd-valued random vari-
ables and X∗i depending on Xi. Define

Tn =
1

n

n∑
i=1

Xi and T ∗n =
1

n

n∑
i=1

X∗i

The sequence (X∗i )i∈N is a consistent resampling
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scheme for (Xi)i∈N if

sup
x∈Rd

∣∣P∗ {√n(T ∗n − Tn) ≤ x
}

− P
{√

n(Tn − E(Tn)) ≤ x
}∣∣ n→∞→ 0,

in probability with respect to (Xi)i∈N.

In practice, one generates a few hundred resam-
pled data sets and approximates the distribution
P∗ {
√
n(T ∗n − Tn) ≤ x} by empirical quantities of the

bootstrap replicates. From this, other measures of un-
certainty, such as confidence intervals or mappings of
the underlying statistic, can be derived (e.g., Van der
Vaart, 2000, Chapter 23).

Example 2.1 and Example 2.2 are consistent resam-
pling schemes provided that the underlying data is in-
dependent, but fail otherwise.

2.3 Time series bootstrap

Künsch (1989) proposed the blockwise bootstrap as a
general resampling scheme for time series. Roughly,
the idea is to draw overlapping blocks of observations.
Since observations appear in blocks, the resampled
observations naturally inherit dependencies from the
original samples. Increasing the block lengths with
the sample sizes make the blockwise bootstrap a con-
sistent resampling scheme.

Later, extensions (Politis and Romano, 1993) and fur-
ther investigations (Hall et al., 1995) of the blockwise
bootstrap arose. Recently, Liu et al. (2023) use the
blockwise bootstrap for inference in SGD estimators.
Bühlmann (1993) proposed a multiplier variant of the
blockwise bootstrap that includes regular block boot-
strap methods as a special case. Here, the multiplier
weights are itself a dependent time series. Increasing
the multiplier weights’ serial dependence then allows
to capture the dependencies in the original observa-
tions.

The above methods are not fit for the online setting,
however. For the method to work, all blocks have to
increase in size with n. To compute the bootstrap in
practice, the entire data set (Xi)

n
i=1 needs to be kept in

memory and processed fully, every time the block size
changes. This quickly becomes prohibitively expensive
when n is large.

3 NEW BOOTSTRAP PROCEDURE

3.1 Proposed method

Example 2.2 gives rise to a general class of bootstrap-
ping schemes by constructing synthetic random vari-

ables

X∗i =
Vi

V n
Xi.

A key insight from the block multiplier bootstrap is
the following: to remain valid for time series (Xi)i∈N,
the dependencies between weights Vi and Vj must in-
crease with the sample size n, but at the same time
remain almost independent when the time gap |i − j|
is sufficiently large compared to n. In the non-iid case,
a scaling of the weights by their arithmetic mean is also
necessary.

As a general construction of such (Vi)i∈N we propose
the following autoregressive sequence of weights:

Construction 3.1. Let (ζi)i∈N be an iid sequence
such that ζi ∼ N (0, 1). Define

V0 = 0

Vi = 1 + ρi(Vi−1 − 1) +
√

1− ρ2i ζi

where ρi = 1 − i−β, β ∈ (0, 12 ), and the bootstrapping
scheme

X∗i =
Vi

V n
Xi with V n =

1

n

n∑
i=1

Vi.

The proposed weight sequence (Vi)i∈N and the corre-
sponding bootstrap average

X
∗
n =

1

n

n∑
i=1

Vi

V n
Xi

can naturally be computed with cheap online up-
dates. Indeed, the i-th bootstrapped variable X∗i =
(Vi/V i)Xi depends only on the predecessor weight
Vi−1, a single random perturbation ζi and the scaling
average V n. The latter can be obtained recursively by

V n =
(n− 1)V n−1 + Vn

n
.

In summary, the bootstrap average can be updated via
the relation

X
∗
n =

(n− 1)V n−1X
∗
n−1 +XnVn

(n− 1)V n−1 + Vn
,

which scales as O(1) in memory and time. This is
a huge computational advantage compared to (multi-
plier) block bootstrap methods and opens new appli-
cation areas for bootstrapping methods in online set-
tings.

To quantify uncertainties in practice, we have
to keep several independent bootstrap ‘chains’

X
∗(1)
n , X

∗(2)
n , . . . . From those, we can compute the em-

pirical standard deviation or quantiles at any point in
time. The whole procedure is summarized in Algo-
rithm 1.
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Algorithm 1 Online AR-bootstrap

Initialize: X
∗(b)

= 0, V (b) = 0, V
(b)

= 0, b =
1, . . . , B.

For times t = 1, 2, . . . :

1. Observe new datum Xt.

2. For all b = 1, . . . , B:

(i) Simulate ζ(b) ∼ N (0, 1).

(ii) With ρ = 1− t−β , update (in this order)

V (b) ← 1 + ρ(V (b) − 1) +
√

1− ρ2ζ(b),

X
∗(b) ← (t− 1)V

(b)
X
∗(b)

+XtV
(b)

(t− 1)V
(b)

+ V (b)
,

V
(b) ← (1− 1/t)V

(b)
+ V (b)/t.

3. Compute empirical variance and/or quantiles of

{X∗(1), . . . , X∗(B)} to quantify uncertainty in Xt.

3.2 Theory

In the following, we provide rigorous mathematical
guarantees for the validity of the proposed scheme.
We first recall some common concepts from time series
analysis.

Definition 3.2 (Stationarity). A stochastic process
(Xi)i∈N is strictly stationary if

P(Xt1 ,...,Xtn )
= P(Xt1+τ ,...,Xtn+τ )

for every τ, n, t1, . . . , tn ∈ N.

A stationary time series does not change its fundamen-
tal behavior, at least on large time scales. Stationarity
is a standard condition for statistical limit theorems.
In applications, it is often ensured by appropriate pre-
processing steps like detrending or differencing (see,
Hamilton, 2020, and the discussion in Section 5).

Definition 3.3 (α-mixing). Let (Xi)i∈N be a strictly
stationary stochastic process. Define the α-mixing co-
efficient of order h

α(h) = sup{|P(A ∩B)− P(A)P(B)| : s ∈ N,
A ∈ σ(Xi|i ≤ s), B ∈ σ(Xi|i > s+ h)}.

Then, (Xi)i∈N is α-mixing (or strong mixing) if

α(h)
h→∞→ 0.

The α-mixing coefficient quantifies how quickly the in-
fluence of past events diminishes as one moves further

into the sequence. Accordingly, α-mixing means that
the events become close to independent when they are
far apart in time. If the strong mixing coefficients
converge fast enough to zero, the sequence satisfies a
central limit theorem (Bosq, 2012, Theorem 1.7).

Now denote by

CX(h) = Cov(Xi, Xi+h)

the covariance of Xi and Xi+h for h ≥ 0. Since
(Xi)i∈N is stationary, CX(h) is independent of i. Our
main results require the following conditions on the
observed sequence (Xi)

n
i=1.

(A1) E(X8
i ) <∞.

(A2) α(i) = O(i−γ) for some γ > 2.

(A3) limn→∞
1
n

∑n
h=−n |h|

1
β |CX(|h|)| = 0.

The first condition excludes extremely heavy tails in
the variables Xi, the other two restrict the strength
of dependence in the time series. Overall, the con-
ditions should be considered rather mild in view of
the time series bootstrap literature (cf., Künsch, 1989;
Bühlmann, 1993).

To simplify our asymptotic analysis of the procedure,
we first have a closer look at the role of the scaling
average V n. The following result shows that scaling
by V n implicitly allows to assume that E[Xi] = 0, but
is otherwise negligible asymptotically.

Lemma 3.4. If the time series X1, X2, . . . ∈ R satis-
fies assumptions (A1)–(A3), it holds

1

n

n∑
i=1

Vi

V n
Xi −

1

n

n∑
i=1

Xi

=
1

n

n∑
i=1

Vi(Xi − E[Xi])−
1

n

n∑
i=1

(Xi − E[Xi])

+ oP (n−1/2).

Our main result establishes the validity of the boot-
strap scheme.

Theorem 3.5. If the time series X1, X2, . . . ∈ R sat-
isfies assumptions (A1)–(A3), Construction 3.1 pro-
vides a consistent resampling scheme.

As a major part within the proof of the above theorem,
we show that the proposed bootstrap procedure gives
consistent estimates of the variance. This investiga-
tion provides fundamental insights into the influence
of the procedure’s hyperparameter β. In particular,
we determine an optimal bias-variance trade-off.
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Theorem 3.6. Define the target variance

σ2
∞ = lim

n→∞
Var

(
1√
n

n∑
i=1

Xi

)
.

If E[Xi] = 0 and assumptions (A1)–(A3) hold,

(a) E

[
Var∗

(
1√
n

n∑
i=1

ViXi

)]
− σ2
∞ = O

(
n−

β
1+β
)
,

(b) Var

[
Var∗

(
1√
n

n∑
i=1

ViXi

)]
= O

(
nβ−1

)
,

(c) Var∗

(
1√
n

n∑
i=1

ViXi

)
P→ σ2

∞,

(d) the (asymptotically) optimal β minimizing

E

[
Var∗

(
1√
n

n∑
i=1

ViXi

)
− σ2
∞

]2
is given by

βopt =
√

2− 1.

In Appendix C, we prove this result for a larger class
of bootstrap weights Vi/V n (see Lemma C.3) under
more involved assumptions. These assumptions are
verified for our specific scheme from Construction 3.1
in Lemma C.4. Note also that we omitted the scaling
average V n in this result.

The optimal choice βopt makes the mean-squared-
error in the first display of (c) converge at rate

O(n
√
2−2) ≈ O(n−0.59). This is slightly slower than

the rate O(n−2/3) attained by the blockwise bootstrap
(Bühlmann, 1993, Section 3.3). This is the statistical
price we pay for the computational advantage of au-
toregressive bootstrap weights. In many applications,
the latter can easily outweigh the small loss in statis-
tical efficiency, see our experiments in Section 4.

3.3 Beyond the simple sample average

The preceding results were stated for simple sample
averages n−1

∑n
i=1Xi of real-valued random variables

to simplify the exposition. The methodology is much
more broadly applicable, however.

Transformed random variables. The most im-
mediate generalization results from a simple relabel-
ing. Suppose there is a sequence of random variables
(Zi)i∈N and some function f . To quantify uncertainty
in the statistic

Tn =
1

n

n∑
i=1

f(Zi),

we can use its bootstrapped version

T ∗n =
1

n

n∑
i=1

Vi

V n
f(Zi).

All results of the Section 3.1 apply naturally upon
defining Xi := f(Zi). This also reveals the follow-
ing, more fundamental interpretation of the multi-
plier bootstrap: each observation is assigned a weight
Vi/V n, and these weights are used when computing
bootstrapped averages — irrespective of what exactly
we’re averaging.

Multidimensional vectors. Theorem 3.5 immedi-
ately extends to averages of random vectors through
the Cramér-Wold device (e.g., Van der Vaart, 2000,
p. 16).

Corollary 3.7. Let Z1, Z2, . . . ∈ Rd and assume that
(A1)–(A3) hold for Xi := γ>Zi and every γ ∈ Rd.
Then Construction 3.1 provides a consistent resam-
pling scheme.

A similar generalization of Theorem 3.6 also holds for
vectors, but is omitted for brevity.

Transformations of the sample average. The
delta method for bootstrap (e.g. Theorem 23.5 in
Van der Vaart (2000)) generalizes the consistency re-
sults of Theorem 3.5 to transformations of the sample
average.

Corollary 3.8. Let φ : Rd → Rk be continuously dif-
ferentiable and assume that (A1)–(A3) hold for γTXi

with Xi ∈ Rd and all γ ∈ Rd. Then,

sup
x∈Rd

∣∣P∗ {√n(φ(T ∗n)− φ(Tn)) ≤ x
}

− P
{√

n(φ(Tn)− φ(E(Tn))) ≤ x
}∣∣ n→∞→ 0,

in probability with respect to (Xi)i∈N.

This enables a broader application of the proposed
methodology, e.g. to the sample variance (Example
23.6. in Van der Vaart (2000)).

4 NUMERICAL VALIDATION

In this section, we assess the performance and appli-
cability of the proposed bootstrap via simulations. In
particular, we verify the theoretical results in a finite
sample setting, illustrate the necessity of tailored boot-
strap schemes for time series, and the computational
benefits of our new method.
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Figure 1: Estimated coverage probability of the bootstrap procedures. The target level of 90% is shown as solid
line.
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Figure 2: Average plus/minus standard deviation of the estimated variances. The target level σ∞ is shown as
solid line.

4.1 Experimental design

Data generating processes. We simulate Xi from
a moving average process of order q ∈ N, MA(q) for
short, i.e., a stochastic process of the form

Xi = µ+ εi +

q∑
j=1

θjεi−j ,

with model parameters θ1, ..., θq ∈ R and iid noise
εi ∼ N (0, 1). In addition, we simulate from a nonlinear
transformation of such a process

Yi = exp(Xi)

and consider a nonlinear function of the sample aver-
ages

ln
[
n−1

n∑
i=1

exp(Xi)
]

for q = 2 (referred to as LogMeanExp). The boot-
strapped distribution reflects the correct distribution

according to Corollary 3.8. Further, we simulate from
a nonlinear process MA(2)−GARCH(1, 1) reflecting
the volatility clustering typical for financial time se-
ries. We realize the latter by

Zi = µ+ Zi + θ1γi−1 + θ2γi−2

for γi = σiξi, σ
2
i = α0+αγ2i−1+βσ2

i−1 and ξi ∼ N (0, 1)
iid.

All processes, except the latter, are q-dependent1 and,
hence, satisfy the assumptions of our theoretical re-
sults. For the latter we refer to Lindner (2009).

1(Xi)i∈N is called q-dependent if (. . . , Xi−1, Xi) is in-
dependent from (Xi+q+1, Xi+q+2, . . . ) for every i. Then,

CX(|h|), α(i) = 0

for all i, |h| > q, from which assumptions (A2) and (A3)
follow immediately.
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Figure 3: Estimated coverage probability of the bootstrap procedures with target level of 90% shown as solid
line (top) and average plus/minus standard deviation of the estimated variances with target level σ∞ shown as
solid line (bottom).

We set θj = 2−j and consider five scenarios:

• MA(0) corresponds to the iid setting,

• MA(2) corresponds to short-term serial depen-
dence,

• MA(20) corresponds to medium-term serial de-
pendence.

• LogMeanExp corresponds to a transformation of
a nonlinear process with short-term serial depen-
dence.

• MA(2)−GARCH(1, 1) corresponds to a nonlin-
ear stochastic volatility process.

Bootstrap methods. We apply three bootstrap
procedures of the form

X∗i =
Vi

V n
Xi

with

(i) Vi ∼ N (1, 1) corresponding to Example 2.2 (IID
bootstrap);

(ii) Vi according to the moving average block boot-
strap of Bühlmann (1993), see Example E.1 in
the supplementary material, with mn = bn1/3c
(MA bootstrap);

(iii) Vi according to our new Construction 3.1 with
parameter β =

√
2− 1 (AR bootstrap).

Evaluation. For each simulated time series and
method, we generate 250 bootstrap samples and com-
pute the sample variance and a 90%-confidence in-
terval. We repeat this procedure M = 250 times.
We assess the performance by a) mean and stan-
dard deviation of the estimated asymptotic vari-
ance σ∞, b) coverage probability of the result-
ing confidence interval, c) computation time. See
Appendix F for computational details of the eval-
uation metrics. The corresponding source code
is provided at https://github.com/nicolaipalm/

online-bootstrap-implementation.

4.2 Results

Validity. We start by checking the validity of confi-
dence intervals constructed from the various bootstrap
methods. Figure 1 and the top panels of Figure 3 plot

https://github.com/nicolaipalm/online-bootstrap-implementation
https://github.com/nicolaipalm/online-bootstrap-implementation


An Online Bootstrap for Time Series

0 500 1000 1500 2000

Sample index

10−4

10−3

10−2

10−1

100

101
T
im

e
p
er

u
p
d
a
te

[s
ec
]

AR

MA

IID

Figure 4: Computation time per online update of 200
bootstrap samples as the algorithms progress through
a stream of samples.

the respective coverage probabilities against the sam-
ple size. The target level of 90% is indicated by the
solid line. When the data is generated as an iid se-
quence (left panel of Figure 1), all three bootstrap
variants have approximately correct coverage, espe-
cially for large samples. When there is dependence in
the data (remaining panels), the IID bootstrap fails
catastrophically, however. This is even the case for
the linear MA(2) scenario, where dependence is weak
and short-term (middle panel of Figure 1). The two
dedicated time series bootstraps (MA and AR) achieve
approximately correct coverage in all five scenarios,
even in the presence of nonlinear dependencies and
transformations of the sample average (top panels of
Figure 3).

Accuracy. We now dive deeper into how well the
bootstrap methods estimate the true variance σ∞.
Figure 2 and the bottom panels of Figure 3 show av-
erage estimates plus/minus their standard deviation
and the target level. Unsurprisingly, the IID bootstrap
works best when the data is actually an independent
sequence (left panel of Figure 2). In particular, it has
virtually no bias, and the smallest variance among all
methods. In the time series settings it fails. On the
other hand, the two time series bootstraps approach
the target level, with bias and variance decreasing with
the sample size in all five scenarios. The MA bootstrap
appears to have a slightly smaller variance compared
to our new AR method. This reflects the small statis-
tical cost we pay for its computational advantage, see
our comments after Theorem 3.6.

Computation time. The true benefit of the newly
proposed scheme is the ability to compute it with
cheap online updates. Figure 4 shows the computa-

tion time of an update step when the three bootstrap
methods are used to generate 250 bootstrap samples
in an online setting. We see that AR and IID require a
small, constant amount of time for every update as the
algorithms progress. The IID bootstrap is fastest, but
invalid for time series data. The blockwise bootstrap
MA allows for cheap online updates as long as the block
size remains constant. It occurs a huge cost when-
ever the block size needs to be increased: one must
regenerate all past and current bootstrap weights and
recalculate the bootstrap averages with new weights.
This shows as large spikes in Figure 4. Additionally,
the time it requires quickly increases with time. The
last block update at around just 1700 samples already
takes 20 seconds, where the other two methods remain
in the milliseconds. It is not reasonable to compute MA
on much longer data streams. Our new AR bootstrap
on the other hand remains fast and valid.

5 DISCUSSION

We close with a discussion of potential applications
and current limitations of our method.

5.1 Applications in machine learning

Empirical risk minimizers. Consider a
parametrized prediction model fθ, a loss function L
and the empirical risk minimizer

θ̂ = arg min
θ

n∑
i=1

L(fθ, Zi). (1)

Under some regularity conditions, one usually has (see,
e.g., Giordano et al., 2019)

θ̂ − θ0 ≈ −H−1
1

n

n∑
i=1

∇θL(fθ0 , Zi), (2)

where θ0 = arg minθ E[L(fθ, Zi)] minimizes the true
risk and H = E[∇θθL(fθ0 , Zi)] is the expected loss
Hessian. In machine learning, the uncertainty of pre-
dictions fθ̂(x) is more interesting than the parameter
θ. A first-order Taylor approximation and (2) give

fθ̂ − fθ0 ≈ −∇θfθ0H
−1 1

n

n∑
i=1

∇θL(fθ0 , Zi).

Now define the bootstrapped parameter

θ̂∗ = arg min
θ

n∑
i=1

Vi

V n
L(fθ, Zi),

for which similar arguments yield

fθ̂∗ − fθ̂ ≈ −∇θfθ0(x)H−1
1

n

n∑
i=1

Vi

V n
∇θL(fθ0 , Zi).
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Applying Corollary 3.7 to the average on the far right
of the last display now shows that the distribution of
fθ̂∗ − fθ̂ appropriately reflects the uncertainty of fθ̂ −
fθ0 .

SGD and online convex optimization. In prac-
tice, optimization problems like (1) are often solved us-
ing algorithms from online convex optimization, e.g.,
stochastic gradient descent. In the iid setting, it is
well established that approximation (2) also holds for
averaged SGD updates (Ruppert, 1988; Polyak and
Juditsky, 1992; Fang et al., 2018; Zhong et al., 2023).
Similar results for SGD on time series data were es-
tablished recently by, e.g., Godichon-Baggioni (2019);
Godichon-Baggioni et al. (2023); Liu et al. (2023).

Bandit algorithms. Our new bootstrap scheme can
also be incorporated into bandit algorithms, similar
to Wan et al. (2023) in the iid case. In a simple
multi-armed bandit, an agent picks some arm At ∈
{1, . . . ,K} and receives reward Rt,At in return, at ev-
ery time t. If Sa = {t : At = a} is the set of times
action a was played, the expected reward of arm k can
be estimated as a simple sample average

r̂a =
1

|Sa|
∑
t∈Sa

Rt,a.

Wan et al. (2023) proposed to use an independent
multiplier bootstrap to quantify the uncertainty about
r̂a, and use this to guide the exploration/exploitation-
trade-off of the algorithm. With our new method, the
assumption that rewards Rt,a are independent can be
relaxed.

5.2 Limitations

Stationarity assumption. As mentioned in Sec-
tion 3.1, stationarity of the series (Xi)i∈N is a common
assumption in the time series literature. In applica-
tions, stationarity is often ensured by pre-processing
steps. Technically, these steps should also be ac-
counted for in uncertainty quantification, but this is
difficult to do with generality. Another way to allevi-
ate this issue would be to extend our results to averages
of nonstationary series. Some recent developments in
this field (Merlevède and Peligrad, 2020) can likely be
adapted in future work.

Negative weights. In Construction 3.1, we explic-
itly defined the weights Vi to follow a Gaussian AR-
process. This choice is motivated by mathematical
convenience: by construction, the distribution of the
bootstrapped average (conditional on the data) is nor-
mal — no central limit theorem is required. A down-
side is that the bootstrap weights Vi can be nega-
tive. When the Xi’s are positive variables (counts,

lengths, prices, etc.) and the sample size is small,
this may be problematic. The bootstrapped average
n−1

∑n
i=1

Vi
V n
Xi could become negative, which results

in meaningless estimates. While this is not an issue
asymptotically, it might be preferable to work with a
strictly positive sequence (Vi)

n
i=1. To prove the validity

of such schemes would then require new central limit
theorems for time series with increasing dependence,
which is an interesting problem for future work.
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Supplementary Materials

A Proving consistency of bootstrapping schemes

Proving a bootstrapping scheme to be consistent mostly proceeds in the following two steps

S1 Prove that the random variables Xi satisfy some central limit theorem and

S2 prove that the bootstrapped random variables X∗i satisfy some central limit theorem with the same limit
distribution.

In practice, a lot of central limit theorems are already well established each covering different assumptions on
the random variables Xi, i.e. S1 is given. For the sake of clarity, we assume E(Xi) = 0. Lemma 3.4 treats the
non-centered case.

Observe that

VarV

(
1√
n

n∑
i=1

ViXi)

)
is a random variable induced by Xi where we write VarV = Var∗ with respect to the explicit construct X∗ = V X.
S2 implies

VarV

(
1√
n

n∑
i=1

ViXi

)
n→∞→ σ2

∞

in probability on the sequence (Xi)i∈N where σ2
∞ denotes the asymptotic (finite) variance

lim
n→∞

Var

(
1√
n

n∑
i=1

Xi

)
= σ2

∞.

Classically, such results are derived by proving

EX

[
VarV

(
1√
n

n∑
i=1

ViXi

)]
n→∞→ σ2

∞ and VarX

[
VarV

(
1√
n

n∑
i=1

ViXi

)]
n→∞→ 0,

and then using Chebyshev’s inequality. Without loss of gernality assuming E(Xi) = 0 (see Lemma 3.4), a
straightforward calculation exhibits

Var

(
1√
n

n∑
i=1

Xi

)
=

1

n

n∑
i,j=1

Cov(Xi, Xj),

EX

[
VarV

(
1√
n

n∑
i=1

ViXi

)]
=

1

n

n∑
i,j=1

Cov(Vi, Vj)Cov(Xi, Xj).

This suggests that we need Cov(Vi, Vj) ≈ 1 for i, j great enough and Cov(Xi, Xj) 6≈ 0. However, calculating

VarX

[
VarV

(
1√
n

n∑
i=1

ViXi

)]
=

1

n2

n∑
i1,...,i4=1

Cov(Vi1 , Vi2)Cov(Vi3 , Vi4)Cov(Xi1Xi2 , Xi3Xi4)

requires CovV (Vi, Vj) ≈ 0 for sufficiently many i, j to vanish. In the next section we provide corresponding
formal results about the asymptotic variance. These steps will be worked out in detail in the following sections.
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B Proof of Lemma 3.4

It holds

1

n

n∑
i=1

Vi

V n
Xi −

1

n

n∑
i=1

Xi =
1

n

n∑
i=1

(
Vi

V n
− 1

)
Xi =

1

n

n∑
i=1

(
Vi

V n
− 1

)
(Xi − E[Xi]) + E[X1]

1

n

n∑
i=1

(
Vi

V n
− 1

)
︸ ︷︷ ︸

=0

.

Now

1

n

n∑
i=1

(
Vi

V n
− 1

)
(Xi − E[Xi]) =

1

n

n∑
i=1

(Vi − 1)(Xi − E[Xi]) +
1

n

n∑
i=1

(
Vi

V n
− Vi

)
(Xi − E[Xi])

=
1

n

n∑
i=1

(Vi − 1)(Xi − E[Xi]) +

(
1

V n
− 1

)
1

n

n∑
i=1

Vi(Xi − E[Xi]).

We observe

Var(V n) =
1

n2

n∑
i,j=1

Cov(Vi, Vj) ≤
1

n2

n∑
i=1

∑
h∈Z

v(i, i+ |h|) n→∞→ 0,

by (iv) of Lemma C.2. Chebychev’s inequality then yields V n
P→ E(Vi) = 1 and, consequently, 1/V n − 1

P→ 0.
Now note that

E

[
1

n

n∑
i=1

Vi(Xi − E[Xi])

]
= EV

[
1

n

n∑
i=1

ViE
X [(Xi − E[Xi])]

]
= 0.

The law of total variance gives

Var

[
1

n

n∑
i=1

Vi(Xi − E[Xi])

]
= EV

[
VarX

[
1

n

n∑
i=1

Vi(Xi − E[Xi])

]]
+VarV

[
EX

[
1

n

n∑
i=1

Vi(Xi − E[Xi])

]
︸ ︷︷ ︸

=0

]

= EV

[
VarX

[
1

n

n∑
i=1

Vi(Xi − E[Xi])

]]

=
1

n2

n∑
i=1

n∑
j=1

E[ViVj ]Cov(Xi, Xj)

≤ 2

n2

n∑
i=1

n∑
j=1

|Cov(Xi, Xj)| by Cauchy-Schwarz and E[V 2
i ] = 2

≤ 1

n

∑
h∈Z

|CX(h)| using that (Xi)i∈N is stationary

= O
(

1

n

)
. by assumption (A3)

Applying Chebyshev’s inequality again, we have shown(
1

V n
− 1

)
1

n

n∑
i=1

Vi(Xi − E[Xi]) = oP (1)×OP (n−1/2),

and the claim follows.
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C Asymptotic variance

In the following, we consider (Xi)i∈N to be a real-valued strictly stationary stochastic process and abbreviate
v(i, j) = Cov(Vi, Vj).

We frequently sum over two indices, i.e. we consider a sum of the form
∑n
i,j=1 aij . The reader convinces himself

that

{(i, j)|i, j = 1, . . . , n}

is the disjoint union of

{(i, i+ j)|j = 0, . . . , n, i = 1, . . . , n− j} and {(i+ j, i)|j = 1, . . . , n, i = 1, . . . , n− j}.

If we assume aij = aji, then, we identify

n∑
i,j=1

aij =

n∑
j=−n

n−|j|∑
i=1

ai,i+|j|. (3)

Lemma C.1. Assume the following:

(i) E(Xi) = 0 for all i.

(ii) |v(i, j)| ≤ C for some C ∈ R and all i, j.

(iii)
∑∞
h=−∞ |CX(|h|)| <∞.

(iv) for all ε > 0 and h such that CX(|h|) 6= 0 there exists nε,|h| such that

|1− v(i, i+ |h|)| ≤ ε

for all i ≥ nε,|h| and

(v) limn→∞
1
n

∑n
h=−n nε,|h||CX(|h|)| = 0

Then, the asymptotic variance

Var

(
1√
n

n∑
i=1

Xi

)
n→∞→ σ2

∞ =
1

n

∞∑
i,j=1

Cov(Xi, Xj)

exists,

EX

[
VarV

(
1√
n

n∑
i=1

ViXi

)
− σ2
∞

]
= O

(
1

n

n∑
h=−n

nε,|h||CX(|h|)|+ ε

n∑
h=−n

|CX(|h|)|
)

and, in particular,

EX

[
VarV

(
1√
n

n∑
i=1

ViXi

)]
n→∞→ σ2

∞.

Proof. We observe

Var

(
1√
n

n∑
i=1

Xi

)
=

n∑
i,j=1

Cov(Xi, Xj).

Therefore, its asymptotic variance (if it exists) is given by

Var

(
1√
n

n∑
i=1

Xi

)
n→∞→ σ2

∞ =
1

n

∞∑
i,j=1

Cov(Xi, Xj).
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Furthermore, we calculate

Var

(
1√
n

n∑
i=1

Xi

)
=

1

n

n∑
i,j=1

Cov(Xi, Xj)

=
1

n

n∑
h=−n

n−|h|∑
i=1

Cov(Xi, Xi+|h|) by (3)

=
1

n

n∑
h=−n

n−|h|∑
i=1

CX(|h|) by stationarity of (Xi)i∈N

=

n∑
h=−n

n− |h|
n

CX(|h|).

≤
∞∑

h=−∞

|CX(|h|)|.

Therefore, the asymptotic variance exists by (iii).

We calculate

EX

[
VarV

(
1√
n

n∑
i=1

ViXi

)]
= EX

 1

n

n∑
i,j=1

v(i, j)XiXj


=

1

n

n∑
i,j=1

v(i, j)E(XiXj)

=
1

n

n∑
i,j=1

v(i, j)Cov(Xi, Xj). by assumption (i)

Hence,

lim
n→∞

1

n

n∑
i,j=1

(v(i, j)− 1)Cov(Xi, Xj) = lim
n→∞

EX

[
VarV

(
1√
n

n∑
i=1

ViXi

)]
− σ2
∞.

By (3) and stationarity of (Xi)i∈N we obtain

1

n

n∑
h=−n

n−|h|∑
i=1

(v(i, i+ |h|)− 1)CX(|h|) =
1

n

n∑
i,j=1

(v(i, j)− 1)Cov(Xi, Xj).

Therefore, we consider

1

n

n∑
h=−n

n−|h|∑
i=1

(v(i, i+ |h|)− 1)CX(|h|)

and prove that it converges to zero for n→∞.

We split the sum

n−|h|∑
i=1

(v(i, i+ |h|)− 1)CX(|h|) =

nε,|h|∑
i=1

(v(i, i+ |h|)− 1)CX(|h|) +

n−|h|∑
i=nε,|h|+1

(v(i, i+ |h|)− 1)CX(|h|)

and prove that the absolute values of both summands converge to zero. For fixed h we calculate∣∣∣∣ n−|h|∑
i=nε,|h|+1

(v(i, i+ |h|)− 1)CX(|h|)
∣∣∣∣ ≤ n−|h|∑

i=nε,|h|+1

ε|CX(|h|)| by assumption (iv).

= ε(n− |h| − nε,|h| − 1)|CX(|h|)|
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for n great enough. Thus,∣∣∣∣∣∣ 1n
n∑

h=−n

n−|h|∑
i=nε,|h|+1

(v(i, i+ |h|)− 1)CX(|h|)

∣∣∣∣∣∣ ≤ ε

n

n∑
h=−n

(n− |h| − nε,|h|−1 − 1)|CX(|h|)|

≤ ε

n

n∑
h=−n

n|CX(|h|)|

= ε

n∑
h=−n

|CX(|h|)|. (4)

We further observe

ε

n∑
h=−n

|CX(|h|)| n→∞→ ε
∑
h∈Z

|CX(|h|)| <∞

by assumption (iii). Since ε might be chosen arbitrarily small for great enough n, we obtain∣∣∣∣∣∣ 1n
n∑

h=−n

n−|h|∑
i=nε,|h|+1

(v(i, i+ |h|)− 1)CX(|h|)

∣∣∣∣∣∣ n→∞→ 0.

At last, using assumption (ii) and (iv) we calculate∣∣∣∣∣ 1n
n∑

h=−n

nε,|h|∑
i=1

(v(i, i+ |h|)− 1)CX(|h|)

∣∣∣∣∣ ≤ 1

n

n∑
h=−n

nε,|h|∑
i=1

|(v(i, i+ |h|)− 1)||CX(|h|)|

≤ (C + 1)

n

n∑
h=−n

nε,|h|∑
i=1

|CX(|h|)|

=
(C + 1)

n

n∑
h=−n

nε,|h||CX(|h|)| (5)

n→∞→ 0

Lemma C.2. Assume the following:

(i) E(Xi) = 0 for all i.

(ii) |v(i, j)| ≤ C for some C ∈ R and all i, j.

(iii) for all i ∈ N the sum
∑
h∈Z v(i, i+ |h|) = Ci ∈ R is finite and

(iv) limn→∞
1
n2

∑n
i=1 Ci = 0

(v) E(X8
i ) <∞ and

∑∞
i=1 α(i)

1
2 <∞

where α is the dependence coefficient of the α-mixing sequence (Xi)i∈N.

Then,

VarX

[
VarV

(
1√
n

n∑
i=1

ViXi

)]
≤ O

(
1

n2

n∑
i=1

Ci

)
n→∞→ 0.

Proof. By Lemma G.1, (v) implies

∞∑
h=−∞

CX(|h|) = K ∈ R. (6)
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Using (i), we calculate

VarX

[
VarV

(
1√
n

n∑
i=1

ViXi

)]
=

1

n2

n∑
i1,...,i4=1

v(i1, i2)v(i3, i4)Cov(Xi1Xi2 , Xi3Xi4). (7)

We consider the following term

1

n2

n∑
i1,...,i4=1

v(i1, i2)v(i3, i4)(CX(|i1 − i3|)CX(|i2 − i4|) + CX(|i1 − i4|)CX(|i2 − i3|)).

Substituting i2 = i1 + s1, i3 = i1 + s2, i4 = i1 + s3 and using Lemma G.2, (7) is asymptotically equivalent to

1

n2

n∑
i1=1

∑
s1,s2,s3∈Z

(v(i1, i1 + |s1|)v(i1 + |s2|, i1 + |s3|)

· (CX(|s2|)CX(|s1 − s3|) + CX(|s3|)CX(|s1 − s2|))). (8)

We observe further
∑
h∈Z C

X(|h− k|) =
∑
h∈Z C

X(|h|) for all k ∈ Z and, hence,∑
s1,s3∈Z

v(i1, i1 + |s1|)CX(|s1 − s3|) =
∑
s1∈Z

v(i1, i1 + |s1|)
∑
s3∈Z

CX(|s1 − s3|)

=
∑
s1∈Z

v(i1, i1 + |s1|)
∑
s3∈Z

CX(|s3|)

= Ci1K,

by (iii) and (vi) and similarly ∑
s1,s2∈Z

v(i1, i1 + |s1|)CX(|s1 − s2|) = Ci1K.

Combined with (ii), we obtain

(8) ≤ 1

n2

n∑
i1=1

2Ci1CK
2 n→∞→ 0 by (iv). (9)

This establishes the claim.

Lemma C.3. Suppose the following conditions hold:

(i) E(Xi) = 0 and E(X8
i ) <∞ for all i and

∑∞
h=−∞ |CX(|h|)| <∞.

(ii)
∑∞
i=1 α(i)

1
2 <∞.

(iii) |v(i, j)| ≤ C for some C ∈ R and all i, j.

(iv) for all ε > 0 and h such that CX(|h|) 6= 0 there exists nε,|h| such that

|1− v(i, i+ |h|)| ≤ ε

for all i ≥ nε,|h| and limn→∞
1
n

∑n
h=−n nε,|h||CX(|h|)| = 0

(v) for all i ∈ N the sum
∑
h∈Z v(i, i+ |h|) = Ci ∈ R is finite and limn→∞

1
n2

∑n
i=1 Ci = 0.

Then

VarV

(
1√
n

n∑
i=1

Vi(Xi − E(X1))

)
P→ σ2

∞.
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Proof. Follows immediately from Lemma C.1, Lemma C.2, and Chebyshev’s inequality.

Lemma C.4. Let Vi be as in Construction 3.1. Then,

1. Vi ∼ N (1, 1) for all i

2. for all h ∈ Z and i ∈ N it holds

0 ≤ Cov(Vi, Vi+|h|) =

|h|∏
k=1

(1− (i+ k)−β) ≤ 1

3. for all ε < 1, h ∈ Z and nε,|h| = (1− |h|
√

1− ε)−
1
β it holds

|1− Cov(Vi, Vi+|h|)| ≤ ε

for all i ≥ nε,|h|

4. Ci =
∑
h∈Z Cov(Vi, Vi+|h|) ≤ 4iβ +B for some constant B ∈ R independent of i and, in particular,

lim
n→∞

1

n2

n∑
i=1

Ci = 0.

Proof. Observe all Vi to be normally distributed as sums of normally distributed random variables. Inductively,
we obtain Var(Vi) = 1 = E(Vi). This proves 1.

We calculate

0 ≤ Cov(Vi, Vi+|h|)

= ρi+|h|Cov(Vi, Vi+|h|−1)

=

|h|∏
k=1

ρi+kVar(Vi) inductively

=

|h|∏
k=1

ρi+k

=

|h|∏
k=1

(1− (i+ k)−β)

≤ (1− (i+ |h|)−β)|h|

for h ∈ Z and, in particular,

|Cov(Vi, Vi+h)| ≤ 1

for all i, h which proves 2.

Furthermore,

|1− Cov(Vi, Vi+|h|)| = 1−
|h|∏
k=1

(1− (i+ k)−β) ≤ 1− (1− i−β)|h|.

For any ε ∈ (0, 1), we calculate

(1− (1− i−β)|h|) ≤ ε ⇔ 1− i−β ≥ |h|
√

1− ε ⇔ i ≥ (1− |h|
√

1− ε)−
1
β .

Hence, we obtain 3.
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Furthermore,∑
h∈Z

Cov(Vi, Vi+|h|) ≤ 2

∞∑
h=0

(1− (i+ h)−β)h

= 2

[
i∑

h=0

(1− (i+ h)−β)h +

∞∑
h=i+1

(1− (i+ h)−β)h

]

≤ 2

[ ∞∑
h=0

(1− (2i)−β)h +

∞∑
h=0

(1− (2h)−β)h

]

= 2

[
(2i)β +

∞∑
h=0

(1− (2h)−β)h

]
by the gemoetric series

= Ci <∞,

where the last step follows from

0 ≤
∞∑
h=0

(1− (2h)−β)h <∞

for all β ∈ (0, 1). Thus, we calculate

0 ≤ lim
n→∞

1

n2

n∑
i=1

Ci = lim
n→∞

4

n2

n∑
i=1

iβ ≤ lim
n→∞

4

n
nβ = 0 (10)

and, hence, we obtain 4.

Proof of Theorem 3.6. To prove the parts (a)–(c) of the theorem it suffices to check the conditions of Lemma C.3,
which also imply the conditions of Lemmas C.1 to C.3. Conditions (i) and (ii) are given by assumption of the
theorem. Conditions (iii)–(v) were proven in Lemma C.4.

For (iv) we calculated nε,|h| = (1− |h|
√

1− ε)−
1
β in Lemma C.4. We approximate

f(ε) = 1− |h|
√

1− ε ≈ ε

|h|

through a first order Taylor series around ε = 0. Thus, we calculate

nε,|h| = (1− |h|
√

1− ε)−
1
β ≈

(
|h|
ε

) 1
β

= O(|h|
1
β ).

In order to determine an optimal β we minimize the MSE

EX

(VarV

(
1√
n

n∑
i=1

ViXi

)
− σ2
∞

)2


= EX

[
VarV

(
1√
n

n∑
i=1

ViXi

)
− σ2
∞

]2
+VarX

[
VarV

(
1√
n

n∑
i=1

ViXi

)]

for n→∞. From (9) and (10), we get

VarX

[
VarV

(
1√
n

n∑
i=1

ViXi

)]
= O

(
1

n2

n∑
i=1

Ci

)
= O(nβ−1).

From (4) and (5), we get

EX
[
VarV

(
1√
n

n∑
i=1

ViXi

)
− σ2
∞

]
= O

(
1

n

n∑
h=−n

nε,|h||CX(|h|)|+ ε

n∑
h=−n

|CX(|h|)|

)
.
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We determine a sequence of εn → 0 in order to balance both.

Assuming

A =
∑
h∈Z

|CX(|h|)|, B =
∑
h∈Z

|h|
1
βCX(|h|) <∞.

Then, εn minimizing the sum of

1

n

n∑
h=−n

nε,|h||CX(|h|)| and ε

n∑
h=−n

|CX(|h|)|

is (asymptotically) given by

εn = min
ε>0

(
1

n
Bε−

1
β +Aε

)
.

Calculating the derivative with respect to ε yields

− 1

βn
Bε−

β+1
β +A

whose only root is given by

εn =

(
A

B
βn

)− β
1+β

.

A straightforward calculation shows

1

n
ε
− 1
β

n + εn = n−
1+β
1+β

(
A

B
βn

) 1
1+β

+ εn = 2εn.

Combined, we obtain the convergence rate

EX

[
VarV

(
1√
n

n∑
i=1

ViXi

)
− σ2
∞

]
= O

(
1

n
ε
− 1
β

n + εn

)
= O(2εn) = O(n−

β
1+β ).

Finally, we pick β to minimize the MSE

EX

(VarV

(
1√
n

n∑
i=1

ViXi

)
− σ2
∞

)2
 =O

(
n−

2β
1+β

)
+O(nβ−1).

Minimizing

n−
2β

1+β + nβ−1

for n→∞ amounts in minimizing the sum of exponents

− 2β

1 + β
+ (β − 1) =

β2 − 2β − 1

1 + β
.

Its derivative is given by

(β + 1)2 − 2

(β + 1)2
.

Thus the optimal β ∈ (0, 12 ) is given by βopt =
√

2− 1.
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D Central limit theorem

Proof of Theorem 3.5. Theorem 1.7 in Bosq (2012) with γ = 4 implies that

1√
n

n∑
i=1

(Xi − E(Xi))
d→ N (0, σ2

∞),

as n→∞, or, written differently,

sup
x∈R

∣∣P{√n(Tn − E(Tn)) ≤ x
}
− Φ(x/σ∞)

∣∣→ 0, (11)

where Tn = n−1
∑n
i=1Xi and Φ the standard normal cumulative distribution function. It remains to show that

the centered bootstrap average has the same limiting distribution. Recall from Lemma 3.4 that

√
n(T ∗n − Tn) =

1√
n

n∑
i=1

Vi

V n
Xi −

1√
n

n∑
i=1

Xi =
1√
n

n∑
i=1

(Vi − 1)(Xi − E[Xi]) + oP (1).

The distribution of the sum on the right, conditional on X1, . . . , Xn, is normal with mean 0 and variance

σ2
n := VarV

(
1√
n

n∑
i=1

(Vi − 1)(Xi − E[Xi])

)
= VarV

(
1√
n

n∑
i=1

Vi(Xi − E[Xi])

)
,

which converges in probability to σ2
∞ by Lemma C.3. We therefore get

sup
x∈R
|P∗{
√
n(T ∗n − Tn) ≤ x} − Φ(x/σ∞)| ≤ sup

x∈R
|P∗{
√
n(T ∗n − Tn) ≤ x} − Φ(x/σn)|+ sup

x∈R
|Φ(x/σn)− Φ(x/σ∞)|

P→ 0,

where the rightmost supremum converges by the continuous mapping theorem. Together with (11), we obtain

sup
x∈R
|P∗{
√
n(T ∗n − Tn) ≤ x} − P

{√
n(Tn − E(Tn)) ≤ x

}
|

≤ sup
x∈R
|P∗{
√
n(T ∗n − Tn) ≤ x} − Φ(x/σ∞)|+ sup

x∈R
|P
{√

n(Tn − E(Tn)) ≤ x
}
− Φ(x/σ∞)| P→ 0.

E Details on Moving average block bootstrap

Example E.1 (Multiplier block bootstrap with MA-weights). Consider the moving average (MA) process

Vj,n =
∑
j∈Z

bj,nζi−j,n

with

bj =

{
m−1n (1− |j|/mn) |j| ≤ mn

0 else,

where ζi,n
iid∼ Gamma(qn, qn) with qn = 2

3mn
+ 1

3m2
n

and mn ∼ Cn1/3 asymptotically. Define the resampling

scheme X∗i,n = XiVi,n/V n.

F Evaluation metrics

Recall that Theorem 3.6 yields a consistent variance estimator, i.e.

VarV

(
1√
n

n∑
i=1

Vi

V n
Xi

)
= VarV

(
1√
n

n∑
i=1

(
Vi

V n
− 1

)
Xi

)
→ σ∞
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in probability. Furthermore, Theorem 3.5 yields asymptotically consistent confidence intervals Cn at level α for
θ = E(X1) = E(Xi) by Lemma 23.3 of Van der Vaart (2000), i.e.

lim inf
n→∞

P (θ ∈ Cn(X1, ..., Xn)) ≥ 1− α.

Accordingly, given some realizations x1, ..., xn, we obtain

ev1(x1, ..., xn) = VarV

(
1√
n

n∑
i=1

Vi

V n
xi

)

ev2(x1, ..., xn) =

{
1 θ ∈ Cn(x1, ..., xn)

0 θ /∈ Cn(x1, ..., xn)

which provide quantities of the accuracy of the bootstrap procedure. Observe

E(ev2(X1, ..., Xn)) = P (θ ∈ Cn(X1, ..., Xn))

and

ev1(X1, ..., Xn) = VarV

(
1√
n

n∑
i=1

Vi

V n
Xi

)
by the very construction.

Following standard practice, we estimate the mean E1 and variance E2 of ev1(X1, ..., Xn) as well as the expected
value E3 of ev2(X1, ..., Xn) by sampling M = 250 times from the underlying bootstrap distribution, i.e. realize
v1,j , ....vn,j ∈ R according vi,j ∼ Vi for j = 1, ...,M and calculate

êv1(x1, ..., xn) =
1

M − 1

M∑
j=1

(
1√
n

n∑
i=1

vi,j
vn

xi

)2

êv2(x1, ..., xn) =

{
1 θ ∈ Ĉn(x1, ..., xn)

0 θ /∈ Ĉn(x1, ..., xn)

where Ĉn(x1, ..., xn) denotes corresponding estimate of Cn(x1, ..., xn).

G Auxilary results

Lemma G.1. Assume
E(X4

i ) <∞

and
∞∑
i=1

α(i)
1
2 <∞.

Then,
∞∑

h=−∞

|CX(|h|)| <∞.

Proof. We apply (corollary 1.1 Bosq) to p = 1
2 and r = q = 1

4 . A straightforward calculation exhibits

1

q
+

1

r
= 1− 1

p
.

We obtain
|CX(|h|)| ≤ 2pα(|h|) 1

2E(X4
1 )

1
2
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by stationarity of (Xi)i∈N. Hence,
∞∑

h=−∞

|CX(|h|)| <∞

follows from
∞∑
i=1

α(i)
1
2 <∞.

Lemma G.2. Let (Xi)i∈N be a zero mean, real valued, strictly stationary strong mixing stochastic process with
eigth moments existing.

Then, for all a, b, c, d ∈ N

|E(XaXbXcXd)− E(XaXb)E(XcXd)− E(XaXc)E(XbXd)− E(XaXd)E(XbXc)|

≤ Cα(max{i2 − i1, i3 − i2, i4 − i3})
1
2

with {a, b, c, d} = {i1, i2, i3, i4} such that i1 ≤ i2 ≤ i3 ≤ i4 and C ∈ R independent of a, b, c, d ∈ N.

In particular, fixing a, we obtain

E(XaXbXcXd)− E(XaXb)E(XcXd) = E(XaXc)E(XbXd)− E(XaXd)E(XbXc) + εb,c,d

with εb,c,d → 0 if some b, c or d tends to infinity

Proof. In order to remain clarity, we only outline the proof rather than going into detaill.

Since

|E(XaXbXcXd)− E(XaXb)E(XcXd)− E(XaXc)E(XbXd)− E(XaXd)E(XbXc)|

is invariant under permutation of the a, b, c, d, we may without loss of generality assume a ≤ b ≤ c ≤ d, i.e.
a = i1, ..., d = i4. Then, we obtain

|E(XaXbXcXd)− E(XaXb)E(XcXd)| = |Cov(XaXb, XcXd)| ≤ Kα(c− b)1/2E(X8
1 )1/2

|E(XaXc)| = |Cov(Xa, Xc)| ≤ Kα(c− a)1/2E(X4
1 )1/2

|E(XbXc)| = |Cov(Xb, Xc)| ≤ Kα(c− b)1/2E(X4
1 )1/2

by applying Corollary 1.1 in Bosq (2012) with q = r = 4, p = 2 to the respective covariance and by using
Cauchy-Schwarz inequality. Combined, triangle inequality yields

|E(XaXbXcXd)− E(XaXb)E(XcXd)− E(XaXc)E(XbXd)− E(XaXd)E(XbXc)|

≤ Cα(c− b) 1
2 .

for some C independent of a, ..., d. By the very same argument we derive

|E(XaXb)| = |Cov(Xa, Xc)| ≤ Kα(b− a)1/2E(X4
1 )1/2

|E(XaXc)| = |Cov(Xb, Xc)| ≤ Kα(b− a)1/2E(X4
1 )1/2

|E(XaXd)| = |Cov(Xb, Xc)| ≤ Kα(b− a)1/2E(X4
1 )1/2

Next, we apply Corollary 1.1 in Bosq (2012) with q = 8/3, r = 8 and p = 2 in order to obtain

|E(XaXbXcXd)| = |Cov(Xa, XbXcXd)| ≤ Kα(b− a)1/2E(X8
1 )1/8E((XbXcXd)

8/3)3/8

≤ Kα(b− a)1/2E(X8
1 )1/2
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where we applied Hölder’s inequality in the last step. Thus, triangle inequality yields

|E(XaXbXcXd)− E(XaXb)E(XcXd)− E(XaXc)E(XbXd)− E(XaXd)E(XbXc)|

≤ Cα(b− a)
1
2

and the same argument yields

|E(XaXbXcXd)− E(XaXb)E(XcXd)− E(XaXc)E(XbXd)− E(XaXd)E(XbXc)|

≤ Cα(d− c) 1
2

for some constant independent of a, ..., d. This proves the first claim.

The last claim follows by the strong mixing property of (Xi). This completes the proof.
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